WorldWideScience

Sample records for carotenoid radical cations

  1. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  2. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.

    Science.gov (United States)

    Wormit, Michael; Dreuw, Andreas

    2007-06-21

    Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.

  3. Fast regeneration of carotenoids from radical cations by isoflavonoid dianions: importance of the carotenoid keto group for electron transfer.

    Science.gov (United States)

    Han, Rui-Min; Chen, Chang-Hui; Tian, Yu-Xi; Zhang, Jian-Ping; Skibsted, Leif H

    2010-01-14

    Electron transfer to radical cations of beta-carotene, zeaxanthin, canthaxanthin, and astaxanthin from each of the three acid/base forms of the diphenolic isoflavonoid daidzein and its C-glycoside puerarin, as studied by laser flash photolysis in homogeneous methanol/chloroform (1/9) solution, was found to depend on carotenoid structures and more significantly on the deprotonation degree of the isoflavonoids. None of the carotenoid radical cations reacted with the neutral forms of the isoflavonoids while the monoanionic and dianionic forms of the isoflavonoids regenerated the oxidized carotenoid. Electron transfer to the beta-carotene radical cation from the puerarin dianion followed second order kinetics with the rate constant at 25 degrees C k(2) = 5.5 x 10(9) M(-1) s(-1), zeaxanthin 8.5 x 10(9) M(-1) s(-1), canthaxanthin 6.5 x 10(10) M(-1) s(-1), and astaxanthin 11.1 x 10(10) M(-1) s(-1) approaching the diffusion limit and establishing a linear free energy relationship between rate constants and driving force. Comparable results found for the daidzein dianion indicate that the steric hindrance from the glucoside is not important suggesting the more reducing but less acidic 4'-OH/4'-O(-) as electron donors. On the basis of the rate constants obtained from kinetic analyses, the keto group of carotenoids is concluded to facilitate electron transfer. The driving force was estimated from oxidation potentials, as determined by cyclic-voltametry for puerarin and daidzein in aqueous solutions at varying pH conditions, which led to the standard reduction potentials E degrees = 1.13 and 1.10 V versus NHE corresponding to the uncharged puerarin and daidzein. For pH > pK(a2), the apparent potentials of both puerarin and daidzein became constants and were E degrees = 0.69 and 0.65 V, respectively. Electron transfer from isoflavonoids to the carotenoid radical cation, as formed during oxidative stress, is faster for astaxanthin than for the other carotenoids, which may relate

  4. Excited states and electrochromism of radical cation of the carotenoid astaxanthin

    Science.gov (United States)

    Krawczyk, Stanisław

    1998-09-01

    Radical cations of the carotenoid astaxanthin were generated by chemical oxidation with Fe(Cl) 3, and their absorption and electroabsorption (Stark) spectra at temperatures about 150 K were recorded in the spectral range from 5900 to 26000 cm -1 (380 to 1700 nm), covering two absorptive electronic transitions from D 0 (ground) to D 1 and D 2 excited states. The changes in static polarizability are negative and equal -40±10 A 3 for D 0→D 1 and -105±15 A 3 for D 0→D 2, pointing that dominant contribution to polarizabilities results from the coupling of D 1 and D 2 with the ground state. An approximate localization of the next excited state with ground-state parity is estimated based on arguments from perturbation theory.

  5. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  6. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;

    1997-01-01

    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  7. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  8. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  9. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  10. Influence of dietary carotenoids on radical scavenging capacity of the skin and skin lipids.

    Science.gov (United States)

    Meinke, M C; Friedrich, A; Tscherch, K; Haag, S F; Darvin, M E; Vollert, H; Groth, N; Lademann, J; Rohn, S

    2013-06-01

    Nutrition rich in carotenoids is well known to prevent cell damage, premature skin aging, and skin cancer. Cutaneous carotenoids can be enriched in the skin by nutrition and topically applied antioxidants have shown an increase in radical protection after VIS/NIR irradiation. In this paper, it was investigated whether orally administered carotenoids increase the radical scavenging activity and the radical protection of the skin using in vivo electron paramagnetic resonance spectroscopy and the skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, in vivo Raman resonance spectroscopy was used to measure the cutaneous carotenoid concentration. A double blind placebo controlled clinical study was performed with 24 healthy volunteers, who have shown a slow but significant and effective increase in cutaneous carotenoids in the verum group. The enhancement in carotenoids increases the radical scavenging activity of the skin and provides a significant protection against stress induced radical formation. Furthermore, the skin lipids in the verum group increased compared to the placebo group but only significantly for ceramide [NS]. These results indicate that a supplementation with dietary products containing carotenoids in physiological concentrations can protect the skin against reactive oxygen species and could avoid premature skin aging and other radical associated skin diseases.

  11. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  12. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. (Northwestern Univ., Evanston, IL (USA)); Gould, I.R.; Farid, S. (Eastman Kodak Co., Rochester, NY (USA))

    1990-10-24

    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  13. DFT study on the cycloreversion of thietane radical cations.

    Science.gov (United States)

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A

    2011-06-01

    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone.

  14. Pyridine radical cation and its fluorine substituted derivatives

    Science.gov (United States)

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  15. Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

    NARCIS (Netherlands)

    Osburn, S.; Steill, J. D.; Oomens, J.; O' Hair, R. A. J.; Van Stipdonk, M.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe(center dot+), have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe(center dot+) undergoes rapid ion molecule reactions with dimethyl disulfide, a

  16. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  17. Surface hopping investigation of the relaxation dynamics in radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, Mariana; Matsika, Spiridoula, E-mail: smatsika@temple.edu [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Weinacht, Thomas [Department of Physics, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-01-21

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  18. Measurement of antioxidant activity with trifluoperazine dihydrochloride radical cation

    Directory of Open Access Journals (Sweden)

    M.N. Asghar

    2008-06-01

    Full Text Available A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R² ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.

  19. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    Science.gov (United States)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  20. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Dreuw, Andreas, E-mail: andreas.dreuw@theochem.uni-frankfurt.de [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany); Starcke, Jan Hendrik; Wachtveitl, Josef [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany)

    2010-07-19

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT{sup {center_dot}+}) are investigated. While the optically allowed excited D{sub 1} and D{sub 3} states are typical {pi}{pi}* excited states, the D{sub 2} and D{sub 4} states are n{pi}* states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed {pi}{pi}* states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  1. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  2. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    Science.gov (United States)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  3. Charge transfer from 2-aminopurine radical cation and radical anion to nucleobases: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, P. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Mohan, H. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mittal, J.P. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manoj, V.M. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Aravindakumar, C.T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India)], E-mail: CT-Aravindakumar@rocketmail.com

    2007-01-08

    Pulse radiolysis study has been carried out to investigate the properties of the radical cation of 2-aminopurine (2AP) and the probable charge transfer from the radical cation and radical anion of 2AP to natural nucleobases in aqueous medium. The radical cation of 2AP was produced by the reaction of sulfate radical anion (SO{sub 4}{sup dot-}). The time resolved absorption spectra obtained by the reaction of SO{sub 4}{sup dot-} with 2AP at neutral pH have two distinct maxima at 380 and 470nm and is assigned to the formation of a neutral radical of the form 2AP-N{sup 2}(-H){sup dot} (k{sub 2}=4.7x10{sup 9}dm{sup 3}mol{sup -1}s{sup -1} at pH 7). This neutral radical is formed from the deprotonation reaction of a very short-lived radical cation of 2AP. The transient absorption spectra recorded at pH 10.2 have two distinct maxima at 400 and 480nm and is assigned to the formation of a nitrogen centered radical (2AP-N(9){sup dot}). As the hole transport from 2AP to guanine is a highly probable process, the reaction of SO{sub 4}{sup dot-} is carried out in the presence of guanosine, adenosine and inosine. The spectrum obtained in the presence of guanosine was significantly different from that in the absence and it showed prominent absorption maxima at 380 and 470nm, and a weak broad maximum centered around 625nm which match well with the reported spectrum of a neutral guanine radical (G(-H){sup dot}). The electron transfer reaction from the radical anion of 2AP to thymine (T), cytidine (Cyd) and uridine (Urd) was also investigated at neutral pH. Among the three pyrimidines, only the transient spectrum in the presence of T gave a significant difference from the spectral features of the electron adduct of 2AP, which showed a prominent absorption maximum at 340nm and this spectrum is similar to the electron adduct spectrum of T. The preferential reduction of thymine by 2AP{sup dot-} and the oxidation of guanosine by 2AP{sup dot+} clearly follow the oxidation

  4. Mechanism of radical cation formation from the excited states of zeaxanthin and astaxanthin in chloroform.

    Science.gov (United States)

    Han, Rui-Min; Tian, Yu-Xi; Wu, Yi-Shi; Wang, Peng; Ai, Xi-Cheng; Zhang, Jian-Ping; Skibsted, Leif H

    2006-01-01

    The C-40 xanthophylls zeaxanthin and astaxanthin were confirmed to form radical cations, Car.+, in the electron-accepting solvent chloroform by direct excitation using subpicosecond time-resolved absorption spectroscopy in combination with spectroelectrochemical determination of the near-infrared absorption of Car.+. For the singlets, the S2(1B(u+) state and most likely the S(x)(3A(g)-) state directly eject electrons to chloroform leading to the rapid formation of Car.+ on a timescale of approximately 100 fs; the lowest-lying S1(2A(g)-) state, however, remains inactive. Standard reduction potential for Car.+ was determined by cyclic voltametry to have the value 0.63 V for zeaxanthin and 0.75 V for astaxanthin from which excited state potentials were calculated, which confirmed the reactivity toward radical cation formation. On the other hand, Car.+ formation from the lowest triplet excited state T1 populated through anthracene sensitization is mediated by a precursor suggested to be a solute-solvent complex detected with broad near-infrared absorption to the shorter wavelength side of the characteristic Car.+ absorption. However, ground state carotenoids are able to react with a secondary solvent radical to yield Car.+, a process occurring within 16 micros for zeaxanthin and within 21 mus for astaxanthin. Among the two xanthophylls together with lycopene and beta-carotene, all having 11 conjugated double bonds, zeaxanthin ranks with the highest reactivity in forming Car.+ from either the S2(1B(u+)) or the ground state. The effects of substituent groups on the reactivity are discussed.

  5. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-

  6. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-

  7. Excited state dynamics of the astaxanthin radical cation

    Science.gov (United States)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  8. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    The results of our investigations of the geometric and vibrational structures of some short conjugated polyene radical cations are reported. The radical cations of 1,3-butadiene and three of its deuterated isotopomers, trans- and cis-1,3-pentadiene, 2-methyl-1,3-butadiene, and E- and Z-1,3,5-hexa......The results of our investigations of the geometric and vibrational structures of some short conjugated polyene radical cations are reported. The radical cations of 1,3-butadiene and three of its deuterated isotopomers, trans- and cis-1,3-pentadiene, 2-methyl-1,3-butadiene, and E- and Z-1...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  9. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-11-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  10. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-01-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  11. A Photo Touch on Amines: New Synthetic Adventures of Nitrogen Radical Cations.

    Science.gov (United States)

    Maity, Soumitira; Zheng, Nan

    2012-08-01

    Amines have been used as sacrificial electron donors to reduce photoexcited Ru(II) or Ir(III) complexes, during which they are oxidized to nitrogen radical cations. Recently, the synthetic potential of these nitrogen radical cations have caught synthetic organic chemists' attention. They have been exploited in various transformations yielding a number of elegant methods for amine synthesis. This article highlights recent developments on nitrogen radical cation chemistry under visible-light photocatalysis.

  12. Monomer and dimer radical cations of benzene, toluene, and naphthalene.

    Science.gov (United States)

    Das, Tomi Nath

    2009-06-11

    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  13. Interactions of dietary carotenoids with singlet oxygen (1O2) and free radicals: potential effects for human health.

    Science.gov (United States)

    Böhm, Fritz; Edge, Ruth; Truscott, T George

    2012-01-01

    The dietary carotenoids provide photoprotection to photosynthetic organisms, the eye and the skin. The protection mechanisms involve both quenching of singlet oxygen and of damaging free radicals. The mechanisms for singlet oxygen quenching and protection against free radicals are quite different - indeed, under some conditions, quenching of free radicals can lead to a switch from a beneficial anti-oxidant process to damaging pro-oxidative situation. Furthermore, while skin protection involves β-carotene or lycopene from a tomato-rich diet, protection of the macula involves the hydroxyl-carotenoids (xanthophylls) zeaxanthin and lutein. Time resolved studies of singlet oxygen and free radicals and their interaction with carotenoids via pulsed laser and fast electron spectroscopy (pulse radiolysis) and the possible involvement of amino acids are discussed and used to (1) speculate on the anti- and pro-oxidative mechanisms, (2) determine the most efficient singlet oxygen quencher and (3) demonstrate the benefits to photoprotection of the eye from the xanthophylls rather than from hydrocarbon carotenoids such as β-carotene.

  14. Reactions of the radical cations of methylated benzene derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, K.; Holcman, J.

    1978-03-23

    The radical cations of methylated benzene decompose in acid solution into the corresponding methylbenzyl radical and a proton. The rate constant for this reaction decreases by three orders of magnitude as the number of methyl groups increases from one to five. The rate constants can be correlated with the ionization potential of the parent compound. In neutral solution the reverse reaction to the acid-catalyzed OH adduct conversion occurs and the radical cations react with water to form the OH adduct. In slightly alkaline solution the radical cations of the higher methylated benzenes (n greater than or equal to 3) react with hydroxide ions forming the OH adduct.

  15. Nitroxide free radicals protect macular carotenoids against chemical destruction (bleaching) during lipid peroxidation.

    Science.gov (United States)

    Zareba, M; Widomska, J; Burke, J M; Subczynski, W K

    2016-12-01

    Macular xanthophylls (MXs) lutein and zeaxanthin are dietary carotenoids that are selectively concentrated in the human eye retina, where they are thought to protect against age-related macular degeneration (AMD) by multiple mechanisms, including filtration of phototoxic blue light and quenching of singlet oxygen and triplet states of photosensitizers. These physical protective mechanisms require that MXs be in their intact structure. Here, we investigated the protection of the intact structure of zeaxanthin incorporated into model membranes subjected to oxidative modification by water- and/or membrane-soluble small nitroxide free radicals. Model membranes were formed from saturated, monounsaturated, and polyunsaturated phosphatidylcholines (PCs). Oxidative modification involved autoxidation, iron-mediated, and singlet oxygen-mediated lipid peroxidation. The extent of chemical destruction (bleaching) of zeaxanthin was evaluated from its absorption spectra and compared with the extent of lipid peroxidation evaluated using the thiobarbituric acid assay. Nitroxide free radicals with different polarity (membrane/water partition coefficients) were used. The extent of zeaxanthin bleaching increased with membrane unsaturation and correlated with the rate of PC oxidation. Protection of the intact structure of zeaxanthin by membrane-soluble nitroxides was much stronger than that by water-soluble nitroxides. The combination of zeaxanthin and lipid-soluble nitroxides exerted strong synergistic protection against singlet oxygen-induced lipid peroxidation. The synergistic effect may be explained in terms of protection of the intact zeaxanthin structure by effective scavenging of free radicals by nitroxides, therefore allowing zeaxanthin to quench the primary oxidant, singlet oxygen, effectively by the physical protective mechanism. The redox state of nitroxides was monitored using electron paramagnetic resonance spectroscopy. Both nitroxide free radicals and their reduced form

  16. Radical-cationic gaseous amino acids: a theoretical study.

    Science.gov (United States)

    Sutherland, Kailee N; Mineau, Philippe C; Orlova, Galina

    2007-08-16

    Three major forms of gaseous radical-cationic amino acids (RCAAs), keto (COOH), enolic (C(OH)OH), and zwitterionic (COO(-)), as well as their tautomers, are examined for aliphatic Ala(.+), Pro(.+), and Ser(.+), sulfur-containing Cys(.+), aromatic Trp(.+), Tyr(.+), and Phe(.+), and basic His(.+). The hybrid B3LYP exchange-correlation functional with various basis sets along with the highly correlated CCSD(T) method is used. For all RCAAs considered, the main stabilizing factor is spin delocalization; for His(.+), protonation of the basic side chain is equally important. Minor stabilizing factors are hydrogen bonding and 3e-2c interactions. An efficient spin delocalization along the N-C(alpha)-C(O-)O moiety occurs upon H-transfer from C(alpha) to the carboxylic group to yield the captodative enolic form, which is the lowest-energy isomer for Ala(.+), Pro(.+), Ser(.+), Cys(.+), Tyr(.+), and Phe(.+). This H-transfer occurs in a single step as a 1,3-shift through the sigma-system. For His(.+), the lowest-energy isomer is formed upon H-transfer from C(alpha) to the basic side chain, which results in a keto form, with spin delocalized along the N-C(alpha)-C=O fragment. Trp(.+) is the only RCAA that favors spin delocalization over an aromatic system given the low ionization energy of indole. The lowest-energy isomer of Trp(.+) is a keto form, with no H-transfer.

  17. The Prowess of Photogenerated Amine Radical Cations in Cascade Reactions: From Carbocycles to Heterocycles.

    Science.gov (United States)

    Morris, Scott A; Wang, Jiang; Zheng, Nan

    2016-09-20

    Cascade reactions represent a class of ideal organic reactions because they empower efficiency, elegance, and novelty. However, development of cascade reactions remains a daunting task for synthetic chemists. Radicals are known to be well suited for cascade reactions. Compared with widely used carbon-based radicals, nitrogen-based radicals, such as neutral aminyl radicals and protonated aminyl radicals (amine radical cations), are underutilized, although they are behind some notable synthetic methods such as the Hofmann-Löffler-Freytag reaction. The constraint on their usage is generally attributed to the limited number of available stable precursors. Since amine radical cations offer increased reactivity and selectivity in chemical transformations compared with neutral aminyl radicals, their generation is of utmost importance. Recently, a surge of reports has been revealed using visible light photoredox catalysis. It has been demonstrated that amines can act as an electron donor in a reductive quenching cycle while the amine itself is oxidized to the amine radical cation. Although a number of methods exist to generate amine radical cations, the photochemical formation of these species offers many practical advantages. In this Account, we discuss our journey to the development of annulation reactions with various π-bonds and electrophilic addition reactions to alkenes using photogenerated amine radical cations. Various carbocycles and heterocycles are produced by these reactions. In our annulation work, we first show that single electron photooxidation of cyclopropylanilines to the amine radical cations triggers ring opening of the strained carbocycle, producing distonic radical cations. These odd-electron species are shown to react with alkenes and alkynes to yield the corresponding cyclopentanes and cyclopentenes in an overall redox neutral process. Further development of this annulation reaction allows us to achieve the [4 + 2] annulation of cyclobutylanilines

  18. Fast repair of purine deoxynucleotide radical cations by rutin and quercetin

    Institute of Scientific and Technical Information of China (English)

    赵晨阳; 石益民; 王文锋; 贾忠建; 姚思德; 范波涛; 郑荣梁

    2001-01-01

    Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were studied using pulse radiolysis technique. On electron pulse irradiation of N2 saturated deoxynucleotide aqueous solution containing 20 mmol/L K2S2O8, 200 mmol/L t-BuOH and rutin or quercetin, the transient absorption spectra of the deoxynucleotide radical cations decayed quickly. At the same time, the spectra of flavonoid phenoxyl radicals formed within several dozen microseconds. The results indicated that deoxynucleotide radical cations can be repaired by flavonoids. The rate constants of the repair reactions were 3.8×108-4.4×108 mol-1·L·s-1 and 1.3×108-1.8×108 mol-1·L·s-1 for dAMP and dGMP radical cations, respectively.

  19. Pulse radiolysis studies of aminobenzenesulfonates: Formation of cation radicals. [7 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Behar, D.; Behar, B. (Univ. of Notre Dame, IN (United States))

    1991-09-19

    Sulfanilic acid and anilinedisulfonic acids (ADS) react with OH radicals (k = 8.2 {times} 10{sup 9} and 5.9 {times} 10{sup 9} M{sup {minus}1}s{sup {minus}1}) to form the corresponding OH adducts. In acid solutions the adducts react with protons to yield cation radicals (k = 5.3 {times} 10{sup 8} and 8.7 {times} 10{sup 8} M{sup {minus}1}s{sup {minus}1}). N{sub 3} oxidizes sulfanilic acid directly to the cation radical by an electron-transfer reaction at a diffusion-controlled rate constant, k = 6.5 {times} 10{sup 9}M{sup {minus}1}s{sup {minus}1}, while the rate of oxidation of ADS by N{sub 3} is only 7.6 {times} 10{sup 7} M{sup {minus}1}s{sup {minus}1}. SO{sub 4}{sup {minus}} on the other hand oxidizes ADS to the cation radical at a rate of 1.8 {times} 10{sup 9}M{sup {minus}1}s{sup {minus}1}. Both cation radicals deprotonate to the anilino-type radicals in acid-base equilibria. The pK{sub a} of deprotonation of the sulfanilic cation radical is 5.8 {plus minus} 0.05 and that of the ADS cation radical is 4.3 {plus minus} 0.05.

  20. Blue-Violet Light Irradiation Dose Dependently Decreases Carotenoids in Human Skin, Which Indicates the Generation of Free Radicals

    Directory of Open Access Journals (Sweden)

    Staffan Vandersee

    2015-01-01

    Full Text Available In contrast to ultraviolet and infrared irradiation, which are known to facilitate cutaneous photoaging, immunosuppression, or tumour emergence due to formation of free radicals and reactive oxygen species, potentially similar effects of visible light on the human skin are still poorly characterized. Using a blue-violet light irradiation source and aiming to characterize its potential influence on the antioxidant status of the human skin, the cutaneous carotenoid concentration was measured noninvasively in nine healthy volunteers using resonance Raman spectroscopy following irradiation. The dose-dependent significant degradation of carotenoids was measured to be 13.5% and 21.2% directly after irradiation at 50 J/cm² and 100 J/cm² (P<0.05. The irradiation intensity was 100 mW/cm². This is above natural conditions; the achieved doses, though, are acquirable under natural conditions. The corresponding restoration lasted 2 and 24 hours, respectively. The degradation of cutaneous carotenoids indirectly shows the amount of generated free radicals and especially reactive oxygen species in human skin. In all volunteers the cutaneous carotenoid concentration dropped down in a manner similar to that caused by the infrared or ultraviolet irradiations, leading to the conclusion that also blue-violet light at high doses could represent a comparably adverse factor for human skin.

  1. The bisketene radical cation and its formation by oxidative ring-Opening of cyclobutenedione

    OpenAIRE

    Piech, Krzysztof; Bally, Thomas; Allen, Annette D.; Tidwell, Thomas T.

    2013-01-01

    Parent cyclobutenedione 1 was photolyzed and ionized in an Ar matrix at 10K. The bisketene 2 that results in both cases (in the form of its radical cation after ionization) was characterized by its IR spectrum and by high-level quantum chemical calculations. Experiment and theory show that the neutral bisketene has only a single conformation where the two ketene moieties are nearly perpendicular, whereas the radical cation is present in two stable planar conformations. The mechanism of the ri...

  2. Spectroscopic detection, reactivity, and acid-base behavior of ring-dimethoxylated phenylethanoic acid radical cations and radical zwitterions in aqueous solution.

    Science.gov (United States)

    Bietti, Massimo; Capone, Alberto

    2004-01-23

    A product and time-resolved kinetic study of the one-electron oxidation of ring-dimethoxylated phenylethanoic acids has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations or radical zwitterions depending on pH, and pK(a) values for the corresponding acid-base equilibria have been measured. The radical cations undergo decarboxylation with first-order rate constants (k(dec)) ranging from <10(2) to 5.6 x 10(4) s(-1) depending on radical cation stability. A significant increase in k(dec) (between 10 and 40 times) is observed on going from the radical cations to the corresponding radical zwitterions. The results are discussed in terms of the ease of intramolecular side chain to ring electron transfer required for decarboxylation, in both the radical cations and radical zwitterions.

  3. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    Science.gov (United States)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  4. Stilbene dimer radical cations in the radiolyses of stilbenes and 1,2,3,4-tetraphenylcyclobutanes

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, Sachiko; Morishima, Kazuhiro; Ishida, Akito; Majima, Tetsuro; Takamuku, Setsuo [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research

    1995-03-01

    The reaction of the stilbene radical cation formed by pulse radiolysis or {gamma}-radiolyses is explained based on neutralization as well as the formation of a {pi}-type stilbene dimer radical cation ({pi}-St{sub 2}{sup +{center_dot}}), converting to the {sigma}-type St{sub 2}{sup +{center_dot}} ({sigma}-St{sub 2}{sup +{center_dot}}). The r-1, c-2, t-3, t-4-tetraphenylcyclobutane radical cation generated in a rigid matrix at 77 K which converted to {sigma}-St{sub 2}{sup +{center_dot}} upon warming. Both r-1, c-2, t-3, t-4- and r-1, t-2, c-3, t-4-tetraphenylcyclobutane radical cations underwent photochemical cycloreversion to {pi}-St{sub 2}{sup +{center_dot}} upon irradiation at wavelengths longer than 390 nm at 77 K, and converted to {sigma}-St{sub 2}{sup +{center_dot}} upon warming. It is suggested that {pi}-St{sub 2}{sup +{center_dot}} has overlapping arrangements of {pi}-electrons, while {sigma}-St{sub 2}{sup +{center_dot}} has radical and cation centers on the 1- and 4-positions of the C{sub 4} linkage. (author).

  5. Theoretical study of second-order hyperpolarizability for nitrogen radical cation

    Science.gov (United States)

    Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.

    2015-05-01

    We report calculations of the static and dynamic hyperpolarizabilities of the nitrogen radical cation in doublet state. The electronic contributions were computed analytically using density functional theory and multi-configurational self-consistent field method with extended basis sets for non-resonant excitation. The open-shell electronic system of nitrogen radical cation provides negative second-order optical nonlinearity, suggesting that the hyperpolarizability coefficient, {{γ }(2)}, in the non-resonant regime is mainly composed of combinations of virtual one-photon transitions rather than two-photon transitions. The second-order optical properties of nitrogen radical cation have been calculated as a function of bond length starting with the neutral molecular geometry (S0 minimum) and stretching the N-N triple bond, reaching the ionic D0 relaxed geometry all the way toward dissociation limit, to investigate the effect of internuclear bond distance on second-order hyperpolarizability.

  6. The generation and spectral characterization of oligothiophenes radical cations. A pulse radiolysis investigation

    Energy Technology Data Exchange (ETDEWEB)

    Emmi, S.S. [Istituto FRAE of CNR, Via P. Gobetti 101, 40129 Bologna (Italy); D' Angelantonio, M. [Istituto FRAE of CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Beggiato, G. [Istituto FRAE of CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Poggi, G. [Dipartimento ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); Geri, A. [Istituto FRAE of CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Pietropaolo, D. [Istituto ICOCEA of CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Zotti, G. [Istituto IPELP of CNR, C.so Stati Uniti 4, 35020 Padova (Italy)

    1999-03-01

    Conjugated polymers and oligomers of thiophene have been employed in a number of electronic devices due to the change in their conductivity by several orders of magnitude when oxidized to their cationic states. The radical cations of oligothiophenes (nT), with number of rings n=1-6, have been produced by pulse radiolysis for the first time and their spectra have been characterized. Electronic structure and transition energies are briefly discussed in the light of semiempirical theoretical calculations.

  7. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.

  8. Electronic structure of the radical-cations of phenothiazine and its structural analogs

    Energy Technology Data Exchange (ETDEWEB)

    Turchaninov, V.K.; Ermikov, A.F.; Shagun, V.A.

    1986-09-20

    The electronic structure of the radical-cations of phenothiazine and some of its derivatives and heteroanalogs was investigated by electronic absorption spectroscopy. On the basis of the obtained results and also of the data from photoelectron spectroscopy of the parent molecules, quantum-chemical calculations (MINDO/3), and published data it was concluded that the occupied molecular orbitals of the excess-..pi.. heteroatomic system exhibit different sensitivities to hole formation. It is suggested that this is due to the different degrees of delocalization of the unpaired electron in the ground and electronically excited states of the radical cation of such molecules.

  9. Blue-violet light irradiation dose dependently decreases carotenoids in human skin, which indicates the generation of free radicals.

    Science.gov (United States)

    Vandersee, Staffan; Beyer, Marc; Lademann, Juergen; Darvin, Maxim E

    2015-01-01

    In contrast to ultraviolet and infrared irradiation, which are known to facilitate cutaneous photoaging, immunosuppression, or tumour emergence due to formation of free radicals and reactive oxygen species, potentially similar effects of visible light on the human skin are still poorly characterized. Using a blue-violet light irradiation source and aiming to characterize its potential influence on the antioxidant status of the human skin, the cutaneous carotenoid concentration was measured noninvasively in nine healthy volunteers using resonance Raman spectroscopy following irradiation. The dose-dependent significant degradation of carotenoids was measured to be 13.5% and 21.2% directly after irradiation at 50 J/cm² and 100 J/cm² (P skin. In all volunteers the cutaneous carotenoid concentration dropped down in a manner similar to that caused by the infrared or ultraviolet irradiations, leading to the conclusion that also blue-violet light at high doses could represent a comparably adverse factor for human skin.

  10. The isolable cation radical of disilene: synthesis, characterization, and a reversible one-electron redox system.

    Science.gov (United States)

    Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira

    2008-05-14

    The highly twisted tetrakis(di-tert-butylmethylsilyl)disilene 1 was treated with Ph3C+.BAr4- (BAr4-: TPFPB = tetrakis(pentafluorophenyl)borate) in toluene, producing disilene cation radical 3 upon one-electron oxidation. Cation radical 3 was isolated in the form of its borate salt as extremely air- and moisture-sensitive red-brown crystals. The molecular structure of 3 was established by X-ray crystallography, which showed a highly twisted structure (twisting angle of 64.9 degrees) along the central Si-Si bond with a bond length of 2.307(2) A, which is 2.1% elongated relative to that of 1. The cation radical is stabilized by sigma-pi hyperconjugation by the four tBu2MeSi groups attached to the two central sp2-Si atoms. An electron paramagnetic resonance (EPR) study of the hyperfine coupling constants (hfcc) of the 29Si nuclei indicates delocalization of the spin over the central two Si atoms. A reversible one-electron redox system between disilene, cation radical, and anion radical is also reported.

  11. Structure and Reactivity of the Glutathione Radical Cation: Radical Rearrangement from the Cysteine Sulfur to the Glutamic Acid alpha-Carbon Atom

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; Gulyuz, K.; Polfer, N.C.; O'Hair, R.A.J.; Ryzhov, V.

    2013-01-01

    A gas-phase radical rearrangement through intramolecular hydrogen-atom transfer (HAT) was studied in the glutathione radical cation, [-ECG](+.), which was generated by a homolytic cleavage of the protonated S-nitrosoglutathione. Ion-molecule reactions suggested that the radical migrates from the ori

  12. Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates.

    Science.gov (United States)

    Terpolilli, Marco; Merli, Daniele; Protti, Stefano; Dichiarante, Valentina; Fagnoni, Maurizio; Albini, Angelo

    2011-01-01

    The irradiation of a series of phenyl sulfonates and phosphates leads to the quantitative release of acidity with a reasonable quantum yield (≈0.2). Products characterization, ion chromatography analysis and potentiometric titration are consistent with the intervening of two different paths in this reaction, viz. cationic with phosphates and (mainly) radical with sulfonates.

  13. Through-bond interaction in the radical cation of N,N-dimethylpiperazine

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Langkilde, F.W.; Bajdor, K.;

    1994-01-01

    The radical cation of N,N-dimethylpiperazine is investigated by resonance Raman spectroscopy and ab initio calculations. The calculations strongly support the assignment of the vibrational spectrum to a chair conformation. It is shown that a dramatic geometry relaxation following ionization allows...

  14. Spectral properties and reactivity of diarylmethanol radical cations in aqueous solution. Evidence for intramolecular charge resonance.

    Science.gov (United States)

    Bietti, Massimo; Lanzalunga, Osvaldo

    2002-04-19

    Spectral properties and reactivities of ring-methoxylated diarylmethane and diarylmethanol radical cations, generated in aqueous solution by pulse and gamma-radiolysis and by the one-electron chemical oxidant potassium 12-tungstocobalt(III)ate, have been studied. The radical cations display three bands in the UV, visible, and vis-NIR regions of the spectrum. The vis-NIR band is assigned to an intramolecular charge resonance interaction (CR) between the neutral donor and charged acceptor rings, as indicated by the observation that the relative intensity of the vis-NIR band compared to that of the UV and visible bands does not increase with increasing substrate concentration and that the position and intensity of this band is influenced by the ring-substitution pattern. In acidic solution (pH = 4), monomethoxylated diarylmethanol radical cations 1a.(+ -)1e.(+) decay by C(alpha)-H deprotonation [k = (1.7-1.9) x 10(4)s(-1)] through the intermediacy of a ketyl radical, which is further oxidized in the reaction medium to give the corresponding benzophenones, as evidenced by both time-resolved spectroscopic and product studies. With the dimethoxylated radical cation 2.(+), C(alpha)-H deprotonation is instead significantly slower (k = 6.7 x 10(2)s(-1)). In basic solution, 1a.(+)-1e.(+) undergo (-)OH-induced deprotonation from the alpha-OH group with k(OH.)approximately equal to 1.4 x 10(10)M(-1)s(-1), leading to a ketyl radical anion, which is oxidized in the reaction medium to the corresponding benzophenone.

  15. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions.

    Science.gov (United States)

    Singh, Beena G; Thomas, Elizabeth; Sawant, Shilpa N; Takahashi, Kohei; Dedachi, Kenchi; Iwaoka, Michio; Priyadarsini, K Indira

    2013-09-26

    Selenium centered radical cations in aliphatic selenium compounds are stabilized by formation of two-center-three electron (2c-3e) hemi bonds either with nearby heteroatoms forming monomer radicals or with selenium atoms of the parent molecules forming dimer radicals. Such radicals in aromatic selenium compounds would generally be stabilized as monomers by the delocalization of the spin density along the aromatic ring. To test the assumption if aromatic selenides having Se···X nonbonding interactions can show different types of radical cations, we have performed pulse radiolysis studies of three structurally related aromatic selenium compounds and the results have been substantiated with cyclic voltammetry and quantum chemical calculations. The three aromatic selenium compounds have functional groups like -CH2N(CH3)2 (1), -CH2OH (2), and -CH3 (3) at ortho position to the -SeCH3 moiety. The energy of Se···X nonbonding interactions (E(nb)) for these compounds is in the order 1 (Se···N) > 2 (Se···O) > 3 (Se···H). Radical cations, 1(•+), 2(•+) and 3(•+) were produced by the one-electron oxidation of 1, 2 and 3 by radiolytically generated (•)OH and Br2(•-) radicals. Results on transient spectra, lifetime, and secondary reactions of 1(•+), 2(•+), and 3(•+) indicated that 1(•+) shows a significantly different absorption spectrum, longer lifetime, and less oxidizing power compared to those of 2(•+) or 3(•+). Quantum chemical calculations suggested that 1(•+) is stabilized by the formation of a 2c-3e bond between Se and N atoms, whereas 2(•+) and 3(•+) acquire stability through the delocalization of the spin density on the aromatic ring. These results provide evidence for the first time that stronger nonbonding interactions between Se···N in the ground state, facilitate the formation of stabilized radical cations, which can significantly influence the redox chemistry and the biological activity of aromatic selenium compounds.

  16. Radical cations from dipyridinium derivatives: a combined EPR and DFT study.

    Science.gov (United States)

    Stipa, Pierluigi

    2006-06-01

    The monoelectronic reduction of 1,1'-dimethyl-2,2'-dicyano-4,4'-bipyridinium (DCMV++) bis-methylsulphate, conducted directly in the cavity of the electron paramagnetic resonance (EPR) spectrometer at room temperature and in DMSO solution, gave the signal of the corresponding radical cation (DCMV.+) whose interpretation has been carried out with the aid of density functional theory (DFT) calculations run at different levels. The model chemistries considered yielded in general hyperfine coupling constants (hfcc) in good agreement with the experimental ones, except for the methyl protons directly bonded to the pyridinium nitrogens. The use of various computational methods accounting for solvent-solute interactions did not give significant improvements with respect to the gas phase results, while the geometry optimizations performed showed that the two pyridinium rings are coplanar in the radical cation but staggered in the parent dication, although the corresponding energy barrier involved is very low.

  17. Intramolecular Electron Transfer in Bis(tetraalkyl Hydrazine) and Bis(hydrazyl) Radical Cations.

    Science.gov (United States)

    Chang, Hao

    A series of multicyclic bis(hydrazine) and bis(diazenium) compounds connected by relatively rigid hydrocarbon frameworks were prepared for the study of intramolecular electron transfer. The thermodynamics of electron removal of these compounds was investigated by cyclic voltammetry. The difference between the first and second oxidation potentials for the 4 sigma-bonded species was found to be larger for the bis(hydrazyl) radical systems than for the bis(hydrazines) by ca. 0.2 V (4.6 kcal/mol). This indicates a greater degree of interaction between the two nitrogen moieties for the hydrazyl systems, which is consistent with a greater degree of electronic coupling (H _{rm AB}) in these systems. The ESR spectra of the 4 sigma -bonded bis(hydrazine) radical cations indicate localized radical cations, which corresponds to slow intramolecular electron transfer on the ESR timescale. Conversely, the ESR spectra of the corresponding bis(hydrazyl) radical cation systems show nitrogen hyperfine splittings of a(4N) of ca. 4.5 G. This indicates that intramolecular electron transfer between the two nitrogen moieties is fast on the ESR timescale; the rate of exchange, k_ {rm ex} was estimated to be well above 1.9 times 10^8 s^{-1}. The contrast in exchange rates is consistent with the large geometry change upon oxidation which is characteristic of hydrazines. The hydrazyls undergo a smaller geometry change upon oxidation, and thus are expected to exhibit smaller inner-sphere reorganization energies. The optical spectra of these radical species was investigated in hopes of observing absorption bands corresponding to intramolecular electron transfer, as predicted by Hush theory. A broad absorption band was observed in the near IR region for the saturated bis(hydrazyl) radical cation system at 1060 nm (9420 cm^{-1} ) in acetonitrile at room temperature, and was accompanied by a narrower band at 1430 nm (6993 cm^ {-1}). The width of this band was estimated to be 545 nm (6496 cm^{-1

  18. Basal Plane Fluorination of Graphene by XeF2 via a Radical Cation Mechanism.

    Science.gov (United States)

    Liu, Yijun; Noffke, Benjamin W; Qiao, Xiaoxiao; Li, Qiqi; Gao, Xinfeng; Raghavachari, Krishnan; Li, Liang-shi

    2015-09-17

    Graphene fluorination with XeF2 is an attractive method to introduce a nonzero bandgap to graphene under mild conditions for potential electro-optical applications. Herein, we use well-defined graphene nanostructures as a model system to study the reaction mechanism of graphene fluorination by XeF2. Our combined experimental and theoretical studies show that the reaction can proceed through a radical cation mechanism, leading to fluorination and sp(3)-hybridized carbon in the basal plane.

  19. Electronic structures of one-dimensional poly-fused selenophene radical cations: density functional theory study

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawabata et al

    2008-01-01

    Full Text Available Hybrid density functional theory (DFT calculations have been carried out for neutral and radical cation species of a fused selenophene oligomer, denoted by Se(n, where n represents the number of selenophene rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused selenophene was also investigated using one-dimensional periodic boundary conditions (PBC for comparison. It was found that the reorganization energy of a radical cation of Se(n from a vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that Se(n has an effective intramolecular hole transport property. It was found that the radical cation species of Se(n has a low-energy band in the near-IR region, which is strongly correlated to hole conductivity. The relationship between the electronic states and intramolecular hole conductivity was discussed on the basis of theoretical calculations.

  20. The lightest organic radical cation for charge storage in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

  1. Electronic spectra of radical cations and their correlation with photoelectron spectra—III. Perylenes and coronenes

    Science.gov (United States)

    Khan, Zahid H.

    Radical cations of perylene, 1,12-benzoperylene, coronene, 1,2-benzocoronene, and naphtho-(2',3':1,2)coronene are produced by photooxidation in boric acid matrix and their electronic absorption spectra are measured. The results are discussed in terms of Longuet-Higgins-Pople and Wasilewski type Open-Shell SCF-MO calculations and the u.v. photoelectron spectra of the parent molecules. The correspondence between optical and photoelectron spectra is found to be fairly good. A correlation diagram for the electronic transitions for some of the molecular ions is presented to demonstrate their movement from one system to another. Finally, an expression showing the relationship between the first ionization potentials of the parent molecules and A-type electronic band energies in the cation spectra is given from which the first IP's of the hydrocarbons may be estimated.

  2. Enantiopure Radical Cation Salt Based on Tetramethyl-Bis(ethylenedithio-Tetrathiafulvalene and Hexanuclear Rhenium Cluster

    Directory of Open Access Journals (Sweden)

    Flavia Pop

    2016-01-01

    Full Text Available Electrocrystallization of the (S,S,S,S enantiomer of tetramethyl-bis(ethylenedithio-tetrathiafulvalene donor 1 in the presence of the dianionic hexanuclear rhenium (III cluster [Re6S6Cl8]2− affords a crystalline radical cation salt formulated as [(S-1]2·Re6S6Cl8, in which the methyl substituents of the donors adopt an unprecedented all-axial conformation. A complex set of intermolecular TTF···TTF and cluster···TTF interactions sustain an original tridimensional architecture.

  3. Simultaneous occurrence of three different valence tautomers in meso-vinylruthenium-modified zinc porphyrin radical cations.

    Science.gov (United States)

    Chen, Jing; Wuttke, Evelyn; Polit, Walther; Exner, Thomas; Winter, Rainer F

    2013-03-01

    The mixed-valent radical cation of a styrylruthenium-modified meso-tetraarylzinc porphyrin forms a mixture of three different valence tautomers (VTs) in CH2Cl2 or 1,2-C2H4Cl2 solutions. One of these VTs has the charge and spin delocalized over the porphyrin and the styrylruthenium moieties, while the other two display charge and spin localization on just one of the different redox sites. The relative amounts of the three different VTs were determined by EPR and IR spectroscopies at variable temperatures, while delocalization in the ground state was confirmed by DFT calculations.

  4. Structure and Reactivity of Homocysteine Radical Cation in the Gas Phase Studied by Ion-Molecule Reactions and Infrared Multiple Photon Dissociation

    NARCIS (Netherlands)

    Osburn, S.; Burgie, T.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2013-01-01

    The reactivity of the cysteine (Cys) and homocysteine (Hcy) radical cation was studied using ion molecule reactions. The radical cations were generated via collision-induced dissociation (CID) of their S-nitrosylated precursors. Cleavage of the S-NO bond led to the formation of the radical initially

  5. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution

    Science.gov (United States)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2016-07-01

    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  6. Electrochemical study of astaxanthin and astaxanthin n-octanoic monoester and diester: tendency to form radicals.

    Science.gov (United States)

    Focsan, A Ligia; Pan, Shanlin; Kispert, Lowell D

    2014-03-06

    The carotenoid astaxanthin known for its powerful antioxidant activity was electrochemically investigated along with the synthesized astaxanthin n-octanoic monoester and astaxanthin n-octanoic diester. Cyclic voltammograms (CVs) revealed a two-electron transfer oxidation for all three carotenoids with a difference in the two oxidation potentials (ΔE = E2(0) - E1(0)) slightly increasing from astaxanthin to the monoester to diester. Minimal or no exposure to water prevented the formation of carotenoid neutral radicals from dications and radical cations, causing near absence of the fifth peak in the CVs. This makes the CVs almost reversible and enables a more precise simulation of the redox potentials and the equilibrium constants for the formation of radical cations. The first oxidation potential (E1(0)) of 0.767₈, 0.773₈, and 0.775₃ V versus SCE and the second oxidation potential (E2(0)) of 0.982₈, 0.993₁, and 0.996₆ V versus SCE for astaxanthin, monoester, and diester, respectively, have been standardized to the potential of ferrocene of 0.528 V vs SCE given in a previous study. Reduction potentials (E3(0)) for formation of carotenoid neutral radicals from dications after proton loss from the three studied carotenoids are presented and compared to those of other carotenoids. According to our DFT calculations, the most favorable sites for deprotonation of radical cations and dications are found on the cyclohexene rings. These measurements provide insight into important properties of these carotenoids like radical scavenging of (•)OH, (•)CH3, and (•)OOH by proton abstraction from the carotenoid or the formation of carotenoid neutral radicals from radical cations which can quench photoexcited states. There is no essential difference in first oxidation potentials for the three carotenoids, which suggests a similar scavenging rate of the esters of astaxanthin toward (•)OH, (•)CH3, and (•)OOH radicals when compared to astaxanthin itself. The

  7. Fast repair of purine deoxynucleotide radical cations by rutin and quercetin

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Chenyang; (

    2001-01-01

    [1]Boon, P. J., Cullis, P. M., Symons, M. C. R. et al., Effects of ionizing radiation on deoxyribonucleic acid and related systems, Part 1, The role of oxygen, J. Chem. Soc. Perkin. Trans. 2, 1984, 1393-1399.[2]Boon, P. J., Cullis, P. M., Symons, M. C. R. et al., Effects of ionizing radiation on deoxyribonucleic acid and related systems, Part 2, The influence of nitroimidazole drugs on the course of radiation damage to aqueous doxyribonucleic acid, J. Chem. Soc. Perkin. Trans. 2, 1985, 1057-1061.[3]Teoule, R., Effects of Ionizing Radiation on DNA, Berlin, Heidelberg, New York: Springer, 1978, 153, 166, 187.[4]Wallace, S. S., Oxidative Damage to DNA and Its Repair, New York: Cold Spring Harbor Laboratory Press, 1997, 49-90.[5]Steenken, J., Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reaction of their radical cations and e? and OH adducts, Chem. Rev., 1989, 89: 503-520.[6]Simic, M. G., Bergtold, D. S., Karam, L. R., Generation of oxy radicals in biosystems, Mutation Res., 1989, 214: 3-12.[7]O'Neill, P., Pulse radiolytic study of the interaction of thiols and ascorbate with OH adducts of dGMP and dG: implications for DNA repair process, Radiat. Res., 1983, 96: 198-210.[8]Jiang, Y., Yao, S. D., Lin, N. Y., Fast repair of oxidizing OH radical adduct of dGMP by hydroxycinnamic acid derivatives: a pulse radiolytic study, Radiat. Phys. Chem., 1997, 49: 447-450.[9]Li, W. Y., Zheng, R. L., Su, B. N. et al., Repair of dGMP hydroxyl radical adducts by verbascoside via electron transfer: a pulse radiolysis study, Int. J. Radiat. Biol., 1996, 69: 481-486.[10]Li, W. Y., Zou, Z. H., Zheng, R. L. et al., Fast repair of thymine-hydroxyl radical adduct by phenylpropanoid glycosides, Radiat. Phys. Chem., 1997, 49: 429-432.[11]Shi, Y. M., Wang, W. F., Shi, Y. P. et al., Fast repair of dAMP hydroxyl adducts by verbasicoside via electron transfer, Science in China, Ser. C, 1999, 42(6): 621

  8. Vibronic spectra of the p-benzoquinone radical anion and cation: a matrix isolation and computational study

    OpenAIRE

    Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John

    2014-01-01

    The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40 000 cm⁻¹ are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙⁺ exhibits a very conspicuous and complicated pattern of features above 1900 ...

  9. Accidental degeneracy in the spiropyran radical cation : charge transfer between two orthogonal rings inducing ultra-efficient reactivity

    NARCIS (Netherlands)

    Mendive-Tapia, David; Kortekaas, Luuk; Steen, Jorn D.; Perrier, Aurelie; Lasorne, Benjamin; Browne, Wesley R.; Jacquemin, Denis

    2016-01-01

    Photochromism of the spiropyran radical cation to the corresponding merocyanine form is investigated by a combination of electrochemical oxidation, UV/vis absorption spectroscopy, spectroelectrochemistry and first-principles calculations (TD-DFT, CAS-SCF and CAS-PT2). First, we demonstrate that the

  10. Direct observation of hexamethylbenzenium radical cations generated during zeolite methanol-to-olefin catalysis: an ESR study.

    Science.gov (United States)

    Kim, Sun Jung; Jang, Hoi-Gu; Lee, Jun Kyu; Min, Hyung-Ki; Hong, Suk Bong; Seo, Gon

    2011-09-07

    The generation of hexamethylbenzenium radical cations as the key reaction intermediate in chabazite-type molecular sieve acids (i.e., H-SAPO-34 and H-SSZ-13) during the methanol-to-olefin process has been directly evidenced by ESR spectroscopy.

  11. pi-dimerization of pleiadiene radical cations at low temperatures revealed by UV-vis spectroelectrochemistry and quantum theory

    NARCIS (Netherlands)

    van het Goor, Layo; van Duijnen, Piet Th.; Koper, Carola; Jenneskens, Leonardus W.; Havenith, Remco W. A.; Hartl, Frantisek

    2011-01-01

    One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293-263 K only on the subsecond time scale of cyclic voltammet

  12. The guanine cation radical: investigation of deprotonation states by ESR and DFT.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D

    2006-11-30

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G*+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2'-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation radical, G*+ (pH 3-5), singly deprotonated species, G(-H)* (pH 7-9), and doubly deprotonated species, G(-2H)*- (pH > 11), are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N-substituted derivatives at N1, N2, and N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G*+, G(-H)*, and G(-2H)*-. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)*. Using the B3LYP/6-31G(d) method, the geometries and energies of G*+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)* and G(N2-H)*, were investigated. In a nonhydrated state, G(N2-H)* is found to be more stable than G(N1-H)*, but on hydration with seven water molecules G(N1-H)* is found to be more stable than G(N2-H)*. The theoretically calculated hyperfine coupling constants (HFCCs) of G*+, G(N1-H)*, and G(-2H)*- match the experimentally observed HFCCs best on hydration with seven or more waters. For G(-2H)*-, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until nine or 10 waters of hydration are included.

  13. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  14. The role of the position of the basic residue in the generation and fragmentation of peptide radical cations

    Science.gov (United States)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2006-03-01

    Using simple di- and tripeptides GX, GGX, GXG, XG and XGG, the influence of the position of the basic residue, X (X = R, K and H), on the formation of peptide radical cations (M+) from [CuII(tpy)M]2+ complexes (where tpy = 2,2':6',2''-terpyridine) was probed. It was found that M+ is formed with greatest abundance when the basic residue is at the C-terminus. For arginine containing peptides, this may be due to further fragmentation of GRG+, RG+ and RGG+ at the MS2 stage. For lysine and histidine containing peptides, when the basic residue is not located at the C-terminus, competing fragmentation pathways that lead to peptide backbone cleavage are more facile than M+ formation. In order to gain some insights into the binding modes of these peptides to [CuII(tpy)]2+, the formation and fragmentation of copper(II) complexes of tripeptides protected as their carboxy methyl/ethyl esters (M-OR', R' = Me/Et) were also probed. The products of the competing fragmentation pathways of [CuII(tpy)M]2+, as well as the formation and fragmentation of [CuII(tpy)(M-OR')]2+, suggest that the unprotected peptides, M, mainly bind as zwitterions to [CuII(tpy)]2+. The fragmentation reactions of the radical cations (M+) were also studied. Radical driven side chain fragmentation reactions of M+ are dependent on both the position of the residue as well as the identity of other residues present in the peptide radical cations. GR and RG, which undergo rearrangement to form a mixed anhydride in their protonated forms, do not undergo the same rearrangement in their radical cation forms.

  15. The o-, m-, and p-benzyne radical cations: a theoretical study.

    Science.gov (United States)

    Li, Hua; Huang, Ming-Bao

    2008-09-21

    On the basis of the CASPT2 (multiconfigurational second-order perturbation theory) geometry optimization calculations, the ground states of the o-C6H4+ (C2v), m-C6H4+ (C2v), and p-C6H4+ (D2h) radical cations were determined to be 1 2B1, 1 2A2, and 1 2B1u, respectively. For o-C6H4+ and m-C6H4+, the first excited states (1 2A2 and 1 2A1, respectively) lie very close to the respective ground states. The small distance value of 1.419 A between the two dehydrocarbons in the ground-state geometry of m-C6H4+ indicates that there is a real chemical bond between the two dehydrocarbons (the distance in the 1 2A1 geometry of m-C6H4+ is very long as in the m-C6H4 molecule). The (U)B3LYP isotropic proton hfcc (hyperfine coupling constant) calculation results imply that the ground and first excited states of o-C6H4+ will have similar ESR spectrum patterns while the ground and first excited states of m-C6H4+ will have completely different ESR spectrum patterns.

  16. Formation of a porphyrin pi-cation radical in the fluoride complex of horseradish peroxidase.

    Science.gov (United States)

    Farhangrazi, Z S; Sinclair, R; Powers, L; Yamazaki, I

    1995-11-21

    Horseradish peroxidase (HRP) was oxidized by IrCl6(2-) to a mixture of compounds I and II, the rate of oxidation and the ratio of the mixture being greatly affected by pH (Hayashi & Yamazaki, 1979). Oxidation of HRP by IrCl6(2-) in the presence of fluoride was significantly accelerated. This resulted in the formation of a new compound which is a ferric fluoride complex containing a porphyrin pi-cation radical. The spectrum of the new compound showed a decreased absorption band in the Soret region and a broad band at 570 nm; which was converted to that of the original ferric fluoride complex by addition of ascorbate or hydroquinone. Addition of cyanide slowed down the oxidation of HRP by IrCl6(2-), and the oxidation product was the same as that obtained in the absence of cyanide. Compound I was formed when H2O2 was added to HRP in the presence of fluoride or cyanide. The one-electron reduction potential (Eo') of the oxidized HRP-fluoride complex was measured at several pH values, the Eo' value at pH 7 being 861 +/- 4 mV. The ratio of delta Eo' to delta pH was 49 mV/pH unit.

  17. Reaction of carotenoids with CCl3OO· by using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Wenen; (赵文恩); YAO; Side; (姚思德); WANG; Qiang; (王强); QIAN; Suping; (钱素平); WANG; Wenfeng; (王文峰); HAN; Yashan; (韩雅珊)

    2003-01-01

    The interactions of carotenoids (bixin, β-carotene and lycopene) with CCl3OO@ in aqueous and i-propylalcohol solution saturated with air have been studied by pulse radiolysis. For bixin and β-carotene reaction products from forming process, absorbing in the region of 650 nm, is observed with concomitant carotenoid bleaching (bixin at 500 nm, β-carotene at 450 nm). Their rate constants from forming process are 1.78×108 and 7.8×107 mol-1@L@s-1 respectively. However, in the case of lycopene, no such a forming process of reaction as bixin and β-carotene can be observed although there is the bleaching reaction (rate constant 4×107 mol-1@L@s-1). The results suggest that the carotenoid radical cationand an additional radical are produced in the case of bixin and β-carotene, whereas lycopene undergoes electron transfer with CCl3OO@, forming cation radical.

  18. EPR and DFT Study of the Polycyclic Aromatic Radical Cations from FriedeI-Crafts Alkylation Reactions

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; An-an Wu; Li-guo Gao; Han-qing Wang

    2009-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance methods were used to study the polycyclic aromatic radical cations produced in a Friedel-Crafts alkylating sys-tem, with m-xylene, or p-xylene and alkyl chloride. The results indicate that the observed electron paramagnetic resonance spectra are due to polycyclic aromatic radicals formed from the parent hydrocarbons. It is suggested that benzyl halides produced in the Friedel-Crafts alkylation reactions undergo Scholl self-condensation to give polycyclic aromatic hydrocar-bons, which are converted into corresponding polycyclic aromatic radical cations in the presence of AlCl3. The identification of observed two radicals 2,6-dimethylanthracene and 1,4,5,8-tetramethylanthracene were supported by density functional theory calculations us-ing the B3LYP/6-31G(d,p)//B3LYP/6-31G(d) approach. The theoretical coupling constants support the experimental assignment of the observed radicals.

  19. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    Science.gov (United States)

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  20. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  1. Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 2. Preparation, dissociations, and energetics of 3-hydroxyoxolan-3-yl radical and cation.

    Science.gov (United States)

    Vivekananda, Shetty; Sadílek, Martin; Chen, Xiaohong; Adams, Luke E; Turecek, Frantisek

    2004-07-01

    The title radical (1) is generated in the gas-phase by collisional neutralization of carbonyl-protonated oxolan-3-one. A 1.5% fraction of 1 does not dissociate and is detected following reionization as survivor ions. The major dissociation of 1 (approximately 56%) occurs as loss of the hydroxyl H atom forming oxolan-3-one (2). The competing ring cleavages by O[bond]C-2 and C-4[bond]C-5 bond dissociations combined account for approximately 42% of dissociation and result in the formation of formaldehyde and 2-hydroxyallyl radical. Additional ring-cleavage dissociations of 1 resulting in the formation of C(2)H(3)O and C(2)H(4)O cannot be explained as occurring competitively on the doublet ground (X) electronic state of 1, but are energetically accessible from the A and higher electronic states accessed by vertical electron transfer. Exothermic protonation of 2 also produces 3-oxo-(1H)-oxolanium cation (3(+)) which upon collisional neutralization gives hypervalent 3-oxo-(1H)-oxolanium radical (3). The latter dissociates spontaneously by ring opening and expulsion of hydroxy radical. Experiment and calculations suggest that carbohydrate radicals incorporating the 3-hydroxyoxolan-3-yl motif will prefer ring-cleavage dissociations at low internal energies or upon photoexcitation by absorbing light at approximately 590 and approximately 400 nm.

  2. Reactivity and acid-base behavior of ring-methoxylated arylalkanoic acid radical cations and radical zwitterions in aqueous solution. Influence of structural effects and pH on the benzylic C-H deprotonation pathway.

    Science.gov (United States)

    Bietti, Massimo; Capone, Alberto

    2006-07-07

    A product and time-resolved kinetic study of the one-electron oxidation of ring-methoxylated phenylpropanoic and phenylbutanoic acids (Ar(CH2)nCO2H, n = 2, 3) has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations (Ar.+(CH2)nCO2H) or radical zwitterions (Ar.+(CH2)nCO2-) depending on pH, and pKa values for the corresponding acid-base equilibria have been measured. In the radical cation, the acidity of the carboxylic proton decreases by increasing the number of methoxy ring substituents and by increasing the distance between the carboxylic group and the aromatic ring. At pH 1.7 or 6.7, the radical cations or radical zwitterions undergo benzylic C-H deprotonation as the exclusive side-chain fragmentation pathway, as clearly shown by product analysis results. At pH 1.7, the first-order deprotonation rate constants measured for the ring-methoxylated arylalkanoic acid radical cations are similar to those measured previously in acidic aqueous solution for the alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations. In basic solution, the second-order rate constants for reaction of the radical zwitterions with (-)OH (k-OH)) have been obtained. These values are similar to those obtained previously for the (-)OH-induced alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations, indicating that under these conditions the radical zwitterions undergo benzylic C-H deprotonation. Very interestingly, with 3,4-dimethoxyphenylethanoic acid radical zwitterion, that was previously observed to undergo exclusive decarboxylation up to pH 10, competition between decarboxylation and benzylic C-H deprotonation is observed above pH 11.

  3. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability.

    Science.gov (United States)

    Zhang, Lei; Yang, Qiao; Luo, Xuesong; Fang, Chengxiang; Zhang, Qiuju; Tang, Yali

    2007-10-01

    Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.

  4. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    Science.gov (United States)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  5. Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex.

    Science.gov (United States)

    Fahrenbach, Albert C; Barnes, Jonathan C; Lanfranchi, Don Antoine; Li, Hao; Coskun, Ali; Gassensmith, Jeremiah J; Liu, Zhichang; Benítez, Diego; Trabolsi, Ali; Goddard, William A; Elhabiri, Mourad; Stoddart, J Fraser

    2012-02-15

    The ability of the diradical dicationic cyclobis(paraquat-p-phenylene) (CBPQT(2(•+))) ring to form inclusion complexes with 1,1'-dialkyl-4,4'-bipyridinium radical cationic (BIPY(•+)) guests has been investigated mechanistically and quantitatively. Two BIPY(•+) radical cations, methyl viologen (MV(•+)) and a dibutynyl derivative (V(•+)), were investigated as guests for the CBPQT(2(•+)) ring. Both guests form trisradical complexes, namely, CBPQT(2(•+))⊂MV(•+) and CBPQT(2(•+))⊂V(•+), respectively. The structural details of the CBPQT(2(•+))⊂MV(•+) complex, which were ascertained by single-crystal X-ray crystallography, reveal that MV(•+) is located inside the cavity of the ring in a centrosymmetric fashion: the 1:1 complexes pack in continuous radical cation stacks. A similar solid-state packing was observed in the case of CBPQT(2(•+)) by itself. Quantum mechanical calculations agree well with the superstructure revealed by X-ray crystallography for CBPQT(2(•+))⊂MV(•+) and further suggest an electronic asymmetry in the SOMO caused by radical-pairing interactions. The electronic asymmetry is maintained in solution. The thermodynamic stability of the CBPQT(2(•+))⊂MV(•+) complex was probed by both isothermal titration calorimetry (ITC) and UV/vis spectroscopy, leading to binding constants of (5.0 ± 0.6) × 10(4) M(-1) and (7.9 ± 5.5) × 10(4) M(-1), respectively. The kinetics of association and dissociation were determined by stopped-flow spectroscopy, yielding a k(f) and k(b) of (2.1 ± 0.3) × 10(6) M(-1) s(-1) and 250 ± 50 s(-1), respectively. The electrochemical mechanistic details were studied by variable scan rate cyclic voltammetry (CV), and the experimental data were compared digitally with simulated data, modeled on the proposed mechanism using the thermodynamic and kinetic parameters obtained from ITC, UV/vis, and stopped-flow spectroscopy. In particular, the electrochemical mechanism of association

  6. On the intrinsic optical absorptions by tetrathiafulvalene radical cations and isomers

    DEFF Research Database (Denmark)

    Kirketerp, Maj-Britt Suhr; Leal, Leonardo Andrés Espinosa; Varsano, Daniele;

    2011-01-01

    Gas-phase action spectroscopy shows unambiguously that the low-energy absorptions by tetramethylthiotetrathiafulvalene and tetrathianaphthalene cations in solution phase are due to monomers and not π-dimers....

  7. ELDOR study of methyl radical production at 77 K in irradiated acetate powders as a function of metal cation

    Energy Technology Data Exchange (ETDEWEB)

    Mottley, C.; Kispert, L.D.; Wang, P.S.

    1976-08-12

    Paramagnetic relaxation characteristics of the methyl radical at 77/sup 0/K in irradiated powders of magnesium acetate tetrahydrate, potassium acetate, sodium acetate trihydrate, calcium acetate monohydrate, zinc acetate dihydrate, and lithium acetate dihydrate were measured by power saturation techniques and ELDOR spectroscopy. For magnesium acetate tetrahydrate the characteristic relaxation time (T/sub 1e/T/sub 2e/)/sup /sup 1///sub 2// for the methyl radical is relatively constant with radiation dose at low doses and decreases at higher doses. For sodium acetate trihydrate the relaxation time decreases even at low dose. ELDOR measurements of the ratio of the intermolecular relaxation time (T/sub po/) between methyl radicals to the spin--lattice relaxation time (T/sub 1e/) shows an increase from 0.05 for magnesium acetate trihydrate to greater than 1 for sodium acetate trihydrate. In addition, the field-swept ELDOR reduction factors for the m/sub I/ = -/sup 3///sub 2/ ESR line of the methyl radical utilizing 100-kHz field modulation decreases from 73 percent in irradiated magnesium acetate tetrahydrate to 2 percent in irradiated calcium acetate monohydrate. These features suggest that the radiation produced methyl radicals are trapped in clusters in acetates at low dose forming a nonuniform spatial distribution that is dependent on the cation and decreases in the approximate order Mg/sup 2 +/ greater than K/sup +/ greater than Na/sup +/ greater than Ca/sup 2 +/. No estimate of the amount of clustering in the irradiated Zn/sup 2 +/ and Li/sup +/ salts could be made due to the long T/sub 1e/'s exhibited by the methyl radical.

  8. Mixed-Valence Porphyrin π-Cation Radical Derivatives: Electrochemical Investigations.

    Science.gov (United States)

    Scheidt, W Robert; Buentello, Kristin E; Ehlinger, Noelle; Cinquantini, Arnaldo; Fontani, Marco; Laschi, Franco

    2008-05-05

    The electrochemistry of [Cu(OEP)] and [Ni(OEP)] are compared with the mixed-valence π-cations [Cu(OEP•/2)]2+and[Ni(OEP•/2)]2+. These electrochemical studies, carried out with cyclic voltametry and hydrodynamic voltametry, show that the mixed valence π-cations have distinct electrochemical properties, although the differences between the [M(OEP)](+/0) and [M(OEP•/2)]2+/0 processes are subtle.

  9. Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 1. Preparation, dissociations, and energetics of 2-hydroxyoxolan-2-yl radical, neutral isomers, and cations.

    Science.gov (United States)

    Vivekananda, Shetty; Sadílek, Martin; Chen, Xiaohong; Turecek, Frantisek

    2004-07-01

    Collisional neutralization of several isomeric C(4)H(7)O(2) cations is used to generate radicals that share some structural features with transient species that are thought to be produced by radiolysis of 2-deoxyribose. The title 2-hydroxyoxolan-2-yl radical (1) undergoes nearly complete dissociation when produced by femtosecond electron transfer from thermal organic electron donors dimethyl disulfide and N,N-dimethylaniline in the gas phase. Product analysis, isotope labeling ((2)H and (18)O), and potential energy surface mapping by ab initio calculations at the G2(MP2) and B3-PMP2 levels of theory and in combination with Rice-Ramsperger-Kassel-Marcus (RRKM) kinetic calculations are used to assign the major and some minor pathways for 1 dissociations. The major (approximately 90%) pathway is initiated by cleavage of the ring C-5[bond]O bond in 1 and proceeds to form ethylene and *CH(2)COOH as main products, whereas loss of a hydrogen atom forms 4-hexenoic acid as a minor product. Loss of the OH hydrogen atom forming butyrolactone (2, approximately 9%) and cleavage of the C-3[bond]C-4 bonds (<1%) in 1 are other minor pathways. The major source of excitation in 1 is by Franck-Condon effects that cause substantial differences between the adiabatic and vertical ionization of 1 (5.40 and 6.89 eV, respectively) and vertical recombination in the precursor ion 1(+) (4.46 eV). (+)NR(+) mass spectra distinguish radical 1 from isomeric radicals 2-oxo-(1H)oxolanium (3), 1,3-dioxan-2-yl (9), and 1,3-dioxan-4-yl (10) that were generated separately from their corresponding ion precursors.

  10. Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An Overview

    Directory of Open Access Journals (Sweden)

    Jalil Pirayesh Islamian

    2015-01-01

    Full Text Available Radio-protectors are agents that protect human cells and tissues from undesirable ef - fects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ion - izing radiation may be an effective approach in diminishing undesirable effects of radia - tion byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects.

  11. Theoretical study of electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part I. Static aspects.

    Science.gov (United States)

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Motivated by the recent discovery of new diffuse interstellar bands and results from laboratory experiments, ab initio quantum chemistry calculations are carried out for the lowest six electronic states of naphthalene and anthracene radical cations. The calculated adiabatic electronic energies are utilized to construct suitable diabatic electronic Hamiltonians in order to perform nuclear dynamics studies in Part II. Complex entanglement of the electronic states is established for both the radical cations and the coupling surfaces among them are also derived in accordance with the symmetry selection rules. Critical examination of the coupling parameters of the Hamiltonian suggests that 29 (out of 48) and 31 (out of 66) vibrational modes are relevant in the nuclear dynamics in the six lowest electronic states of naphthalene and anthracene radical cations, respectively.

  12. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    Science.gov (United States)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  13. Density Functional Theory (DFT) studies on the ground state of NO3(2A '2) radical and the first triplet state of NO3+ cation

    Institute of Scientific and Technical Information of China (English)

    CAO, Xiao-Yan(曹晓燕); HONG, Gong-Yi(洪功义); WANG, Dian-Xun(王殿勋); LI, Le-Min(黎乐民); XU, Guang-Xian(徐光宪)

    2000-01-01

    Density Functional Theory (DFT) studies on the ground states (2A'2) of NO3 radical and on the ground state (1A'1) and the first triplet state (3E") of NO3+ cation provide an unambiguous prediction about their geometrical structure: the ground states of both NO3 radical and NO3+ cation have D3h symmetry and the geometrical configuration of the first triplet state 3E" of NO3+ cation has C2v symmetry. It is shown that s far as the ionization energy calculations on NO3 radical are concerned, the results are only slightly different, no mater that gradient corrections of the exchange-correlation energy are included during self-consistent iterations of they are included as perturbations after the self-consistent iterations.

  14. Ne matrix spectra of the sym-C6Br3F3+ radical cation

    Science.gov (United States)

    Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.

    1981-01-01

    The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.

  15. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    OpenAIRE

    Fitzgerald, M. M.; Trester, M. L.; Jensen, G M; McRee, D. E.; Goodin, D B

    1995-01-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent...

  16. Theoretical study of the electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part II. Dynamics consequences.

    Science.gov (United States)

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Nuclear dynamics is investigated theoretically from first principles by employing the ab initio vibronic models of the prototypical naphthalene and anthracene radical cations developed in Part I. This Part is primarily aimed at corroborating a large amount of available experimental data with a specific final goal to establish an unambiguous link with the current observations in astrophysics and astronomy. The detailed analyses presented here perhaps establish that these two prototypical polycyclic aromatic hydrocarbon radical cations are indeed potential carriers of the observed diffuse interstellar bands.

  17. Mechanistic aspects of the oxidative and reductive fragmentation of n-nitrosoamines: a new method for generating nitrenium cations, amide anions, and aminyl radicals

    OpenAIRE

    Piech, Krzysztof; Bally, Thomas; Sikora, Adam; Marcinek, Andrzej

    2008-01-01

    A new method for investigating the mechanisms of nitric oxide release from NO donors under oxidative and reductive conditions is presented. Based on the fragmentation of N-nitrosoamines, it allows generation and spectroscopic characterization of nitrenium cations, amide anions, and aminyl radicals. X-irradiation of N-nitroso-N,N-diphenylamine 1 in Ar matrices at 10 K is found to yield the corresponding radical ions, which apparently undergo spontaneous loss of NO° under the conditions of this...

  18. Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2C(O)OH2+

    Science.gov (United States)

    Lee, Richard; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    2006-09-01

    Previous studies have shown that the solitary ketene-water ion CH2C(O)OH2+ (1) does not isomerize into CH2C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2CO+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1 --> 2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to a mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.

  19. Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine.

    Science.gov (United States)

    Siu, Chi-Kit; Ke, Yuyong; Guo, Yuzhu; Hopkinson, Alan C; Siu, K W Michael

    2008-10-14

    The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2''-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.

  20. Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb).

    Science.gov (United States)

    Pop, Flavia; Auban-Senzier, Pascale; Canadell, Enric; Avarvari, Narcis

    2016-10-13

    Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

  1. Theoretical vibrational spectra and thermodynamics of organic semiconductive tetrathiafulvalene and its cation radical.

    Science.gov (United States)

    Mukherjee, V; Singh, N P

    2014-01-03

    Molecular structure in optimum geometry and vibrational frequencies of pentafulvalene [bicyclopentyliden-2,4,2',4'-tetraene], tetrathiafulvalene [2,2'-bis(1,3-dithiolylidene)] and its cation are calculated. All the calculations are carried out by employing density functional theory incorporated with a suitable basis set. Normal coordinate analysis is also employed to scale the DFT calculated frequencies and to calculate potential energy distributions. The molecular structures and vibrational frequencies are compared for both the pentafulvalene and tetrathiafulvalene molecules. The effect upon geometry and vibrational frequencies of TTF due to charge transfer has also been studied. The vibrational partition function and hence, the thermodynamical properties, such as Helmholtz free energy, entropy, specific heat at constant volume and enthalpy are also calculated and compared for the title molecules. The reason of conductivity of tetrathiafulvalene has been tried to explain on the basis of molecular geometry and normal modes. Study of vibrational partition function exhibits that below 109 K, PFV starts to condense.

  2. Where Does the Electron Go? Stable and Metastable Peptide Cation Radicals Formed by Electron Transfer

    Science.gov (United States)

    Pepin, Robert; Layton, Erik D.; Liu, Yang; Afonso, Carlos; Tureček, František

    2017-01-01

    Electron transfer to doubly and triply charged heptapeptide ions containing polar residues Arg, Lys, and Asp in combination with nonpolar Gly, Ala, and Pro or Leu generates stable and metastable charge-reduced ions, (M + 2H)+●, in addition to standard electron-transfer dissociation (ETD) fragment ions. The metastable (M + 2H)+● ions spontaneously dissociate upon resonant ejection from the linear ion trap, giving irregularly shaped peaks with offset m/ z values. The fractions of stable and metastable (M + 2H)+● ions and their mass shifts depend on the presence of Pro-4 and Leu-4 residues in the peptides, with the Pro-4 sequences giving larger fractions of the stable ions while showing smaller mass shifts for the metastables. Conversion of the Asp and C-terminal carboxyl groups to methyl esters further lowers the charge-reduced ion stability. Collisional activation and photodissociation at 355 nm of mass-selected (M + 2H)+● results in different dissociations that give sequence specific MS3 spectra. With a single exception of charge-reduced (LKGLADR + 2H)+●, the MS3 spectra do not produce ETD sequence fragments of the c and z type. Hence, these (M + 2H)+● ions are covalent radicals, not ion-molecule complexes, undergoing dramatically different dissociations in the ground and excited electronic states. The increased stability of the Pro-4 containing (M + 2H)+● ions is attributed to radicals formed by opening of the Pro ring and undergoing further stabilization by hydrogen atom migrations. UV-VIS photodissociation action spectroscopy and time-dependent density functional theory calculations are used in a case in point study of the stable (LKGPADR + 2H)+● ion produced by ETD. In contrast to singly-reduced peptide ions, doubly reduced (M + 3H)+ ions are stable only when formed from the Pro-4 precursors and show all characteristics of even electron ions regarding no photon absorption at 355 nm or ion-molecule reactions, and exhibiting proton driven

  3. Ultrafast studies on the photophysics of matrix-isolated radical cations of polycyclic aromatic hydrocarbons: implications for the Diffuse Interstellar Bands (DIB) problem

    CERN Document Server

    Zhao, L; Shkrob, I A; Crowell, R A; Pommeret, S; Chronister, E L; Liu, A D; Trifunac, A D; Zhao, Liang; Lian, Rui; Shkrob, Ilya A.; Crowell, Robert A.; Pommeret, Stanislas; Chronister, Eric L.; Liu, An Dong; Trifunac, Alexander D.

    2004-01-01

    Rapid, efficient deactivation of the photoexcited PAH cations accounts for their remarkable photostability and have important implications for astrochemistry, as these cations are the leading candidates for the species responsible for the diffuse interstellar bands (DIB) observed throughout the Galaxy.Ultrafast relaxation dynamics for photoexcited PAH cations isolated in boric acid glass have been studied using femtosecond and picosecond transient grating spectroscopy. With the exception of perylene+, the recovery kinetics for the ground doublet (D0) states of these radical cations are biexponential, containing a fast (< 200 fs) and a slow (3-20 ps) components. No temperature dependence or isotope effect was observed for the fast component, whereas the slow component exhibits both the H/D isotope effect (1.1-1.3) and strong temperature dependence (15 to 300 K). We suggest that the fast component is due to internal Dn to D0 conversion and the slow component is due to vibrational energy transfer (VET) from a...

  4. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    Science.gov (United States)

    Fitzgerald, M M; Trester, M L; Jensen, G M; McRee, D E; Goodin, D B

    1995-09-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.

  5. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    Science.gov (United States)

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

  6. The low-lying excited states of neutral polyacenes and their radical cations: a quantum chemical study employing the algebraic diagrammatic construction scheme of second order

    OpenAIRE

    Knippenberg, Stefan; Starcke, Jan-Hendrik; Wormit, Michael; Dreuw, Andreas

    2010-01-01

    Abstract The vertical excited electronic states of linearly fused neutral polyacenes and their radical cations have been investigated using the algebraic diagrammatic construction scheme of sec- ond order (ADC(2)). While strict ADC(2) (ADC(2)-s) correctly reproduces trends for mainly singly excited states, in extended ADC(2) (ADC(2)-x) the description of doubly excited states is critically improved. It is shown that a combined application of strict and extended ADC(2) nicely reveal...

  7. Energy- and Time-Dependent Branching to Competing Paths in Coupled Unimolecular Dissociations of Chlorotoluene Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jongcheol; Shin, Seung Koo [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kim, Seung Joon [Hannam Univ., Daejeon (Korea, Republic of)

    2014-03-15

    The energy- and time-dependent branching to the competing dissociation paths are studied by theory for coupled unimolecular dissociations of the o-, m-, and p-chlorotoluene radical cations to C{sub 7}H{sub 7}{sup +} (benzylium and tropylium). There are four different paths to C{sub 7}H{sub 7}{sup +}, three to the benzylium ion and one to the tropylium ion, and all of them are coupled together. The branching to the multiple paths leads to the multiexponential decay of reactant with the branching ratio depending on both internal energy and time. To gain insights into the multipath branching, we study the detailed kinetics as a function of time and internal energy on the basis of ab inito/RRKM calculations. The number of reaction steps to C{sub 7}H{sub 7}{sup +} is counted for each path. Of the three isomers, the meta mostly goes through the coupling, whereas the para proceeds with little or no coupling. In the beginning, some reactants with high internal energy decay fast to the benzylium ion without any coupling and others rearrange to the other isomers. Later on all three isomers dissociate to the products via long-lived intermediates. Thus, the reactant shows a multiexponential decay and the branching ratio varies with time as the average internal energy decreases with time. The reciprocal of the effective lifetime is taken as the rate constant. The resulting rate-energy curves are in line with experiments. The present results suggest that the coupling between the stable isomers is thermodynamically controlled, whereas the branching to the product is kinetically controlled.

  8. Negative and positive ion trapping by isotopic molecules in cryocrystals in case of solid parahydrogen containing electrons and H(6) (+) radical cations.

    Science.gov (United States)

    Shimizu, Yuta; Inagaki, Makoto; Kumada, Takayuki; Kumagai, Jun

    2010-06-28

    We performed electron spin resonance studies of trapped electrons and H(6) (+) radical cations produced by radiolysis of solid parahydrogen (p-H(2)), p-H(2)-ortho-D(2) (o-D(2)), and p-H(2)-HD mixtures. Yields of trapped electrons, H(6) (+) radical cations, and its isotopic analogs H(6-n)D(n) (+) (4>or=n>or=1) increased with increasing o-D(2) and HD concentrations in solid p-H(2). Electrons were found trapped near an o-D(2) or an HD in solid p-H(2) due to the long-range charge-induced dipole and quadrupole interactions between electrons and isotopic hydrogen molecules. H(6) (+) radical cations diffuse in solid p-H(2) by repetition of H(6) (+)+H(2)-->H(2)+H(6) (+) and are trapped by ortho-D(2) or HD to form H(6-n)D(n) (+) (4>or=n>or=1) as isotope condensation reactions. Decay behaviors of these cations by the repetition, isotope condensation, and geminate recombination between electrons and H(6-n)D(n) (+) (4>or=n>or=0) were reproduced by determining the corresponding reaction rate constants k(1), k(2), and k(3). Values of 0.045 and 0.0015 L mol(-1) min(-1) were obtained for k(1) (H(6) (+)+D(2)-->H(2)+H(4)D(2) (+)) and k(2) (H(4)D(2) (+)+D(2)-->H(2)+H(2)D(4) (+)), respectively, and the value was quasinull for k(3) (H(2)D(4) (+)+D(2)-->H(2)+D(6) (+)). These rate constants suggest that hole mobility drastically decreased in the repetition reaction when H(6) (+) radical cations acting as hole carriers formed H(4)D(2) (+) or H(2)D(4) (+). HD and D(2) molecules, therefore, act as electron and hole acceptors in irradiated solid p-H(2)-o-D(2) and p-H(2)-HD mixtures.

  9. Key to Xenobiotic Carotenoids

    Directory of Open Access Journals (Sweden)

    Hans-Richard Sliwka

    2012-03-01

    Full Text Available A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H and xanthophylls (C,H,O has become obsolete.

  10. On the Electronic Spectroscopy of Closed Shell Cations Derived from Resonance Stabilized Radicals: Insights from Theory and Franck-Condon Analysis

    Science.gov (United States)

    Troy, Tyler P.; Kable, Scott H.; Schmidt, Timothy W.; Reid, Scott A.

    2012-06-01

    Recent attention has been directed on closed shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium and tropylium cations were recently reported [Nagy, A., Fulara, J., Garkusha, I. and Maier, J. P. (2011), Angew. Chem. Int. Ed., 50: 3022-3025]. The benzylium spectrum shows an extended progression in a low frequency (510 cm-1) ring distortion mode. Modeling of the benzylium spectrum using (TD)DFT and MCSCF-PT2 methods in concert with multidimensional Franck-Condon (FC) analysis is found to yield excellent agreement with the experimental spectrum. We extended this analysis to larger (2 and 3 ring) PAH cations derived from resonance stabilized radicals, which are predicted to show strong S0 → Sn transitions in the visible region. The FC progression is significantly quenched in the larger species, and our results for 1-napthylmethylium are in excellent agreement with very recent experiments [Nagy, A., Fulara, J., and Maier, J. P. (2011), J. Am. Chem. Soc., 133, 19796]. Since carriers of the DIBs should exhibit spectra dominated by a single vibronic transition, our results demonstrate that closed-shell cations may present spectra with the required properties. Furthermore, the calculated ionization energies of a range of CSCs were found to be in the 13-14 eV range, consistent with variations in behaviour of the DIB carriers with respect to various astrophysical environments.

  11. A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue.

    Science.gov (United States)

    Talipov, Marat R; Hossain, Mohammad M; Boddeda, Anitha; Thakur, Khushabu; Rathore, Rajendra

    2016-03-14

    Magic blue (MB+˙ SbCl6− salt), i.e. tris-4-bromophenylamminium cation radical, is a routinely employed one-electron oxidant that slowly decomposes in the solid state upon storage to form so called ‘blues brothers’, which often complicate the quantitative analyses of the oxidation processes. Herein, we disclose the identity of the main ‘blues brother’ as the cation radical and dication of tetrakis-(4-bromophenyl)benzidine (TAB) by a combined DFT and experimental approach, including isolation of TAB+˙ SbCl6− and its X-ray crystallography characterization. The formation of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB followed by a loss of molecular bromine. The recognition of this fact led us to the rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as ‘blues cousin’ (BC: Eox1 = 0.78 V vs. Fc/Fc+, λmax(BC+˙) = 805 nm, εmax = 9930 cm−1 M−1), whose oxidative dimerization is significantly hampered by positioning the sterically demanding tert-butyl groups at the para-positions of the aryl rings. A ready two-step synthesis of BC from triphenylamine and the high stability of its cation radical (BC+˙) promise that BC will serve as a ready replacement for MB and an oxidant of choice for mechanistic investigations of one-electron transfer processes in organic, inorganic, and organometallic transformations.

  12. Effect of base stacking on the acid-base properties of the adenine cation radical [A*+] in solution: ESR and DFT studies.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Khanduri, Deepti; Sevilla, Michael D

    2008-08-06

    In this study, the acid-base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A*(+)) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2*(-) in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8-H and N6-H in dAdo aid in our assignments of structure. We find the pKa value of A*(+) in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of or = 160 K, complete deprotonation of A*(+) occurs in dAdo in these glassy systems even at pH ca. 3. A*(+) found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A*(+) at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A*(+) should deprotonate spontaneously (a predicted pKa of ca. -0.3 for A*(+)). However, the charge resonance stabilized dimer AA*(+) is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA*(+) dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A*(+) isolated in solution and A*(+) in adenine stacks have highly differing acid-base properties resulting from the stabilization induced by hole delocalization within adenine stacks.

  13. Carotenoid composition and in vitro pharmacological activity of rose hips.

    Science.gov (United States)

    Horváth, Györgyi; Molnár, Péter; Radó-Turcsi, Erika; Deli, József; Kawase, Masami; Satoh, Kazue; Tanaka, Toru; Tani, Satoru; Sakagami, Hiroshi; Gyémánt, Nóra; Molnár, József

    2012-01-01

    The aim of the present study was to compare carotenoid extracts of Rose hips (Rosa canina L.) with regard to their phytochemical profiles and their in vitro anti-Helicobacter pylori (H. pylori), cytotoxic, multidrug resistance (MDR) reversal and radical scavenging activity. Carotenoid composition was investigated in the different fractionation of rose hips, using extraction methods. Six main carotenoids - epimers of neochrome, lutein, zeaxanthin, rubixanthin, lycopene, β,β-carotene - were identified from Rose hips by their chromatographic behavior and UV-visible spectra, which is in accordance with other studies on carotenoids in this plant material. The active principles in the carotenoid extract might differ, depending upon the extraction procedures.

  14. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Eduardo A.; Mayer, Paul M., E-mail: pmmayer@uottawa.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M–C{sub 4}H{sub 2}]{sup +•}, [M–C{sub 2}H{sub 2}]{sup +•}, [M–H{sub 2}]{sup +•}, and [M–H{sup •}]{sup +} were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)’s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)’s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0–18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H{sub 2} molecule in a two-step fragmentation. H{sup •} loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C{sub 4}H{sub 2}) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%–100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M–C{sub 2}H{sub 2}]{sup +•} structure is the phenylacetylene cation.

  15. Oxygen acidity of ring methoxylated 1,1-diarylalkanol radical cations bearing alpha-cyclopropyl groups. The competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals.

    Science.gov (United States)

    Bietti, Massimo; Fiorentini, Simone; Pato, Iria Pèrez; Salamone, Michela

    2006-04-14

    A product and time-resolved kinetic study on the reactivity of the radical cations generated from cyclopropyl(4-methoxyphenyl)phenylmethanol (1) and cyclopropyl[bis(4-methoxyphenyl)]methanol (2) has been carried out in aqueous solution. In acidic solution, 1*+ and 2*+ display very low reactivities toward fragmentation, consistent with the presence of groups at Calpha (aryl and cyclopropyl) that after Calpha-Cbeta bond cleavage would produce relatively unstable carbon-centered radicals. In basic solution, 1*+ and 2*+ display oxygen acidity, undergoing -OH-induced deprotonation from the alpha-OH group, leading to the corresponding 1,1-diarylalkoxyl radicals 1r* and 2r*, respectively, as directly observed by time-resolved spectroscopy. The product distributions observed in the reactions of 1*+ and 2*+ under these conditions (cyclopropyl phenyl ketone, cyclopropyl(4-methoxyphenyl) ketone, and 4-methoxybenzophenone from 1*+; cyclopropyl(4-methoxyphenyl) ketone and 4,4'-dimethoxybenzophenone from 2*+) have been rationalized in terms of a water-induced competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals 1r* and 2r*.

  16. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P.H. Davis from Turkey

    Institute of Scientific and Technical Information of China (English)

    Abdulselam Erta; Mehmet Boa; Yeter Yeil

    2014-01-01

    Objective: To evaluate the chemical compositions and biological activities of an endemic Ballotanigra Methods: Essential oil and fatty acid composition were determined by GC/MS analysis. ABTS cation radical decolourisation and cupric reducing antioxidant capacity assays were carried out to indicate the antioxidant activity. The anticholinesterase potential of the extracts were determined by Ellman method. L. subsp. anatolica P.H. Davis. Results: The major compounds in the fatty acid composition of the petroleum ether extract were identified as palmitic (36.0%) and linoleic acids (14.3%). The major components of essential oil were 1-hexacosanol (26.7%), germacrene-D (9.3%) and caryophyllene oxide (9.3%). The water extract indicated higher ABTS cation radical scavenging activity than α-tocopherol and BHT, at 100 µg/mL. The acetone extract showed 71.58 and 44.71% inhibitory activity against butyrylcholinesterase and acetylcholinesterase enzyme at 200 µg/mL, respectively. Conclusions: The water and acetone extracts of Ballota nigra subsp. anatolica can be investigated in terms of both phytochemical and biological aspects to find natural active compounds.

  17. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  18. Carbocations generated under stable conditions by ionization of matrix-Isolated radicals: the allyl and benzyl cations

    OpenAIRE

    Mišić, Vladimir; Piech, Krzysztof; Bally, Thomas

    2013-01-01

    Carbocations are crucial intermediates in many chemical reactions; hence, considerable effort has gone into investigating their structures and properties, for example, in superacids, in salts, or in the gas phase. However, studies of the vibrational structure of carbocations are not abundant, because their infrared spectra are difficult to obtain in superacids or salts (where furthermore the cations may be perturbed by counterions), and the generation of gas-phase carbocations in discharges u...

  19. A manganese(V)-oxo π-cation radical complex: influence of one-electron oxidation on oxygen-atom transfer.

    Science.gov (United States)

    Prokop, Katharine A; Neu, Heather M; de Visser, Sam P; Goldberg, David P

    2011-10-12

    One-electron oxidation of Mn(V)-oxo corrolazine 2 affords 2(+), the first example of a Mn(V)(O) π-cation radical porphyrinoid complex, which was characterized by UV-vis, EPR, LDI-MS, and DFT methods. Access to 2 and 2(+) allowed for a direct comparison of their reactivities in oxygen-atom transfer (OAT) reactions. Both complexes are capable of OAT to PPh(3) and RSR substrates, and 2(+) was found to be a more potent oxidant than 2. Analysis of rate constants and activation parameters, together with DFT calculations, points to a concerted OAT mechanism for 2(+) and 2 and indicates that the greater electrophilicity of 2(+) likely plays a dominant role in enhancing its reactivity. These results are relevant to comparisons between Compound I and Compound II in heme enzymes.

  20. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  1. Carotenoids in Marine Animals

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2011-02-01

    Full Text Available Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade.

  2. Resolving the radical cation formation from the lowest-excited singlet (S-1) state of terthiophene in a TiO2-SiO2 hybrid polymer matrix

    DEFF Research Database (Denmark)

    Helbig, M.; Ruseckas, A.; Grage, M.M.-L.;

    1999-01-01

    ) and similar to 8 ps (for similar to 33%). The angle between the S-1 dipole moment of neutral 3T and the absorption dipole moment of the 3T(+.) radical cation is estimated to be similar to 30 degrees. About one-half of the generated charge pairs do not recombine within 0.5 ns, which...

  3. Enhanced biological activity of carotenoids stabilized by phenyl groups.

    Science.gov (United States)

    You, Ji Suk; Jeon, Sunhwa; Byun, Youn Jung; Koo, Sangho; Choi, Shin Sik

    2015-06-15

    Carotenoids are lipid soluble food ingredients with multifunction including antioxidant and anticancer activities. However, carotenoids are destructively oxidized upon reaction with radicals resulting in toxic effects on biological systems. Two synthetic carotenoids (BAS and BTS) containing the aromatic phenyl groups with a para-substituent (OMe and Me, respectively) at C-13 and C-13' position were prepared in order to overcome a structural instability of carotenoid. Both BAS and BTS exerted stronger radical scavenging activity than β-carotene in DPPH and ABTS assays. In particular, BTS significantly reduced in vivo ROS (reactive oxygen species) levels and improved body growth and reproduction of Caenorhabditiselegans. BTS has a great potential for the advanced and modified carotenoid material with stability leading to enhanced bioavailability.

  4. A search for pure compounds suitable for use as matrix in spectroscopic studies of radiation-produced radical cations. III. A selection of compounds based on the thermochemistry of hydrogen and proton transfer reactions between neutral molecules and their cations

    Science.gov (United States)

    Van den Bosch, Ann; Ceulemans, Jan

    A systematic investigation is made of the thermochemistry of hydrogen and proton transfer between neutral molecules and their cations covering the entire organic chemistry, with the aim of selecting those compounds that are suitable for use as matrices in spectroscopic studies of radiation-produced radical cations. Compounds that are characterized by positive reaction enthalpies may be considered promising for use as matrices in such studies. Calculations are based on experimentally determined ionization energies and proton affinities and on carbon-hydrogen bond strengths that are arbitrarily taken as 418 kJ.mol -1 (100 kcal.mol -1). Effects of actual deviations from this value are considered. In the aliphatic series of compounds, reaction enthalpies depend strongly on functional groups present. Marked positive reaction enthalpies are obtained for alkenes, alkadienes, thioethers, mercaptans, iodoalkanes and tertiary amines. Non-aromatic cyclic compounds generally behave as their aliphatic counterparts. Thus, positive reaction enthalpies are generally obtained for unsaturated alicyclic hydrocarbons and cyclic thioethers. Positive reaction enthalpies are also obtained for piperidine, quinuclidine, manxine and derivatives. In the homocyclic aromatic series of compounds, reaction enthalpies are generally positive. Thus, positive reaction enthalpies are obtained for aromatic hydrocarbons, fluoro- and chlorobenzenes, aromatic amines (amino group attached directly to the ring) and halo- and methoxyanilines. In the heterocyclic aromatic series of compounds reaction enthalpies are generally negative. This is for instance the case for a large number of pyridine derivatives, di- and triazines and a number of bi- and tricyclic compounds. Positive reaction enthalpies are however obtained for furan and pyrrole.

  5. Photolysis of alpha-xylyl chlorides: an efficient deep-UV photoinitiating system for radical and cationic polymerization.

    Science.gov (United States)

    Ponce, Patricia; Catalani, Luiz Henrique

    2004-07-01

    Photoacid generators (PAG) are chemical systems where light absorption renders strong acid formation, typically with quantum yields greater than one. Many compounds bearing halogen atoms are reported to produce hydrogen halides upon photolysis. Here, alpha-chloroxylene derivatives (ortho, meta and para) were subject of a photolysis study in order to: (i) determine the operative mechanism, (ii) identify the products formed and (iii) quantify the amount of HCl formed. Product structure and quantum yields of HCl formation where determined for the photolysis of alpha-chloro-o-xylene (1), alpha-chloro-m-xylene (2), alpha-chloro-p-xylene (3), alpha, alpha'-dichloro-o-xylene (4), alpha, alpha'-dichloro-m-xylene (5) and alpha, alpha'-dichloro-p-xylene (6) in apolar (benzene, cumene, ethylbenzene, toluene and isooctane) and polar (methanol, n-propanol, isopropyl alcohol) solvents. Some of these compounds were analysed by laser flash photolysis in argon-purged isooctane as solvent to examine the possible reaction intermediates involved. The observed products are derived from typical radical reactions like recombination, dimerization and hydrogen abstraction from the starting compound or from solvents. The formation of HCl is expected as the result of C-Cl homolysis followed by hydrogen abstraction by chlorine atom. The results showed yields ranging from 1.2 to 18, depending on the conditions used. These numbers indicate the potential use of these compounds as PAG systems for the deep UV region.

  6. Novel Behavior of Thiiranium Radical Cation Intermediates. Reactions of Dimethyl Disulfide with Alkenes in the Presence of Pd(OAc2

    Directory of Open Access Journals (Sweden)

    Shingo Iizuka

    2000-07-01

    Full Text Available Reaction of dimethyl disulfide (1 with cyclohexene (2a in AcOH in the presence of Pd(OAc2 yields trans-1-acetoxy-2-methylcyclohexane (3a. The equivalent reactions with hex-1-ene (2b and 2-methylpent-1-ene (2c or 1-methylcyclohex-1-ene (2d preferentially give anti-Markovnikov and Markovnikov adducts 4 and 3, respectively, by acetoxymethylthiolation of the alkene. The Markovnikov regioselectivity 3b/4b for the reaction with 2b is higher than that for the reaction using AgOAc instead of Pd(OAc2, which proceeds via a thiiranium ion. Addition of a polar solvent (MeCN or MeNO2 to the reactions with 2b or 2c using Pd(OAc2 abnormally decreases the Markovnikov regioselectivity. The total yield of 3 and 4 increases with an increased concentration of AcOH. Compounds 3 and 4 are also formed and the reactions in MeCN or MeNO2 not containing AcOH. A solution of Pd(OAc2 in 1 exhibits λmax 380 nm (log ε 3.6 assigned to the absorption of a relatively stable sulfonium salt. These indicate that the reactions using Pd(OAc2 proceed by SN2 ringopening of a new type of thiiranium radical cations paired with −OAc via the sulfonium salts. The insensitivity of the 3/4 ratios to the reaction time at 25-60°C in the reactions with 2c-d shows the ring-opening to be controlled kinetically, but the increased ratio with reaction time at 116°C in the reaction with 2b suggests that the ring-opening is thermodynamically governed. The reaction product with 2d also undergoes a skeletal rearrangement to a thietanium radical cation to give 1-acetoxymethyl-2-methylthiocyclohexane.

  7. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  8. The hydrogen-bridged radical cation [NH 2C dbnd O⋯H⋯O dbnd CHCH 3] rad + and its dissociation by proton-transport catalysis

    Science.gov (United States)

    Jobst, Karl J.; Terlouw, Johan K.

    2012-01-01

    The title ion (HBRC-1) is an easily accessible hydrogen-bridged radical cation when generated by the decarbonylation of ionized ethyl oxamate, NH2COCOOC2H5. Tandem mass spectrometry experiments and CBS-QB3 model chemistry calculations agree that HBRC-1 dissociates into HC(OH)NH2+ + CH3COrad by proton-transport catalysis. Its CH3CHO component catalyzes the isomerization NH2-C-OHrad + → NH2C(O)Hrad + and the ensuing intermediate [NH2C(O)H⋯OCHCH3]rad + loses CH3COrad by a facile proton transfer. In support of this, lactamide ions ND2C(O)CH(OD)CH3rad + dissociate into DC(OH)ND2+ + CH3COrad via the HBRC-1 isotopologue [ND2CO⋯D⋯OCHCH3]rad +. HBRC-1 also plays a key role in the decarbonylation of its isomer ionized urethan, NH2COOC2H5.

  9. Exploitation of the photochromic nitroprusside anion [ FeNO(CN){5}] 2- as counterion for constructing molecular conductors: The first radical cation salts based on BDH-TTP and the amide functionalized derivatives of EDT-TTF

    Science.gov (United States)

    Shibaeva, R.; Khasanov, S.; Zorina, L.; Simonov, S.; Shevyakova, I.; Kushch, L.; Buravov, L.; Yagubskii, E.; Baudron, S.; Mézière, C.; Batail, P.; Canadell, E.; Yamada, J.

    2004-04-01

    The radical cation salts based on BDH-TTP and the mono- and diamide functionalized derivatives of EDT-TTF with the double charged nitroprusside anion [ FeNO(CN){5}] 2- (NP): kappa -(BDH-TTP){4}[NP]C{6}H{5}NO{2} (1), kappa -(BDH-TTP){4}[NP] (2), (BDH-TTP){2}[NP] (3), α -[ EDT-TTF-CONH{2}] {4}[NP] (4), β -[ EDT-TTF-(CONH{2})2] {2}[NP]{0.5}(C{6}H{5}NO{2})0.5 (5) have been synthesized. The crystal structures and transport properties of 1 5, as well as electronic band structures of 1and 2 have been studied. Key words. organic conductors based on radical cation salts X-ray and band structure conductivity.

  10. The influence of water on visible-light initiated free-radical/cationic ring-opening hybrid polymerization of methacrylate/epoxy: Polymerization kinetics, crosslinking structure and dynamic mechanical properties

    OpenAIRE

    2015-01-01

    The objective of this study was to determine the influence of water on the polymerization kinetics, crosslinking structure and dynamic mechanical properties of methacrylate/epoxy polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid polymerization. Water-containing formulations were prepared by adding ~4–7 wt% D2O depending on the water miscibility of monomer resins. The water-containing adhesives were compared with the adhesives photo-cured in the absence of wat...

  11. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  12. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis.

    Science.gov (United States)

    Reimers, Jeffrey R; Hush, Noel S

    2004-04-01

    We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.

  13. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III Reaction Intermediate Models of Peroxidase Enzymes

    Directory of Open Access Journals (Sweden)

    Samuel Hernández Anzaldo

    2016-06-01

    Full Text Available The spectroscopic and kinetic characterization of two intermediates from the H2O2 oxidation of three dimethyl ester [(proto, (meso, (deuteroporphyrinato (picdien]Fe(III complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III quantum mixed spin (qms ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1–3 + guaiacol + H2O2 → oxidation guaiacol products. The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III and H2O2, resulting in only two types of kinetics that were developed during the first 0–4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III family with the ligand picdien [N,N’-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, 1H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  14. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  15. Encapsulation of Carotenoids

    Science.gov (United States)

    Ribeiro, Henelyta S.; Schuchmann, Heike P.; Engel, Robert; Walz, Elke; Briviba, Karlis

    Carotenoids are natural pigments, which are synthesized by microorganisms and plants. More than 600 naturally occurring carotenoids have been found in the nature. The main sources of carotenoids are fruits, vegetables, leaves, peppers, and certain types of fishes, sea foods, and birds. Carotenoids may protect cells against photosensitization and work as light-absorbing pigments during photosynthesis. Some carotenoids may inhibit the destructive effect of reactive oxygen species. Due to the antioxidative properties of carotenoids, many investigations regarding their protective effects against cardiovascular diseases and certain types of cancers, as well as other degenerative illnesses, have been carried out in the last years (Briviba et al. 2004; Krinsky et al. 2004; Kirsh et al. 2006). A diet rich in carotenoids may also contribute to photoprotection against UV radiation (Stahl et al. 2006). In vitro studies have shown that carotenoids such as β-cryptoxanthin and lycopene stimulate bone formation and mineralization. The results may be related to prevention of osteoporosis (Kim et al. 2003; Yamaguchi and Uchiyama 2003; 2004; Yamaguchi et al. 2005).

  16. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  17. Factors influencing the chemical stability of carotenoids in foods.

    Science.gov (United States)

    Boon, Caitlin S; McClements, D Julian; Weiss, Jochen; Decker, Eric A

    2010-06-01

    In recent years, a number of studies have produced evidence to suggest that consuming carotenoids may provide a variety of health benefits including a reduced incidence of a number of cancers, reduced risk of cardiovascular disease, and improved eye health. Evolving evidence on the health benefits of several carotenoids has sparked interest in incorporating more carotenoids into functional food products. Unfortunately, the same structural attributes of carotenoids that are thought to impart health benefits also make these compounds highly susceptible to oxidation. Given the susceptibility of carotenoids to degradation, particularly once they have been extracted from biological tissues, it is important to understand the major mechanisms of oxidation in order to design delivery systems that protect these compounds when they are used as functional food ingredients. This article reviews current understanding of the oxidation mechanisms by which carotenoids are degraded, including pathways induced by heat, light, oxygen, acid, transition metal, or interactions with radical species. In addition, several carotenoid delivery systems are evaluated for their potential to decrease carotenoid degradation in functional food products.

  18. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    Science.gov (United States)

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  19. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  20. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye.

    Science.gov (United States)

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-28

    Monodispersed SiO2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO2 samples. The adsorption performance of the functionalized SiO2 (donated as SiO2-PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO2-PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP.

  1. Serum carotenoids, alpha-tocopherol and mortality risk in a prospective study among Dutch elderly

    NARCIS (Netherlands)

    Waart, de F.; Schouten, E.G.; Stalenhoef, A.F.; Kok, F.J.

    2001-01-01

    Background Although beta -carotene has shown inverse associations with chronic diseases involving free radical damage in observational epidemiological studies less attention has been paid to five other major carotenoids also showing antioxidant activity irt vitro. Methods We studied the associations

  2. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  3. Raman measurement of carotenoid composition in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  4. Carotenoid Formation by Staphylococcus aureus

    Science.gov (United States)

    Hammond, Ray K.; White, David C.

    1970-01-01

    The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; ζ-carotene; δ-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-14C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The incorporation and turnover of 14C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids. PMID:5423369

  5. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  6. One-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic and 1-(4-methoxyphenyl)cyclopropanecarboxylic acids in aqueous solution. the involvement of radical cations and the influence of structural effects and pH on the side-chain fragmentation reactivity.

    Science.gov (United States)

    Bietti, Massimo; Capone, Alberto

    2008-01-18

    A product and time-resolved kinetic study on the one-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic acid (2), 1-(4-methoxyphenyl)cyclopropanecarboxylic acid (3), and of the corresponding methyl esters (substrates 4 and 5, respectively) has been carried out in aqueous solution. With 2, no direct evidence for the formation of an intermediate radical cation 2*+ but only of the decarboxylated 4-methoxycumyl radical has been obtained, indicating either that 2*+ is not formed or that its decarboxylation is too fast to allow detection under the experimental conditions employed (k > 1 x 10(7) s(-1)). With 3, oxidation leads to the formation of the corresponding radical cation 3*+ or radical zwitterion -3*+ depending on pH. At pH 1.0 and 6.7, 3*+ and -3*+ have been observed to undergo decarboxylation as the exclusive side-chain fragmentation pathway with rate constants k = 4.6 x 10(3) and 2.3 x 10(4) s(-1), respectively. With methyl esters 4 and 5, direct evidence for the formation of the corresponding radical cations 4*+ and 5*+ has been obtained. Both radical cations have been observed to display a very low reactivity and an upper limit for their decay rate constants has been determined as k or=10, with the latter process that becomes the major fragmentation pathway around pH 12.

  7. Carotenoid fluorescence in Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Es, van M.A.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2010-01-01

    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid

  8. Bioavailability of natural carotenoids in human skin compared to blood.

    Science.gov (United States)

    Meinke, Martina C; Darvin, Maxim E; Vollert, Henning; Lademann, Jürgen

    2010-10-01

    Skin functions and structure are significantly influenced by nutrients. Antioxidants protect the supportive layer of the skin against any damaging irradiation effects and the action of free radicals. A lack of suitable methods means that the pharmacokinetic properties of systemically applied carotenoids transferred into the skin remain poorly understood. In this study, a natural kale extract or placebo oil were given orally to 22 healthy volunteers for 4 weeks. Carotenoid bioaccessibility was evaluated using non-invasive resonance Raman spectroscopy on the palm and forehead skin. For the analysis of the blood serum, the standard HPLC method was used. The blood and skin levels of the carotenoids increased significantly during the study but compared to the blood serum values, increases in skin were delayed and depended on the dermal area as well as on the carotenoid. Lycopene, measured as being low in the extract, increases more in the skin compared to the blood indicating that the natural mixture of the extract stabilizes the antioxidative network in the skin. After supplementation had ended, the carotenoids decreased much faster in the blood than in the skin. The delayed decrease in the skin may indicate a peripheral buffer function of the skin for carotenoids.

  9. Carotenoids and cardiovascular health.

    Science.gov (United States)

    Voutilainen, Sari; Nurmi, Tarja; Mursu, Jaakko; Rissanen, Tiina H

    2006-06-01

    Cardiovascular disease (CVD) is the main cause of death in Western countries. Nutrition has a significant role in the prevention of many chronic diseases such as CVD, cancers, and degenerative brain diseases. The major risk and protective factors in the diet are well recognized, but interesting new candidates continue to appear. It is well known that a greater intake of fruit and vegetables can help prevent heart diseases and mortality. Because fruit, berries, and vegetables are chemically complex foods, it is difficult to pinpoint any single nutrient that contributes the most to the cardioprotective effects. Several potential components that are found in fruit, berries, and vegetables are probably involved in the protective effects against CVD. Potential beneficial substances include antioxidant vitamins, folate, fiber, and potassium. Antioxidant compounds found in fruit and vegetables, such as vitamin C, carotenoids, and flavonoids, may influence the risk of CVD by preventing the oxidation of cholesterol in arteries. In this review, the role of main dietary carotenoids, ie, lycopene, beta-carotene, alpha-carotene, beta-cryptoxanthin, lutein, and zeaxanthin, in the prevention of heart diseases is discussed. Although it is clear that a higher intake of fruit and vegetables can help prevent the morbidity and mortality associated with heart diseases, more information is needed to ascertain the association between the intake of single nutrients, such as carotenoids, and the risk of CVD. Currently, the consumption of carotenoids in pharmaceutical forms for the treatment or prevention of heart diseases cannot be recommended.

  10. Plastids and carotenoid accumulation

    Science.gov (United States)

    Plastids are ubiquitously in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids except proplastids can synth...

  11. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids.

    Science.gov (United States)

    Scherzinger, Daniel; Scheffer, Erdmann; Bär, Cornelia; Ernst, Hansgeorg; Al-Babili, Salim

    2010-11-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.

  12. The antioxidant potential of carotenoid extract from Phaffia rhodozyma

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2010-06-01

    Full Text Available Background. Carotenoids are components playing an important role in biological systems, starting with light protection, immunoenhancement, protection against carcinogens and finishing with antioxidant activity. Food additives market is based mainly on synthetic additives; however, higher consumer awareness has resulted in an increased use of natural substances. One of the potentially antioxidant compounds could be a lipid soluble carotenoid – astaxanthin (xanthophyll, found in the microbial world. The aim of this study was to evaluate the antioxidant potential of carotenoid extract from Phaffia rhodozyma extract. Material and methods. Carotenoids extracted from Phaffia rhodozyma and the astaxanthin standard was selected for the investigations. Antioxidant potential was evaluated by radical scavenging activity (DPPH• and ABTS•+ radicals and in lipid oxidative stability measurements (Rancimat, Oxidograph and Schaal oven tests. Results. It was found that the examined extracts presented a significantly higher ability to scavenge the DPPH• radical in comparison to the ABTS•+ radical. Evaluations of linoleic acid emulsion oxidative stability showed a higher antioxidant effect of the Phaffia rhodozyma extract than that of astaxanthin during 19 h of incubation. That potential however, was not detected in linoleic acid emulsion incubated for 96 h, where both additives accelerated oxidation process. In bulk sunflower oil a protective effect of Phaffia rhodozyma extract was observed. In both Rancimat and Oxidograph tests antioxidant activity measured using the induction period was evaluated. However, results of the Schaal oven test indicated that a 144 h incubation of sunflower oil offered a significantly better protection of the lipid against oxidation when the Phaffia rhodozyma extract was added. Conclusions. On the basis of recorded results it was found that the Phaffia rhodozyma carotenoid extract showed moderate antioxidant properties

  13. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Marcela Hernández-Ortega

    2012-01-01

    Full Text Available Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406±4 μg/g, pasilla 2933±1 μg/g, and ancho 1437±6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH+ cation (24.2%. They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief.

  14. Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.).

    Science.gov (United States)

    Hernández-Ortega, Marcela; Ortiz-Moreno, Alicia; Hernández-Navarro, María Dolores; Chamorro-Cevallos, Germán; Dorantes-Alvarez, Lidia; Necoechea-Mondragón, Hugo

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH(+) cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief.

  15. Gibberellins and Carotenoids in the Wild Type and Mutants of Gibberella fujikuroi

    OpenAIRE

    1991-01-01

    A new screening procedure was used to isolate 14 gib mut ts of Gi!'berella_ fujikurof wit modi cations the production of gibberellins. The production of carotenmds and g bberellms was mvestlgated m the gib mutants and in representative car mutants with various modifications of carotenoid biosynthesis. The determinations of gibberellins were carried out with a simplified ftuorescence method. One of the mutants lacked both gibberellins and carotenoids. In many mutants the two path...

  16. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    DEFF Research Database (Denmark)

    Safafar, Hamed; van Wagenen, Jonathan Myerson; Møller, Per

    2015-01-01

    activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural...... antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source....

  17. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals

    Directory of Open Access Journals (Sweden)

    Esther García-de Blas

    2016-09-01

    Full Text Available Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual’s capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids. Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa, the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring

  18. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter.

  19. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  20. Fluphenazine hydrochloride radical cation assay: A new, rapid and precise method to determine in vitro total antioxidant capacity of fruit extracts

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nadeem Asghar; Qadeer Alam; Sharoon Augusten

    2012-01-01

    A new procedure based on generation and subsequent reduction of orange-colored fluphenazine hydrochloride radical (FPH·+)is presented for the screening of total antioxidant capacity (TAC) of various fruit matrices.The FPH·+ was obtained by mixing fluphenazine hydrochloride with persulfate (final concentration 2 mmol/L and 0.05 mmmol/L,respectively) in 3 mol/L H2SO4 with constant shaking for 5 min.The solution formed showed maximum absorption as 0.8 ± 0.02 at 500 nm in first-order derivative spectrum.The percent inhibition of the solution increased linearly on addition of increasing mounts of standard antioxidants i.e.,ascorbic acid etc.The TACs of sample citrus juices were calculated in terms of ascorbic acid equivalents (AAEs) by comparing their inhibition curves with that of ascorbic acid.Comparison of AAE values of different commercial orange juices using the newly developed FPH·+ assay and the well-known ABTS/K2S2O8 and DMPD/FeCl3 assays indicated the precision and comparable sensitivity of the method.The proposed procedure is quick,economical,and more precise and gives results comparable to contemporary assays.

  1. Carotenoids and lung cancer prevention

    Science.gov (United States)

    Understanding the molecular actions of carotenoids is critical for human studies involving carotenoids for prevention of lung cancer and cancers at other tissue sites. While the original hypothesis prompting the beta-carotene intervention trials was that beta-carotene exerts beneficial effects thro...

  2. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  3. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Charlotte Sy

    2015-11-01

    Full Text Available Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups. In this study, we evaluated the stability (sensitivity to iron-induced autoxidation and antioxidant activity (inhibition of iron-induced lipid peroxidation of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin. Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s, possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  4. Carotenoids as protection against sarcopenia in older adults

    OpenAIRE

    2006-01-01

    Sarcopenia, or loss of muscle mass and strength, plays a major role in the disablement process in older adults and increases the risk of impaired physical performance, falls, physical disability, frailty, and death. Oxidative stress is a major mechanism implicated in the pathogenesis of sarcopenia; aging muscle shows increased oxidative damage to DNA, protein, and lipids. Carotenoids quench free radicals, reduce damage from reactive oxygen species, and appear to modulate redox-sensitive trans...

  5. Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review.

    Science.gov (United States)

    Monego, Debora Luana; da Rosa, Marcelo Barcellos; do Nascimento, Paulo Cícero

    2017-02-15

    A summary of the various quantum chemical analyses that have been employed to evaluate the free radical scavenger capacity of carotenoid molecules are tabulated in this review and the most important observations are discussed. These molecules are able to interact with reactive oxygen species through singlet oxygen scavenging, electron transfer, hydrogen atom abstraction and radical adduct formation. Most studies employ density functional theory to compare the antiradical capacity of different carotenoids with the ones that are most explored theoretically, such as lycopene and β-carotene. A significant number of these applications have been directed towards understanding the electron transfer mechanism, and a useful tool called the FEDAM (full-electron donor-acceptor map) was developed to better evaluate this mechanism. Important aspects that may affect the radical scavenging capacity of carotenoids, such as synergistic effects and solubility, are sometimes overlooked, and a greater number of such compounds should be explored.

  6. ASTAXANTHIN: A POTENTIAL CAROTENOID

    Directory of Open Access Journals (Sweden)

    Jyotika Dhankhar et al.

    2012-05-01

    Full Text Available Astaxanthin, a member of the carotenoid family, is a dark-red pigment which is the main carotenoid found in the marine world of algae and aquatic animals. Astaxanthin, is present in many types of seafood, including salmon, trout, red sea bream, shrimp and lobster, as well as in birds such as flamingo and quail. Synthetic Astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural Astaxanthin, are the green algae haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses unusual antioxidant property which has caused a surge in the nutraceutical market of the encapsulated products. Numerous studies have shown that astaxanthin has potential health-promoting effects in the prevention and treatment of various diseases, such as cancers, chronic inflammatory diseases, metabolic syndrome, diabetes, diabetic nephropathy, cardiovascular diseases, gastrointestinal diseases, liver diseases, neurodegenerative diseases, eye diseases, skin diseases, exercise-induced fatigue, male infertility, and renal failure. In this article, the currently available scientific literature regarding the most significant activities of astaxanthin is reviewed.

  7. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.

    Science.gov (United States)

    Chi, Shuang C; Mothersole, David J; Dilbeck, Preston; Niedzwiedzki, Dariusz M; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J; Jackson, Philip J; Martin, Elizabeth C; Li, Ying; Holten, Dewey; Neil Hunter, C

    2015-02-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.

  8. Carotenoid photoprotection in Diaptomus kenai

    Energy Technology Data Exchange (ETDEWEB)

    Hairston, N.G. Jr.

    1978-12-01

    Red copepods have been reported from a wide variety of aquatic environments. The red color is produced by a carotenoid pigment, in most cases astaxanthin and its esters, that the copepods cannot form de novo but derive from ingested pigments such as beta-carotene. In an earlier study, the adaptive advantage of carotenoid pigmentation was investigated. Copepods containing large amounts of astaxanthin had significantly better survival than copepods containing small amounts of the pigment when exposed to light of an intensity and color similar to that occurring in the lakes from which they were taken. This result suggested that the carotenoid pigment protected the copepods from photodamage by visible light. Here a second example of carotenoid photoprotection involving the copepod Diaptomus kenai found in fresh-water mountain lakes is described. Information on the vertical distributions of D. sicilis and D. nevadensis in relation to their pigmentation is summarized, as these data will be presented elsewhere.

  9. The Synergistic Effect of Anionic Surfactant on Adsorption Enhancement of the Carotenoids Extract using Mesoporous Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Supalak Kongsri

    2015-09-01

    Full Text Available Fish hydroxyapatite (FHAp was prepared from fish scale waste by alkaline heat treatment. The obtained nanoparticles (21 nm of FHAp with high crystallinity (89.5% were used as biocompatible adsorbent for an adsorption of plant carotenoids extract. For optimum conditions of batch adsorption study, experimental parameters including pH of solution, adsorbent dosage, an initial concentration of carotenoids, amount of sodium dodecyl sulfate (SDS, contact time and temperature were investigated in details. From the results, the carotenoids adsorption of the FHAp was drastically enhanced in the presence of SDS through their hydrophobic interactions between the carotenoids and the cationic element FHAp via the anionic head of SDS by electrostatic and ion-exchange interactions and surface complexation. The adsorption behaviors fitted well by pseudo-second order kinetic model and Freundlich adsorption isotherm. Thermodynamic data demonstrated that the adsorption behaviors of the carotenoids on the hydroxyapatite nanoparticles were spontaneously endothermic and physisorption process.

  10. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-08-01

    Full Text Available Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  11. Astaxanthin protecting membrane integrity against photosensitized oxidation through synergism with other carotenoids

    DEFF Research Database (Denmark)

    Du, Hui-Hui; Liang, Ran; Han, Rui-Min

    2015-01-01

    using optical microscopy and digital image heterogeneity analysis. The lowest initial rate of GUV budding after the lag phase was seen for GUVs with astaxanthin as the least reducing carotenoid, while the lowest final level of entropy appeared for those with lycopene or β-carotene as a more reducing...... carotenoid. The combination of astaxanthin and lycopene gave optimal protection against budding with respect to both a longer lag phase and lower final level of entropy by combining good electron acceptance and good electron donation. Quenching of singlet oxygen by carotenoids close to chlorophyll...... a in the membrane interior in parallel with scavenging of superoxide radicals by astaxanthin anchored in the surface may explain the synergism between carotenoids involving both type I and type II photosensitization by chlorophyll a....

  12. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care

    Directory of Open Access Journals (Sweden)

    Marco Matteo Ciccone

    2013-01-01

    Full Text Available Cardiovascular disease related to atherosclerosis represents nowadays the largest cause of morbidity and mortality in developed countries. Due to inflammatory nature of atherosclerosis, several studies had been conducted in order to search for substances with anti-inflammatory activity on arterial walls, able to exert beneficial roles on health. Researches investigated the role of dietary carotenoids supplementation on cardiovascular disease, due to their free radicals scavenger properties and their skills in improving low-density lipoprotein cholesterol resistance to oxidation. Nevertheless, literature data are conflicting: although some studies found a positive relationship between carotenoids supplementation and cardiovascular risk reduction, others did not find any positive effects or even prooxidant actions. This paper aimed at defining the role of carotenoids supplementation on cardiovascular risk profile by reviewing literature data, paying attention to those carotenoids more present in our diet (β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein, zeaxanthin, and astaxanthin.

  13. Carotenoids of aleurone, germ, and endosperm fractions of barley, corn and wheat differentially inhibit oxidative stress.

    Science.gov (United States)

    Masisi, Kabo; Diehl-Jones, William L; Gordon, Joseph; Chapman, Donald; Moghadasian, Mohammed H; Beta, Trust

    2015-03-18

    The antioxidant potential of carotenoids from aleurone, germ, and endosperm fractions of barley, corn, and wheat has been evaluated. HPLC analysis confirmed the presence of lutein and zeaxanthin carotenoids (nd-15139 μg/kg) in extracts of cereal grain fractions. The antioxidant properties using 2,2-diphenyl-1-picrylhydrazyl, oxygen radical absorbance capacity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays revealed significantly higher (Paleurone and endosperm fractions. Using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, 2,2'azobis (2-amidinopropane)dihydrochloride (AAPH)-induced cell loss was effectively reduced by preincubating Caco-2, HT-29, and FHs 74 Int cells with carotenoid extracts. Moreover, carotenoid extracts reduced (Paleurone, and endosperm fractions improved antioxidant capacity and thus have the potential to mitigate oxidative stress.

  14. Marine Carotenoids: Biological Functions and Commercial Applications

    Directory of Open Access Journals (Sweden)

    José M. Vega

    2011-03-01

    Full Text Available Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.

  15. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  16. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns.

    Science.gov (United States)

    Bijttebier, Sebastiaan K A; D'Hondt, Els; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2013-06-01

    Vegetables are a major source of carotenoids and carotenoids are identified as potentially important natural antioxidants that may aid in the prevention of several human chronic degenerative diseases. Characterization of carotenoids in organic biological matrices is a crucial step in any research valorization trajectory. This study reports for the first time the use of high mass resolution and exact mass orbitrap technology for the elucidation of carotenoid fragmentation pathways. This contributes to the generation of new tools for identifying unknown carotenoids based on fragmentation patterns. Two different chromatographic methods making use of different mobile phases resulted in the generation of different ion species because of the large influence of the mobile phase solvent composition on ionization. It was shown that depending on the molecular ion species that are generated (protonated ions or radical molecular ions), different fragments are formed when applying higher energy collisional dissociation. Fragmentation and the abundance of fragments provide valuable structural information on the type of functional groups, the polyene backbone and the location of double bonds in ring structures of carotenoids. Furthermore, coherence between specific substructures in the molecules and characteristic fragmentation patterns was observed allowing the assignment of fragmentation patterns for carotenoid substructures that can theoretically be extrapolated to carotenoids with similar (sub)structures. Differentiation between isomeric carotenoids by compound specific fragments could however not be made for all the isomeric groups under study. As a wide variety of isomeric forms of carotenoids exist in nature, the combination of good chromatographic separation with high resolution mass spectrometry and other complementary qualitative structure elucidation techniques such as a photo diode array detector and/or nuclear magnetic resonance spectroscopy are indispensable for

  17. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds.

    Science.gov (United States)

    Simons, Mirre J P; Maia, Rafael; Leenknegt, Bas; Verhulst, Simon

    2014-12-01

    Sexual selection has resulted in a wide array of ornaments used in mate choice, and such indicator traits signal quality honestly when they bear costs, precluding cheating. Carotenoid-dependent coloration has attracted considerable attention in this context, because investing carotenoids in coloration has to be traded off against its physiological functions; carotenoids are antioxidants and increase immunocompetence. This trade-off is hypothesized to underlie the honesty of carotenoid-dependent coloration, signaling the "handicap" of allocating carotenoids away from somatic maintenance toward sexual display. Utilizing recent advances in modeling adaptive evolution, we used a comparative approach to investigate the evolution of plasma carotenoid levels using a species-level phylogeny of 178 bird species. We find that the evolutionary optimum for carotenoid levels is higher in lineages that evolved carotenoid-dependent coloration, with strong attraction toward this optimum. Hence, carotenoids do not appear to be limiting, given that higher carotenoid levels readily evolve in response to the evolution of carotenoid-dependent coloration. These findings challenge the assumption that carotenoids are a scarce resource and thus also challenge the hypothesis that physiological resource value of carotenoids underlies honesty of carotenoid-dependent traits. Therefore, the comparative evidence suggests that other factors, such as the acquisition and incorporation of carotenoids, are involved in maintaining signal honesty.

  18. Detection of carotenoids present in blood of various animal species using Raman spectroscopy

    Science.gov (United States)

    Liaqat, Maryam; Younus, Ayesha; Saleem, Muhammad; Rashid, Imaad; Yaseen, Maria; Jabeen, Saher

    Raman spectroscopy is simple stable powerful diagnostic tool for body fluids, tissues and other biomolecules. Human blood possesses different kind of carotenoids that play a key role for protecting the cells from damaging by different viral and bacterial diseases. Carotenoids are antioxidative components which are capable to overcome the attack of different free radicals and reactive oxygen species. Carotenoids are not prepared by human body, therefore it is recommended to eat carotenoids enrich vegetable foods. No standard data is available on the concentration of useful carotenoids component in non-vegetable consumed items. In present research work, Raman spectroscopy is used to compare various blood components like plasma, serum, carotenoids present in blood of different animal species like goat, sheep, cow and buffalo consumed by human. Especially beta carotene is investigated. The Raman shift ranges from 600-1700 cm-1 for samples. Different characteristic peaks of the blood components are found which are not characterized before in animal samples. Doctrate Student in Photonics Deparatment of Electrical Engineering.

  19. Study on Synergy Effect of Free Radical-cationic Hybrid Light Curing Composite Resin of Epoxy-acrylate%自由基-阳离子混杂光固化环氧/丙烯酸酯协同效应的研究

    Institute of Scientific and Technical Information of China (English)

    王亦农

    2012-01-01

    Composite resin of Epoxy-Acrylic was prepared by free radical-cationic hybrid curing systemin visible light-cured, and the influence of the proportion of free radical (CQ) and cationic initiator (DPI ~ PF6) on curing time, curing depth, linear dimension change and properties of composition were mainly studied. The results show: when the mass fraction of CQ is 0.75, the curing time is 6s, the curing depth is 7. 86mm, the linear dimension change is 0. 2%, and the synthetic performance of the composite resin is excellent. This result demonstrated that free radical-cationic hybrid curing system combined the advantages of radical and cationic polymerization, and exhibited a better synergy effect.%采用可见光引发自由基-阳离子混杂光固化体系,固化环氧/丙烯酸酯制备的复合树脂,重点研究了自由基光引发剂樟脑醌和阳离子光引发剂二苯基碘锚六氟磷酸盐质量比对固化时间、固化深度、线尺寸变化率及树脂性能的影响。结果表明:在可见光的照射下,当樟脑醌在混合引发剂中的质量分数为0.75时,固化时间为6s,光固化深度为7.86ram,线尺寸变化率为0.2%,固化复合树脂的综合性能优良;很好地证明了自由基一阳离子混杂光固化体系结合了自由基聚合和阳离子聚合的优点,表现出较好的协同效应。

  20. Carotenoids in a Corynebacterineae, Gordonia terrae AIST-1: carotenoid glucosyl mycoloyl esters.

    Science.gov (United States)

    Takaichi, Shinichi; Maoka, Takashi; Akimoto, Naoshige; Carmona, Marvelisa L; Yamaoka, Yukiho

    2008-10-01

    We isolated a strain of Corynebacterineae from surface seawater from the Inland Sea of Japan. This strain, AIST-1, was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The colony was red-colored, and the pigments were identified to be carotenoid derivatives. The structures of two major carotenoids were (2'S)-deoxymyxol 1'-glucoside, a dihydroxyl derivative of gamma-carotene with 12 conjugated double bonds, and (2'S)-4-ketodeoxymyxol 1'-glucoside. Their glucosyl acyl esters and mycoloyl esters were also identified. While these carotenoid moieties have been found in only a few other bacteria, the carotenoid mycoloyl esters are novel carotenoid derivatives. The type strain of G. terrae NBRC 10016T also contained the same carotenoids, but the composition of the two carotenoid glucosides was low and the total carotenoid content was less than one tenth of that of strain AIST-1.

  1. Carotenoids in Aquaculture: Fish and Crustaceans

    Science.gov (United States)

    Bjerkeng, Bjorn

    This Chapter deals with selected topics on the use of carotenoids for colouration in aquaculture and incudes examples from ecological studies which support our understanding of functions and actions of carotenoids and colouration in fishes and crustaceans. Animal colours may be physical or structural in origin [1], e.g. Tyndall blues and iridescent diffraction colours, or they may be due to pigments, including carotenoids (Chapter 10).

  2. Bioinspired terpene synthesis: a radical approach.

    Science.gov (United States)

    Justicia, José; Álvarez de Cienfuegos, Luis; Campaña, Araceli G; Miguel, Delia; Jakoby, Verena; Gansäuer, Andreas; Cuerva, Juan M

    2011-07-01

    This tutorial review highlights the development of radical-based bioinspired synthesis of terpenes from the initial proposal to the development of modern catalytic methods for performing such processes. The power of the radical approach is demonstrated by the straightforward syntheses of many natural products from readily available starting materials. The efficiency of these processes nicely complements the described cationic polyolefin cyclisations and even suggests that modern radical methods provide means to improve upon nature's synthetic pathways.

  3. Foraging for carotenoids: do colorful male hihi target carotenoid-rich foods in the wild?

    Science.gov (United States)

    Walker, Leila K; Thorogood, Rose; Karadas, Filiz; Raubenheimer, David; Kilner, Rebecca M; Ewen, John G

    2014-09-01

    Dietary access to carotenoids is expected to determine the strength of carotenoid-based signal expression and potentially to maintain signal honesty. Species that display carotenoid-based yellow, orange, or red plumage are therefore expected to forage selectively for carotenoid-rich foods when they are depositing these pigments during molt, but whether they actually do so is unknown. We set out to address this in the hihi (Notiomystis cincta), a New Zealand passerine where males, but not females, display yellow carotenoid-based plumage. We measured circulating carotenoid concentrations in male and female hihi during breeding and molt, determined the nutritional content of common foods in the hihi diet, and conducted feeding observations of male and female hihi during molt. We found that although male and female hihi do not differ significantly in plasma carotenoid concentration, male hihi have a greater proportion of carotenoid-rich foods in their diet than do females. This is a consequence of a greater fruit and lower invertebrate intake than females and an avoidance of low-carotenoid content fruit. By combining behavioral observations with quantification of circulating carotenoids, we present evidence that colorful birds forage to maximize carotenoid intake, a conclusion we would not have drawn had we examined plasma carotenoids alone.

  4. Antioxidative activities of algal keto carotenoids acting as antioxidative protectants in the chloroplast.

    Science.gov (United States)

    Dambeck, Michael; Sandmann, Gerhard

    2014-01-01

    Very diverse carotenoid structures exist in the photosynthesis apparatus of different algae. Among them, the keto derivatives are regarded the most antioxidative. Therefore, four different keto carotenoids, peridinin, fucoxanthin, siphonaxanthin and astaxanthin fatty acid monoesters, were isolated and purified from Amphidinium carterae, Phaeodactylum tricornutum, Caulerpa taxifolia and Haematococcus pluvialis, respectively. The carotenoids were assayed as inhibitors of photosensitizer initiated reactions or scavengers of radicals in the early events generating reactive oxygen species as starters for peroxidation and as protectants against the whole reaction chain finally leading to lipid peroxidation. These in vitro studies demonstrated the substantial antioxidative properties as indicated by the IC(50) values of all four keto carotenoids with superior protection by astaxanthin fatty acid monoesters which were as effective as free astaxanthin and of peridinin against radicals. As an example, the in vivo relevance of fucoxanthin for protection of photosynthesis from excess light and from peroxidative agents was evaluated with intact cells. Cultures of P. tricornutum with decreased fucoxanthin content generated by inhibitor treatment were exposed to strong light or cumene hydroperoxyde. In each case, oxidation of chlorophyll as marker for damaging of the photosynthesis apparatus was less severe when the fucoxanthin was at maximum level.

  5. Metabolomic engineering for the microbial production of cartenoids and related products with a focus on the rare C50 carotenoids

    NARCIS (Netherlands)

    Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.F.; Beekwilder, M.J.

    2014-01-01

    Carotenoids, a subfamily of terpenoids, are yellowtored-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxy

  6. Method of producing purified carotenoid compounds

    Science.gov (United States)

    Eggink, Laura (Inventor)

    2007-01-01

    A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

  7. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  8. Carotenoids as signaling molecules in cardiovascular biology

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2014-09-01

    Full Text Available Oxidative stress and inflammation play important roles in the etiology of cardiovascular disease (CVD. Thus, natural antioxidant carotenoids existing in fruits and vegetables could have a significant role in the prevention of CVD. Nevertheless,clinical data are conflicting about the positive effect of some antioxidant carotenoids in reducing cardiovascular morbidity and mortality. Many biological actions of carotenoids have been attributed to their antioxidant effect; however, the precise mechanism by which carotenoids produce their beneficial effects is still under discussion. They might modulate molecular pathways involved in cell proliferation, acting at Akt, tyrosine kinases, mitogen activated protein kinase (MAP kinase and growth factor signaling cascades. Screening for a promising cardiovascular protective carotenoids therefore might be performed in vitro and in vivo with caution in cross-interaction with other molecules involved in signaling pathways especially those affecting microRNAs, performing a role in molecular modulation of cardiovascular cells.

  9. Carotenoid Metabolism: Biosynthesis, Regulation,and Beyond

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Li Li

    2008-01-01

    Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

  10. PHARMACOLOGICAL EFFECTS OF CAROTENOIDS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Sumita S. Kadia

    2012-01-01

    Full Text Available Vitamin A is an essential vitamin which is required in the vision process, epithelial maintenance, mucous secretion and reproduction obtained from carotenoids. Carotenoids have been considered to provide benefits in age-related diseases, against some forms of cancer (in especial lung cancer, strokes, macular degeneration, and cataracts. Till date, more than 600 carotenoids are known and 50 of them are consumed in meals to be transformed into the essential nutrient vitamin A. After their absorption, these carotenoids are metabolized by an oxidative rupture to retinal, retinoic acid and small quantities of breakdown products and are transported by plasma lipoproteins. Carotenes are mainly associated with low-density lipoproteins, while xanthophylls show a uniform distribution between the low- and high-density lipoproteins. The present review provides an insight into the recent status of pharmacological aspects of carotenoids.

  11. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  12. Dietary Carotenoids Regulate Astaxanthin Content of Copepods and Modulate Their Susceptibility to UV Light and Copper Toxicity

    Directory of Open Access Journals (Sweden)

    Kevin R. Carman

    2012-04-01

    Full Text Available High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal. Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC50 values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers.

  13. Dietary carotenoids regulate astaxanthin content of copepods and modulate their susceptibility to UV light and copper toxicity.

    Science.gov (United States)

    Caramujo, Maria-José; de Carvalho, Carla C C R; Silva, Soraya J; Carman, Kevin R

    2012-05-01

    High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal). Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC(50) values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers.

  14. The Importance of Carotenoid Dose in Supplementation Studies with Songbirds.

    Science.gov (United States)

    Koch, Rebecca E; Wilson, Alan E; Hill, Geoffrey E

    2016-01-01

    Carotenoid coloration is the one of the most frequently studied ornamental traits in animals. Many studies of carotenoid coloration test the associations between carotenoid coloration and measures of performance, such as immunocompetence and oxidative state, proceeding from the premise that carotenoids are limited resources. Such studies commonly involve supplementing the diets of captive birds with carotenoids. In many cases, however, the amount of carotenoid administered is poorly justified, and even supposedly carotenoid-limited diets may saturate birds' systems. To quantify the relationships among the amount of carotenoids administered in experiments, levels of circulating carotenoids, and quantities of carotenoids deposited into colored ornaments, we performed a meta-analysis of 15 published studies that supplemented carotenoids to one of seven songbird species. We used allometric scaling equations to estimate the per-gram carotenoid consumption of each study's subjects, and we used meta-regression to evaluate the effects of this carotenoid dose on differences in coloration and plasma carotenoid levels between supplemented and control groups of birds. After accounting for supplementation duration and species, we observed a significant positive correlation between carotenoid intake and response of plasma carotenoid level to supplementation. The presence of supplemental carotenoids also tended to increase the expression of ornamental coloration, but the magnitude of the carotenoid dose did not significantly affect how strongly coloration changed with supplementation. Further, coloration effect sizes had no significant relationship with plasma carotenoid effect sizes. We also found significant heterogeneity in responses among studies and species, and the parameters used to measure color significantly affected response to supplementation. Our results emphasize the importance of performing dosage trials to determine what supplementation levels provide limited

  15. Phytochrome-mediated Carotenoids Biosynthesis in Ripening Tomatoes.

    Science.gov (United States)

    Thomas, R L; Jen, J J

    1975-09-01

    Red light induced and far red light inhibited carotenoid biosynthesis in ripening tomatoes (Lycopersicon esculentum Mill.) when compared to controls kept in the dark. Red illumination following far red illumination reversed the inhibitory action of far red light on carotenoid biosynthesis, suggesting a phytochrome-mediated process. Quantitation of individual carotenoids favored the hypothesis of two separate carotenoid biosynthetic pathways in tomatoes.

  16. The acid-catalyzed rearrangement CH3Oo --> oCH2OH and its involvement in the dissociation of the methanol dimer radical cation; A Quid pro Quo reaction

    NARCIS (Netherlands)

    Burgers, P.C.; Ruttink, P.J.A.

    2005-01-01

    The barrier for the radical isomerization CH3Oo --> oCH2OH is calculated by CBS-QB3 to be 29.7 kcal mol-1 and lies higher (by 5.7 kcal mol-1) than the dissociation limit CH2O+Ho. Hence, CH3Oo does not isomerize to the more stable oCH2OH on its own. However, this barrier is reduced to 15.8 kcal mol-1

  17. Native carotenoids composition of some tropical fruits.

    Science.gov (United States)

    Murillo, Enrique; Giuffrida, Daniele; Menchaca, Dania; Dugo, Paola; Torre, Germana; Meléndez-Martinez, Antonio J; Mondello, Luigi

    2013-10-15

    Many tropical fruits can be considered a reservoir of bioactive substances with a special interest due to their possible health-promoting properties. The interest in carotenoids from a nutritional standpoint has recently greatly increased, because of their important health benefits. Here we report the native carotenoids composition in six tropical fruits from Panama, which is considered a region of great biodiversity. The native carotenoid composition was directly investigated by an HPLC-DAD-APCI-MS methodology, for the first time. In Corozo 32 different carotenoids were detected, including a high content of β-carotene and lycopene. Sastra showed the highest content of zeaxanthin among the fruit investigated. In Sapote 22 different carotenoids were detected, including β-carotene and 10 different zeaxanthin-di-esters. Frutita showed a very high content of the apo-carotenoid β-citraurin, and of a number of its esters. In Maracuyà chino 14 carotenoids were detected, including a high amounts of mono-esterified lauric acid with β-cryptoxanthin and with cryptocapsin. Mamey rojo was characterised by ketocarotenoids with κ rings, both hydroxylated and not hydroxylated.

  18. Carotenoids and health in older people.

    Science.gov (United States)

    Woodside, Jayne V; McGrath, Alanna J; Lyner, Natalie; McKinley, Michelle C

    2015-01-01

    As the proportion of older people increases, so will chronic disease incidence and the proportion of the population living with disability. Therefore, new approaches to maintain health for as long as possible in this age group are required. Carotenoids are a group of polyphenolic compounds found predominantly in fruit and vegetables that have been proposed to have anti-inflammatory and antioxidant effects. Such properties may impact on the risk diseases which predominate in older people, and also ageing-related physiological changes. Working out the effect of carotenoid intake versus fruit and vegetable intake is difficult, and the strong correlation between individual carotenoid intakes also complicates any attempt to examine individual carotenoid health effects. Similarly, research to determine whether carotenoids consumed as supplements have similar benefits to increased dietary intake through whole foods, is still required. However, reviewing the recent evidence suggests that carotenoid intake and status are relatively consistently associated with reduced CVD risk, although β-carotene supplementation does not reduce CVD risk and increases lung cancer risk. Increased lycopene intake may reduce prostate cancer progression, with a potential role for carotenoids at other cancer sites. Lutein and zeaxanthin have a plausible role in the maintenance of eye health, whilst an association between carotenoid intake and cognitive and physical health appears possible, although research is limited to date. Given this accruing evidence base to support a specific role for certain carotenoids and ageing, current dietary advice to consume a diet rich in fruit and vegetables would appear prudent, and efforts maintained to encourage increased intake.

  19. UV-effects on antioxidant activity of selected carotenoids in the presence of lecithin estimated by DPPH test

    Directory of Open Access Journals (Sweden)

    DRAGAN CVETKOVIC

    2008-10-01

    Full Text Available The effects of ultraviolet radiation (UV on the antioxidant action of three selected carotenoids (β-carotene, lycopene and lutein in the presence of a lipoidal lecithin mixture were studied by the DPPH (1,1-diphenyl-2-picrylhydrazyl test. The test is based on the measurement of the decrease of the free DPPH radical absorbance at 517 nm caused by the antioxidant action of carotenoids, which appeared to be strongly affected by UV-action. The high-energy input of the involved UV-photons plays a major governing role.

  20. Genetic variations involved in interindividual variability in carotenoid status.

    OpenAIRE

    Borel, Patrick

    2012-01-01

    International audience; As shown in most clinical studies dedicated to carotenoids, there is a huge interindividual variability in absorption, and blood and tissue responses, of dietary carotenoids. The recent discovery that several proteins are involved in carotenoid metabolism in humans has prompted a possible explanation for this phenomenon: genetic variants in genes encoding for these proteins may affect their expression or activity, and in turn carotenoid metabolism and carotenoid status...

  1. Extraction and chromatography of carotenoids from pumpkin.

    Science.gov (United States)

    Seo, Jung Sook; Burri, Betty Jane C; Quan, Zhejiu; Neidlinger, Terry R

    2005-05-06

    Vitamin A deficiency is a health problem in Southeast Asia that can be corrected by feeding orange fruits and vegetables such as mango. Pumpkin is a traditional Korean food that is easy to store and is already believed to have health benefits. We extracted carotenoids from pumpkin by liquid-liquid extraction and by supercritical fluid extraction. We measured carotenoids by reversed-phase chromatography with diode array detection. The major carotenoid in pumpkin (> 80%) is beta-carotene, with lesser amounts of lutein, lycopene, alpha-carotene and cis-beta-carotene. Pumpkin is a rich source of beta-carotene and might be useful for preventing Vitamin A deficiency.

  2. Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations.

    Science.gov (United States)

    Wang, Ying; Chung, Sang-Jin; McCullough, Marjorie L; Song, Won O; Fernandez, Maria Luz; Koo, Sung I; Chun, Ock K

    2014-07-01

    Hyperlipidemia and elevated circulating C-reactive protein (CRP) and total homocysteine (tHcy) concentrations are cardiovascular disease (CVD) risk factors. Previous studies indicated that higher serum carotenoid concentrations were inversely associated with some of these biomarkers. However, whether dietary carotenoid intake is inversely associated with these CVD risk biomarkers is not well known. We assessed the associations between individual dietary carotenoid intake and CVD risk biomarkers and tested whether the serum carotenoid concentrations explain (mediate) or influence the strength of (moderate) the associations, if any association exists. Dietary data collected from 2 24-h dietary recalls and serum measurements in adult men (n = 1312) and women (n = 1544) from the NHANES 2003-2006 were used. Regression models designed for survey analysis were used to examine the associations between individual dietary carotenoids and log-transformed blood cholesterol, CRP, and tHcy. The corresponding individual serum carotenoid concentration was considered as mediator (and moderator if applicable). After adjustment for covariates, significant inverse associations with LDL cholesterol were observed for dietary β-carotene (P carotenoids (P carotenoid concentrations, indicating the complete mediation effects of serum carotenoids. Serum β-carotene significantly moderated the associations between dietary β-carotene and CRP (P-interaction 0.43 μmol/L. In this population-based cross-sectional study, serum carotenoids were mediators of dietary carotenoids and CVD risk biomarker associations. Serum β-carotene was also a moderator of the dietary β-carotene and CRP association. These findings may help in the design of future intervention studies on dietary carotenoids in the prevention of CVD.

  3. Holographic films from carotenoid pigments

    Science.gov (United States)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  4. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins.

    Science.gov (United States)

    Rodrigo, María Jesús; Cilla, Antonio; Barberá, Reyes; Zacarías, Lorenzo

    2015-06-01

    Citrus fruits are a good source of carotenoids for the human diet; however, comparative studies of carotenoids in different citrus food matrices are scarce. In this work the concentration and bioaccessibility of carotenoids in sweet oranges and mandarins with marked differences in carotenoid composition were evaluated in pulp and compared to those in fresh juice. The pulp and juice of the red-fleshed Cara Cara sweet orange variety was highly rich in carotenes (mainly lycopene and phytoene) compared to standard Navel orange, while β-cryptoxanthin and phytoene predominated in mandarins. Total carotenoid content in the pulp of the ordinary Navel orange and in the red-fleshed Cara Cara orange, as well as in the Clementine mandarin were higher than in the corresponding juices, although individual carotenoids were differentially affected by juice preparation. Bioaccessibility of the bioactive carotenoids (the ones described to be absorbed by humans) was greater in both pulp and juice of the carotenoid-rich Cara Cara orange compared to the Navel orange while increasing levels of β-cryptoxanthin were detected in the bioaccessible fractions of pulp and juice of mandarins postharvest stored at 12 °C compared to freshly-harvested fruits. Overall, results indicated that higher soluble bioactive carotenoids from citrus fruits and, consequently, potential nutritional and health benefits are obtained by the consumption of pulp with respect to fresh juice.

  5. An in vitro digestion method adapted for carotenoids and carotenoid esters: moving forward towards standardization.

    Science.gov (United States)

    Rodrigues, Daniele Bobrowski; Mariutti, Lilian Regina Barros; Mercadante, Adriana Zerlotti

    2016-12-07

    In vitro digestion methods are a useful approach to predict the bioaccessibility of food components and overcome some limitations or disadvantages associated with in vivo methodologies. Recently, the INFOGEST network published a static method of in vitro digestion with a proposal for assay standardization. The INFOGEST method is not specific for any food component; therefore, we aimed to adapt this method to assess the in vitro bioaccessibility of carotenoids and carotenoid esters in a model fruit (Byrsonima crassifolia). Two additional steps were coupled to the in vitro digestion procedure, centrifugation at 20 000g for the separation of the aqueous phase containing mixed micelles and exhaustive carotenoid extraction with an organic solvent. The effect of electrolytes, enzymes and bile acids on carotenoid micellarization and stability was also tested. The results were compared with those found with a simpler method that has already been used for carotenoid bioaccessibility analysis. These values were in the expected range for free carotenoids (5-29%), monoesters (9-26%) and diesters (4-28%). In general, the in vitro bioaccessibility of carotenoids assessed by the adapted INFOGEST method was significantly higher (p carotenoid form (free, monoester or diester), isomerization (Z/E) and the in vitro digestion protocol. To the best of our knowledge, it was the first time that a systematic identification of carotenoid esters by HPLC-DAD-MS/MS after in vitro digestion using the INFOGEST protocol was carried out.

  6. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health

    Science.gov (United States)

    Vinkler, Michal; Albrecht, Tomáš

    2010-01-01

    Despite a reasonable scientific interest in sexual selection, the general principles of health signalisation via ornamental traits remain still unresolved in many aspects. This is also true for the mechanism preserving honesty of carotenoid-based signals. Although it is widely accepted that this type of ornamentation reflects an allocation trade-off between the physiological utilisation of carotenoids (mainly in antioxidative processes) and their deposition in ornaments, some recent evidence suggests more complex interactions. Here, we further develop the models currently proposed to explain the honesty of carotenoid-based signalisation of heath status by adding the handicap principle concept regulated by testosterone. We propose that under certain circumstances carotenoids may be dangerous for the organism because they easily transform into toxic cleavage products. When reserves of other protective antioxidants are insufficient, physiological trade-offs may exist between maintenance of carotenoids for ornament expression and their removal from the body. Furthermore, we suggest that testosterone which enhances ornamentation by increasing carotenoid bioavailability may also promote oxidative stress and hence lower antioxidant reserves. The presence of high levels of carotenoids required for high-quality ornament expression may therefore represent a handicap and only individuals in prime health could afford to produce elaborate colourful ornaments. Although further testing is needed, this ‘carotenoid maintenance handicap’ hypothesis may offer a new insight into the physiological aspects of the relationship between carotenoid function, immunity and ornamentation.

  7. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes

    OpenAIRE

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between t...

  8. IMPORTANCE OF CAROTENOIDS FOR HUMAN HEALTH

    Directory of Open Access Journals (Sweden)

    Semih ÖTLEŞ

    1997-01-01

    Full Text Available Carotenoids are brightly yellow to red pigments occuring in plants and are introduced into humans through dietary intake of vegetables and fruits. They do not dissolve in water, they can give maximum absorption in UV region at 400-450 nm., and they are stable in alkali. Some carotenoids have provitamin A activity and they are important because of the synthesis of Vitamin A needed to be taken into the body. In addition to this function, carotenoids play very important roles in preventing diseases caused by Vitamin A deficiency, coronary heart diseases, and cancer. They are effective in preventing or at least slowering cancer as a result of their antioxidative properties. Studies are shown that cancer risk (especially the lung cancer decreases with the intake of carotenoids. As a conclusion vegetables and fruits-rich diet is always important and valuable for healty populations.

  9. Functional analysis of gamma-carotene ketolase involved in the carotenoid biosynthesis of Deinococcus radiodurans.

    Science.gov (United States)

    Sun, Zongtao; Shen, Shaochuan; Tian, Bing; Wang, Hu; Xu, Zhenjian; Wang, Liangyan; Hua, Yuejin

    2009-11-01

    Deinococcus radiodurans strain R1 synthesizes a unique ketocarotenoid product named deinoxanthin. The detailed steps involved in the biosynthesis of deinoxanthin remain unresolved. A carotene ketolase homologue encoded by dr0093 was inactivated by gene mutation to verify its function in the native host D. radiodurans. Analysis of the carotenoids in the resultant mutant R1DeltacrtO demonstrated that dr0093 encodes gamma-carotene ketolase (CrtO) catalysing the introduction of one keto group into the C-4 position of gamma-carotene derivatives to form ketolated carotenoids. The mutant R1DeltacrtO became more sensitive to H(2)O(2) treatment than the wild-type strain R1, indicating that the C-4 keto group is important for the antioxidant activity of carotenoids in D. radiodurans. Carotenoid extracts from mutant R1DeltacrtO exhibited lower 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the wild-type strain R1. The enhanced antioxidant ability of ketocarotenoids in D. radiodurans might be attributed to its extended conjugated double bonds and relative stability by the C-4 keto group substitution.

  10. Latin American food sources of carotenoids.

    Science.gov (United States)

    Rodriguez-Amaya, D B

    1999-09-01

    Latin America has a wide variety of carotenogenic foods, notable for the diversity and high levels of carotenoids. A part of this natural wealth has been analyzed. Carrot, red palm oil and some cultivars of squash and pumpkin are sources of both beta-carotene and alpha-carotene. beta-carotene is the principal carotenoid of the palm fruits burití, tucumã and bocaiuva, other fruits such as loquat, marolo and West Indian cherry, and sweet potato. Buriti also has high amounts of alpha-carotene and gamma-carotene. beta-Cryptoxanthin is the major carotenoid in caja, nectarine, orange-fleshed papaya, orange, peach, tangerine and the tree tomato. Lycopene predominates in tomato, red-fleshed papaya, guava, pitanga and watermelon. Pitanga also has substantial amounts of beta-cryptoxanthin, gamma-carotene and rubixanthin. Zeaxanthin, principal carotenoid of corn, is also predominant only in piquí. delta-Carotene is the main carotenoid of the peach palm and zeta-carotene of passion fruit. Lutein and beta-carotene, in high concentrations, are encountered in the numerous leafy vegetables of the region, as well as in other green vegetables and in some varieties of squash and pumpkin. Violaxanthin is the principal carotenoid of mango and mamey and is also found in appreciable amounts in green vegetables. Quantitative, in some cases also qualitative, differences exist among cultivars of the same food. Generally, carotenoids are in greater concentrations in the peel than in the pulp, increase considerably during ripening and are in higher levels in foods produced in hot places. Other Latin America indigenous carotenogenic foods must be investigated before they are supplanted by introduced crops, which are often poorer sources of carotenoids.

  11. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  12. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Maia, Rafael; Leenknegt, Bas; Verhulst, Simon

    2014-01-01

    Sexual selection has resulted in a wide array of ornaments used in mate choice, and such indicator traits signal quality honestly when they bear costs, precluding cheating. Carotenoid-dependent coloration has attracted considerable attention in this context, because investing carotenoids in colorati

  13. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes.

    Science.gov (United States)

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown.

  14. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives.

  15. Fotofísica de carotenóides e o papel antioxidante de b-caroteno Photophysics of carotenoids and the antioxidant role of b-carotene

    Directory of Open Access Journals (Sweden)

    Sergio Luis Cardoso

    1997-10-01

    Full Text Available Carotenoid polyenes play a wide role in nature and their photophysical properties make of these pigments a focus of research in photochemistry, photobiology and photomedicine. Some aspects of the singlet and triplet states and, their interaction with molecular and singlet oxygen and free radicals are briefly reviewed in this article.

  16. Radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Sønksen, Jens; Jakobsen, Henrik

    2014-01-01

    OBJECTIVE: The aim of this study was to compare oncological and functional outcomes between robot-assisted laparoscopic radical prostatectomy (RALP) and retropubic radical prostatectomy (RRP) during the initial phase with RALP at a large university hospital. MATERIAL AND METHODS: Patient and tumour...... surgery and at follow-up and they were asked to report their use of pads/diapers. Potency was defined as an IIEF-5 score of at least 17 with or without phosphodiesterase-5 inhibitors. Patients using up to one pad daily for security reasons only were considered continent. Positive surgical margins, blood...... loss and functional outcomes were compared between groups. RESULTS: Overall, 453 patients were treated with RRP and 585 with RALP. On multivariate logistic regression analyses, the type of surgery did not affect surgical margins (p = 0.96) or potency at 12 months (p = 0.7). Patients who had undergone...

  17. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  18. Supercritical Fluid Extraction of Palm Carotenoids

    Directory of Open Access Journals (Sweden)

    Puah C. Wei

    2005-01-01

    Full Text Available The extraction of carotenoids from crude palm oil was carried out in a dynamic (flow- through supercritical fluid extraction system. The carotenoids obtained were quantified using off-line UV-visible spectrophotometry. The effects of operating pressure and temperature, flow rate of the supercritical carbon dioxide (SC-CO2, sample size of feed used on the solubility of palm carotenoids were investigated. The results showed that the extraction of carotenoids was governed by its solubility in the SC-CO2 and can be enhanced by increasing pressure at a constant temperature or decreasing temperature at a constant pressure. Increasing the flow rate and decreasing the sample size can reduce the extraction time but do not enhance the solubility. Palm carotenoids have very low solubility in SC-CO2 in the range of 1.31 x 10-4 g kg-1 to 1.58 x 10-3 g kg-1 for the conditions investigated in this study. The experimental data obtained were compared with those published by other workers and correlated by a density-based equation as proposed by Chrastil.

  19. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    Science.gov (United States)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  20. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara).

    Science.gov (United States)

    San-Jose, Luis M; Granado-Lorencio, Fernando; Sinervo, Barry; Fitze, Patrick S

    2013-03-01

    Abstract Carotenoids typically need reflective background components to shine. Such components, iridophores, leucophores, and keratin- and collagen-derived structures, are generally assumed to show no or little environmental variability. Here, we investigate the origin of environmentally induced variation in the carotenoid-based ventral coloration of male common lizards (Lacerta vivipara) by investigating the effects of dietary carotenoids and corticosterone on both carotenoid- and background-related reflectance. We observed a general negative chromatic change that was prevented by β-carotene supplementation. However, chromatic changes did not result from changes in carotenoid-related reflectance or skin carotenoid content but from changes in background-related reflectance that may have been mediated by vitamin A1. An in vitro experiment showed that the encountered chromatic changes most likely resulted from changes in iridophore reflectance. Our findings demonstrate that chromatic variation in carotenoid-based ornaments may not exclusively reflect differences in integumentary carotenoid content and, hence, in qualities linked to carotenoid deposition (e.g., foraging ability, immune response, or antioxidant capacity). Moreover, skin carotenoid content and carotenoid-related reflectance were related to male color polymorphism, suggesting that carotenoid-based coloration of male common lizards is a multicomponent signal, with iridophores reflecting environmental conditions and carotenoids reflecting genetically based color morphs.

  1. Simultaneous Interaction of Hydrophilic and Hydrophobic Solvents with Ethylamino Neurotransmitter Radical Cations: Infrared Spectra of Tryptamine(+)-(H2O)m-(N2)n Clusters (m,n ≤ 3).

    Science.gov (United States)

    Schütz, Markus; Sakota, Kenji; Moritz, Raphael; Schmies, Matthias; Ikeda, Takamasa; Sekiya, Hiroshi; Dopfer, Otto

    2015-10-01

    Solvation of biomolecules by a hydrophilic and hydrophobic environment strongly affects their structure and function. Here, the structural, vibrational, and energetic properties of size-selected clusters of the microhydrated tryptamine cation with N2 ligands, TRA(+)-(H2O)m-(N2)n (m,n ≤ 3), are characterized by infrared photodissociation spectroscopy in the 2800-3800 cm(-1) range and dispersion-corrected density functional theory calculations at the ωB97X-D/cc-pVTZ level to investigate the simultaneous solvation of this prototypical neurotransmitter by dipolar water and quadrupolar N2 ligands. In the global minimum structure of TRA(+)-H2O generated by electron ionization, H2O is strongly hydrogen-bonded (H-bonded) as proton acceptor to the acidic indolic NH group. In the TRA(+)-H2O-(N2)n clusters, the weakly bonded N2 ligands do not affect the H-bonding motif of TRA(+)-H2O and are preferentially H-bonded to the OH groups of the H2O ligand, whereas stacking to the aromatic π electron system of the pyrrole ring of TRA(+) is less favorable. The natural bond orbital analysis reveals that the H-bond between the N2 ligand and the OH group of H2O cooperatively strengthens the adjacent H-bond between the indolic NH group of TRA(+) and H2O, while π stacking is slightly noncooperative. In the larger TRA(+)-(H2O)m clusters, the H2O ligands form a H-bonded solvent network attached to the indolic NH proton, again stabilized by strong cooperative effects arising from the nearby positive charge. Comparison with the corresponding neutral TRA-(H2O)m clusters illustrates the strong impact of the excess positive charge on the structure of the microhydration network.

  2. Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations.

    Science.gov (United States)

    Nogueira, Marilise; Mora, Leticia; Enfissi, Eugenia M A; Bramley, Peter M; Fraser, Paul D

    2013-11-01

    Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes, independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of these findings with respect to novel pathway regulation mechanisms are discussed.

  3. Carotenoid diagenesis in a marine sediment

    Science.gov (United States)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  4. Dehydrolutein: a metabolically derived carotenoid never observed in raptors

    Institute of Scientific and Technical Information of China (English)

    David COSTANTINI; Vittorio BERTACCHE; Barbara PASTURA; Anthony TURK

    2009-01-01

    @@ Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms (Brush, 1990). Conversely, animals are incapable of synthesizing carotenoids de novo, and they must obtain them through their diet. However, some animal species are able to make some alterations to the basic chemical structure, converting ingested carotenoids into more oxidized and differently coloured forms (Schiedt, 1998).

  5. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    2015-01-01

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes assoc

  6. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to d

  7. Influence of various functional groups on the relative stability of alkylperoxy triplet cations: A theoretical study

    Science.gov (United States)

    Smith, Kenneth J.; Meloni, Giovanni

    2015-07-01

    CBS-QB3 energy calculations show that the formation of a stable triplet cation for alkylperoxy radicals is dependent on factors other than the stability of the daughter cations exclusively. We have found that in cases where the daughter ions are not capable of stabilizing the cation through hyperconjugation, it is possible for the triplet cation to be bound. In many circumstances, CBS-QB3 calculations have found bound triplet cation states with 'negative dissociation energies.' These results are attributed to the effects that electron donating/withdrawing substituents have on the spin and charge densities of the resulting cations.

  8. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  9. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria.

    Science.gov (United States)

    Tian, Bing; Hua, Yuejin

    2010-11-01

    Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria.

  10. Patterns of serum carotenoid accumulation and skin colour variation in kestrel nestlings in relation to breeding conditions and different terms of carotenoid supplementation

    NARCIS (Netherlands)

    Casagrande, Stefania; Costantini, David; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2007-01-01

    Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially

  11. The carotenoid-continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again

    Directory of Open Access Journals (Sweden)

    Roberts Mark L

    2010-05-01

    Full Text Available Abstract Background Carotenoids are frequently used by birds to colour their plumage with green, yellow, orange or red hues, and carotenoid-based colours are considered honest signals of quality, although they may have other functions, such as crypsis. It is usually assumed that red through yellow colours have a signalling function while green is cryptic. Here we challenge this notion using the yellow and green colouration of blue tits (Cyanistes caeruleus, great tits (Parus major and greenfinches (Carduelis chloris as a model. Results The relationship between colouration (chroma, computed using visual sensitivities of conspecifics and detectability (contrast against natural backgrounds as perceived by conspecifics and avian predators followed a similar curvilinear pattern for yellow and green plumage with minimum detectability at intermediate levels of carotenoid deposition. Thus, for yellow and green plumage, colours at or close to the point of minimum detectability may aid in crypsis. This may be the case for blue and great tit green and yellow plumage, and greenfinch green plumage, all of which had comparably low levels of detectability, while greenfinch yellow plumage was more chromatic and detectable. As yellow and green blue tit colouration are strongly affected by carotenoid availability during moult, variation in pigment availability between habitats may affect the degree of background-matching or the costliness of producing cryptic plumage. Conclusions Increasing carotenoid-deposition in the integument does not always lead to more conspicuous colours. In some cases, such as in blue or great tits, carotenoid deposition may be selected through enhanced background-matching, which in turn suggests that producing cryptic plumage may entail costs. We stress however, that our data do not rule out a signalling function of carotenoid-based plumage in tits. Rather, it shows that alternative functions are plausible and that assuming a signalling

  12. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Directory of Open Access Journals (Sweden)

    Montserrat Rodrigo-Baños

    2015-08-01

    Full Text Available The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i many haloarchaeal species possess high carotenoids production availability; (ii downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv carotenoids are needed to support plant and animal life and human well-being; and (v carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei is also discussed.

  13. Long-lived coherence in carotenoids

    Science.gov (United States)

    Davis, J. A.; Cannon, E.; Van Dao, L.; Hannaford, P.; Quiney, H. M.; Nugent, K. A.

    2010-08-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the langS2|S0rang superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  14. Influence of Phenylalanine on Carotenoid Aggregation

    Science.gov (United States)

    Lu, L.; Ni, X.; Luo, X.

    2015-01-01

    The carotenoids lutein and β-carotene form, in 1:1 ethanol-water mixtures H-aggregates, of different strengths. The effects of phenylalanine on these aggregates were recorded by UV-Vis absorption, steady-state fluorescence, and Raman spectra. The H-aggregate of lutein was characterized by a large 78 nm blue shift in the absorption spectra, confirming the strong coupling between hydroxyl groups of adjacent molecules. The 15 nm blue shift in the β-carotene mixture also indicates that it was assembled by weak coupling between polyenes. After adding phenylalanine, the reducing absorption strength of the aggregates of lutein and reappearance of vibrational substructure indicate that the hydroxyl and amino groups of phenylalanine may coordinate to lutein and disaggregate the H-aggregates. However, phenylalanine had no effect on aggregates of β-carotene. The Raman spectra show three bands of carotenoids whose intensities decreased with increasing phenylalanine concentration. The frequency of ν1 corresponding to the length of the conjugated region was more sensitive to the solution of lutein. This coordination of phenylalanine to lutein could increase the length of the conjugated region. In addition, phenylalanine significantly affected the excited electronic states of carotenoids, which were crucial in the energy transfer from carotenoids to chlorophyll a in vivo.

  15. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  16. Continuous production of carotenoids from Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2011-01-01

    During the in situ extraction of ß-carotene from Dunaliella salina, the causal relationship between carotenoid extraction and cell death indicated that cell growth and cell death should be at equilibrium for a continuous in situ extraction process. In a flat-panel photobioreactor that was operated a

  17. A carotenoid health index based on plasma carotenoids and health outcomes.

    Science.gov (United States)

    Donaldson, Michael S

    2011-12-01

    While there have been many studies on health outcomes that have included measurements of plasma carotenoids, this data has not been reviewed and assembled into a useful form. In this review sixty-two studies of plasma carotenoids and health outcomes, mostly prospective cohort studies or population-based case-control studies, are analyzed together to establish a carotenoid health index. Five cutoff points are established across the percentiles of carotenoid concentrations in populations, from the tenth to ninetieth percentile. The cutoff points (mean ± standard error of the mean) are 1.11 ± 0.08, 1.47 ± 0.08, 1.89 ± 0.08, 2.52 ± 0.13, and 3.07 ± 0.20 µM. For all cause mortality there seems to be a low threshold effect with protection above every cutoff point but the lowest. But for metabolic syndrome and cancer outcomes there tends to be significant positive health outcomes only above the higher cutoff points, perhaps as a triage effect. Based on this data a carotenoid health index is proposed with risk categories as follows: very high risk: 4 µM. Over 95 percent of the USA population falls into the moderate or high risk category of the carotenoid health index.

  18. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria.

    Science.gov (United States)

    Šlouf, Václav; Kuznetsova, Valentyna; Fuciman, Marcel; de Carbon, Céline Bourcier; Wilson, Adjélé; Kirilovsky, Diana; Polívka, Tomáš

    2017-01-01

    A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.

  19. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    Science.gov (United States)

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick

    2013-08-01

    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.

  20. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies.

    Science.gov (United States)

    Mayne, Susan T; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V; Gellermann, Werner

    2013-11-15

    Resonance Raman spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes.

  1. Physalis alkekengi carotenoidic extract inhibitor of soybean lipoxygenase-1 activity.

    Science.gov (United States)

    Chedea, Veronica Sanda; Pintea, Adela; Bunea, Andrea; Braicu, Cornelia; Stanila, Andreea; Socaciu, Carmen

    2014-01-01

    The aim of this study was to evaluate the effect of the carotenoidic saponified extract of Physalis alkekengi sepals (PA) towards the lipoxygenase (LOX) oxidation of linoleic acid. Lipoxygenase activity in the presence of carotenoids, standard and from extract, was followed by its kinetic behaviour determining the changes in absorption at 234 nm. The standard carotenoids used were β-carotene (β-car), lutein (Lut), and zeaxanthin (Zea). The calculated enzymatic specific activity (ESA) after 600 s of reaction proves that PA carotenoidic extract has inhibitory effect on LOX oxidation of linoleic acid. A longer polyenic chain of carotenoid structure gives a higher ESA during the first reaction seconds. This situation is not available after 600 s of reaction and may be due to a destruction of this structure by cooxidation of carotenoids, besides the classical LOX reaction. The PA carotenoidic extract inhibiting the LOX-1 reaction can be considered a source of lipoxygenase inhibitors.

  2. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  3. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    Science.gov (United States)

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  4. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  5. UV-Induced Adenine Radicals Induced in DNA A-Tracts: Spectral and Dynamical Characterization.

    Science.gov (United States)

    Banyasz, Akos; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Rishi, Sunny; Adhikary, Amitava; Sevilla, Michael D; Martinez-Fernandez, Lara; Improta, Roberto; Markovitsi, Dimitra

    2016-10-06

    Adenyl radicals generated in DNA single and double strands, (dA)20 and (dA)20·(dT)20, by one- and two-photon ionization by 266 nm laser pulses decay at 600 nm with half-times of 1.0 ± 0.1 and 4 ± 1 ms, respectively. Though ionization initially forms the cation radical, the radicals detected for (dA)20 are quantitatively identified as N6-deprotonated adenyl radicals by their absorption spectrum, which is computed quantum mechanically employing TD-DFT. Theoretical calculations show that deprotonation of the cation radical induces only weak spectral changes, in line with the spectra of the adenyl radical cation and the deprotonated radical trapped in low temperature glasses.

  6. DNA binding hydroxyl radical probes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vicky J.; Konigsfeld, Katie M.; Aguilera, Joe A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.edu [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2012-01-15

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores, which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. - Highlights: > Examined four aromatic groups as a means to detect hydroxyl radicals by fluorescence. > Coumarin system suffers from the fewest disadvantages. > Characterized its reactivity when linked to a hexa-arginine peptide.

  7. Dynamic Action of Carotenoids in Cardioprotection and Maintenance of Cardiac Health

    Directory of Open Access Journals (Sweden)

    Dipak K. Das

    2012-04-01

    Full Text Available Oxidative stress has been considered universally and undeniably implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress activate transcriptional messengers, such as nuclear factor—κB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Evidence is rapidly accumulating to support the role of reactive oxygen species (ROS and reactive nitrogen species (RNS as intracellular signaling molecules. Despite this connection between oxidative stress and cardiovascular disease (CVD, there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, “upstream” approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. Short-term dietary intervention trials suggest that diets rich in fruit and vegetable intake lead to improvements in coronary risk factors and reduce cardiovascular mortality. Carotenoids are such abundant, plant-derived, fat-soluble pigments that functions as antioxidants. They are stored in the liver or adipose tissue, and are lipid soluble by becoming incorporated into plasma lipoprotein particles during transport. For these reasons, carotenoids may represent one plausible mechanism by which fruits and vegetables reduce the risk of chronic diseases as cardiovascular disease (CVD. This review paper outlines the role of carotenoids in maintaining cardiac health and cardioprotection mediated by several mechanisms including redox signaling.

  8. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content.

    Science.gov (United States)

    Maadane, Amal; Merghoub, Nawal; Ainane, Tarik; El Arroussi, Hicham; Benhima, Redouane; Amzazi, Saaid; Bakri, Youssef; Wahby, Imane

    2015-12-10

    In order to promote Moroccan natural resources, this study aims to evaluate the potential of microalgae isolated from Moroccan coastlines, as new source of natural antioxidants. Different extracts (ethanolic, ethanol/water and aqueous) obtained from 9 microalgae strains were screened for their in vitro antioxidant activity using DPPH free radical-scavenging assay. The highest antioxidant potentials were obtained in Dunalliela sp., Tetraselmis sp. and Nannochloropsis gaditana extracts. The obtained results indicate that ethanol extract of all microalgae strains exhibit higher antioxidant activity, when compared to water and ethanol/water extracts. Therefore, total phenolic and carotenoid content measurement were performed in active ethanol extracts. The PUFA profiles of ethanol extracts were also determined by GC/MS analysis. The studied microalgae strains displayed high PUFA content ranging from 12.9 to 76.9 %, total carotenoids content varied from 1.9 and 10.8mg/g of extract and total polyphenol content varied from 8.1 to 32.0mg Gallic acid Equivalent/g of extract weight. The correlation between the antioxidant capacities and the phenolic content and the carotenoids content were found to be insignificant, indicating that these compounds might not be major contributor to the antioxidant activity of these microalgae. The microalgae extracts exerting the high antioxidant activity are potential new source of natural antioxidants.

  9. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  10. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  11. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  12. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    Science.gov (United States)

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

  13. Ignorance Radicalized

    Directory of Open Access Journals (Sweden)

    Gergo Somodi

    2009-12-01

    Full Text Available The aim of this paper is twofold. I criticize Michael Devitt's linguistic---as opposed to Chomsky's psychological---conception of linguistics on the one hand, and I modify his related view on linguistic intuitions on the other. I argue that Devitt's argument for the linguistic conception is in conflict with one of the main theses of that very conception, according to which linguistics should be about physical sentence tokens of a given language rather than about the psychologically real competence of native speakers. The basis of this conflict is that Devitt's view on language, as I will show, inherits too much from the criticized Chomskian view. This is also the basis of Devitt's strange claim that it is the linguist, and not the ordinary speaker, whose linguistic intuition should have an evidential role in linguistics. I will argue for the opposite by sketching a view on language that is more appropriate to the linguistic conception. That is, in criticizing Devitt, I am not defending the Chomskian approach. My aim is to radicalize Devitt's claims.

  14. Carotenoid 3',4'-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Tian, Bing; Sun, Zongtao; Xu, Zhenjian; Shen, Shaochuan; Wang, Hu; Hua, Yuejin

    2008-12-01

    Deinococcus radiodurans strain R1 synthesizes deinoxanthin, a unique carotenoid product, which contributes to cell resistance following various stresses. The biosynthetic pathway of deinoxanthin is unclear, although several enzymes are presumed to be involved. The gene (dr2250) predicted by gene homologue analysis to encode carotenoid 3',4'-desaturase (CrtD) was deleted to investigate its function. A mutant deficient in the gene homologue of crtLm (dr0801) was also constructed to verify the catalytic function of the gene product in the native host. Carotenoid analysis of the resultant mutants verified that DR2250 encodes carotenoid 3',4'-desaturase, which catalyses the C-3',4'-desaturation of the monocyclic precursor of deinoxanthin but not acyclic carotenoids. Mutation of the gene homologue of crtLm (dr0801) resulted in accumulation of lycopene, confirming that it encodes the lycopene cyclase in the native host. The lack of CrtD decreased the antioxidant capacity of the mutant deficient in dr2250 compared with the wild-type, indicating that the C-3',4'-desaturation step contributes to the antioxidant capacity of deinoxanthin in D. radiodurans.

  15. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  16. Carotenoid:β-cyclodextrin stability is independent of pigment structure.

    Science.gov (United States)

    Fernández-García, Elisabet; Pérez-Gálvez, Antonio

    2017-04-15

    Carotenoids refer to a wide class of lipophilic pigments synthesized by plants, exert photoprotective and antioxidant properties that are lost upon carotenoid degradation. Their inclusion into hydrophilic host-molecules could improve their stability. Cyclodextrins, provide a hydrophobic cavity in the core of their structure while the outer configuration is suitable with aqueous environments. Carotenoids can accommodate into the hydrophobic core of cyclodextrins and therefore, they are protected from exogenous stress. Literature reported that carotenoid structure could modulate stability of the complexes, however no conclusions can be drawn as the studies performed so far were not completely analogous. We describe the synthesis of several carotenoids/β-CDs inclusion complexes and provide experimental evidences that β-CDs inclusion renders these compounds more stability towards the oxidizing agents (2,2'-azobis, 2-methylpropionamidine dihydrochloride and hydrogen peroxide). Esterified carotenoids were also used in this work to screen the influence of this particular structural configuration of xanthophylls against oxidation.

  17. Biotechnological production of value-added carotenoids from microalgae

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae. PMID:24691165

  18. Raman spectra of carotenoids in natural products

    Science.gov (United States)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  19. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    Science.gov (United States)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  20. Development of a rapid, simple assay of plasma total carotenoids

    Directory of Open Access Journals (Sweden)

    Donaldson Michael

    2012-09-01

    Full Text Available Abstract Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions.

  1. Carotenoid Antenna Binding and Function in Retinal Proteins

    Science.gov (United States)

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  2. Dietary carotenoids in normal and pathological tissues of corpus uteri.

    Directory of Open Access Journals (Sweden)

    Sławomir Wołczyński

    2008-12-01

    Full Text Available Carotenoids and retinyl esters are the source of vitamin A in the human body and its natural derivatives takes part in the regulation of cell replication and differentiation in the human endometrium, may induce the leiomyoma growth and has a role in differentiation of endometrial adenocarcinoma. The aim of the study was to demonstrate the presence of carotenoids in tissues from the normal uterus and from various tumors of the uterine corpus, as well as to compare the total content, major carotenoids and % of carotenoids belonging to the provitamin A group between the tissues examined. Using three independent methods of chromatography (CC, TLC, HPLC we analysed 140 human samples. We identified 13 carotenoids belonging to the eg. provitamin A group and epoxy carotenoids. In all the samples beta-carotene, beta-cryptoxanthin, lutein, neoxanthin, violaxanthin and mutatoxanthin were isolated. In normal tissues, the mean carotenoid content was the highest in the follicular phase endometrium (9.9 microg/g, while the highest percentage of carotenoids belonging to provitamin A group was found in the luteal phase (18.2%. In the pathological group, the highest mean values were demonstrated for epithelial lesions (8.0 microg/g, and within this group - in endometrioid adenocarcinoma (10.8 microg/g. In both groups, violaxanthin, beta-cryptoxanthin, lutein epoxide and mutatoxanthin were the predominant carotenoids. We have demonstrated that all uterine tissues show a concentration of beta-carotene and beta-cryptoxanthin, being the source of vitamin A. The highest total values of carotenoids obtained in the group of endometrioid adenocarcinoma seem to confirm certain enzymatic defects in carotenoid metabolism in the course of the neoplastic process or some metabolic modifications. The finding of astaxanthin - the major antioxidant among carotenoids - in 63% of tissues examined is also significant.

  3. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    OpenAIRE

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged. ...

  4. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.).

    Science.gov (United States)

    Hempel, Judith; Schädle, Christopher N; Sprenger, Jasmin; Heller, Annerose; Carle, Reinhold; Schweiggert, Ralf M

    2017-03-01

    Goji berries (Lycium barbarum L.) have been known to contain strikingly high levels of zeaxanthin, while the physical deposition form and bioaccessibility of the latter was yet unknown. In the present study, we associated ripening-induced modifications in the profile of carotenoids with fundamental changes of the deposition state of carotenoids in goji berries. Unripe fruit contained common chloroplast-specific carotenoids being protein-bound within chloroplastidal thylakoids. The subsequent ripening-induced transformation of chloroplasts to tubular chromoplasts was accompanied by an accumulation of up to 36mg/100g FW zeaxanthin dipalmitate and further minor xanthophyll esters, prevailing in a presumably liquid-crystalline state within the nano-scaled chromoplast tubules. The in vitro digestion unraveled the enhanced liberation and bioaccessibility of zeaxanthin from these tubular aggregates in goji berries as compared to protein-complexed lutein from spinach. Goji berries therefore might represent a more potent source of macular pigments than green leafy vegetables like spinach.

  5. Effects of experimental brood size manipulation and gender on carotenoid levels of Eurasian Kestrels Falco tinnunculus

    NARCIS (Netherlands)

    Laaksonen, T.; Negro, J.J.; Lyytinen, S.; Valkama, J.; Ots, I.; Korpimäki, E.

    2008-01-01

    Animals use carotenoid-pigments for coloration, as antioxidants and as enhancers of the immune system. Carotenoid-dependent colours can thus signal individual quality and carotenoids have also been suggested to mediate life-history trade-offs.

  6. Isomerization of metastable amine radical cations by dissociation-recombination

    DEFF Research Database (Denmark)

    Pedersen, Anders Holmen; Nielsen, Christian Benedikt; Bojesen, Gustav;

    2015-01-01

    The metastable molecular ions of primary aliphatic amines branched at C2 can isomerize by cleavage-recombination, thereby facilitating fragmentation reactions that require less energy than simple cleavage of the initial molecular ion. This process complements the reactions described by Audier...... to account for the conspicuous absence of the conventional a-cleavage among the major fragmentation reactions of the metastable molecular ions of primary amines....

  7. Specific appetite for carotenoids in a colorful bird.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Senar

    Full Text Available BACKGROUND: Since carotenoids have physiological functions necessary for maintaining health, individuals should be selected to actively seek and develop a specific appetite for these compounds. METHODOLOGY/PRINCIPAL FINDINGS: Great tits Parus major in a diet choice experiment, both in captivity and the field, preferred carotenoid-enriched diets to control diets. The food items did not differ in any other aspects measured besides carotenoid content. CONCLUSIONS/SIGNIFICANCE: Specific appetite for carotenoids is here demonstrated for the first time, placing these compounds on a par with essential nutrients as sodium or calcium.

  8. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  9. Cyclisation and aromatisation of carotenoids during sediment diagenesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koster, J.; Baas, M.; Koopmans, M.; Kaam-Peters, H.M.E. van; Geenevasen, J.A.J.; Kruk, C.

    1995-01-01

    A novel diaryl isoprenoid with an additional aromatic ring, formed from the diaromatic carotenoid isorenieratene by cyclisation and aromatisation during sediment diagenesis, is identified in carbonaceous sedimentary rocks.

  10. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  11. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Khairul Alam

    2016-09-01

    Full Text Available In an attempt to develop the food composition table for Bangladesh, the nutritional composition of nine varieties of orange-fleshed sweet potato was analyzed together with total carotenoids (TCC and total polyphenol content (TPC. Each variety showed significant variation in different nutrient contents. The quantification of the TCC and TPC was done by spectrophotometric measurement, and the proximate composition was done by the AOAC method. The obtained results showed that total polyphenol content varied from 94.63 to 136.05 mg gallic acid equivalent (GAE/100 g fresh weight. Among the selected sweet potatoes, Bangladesh Agricultural Research Institute (BARI Sweet Potato 7 (SP7 contained the highest, whereas BARI SP6 contained the lowest amount of total polyphenol content. The obtained results also revealed that total carotenoids content ranged from 0.38 to 7.24 mg/100 g fresh weight. BARI SP8 showed the highest total carotenoids content, whereas BARI SP6 showed the lowest. Total carotenoids content was found to be higher in dark orange-colored flesh varieties than their light-colored counterparts. The results of the study indicated that selected sweet potato varieties are rich in protein and carbohydrate, low in fat, high in polyphenol and carotenoids and, thus, could be a good source of dietary antioxidants to prevent free radical damage, which leads to chronic diseases, and also to prevent vitamin A malnutrition.

  12. Effects of gamma-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices.

    Science.gov (United States)

    Calucci, Lucia; Pinzino, Calogero; Zandomeneghi, Maurizio; Capocchi, Antonella; Ghiringhelli, Silvia; Saviozzi, Franco; Tozzi, Sabrina; Galleschi, Luciano

    2003-02-12

    Nine spice and aromatic herb samples (i.e., basil, bird pepper, black pepper, cinnamon, nutmeg, oregano, parsley, rosemary, and sage) were gamma-irradiated at a dose of 10 kGy according to commercial practices. The effects of the disinfection treatment on the content of organic radicals and some nutrients (namely, vitamin C and carotenoids) in the samples were investigated by chromatographic and spectroscopic techniques. Irradiation resulted in a general increase of quinone radical content in all of the investigated samples, as revealed by electron paramagnetic resonance spectroscopy. The fate of these radicals after storage for 3 months was also investigated. The cellulose radical was clearly observed in a few samples. Significant losses of total ascorbate were found for black pepper, cinnamon, nutmeg, oregano, and sage, whereas a significant decrease of carotenoids content was observed for cinnamon, oregano, parsley, rosemary, bird pepper, and sage.

  13. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  14. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  15. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  16. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    NARCIS (Netherlands)

    Beekwilder, M.J.; Meer, van der I.M.; Simic, A.; Uitdewilligen, J.; Arkel, van J.; Vos, de C.H.; Jonker, H.H.; Verstappen, F.W.A.; Bouwmeester, H.J.; Sibbesen, O.; Qvist, I.; Mikkelsen, J.D.; Hall, R.D.

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as ¿-ionone and ß-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry

  17. Regulatory control of carotenoid accumulation in winter squash during storage

    Science.gov (United States)

    Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage imp...

  18. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  19. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    Institute of Scientific and Technical Information of China (English)

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged.Results:Alcalase extraction produced (234.00±2.00) mg/L carotenoid and NaOH extraction produced (170.00±1.53) mg/L carotenoid. Based on the samples analyzed, alcalase enzyme showed more efficiency than NaOH extraction to achieve carotenoids from shrimp waste.Conclusions:It can be concluded that using alcalase enzyme for carotenoids extraction can produce higher carotenoids concentration than NaOH extraction method. So alcalase enzyme method can be used for achieving this kind of antioxidant.

  20. Importancia nutricional de los pigmentos carotenoides

    OpenAIRE

    Meléndez Martínez, Antonio Jesús; Vicario Romero, Isabel; Heredia Mira, Francisco José

    2004-01-01

    Los pigmentos carotenoides son compuestos responsables de la coloración de gran número de alimentos vegetales y animales, como zanahorias, zumo de naranja, tomates, salmón y yema del huevo. Desde hace muchos años, se sabe que algunos de estos compuestos, como a y b-caroteno, así como la b-criptoxantina, son provitaminas A. No obstante, estudios recientes han puesto de manifiesto las propiedades antioxidantes de estos pigmentos, así como su eficacia en la prevención de ciertas enfermedades del...

  1. Molecular factors controlling photosynthetic light harvesting by carotenoids.

    Science.gov (United States)

    Polívka, Tomás; Frank, Harry A

    2010-08-17

    Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids

  2. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  3. Carotenoid incorporation into microsomes: yields, stability and membrane dynamics

    Science.gov (United States)

    Socaciu, Carmen; Jessel, Robert; Diehl, Horst A.

    2000-12-01

    The carotenoids β-carotene (BC), lycopene (LYC), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CTX) and astaxanthin (ASTA) have been incorporated into pig liver microsomes. Effective incorporation concentrations in the range of about 1-6 nmol/mg microsomal protein were obtained. A stability test at room temperature revealed that after 3 h BC and LYC had decayed totally whereas, gradually, CTX (46%), LUT (21%), ASTA (17%) and ZEA (5%) decayed. Biophysical parameters of the microsomal membrane were changed hardly by the incorporation of carotenoids. A small rigidification may occur. Membrane anisotropy seems to offer only a small tolerance for incorporation of carotenoids and seems to limit the achievable incorporation concentrations of the carotenoids into microsomes. Microsomes instead of liposomes should be preferred as a membrane model to study mutual effects of carotenoids and membrane dynamics.

  4. Carotenoids and their isomers: color pigments in fruits and vegetables.

    Science.gov (United States)

    Khoo, Hock-Eng; Prasad, K Nagendra; Kong, Kin-Weng; Jiang, Yueming; Ismail, Amin

    2011-02-18

    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  5. Biosynthesis of Carotenoids in Plants: Enzymes and Color.

    Science.gov (United States)

    Rosas-Saavedra, Carolina; Stange, Claudia

    2016-01-01

    Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.

  6. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  7. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  8. Assessment of carotenoids in pumpkins after different home cooking conditions

    Directory of Open Access Journals (Sweden)

    Lucia Maria Jaeger de Carvalho

    2014-06-01

    Full Text Available Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.

  9. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status

    Science.gov (United States)

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J.; Ermakov, Igor V.; Gellermann, Werner; Bernstein, Paul S.; Mayne, Susan T.

    2013-01-01

    Resonance Raman spectroscopy (RRS) is a non-invasive method of assessing carotenoid status in the skin, which has been suggested as an objective indicator of fruit/vegetable intake. The present study assessed agreement and identified predictors of single v. multiple RRS measures of skin carotenoid status. A total of seventy-four participants had their skin carotenoid status measured in the palm of the hand by RRS at six time points over 6 months. Questionnaires were administered to collect information on demographic, lifestyle and dietary data. Mean age of the participants was 36.6 years, 62.2% were female, 83.8% Caucasian and 85.1% were non-smoking at baseline. There was a good agreement between a single measure of skin carotenoids by RRS and multiple measures (weighted κ = 0.80; 95% CI 0.72, 0.88). The same variables were significantly associated with carotenoid status based on single or multiple measures, including a positive association with intake of total carotenoids (Pseason of measurement (P≤0.05). The exception was recent sun exposure, which emerged as a significant predictor of lower carotenoid status only when using multiple RRS measures (P≤0.01). A single RRS measure was reasonably accurate at classifying usual skin carotenoid status. Researchers using RRS may want to take into account other factors that are associated with the biomarker, including season of measurement and recent sun exposure. PMID:23351238

  10. Testosterone treatment can increase circulating carotenoids but does not affect yellow carotenoid-based plumage colour in blue tits

    NARCIS (Netherlands)

    Peters, A.; Roberts, M.L.; Kurvers, R.H.J.M.; Delhey, K.

    2012-01-01

    A number of mechanisms are responsible for producing the variation in natural colours, and these need not act in isolation. A recent hypothesis states that carotenoid-based coloration, in addition to carotenoid availability, is also enhanced by elevated levels of circulating testosterone (T). This h

  11. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification.

    Science.gov (United States)

    Fernandez-Orozco, Rebeca; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2013-12-01

    The carotenoid profile of sixty potato cultivars (commercial, bred, old and native cultivars) has been characterised in order to provide information to be used in selective breeding programs directed to improve the nutritional value of this important staple food. Cultivars were segregated into three groups according to the major pigment in the carotenoid profile: violaxanthin (37 cultivars; especially those with higher carotenoid content), lutein (16 cultivars), and neoxanthin (7 cultivars). Other minor carotenoids were antheraxanthin, β-cryptoxanthin and β-carotene, while zeaxanthin was absent in all sample. The total carotenoid content ranged from 50.0 to 1552.0 μg/100 g dry wt, with an average value of about 435.3 μg/100 g dry wt. Sipancachi, Poluya and Chaucha native cultivars showed the highest carotenoid content (1020.0, 1478.2 and 1551.2 μg/100 g dry wt, respectively). Xanthophyll esters were present in most cultivars, mainly as diesterified forms, being observed a direct correlation between the carotenoid content and the esterified fraction, suggesting that the esterification process facilitates the accumulation of these lipophilic compounds within the plastids. Therefore, the presence of xanthophyll esters should be a phenotypic character to be included in the breeding studies, and more efforts should be dedicated to the understanding of the biochemical process leading to this structural modification of carotenoids in plants.

  12. A radical approach to radical innovation

    OpenAIRE

    Deichmann, Dirk; van der Ende, Jan

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  13. Carotenoid composition of hydroponic leafy vegetables.

    Science.gov (United States)

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  14. Oxidative stress and astaxanthin: The novel supernutrient carotenoid

    Directory of Open Access Journals (Sweden)

    Sasmita Biswal

    2014-01-01

    Full Text Available Background: Oxidative stress and inflammation leads to, generation and overproduction of the reactive oxygen species and reactive nitrogen species and hence are responsible for many diseases such as Alzheimer′s disease, Parkinson′s disease, diabetes mellitus, rheumatoid arthritis, and neurodegenerative motor neuron diseases. Antioxidants are found in varying amounts in vegetables, fruits, grain cereals, eggs, meat, legumes and nuts. However, there is always a search for antioxidants that can quench and breakup the chain of generation of free-radicals. Aims: Astaxanthin, a ketocarotenoid, has exceptional antioxidant activity and hence can be used for prevention of cardiovascular diseases, inflammatory and neurodegenerative diseases, boosting of the immune system, anti-Helicobacter pylori activity, and cataract prevention. Hence, an attempt has performed in this review to compile data on astaxanthin and its several diverse applications over the last decade with an aim to escalate the intense interest in undertaking new research on this natural fascinating molecule. Materials and Methods: A literature search using astaxanthin and antioxidants as keywords using Google as the search engine was done and the data obtained were compiled and presented. Results and Conclusions: Astaxanthin can be a great supplement for everyone in enhancing immunity, preventing a myriad of diseases in our hectic lifestyle by providing more energy, reducing oxidative damage, producing clarity of vision as well as protection from the harmful ultraviolet rays of the sun! Further the immunomodulatory, antioxidative, and antiinflammatory activity of astaxanthin a bioactive natural supernutrient carotenoid may be very important to human health in treating many such untreatable diseases.

  15. Analysis of carotenoid biosynthetic gene expression during marigold petal development.

    Science.gov (United States)

    Moehs, C P; Tian, L; Osteryoung, K W; Dellapenna, D

    2001-02-01

    Marigold (Tagetes erecta L.) flower petals synthesize and accumulate carotenoids at levels greater than 20 times that in leaves and provide an excellent model system to investigate the molecular biology and biochemistry of carotenoid biosynthesis in plants. In addition, marigold cultivars exist with flower colors ranging from white to dark orange due to >100-fold differences in carotenoid levels, and presumably similar changes in carbon flux through the pathway. To examine the expression of carotenoid genes in marigold petals, we have cloned the majority of the genes in this pathway and used these to assess their steady-state mRNA levels in four marigold cultivars with extreme differences in carotenoid content. We have also cloned genes encoding early steps in the biosynthesis of isopentenyl pyrophosphate (IPP), the precursor of all isoprenoids, including carotenoids, as well as two genes required for plastid division. Differences among the marigold varieties in the expression of these genes suggest that differences in mRNA transcription or stability underlie the vast differences in carotenoid synthesis and accumulation in the different marigold varieties.

  16. Modulation of the carotenoid bioaccessibility through liposomal encapsulation.

    Science.gov (United States)

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Shuqin

    2014-11-01

    The low bioaccessibility of carotenoids is currently a challenge to their incorporation in pharmaceutics, nutraceuticals and functional foods. The aim of this study was to evaluate the modulating effects of liposome encapsulation on the bioaccessibility, and its relationship with carotenoid structure and incorporated concentration. The physical stability of liposomes, lipid digestibility, carotenoids release and bioaccessibility were investigated during incubation in a simulated gastrointestinal tract. Analysis on the liposome size and morphology showed that after digestion, the majority of particles maintained spherical shape with only an increase of size in liposomes loading β-carotene or lutein. However, a large proportion of heterogeneous particles were visible in the micelle phase of liposomes loading lycopene or canthaxanthin. It was also found that the release of lutein and β-carotene from liposomes was inhibited in a simulated gastric fluid, while was slow and sustained in a simulated intestinal fluid. By contrast, lycopene and canthaxanthin exhibited fast and considerable release in the gastrointestinal media. Both carotenoid bioaccessibility and micellization content decreased with the increase of incorporated concentration. Anyway, the bioaccessibility of carotenoids after encapsulated in liposomes was in the following order: lutein>β-carotene>lycopene>canthaxanthin. Bivariate correlation analysis revealed that carotenoid bioaccessibility depended strongly on the incorporating ability of carotenoids into a lipid bilayer, loading content, and nature of the system.

  17. Oxidation of carotenoids by heat and tobacco smoke.

    Science.gov (United States)

    Hurst, John S; Contreras, Janice E; Siems, Werner G; Van Kuijk, Frederik J G M

    2004-01-01

    The stability to autoxidation of the polar carotenoids, lutein and zeaxanthin, was compared to that of the less polar carotenoids, beta-carotene and lycopene at physiologically or pathophysiologically relevant concentrations of 2 and 6 microM, after exposure to heat or cigarette smoke. Three methodological approaches were used: 1) Carotenoids dissolved in solvents with different polarities were incubated at 37 and 80 degrees C for different times. 2) Human plasma samples were subjected to the same temperature conditions. 3) Methanolic carotenoid solutions and plasma were also exposed to whole tobacco smoke from 1-5 unfiltered cigarettes. The concentrations of individual carotenoids in different solvents were determined spectrophotometrically. Carotenoids from plasma were extracted and analyzed using high performance liquid chromatography. Carotenoids were generally more stable at 37 than at 80 degrees C. In methanol and dichloromethane the thermal degradation of beta-carotene and lycopene was faster than that of lutein and zeaxanthin. However, in tetrahydrofuran beta-carotene and zeaxanthin degraded faster than lycopene and lutein. Plasma carotenoid levels at 37 degrees C did not change, but decreased at 80 degrees C. The decrease of beta-carotene and lycopene levels was higher than those for lutein and zeaxanthin. Also in the tobacco smoke experiments the highest autoxidation rates were found for beta-carotene and lycopene at 2 microM, but at 6 microM lutein and zeaxanthin depleted to the same extent as beta-carotene. These data support our previous studies suggesting that oxidative stress degrade beta-carotene and lycopene faster than lutein and zeaxanthin. The only exception was the thermal degradation of carotenoids solubilized in tetrahydrofuran, which favors faster breakdown of beta-carotene and zeaxanthin.

  18. Carotenoids in white- and red-fleshed loquat fruits.

    Science.gov (United States)

    Zhou, Chun-Hua; Xu, Chang-Jie; Sun, Chong-De; Li, Xian; Chen, Kun-Song

    2007-09-19

    Fruits of 23 loquat ( Eriobotrya japonica Lindl.) cultivars, of which 11 were white-fleshed and 12 red-fleshed, were analyzed for color, carotenoid content, and vitamin A values. Color differences between two loquat groups were observed in the peel as well as in the flesh. beta-Carotene and lutein were the major carotenoids in the peel, which accounted for about 60% of the total colored carotenoids in both red- and white-fleshed cultivars. beta-Cryptoxanthin and, in some red-fleshed cultivars, beta-carotene were the most abundant carotenoids in the flesh, and in total, they accounted for over half of the colored carotenoids. Neoxanthin, violaxanthin, luteoxanthin, 9- cis-violaxanthin, phytoene, phytofluene, and zeta-carotene were also identified, while zeaxanthin, alpha-carotene, and lycopene were undetectable. Xanthophylls were highly esterified. On average, 1.3- and 10.8-fold higher levels of colored carotenoids were observed in the peel and flesh tissue of red-fleshed cultivars, respectively. The percentage of beta-carotene among colored carotenoids was higher in both the peel and the flesh of red-fleshed cultivars. Correlations between the levels of total colored carotenoids and the color indices were analyzed. The a* and the ratio of a*/ b* were positively correlated with the total content of colored carotenoids, while L*, b*, and H degrees correlated negatively. Vitamin A values, as retinol equivalents (RE), of loquat flesh were 0.49 and 8.77 microg/g DW (8.46 and 136.41 microg/100 g FW) on average for white- and red-fleshed cultivars, respectively. The RE values for the red-fleshed fruits were higher than fruits such as mango, red watermelon, papaya, and orange as reported in the literature, suggesting that loquat is an excellent source of provitamin A.

  19. Carotenoid Composition of the Fruit of Red Mamey (Pouteria sapota).

    Science.gov (United States)

    Murillo, Enrique; Turcsi, Erika; Szabó, Ildikó; Mosquera, Yesuri; Agócs, Attila; Nagy, Veronika; Gulyás-Fekete, Gergely; Deli, József

    2016-09-28

    The detailed carotenoid analysis of red mamey (Pouteria sapota) was achieved by HPLC-DAD-MS, chemical tests, and cochromatography with authentic samples. Altogether 47 components were detected and 34 identified from the total extract or after fractionation with column chromatography. The main carotenoids were cryptocapsin, sapotexanthin, and capsanthin 5,6-epoxide. Some further minor components containing the κ-end group with or without a hydroxy group and their 5,6-epoxy precursors were identified. Some comments are made about the biosynthesis of κ-carotenoids in red mamey.

  20. Effects of High Temperature Frying of Spinach Leaves in Sunflower Oil on Carotenoids, Chlorophylls, and Tocopherol Composition.

    Science.gov (United States)

    Zeb, Alam; Nisar, Parveen

    2017-01-01

    Spinach is one of the highly consumed vegetable, with significant nutritional, and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls, and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45, and 60 min at 250°C. Reversed phase HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin, and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein, and its Z-isomers and chlorophyll b' isomer. There was significant decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes, and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.

  1. Effects of High Temperature Frying of Spinach Leaves in Sunflower Oil on Carotenoids, Chlorophylls, and Tocopherol Composition

    Science.gov (United States)

    Zeb, Alam; Nisar, Parveen

    2017-01-01

    Spinach is one of the highly consumed vegetable, with significant nutritional, and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls, and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45, and 60 min at 250°C. Reversed phase HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin, and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein, and its Z-isomers and chlorophyll b' isomer. There was significant decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes, and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability. PMID:28382299

  2. Cloning and Characterization of a Lycium chinense Carotenoid Isomerase Gene Enhancing Carotenoid Accumulation in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    李招娣; 季静; 王罡

    2015-01-01

    Carotenoid isomerase(CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all-trans lycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for the first time. The open reading frame of LcCRTISO was 1 815 bp encoding a protein of 604 amino acids with a molecular mass of 66.24 kDa. Amino acid sequence analysis revealed that the LcCRTISO had a high level of simi-larity to other CRTISO. Phylogenetic analysis displayed that LcCRTISO kept a closer relationship with the CRTISO of plants than with those of other species. Semi-quantitative PCR analysis indicated that LcCRTISO gene was expressed in all tissues tested with the highest expression in maturing fruits. The overexpression of LcCRTISO gene in transgenic tobacco resulted in an increase of total carotenoids in the leaves withβ-carotene and lutein being the predominants. The results obtained here clearly suggested that the LcCRTISO gene was a promising candidate for carotenoid production.

  3. Radical theory of rings

    CERN Document Server

    Gardner, JW

    2003-01-01

    Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation

  4. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  5. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status.

    Science.gov (United States)

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J; Ermakov, Igor V; Gellermann, Werner; Bernstein, Paul S; Mayne, Susan T

    2013-09-14

    Resonance Raman spectroscopy (RRS) is a non-invasive method of assessing carotenoid status in the skin, which has been suggested as an objective indicator of fruit/vegetable intake. The present study assessed agreement and identified predictors of single v. multiple RRS measures of skin carotenoid status. A total of seventy-four participants had their skin carotenoid status measured in the palm of the hand by RRS at six time points over 6 months. Questionnaires were administered to collect information on demographic, lifestyle and dietary data. Mean age of the participants was 36.6 years, 62.2% were female, 83.8% Caucasian and 85.1% were non-smoking at baseline. There was a good agreement between a single measure of skin carotenoids by RRS and multiple measures (weighted κ = 0.80; 95% CI 0.72, 0.88). The same variables were significantly associated with carotenoid status based on single or multiple measures, including a positive association with intake of total carotenoids (Pcarotenoid status only when using multiple RRS measures (P≤ 0.01). A single RRS measure was reasonably accurate at classifying usual skin carotenoid status. Researchers using RRS may want to take into account other factors that are associated with the biomarker, including season of measurement and recent sun exposure.

  6. STABLE PHOTOINDUCED RADICAL ACCUMULATION ON POLYPROPYLVIOLIGEN—RESIN COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    lIUFutian; LiWenhua; 等

    1998-01-01

    The photochemical properties of polypropylviologen(PPrV)-cation exchangeable resin complexes were studies.The color of these complexes changed to blue when irradiated by a mercury lamp.UV and ESR studies indicated that an efficient viologen radical accumulation occurs in PPrV- resin complexes.An explanation for the stable photoinduced redical accumulation is proposed.

  7. [Lavoisier and radicals].

    Science.gov (United States)

    Lafont, Olivier

    2007-01-01

    Lavoisier and his co-workers (Guyton de Morveau, Bertholet, Fourcroy) considered that acids were constituted of oxygen and of something else that they called radicals. These radicals were known in some cases, i.e. nitrogen for nitrous acid, carbon for carbonic acid, phosphorus for phosphoric acid. In the case of sulfur, the sulfuric radical could be associated with different quantities of oxigen leading to sulfuric or sulfurous acids. In other cases radicals remained unknown at the time i.e. muriatic radical for muriatic acid, or benzoyl radical for benzoic acid. It is interesting to notice that Lavoisier evoked the case of compound radicals constituted of different substances such as carbon and hydrogen.

  8. Sequential biphotonic processes: photochemical reactivity of phthalocyanine radicals

    Energy Technology Data Exchange (ETDEWEB)

    Van Vlierberge, B.; Ferraudi, G.

    1987-01-28

    Results of a study of the photochemistry of Rh(III), Al(III), and Zn(II) phthalocyanine cation radicals are reported here. The radicals were generated in a flash photolysis apparatus, which employs two flash-lamp-pump dye lasers. This excitation of the metallophthalocyanines at wavelengths of the phthalocyanine's Q band produced the long-lived triplet state. Irradiation of the phthalocyanine radicals led to rapid (t less than 1 ..mu..s) decomposition of these species followed by a partial recovery of the radical concentration. The dependence of radical yield on medium conditions was noted, and this dependence was probably attributable to an increase in the yield of the reactive excited state and/or a decrease in the rate of excited-state relaxation in changing from protic to aprotic media or replacing D/sub 2/O by H/sub 2/O. 10 references, 3 figures, 2 tables.

  9. Relative yields of radicals produced in deuterated methanol by irradiation

    Science.gov (United States)

    Nakagawa, Seiko

    2016-05-01

    The relative yields of radicals produced in four kinds of methanols; i.e., CH3OH, CH3OD, CD3OH and CD3OD, by γ-irradiation have been studied using ESR spin trapping with PBN. Both PBN-H and PBN-D were produced from CH3OD and CD3OH. This means that the proton transfer to the neutral methanol from the cationic one is one of the processes to produce both the methoxy and hydoxy-methyl radicals. The yield of the methoxy radical adduct relative to the hydroxy-methyl radical adduct decreased in the order CD3OH>CD3OD>CH3OH>CH3OD. The difference in the rates of the proton transfer and hydrogen abstraction reactions by substitution with deuterium is the reason for the variation in the relative radical yield.

  10. Pulse radiolysis and cyclic voltammetry studies of redox properties of phenothiazine radicals

    Energy Technology Data Exchange (ETDEWEB)

    Madej, Edyta [Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom)]. E-mail: madej@gci.ac.uk; Wardman, Peter [Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom)

    2006-09-15

    One-electron transfer equilibria between seven phenothiazines were characterized by pulse radiolysis, producing radical-cations via oxidation by Br{sub 2} {sup .-} or (SCN){sub 2} {sup .-} radicals. The reduction potentials of the phenothiazine radicals were determined by cyclic voltammetry. As an independent check, the redox equilibrium between one phenothiazine and the redox indicator ABTS was investigated. The data establish phenothiazines as useful indicators for radical redox properties. However, there are potential problems of aggregation, additional reactions with Br{sup -}/Br{sub 2} {sup .-} and reactivity of the radicals towards buffers or other nucleophiles.

  11. EPR Study of Radicals in Irradiated Ionic Liquids and Implications for the Radiation Stability of Ionic Liquid-Based Extraction Systems

    CERN Document Server

    Shkrob, I A; Wishart, J F; Chemerisov, Sergey D.; Shkrob, Ilya A.; Wishart, James F.

    2007-01-01

    The radiation- and photo- chemistry of room temperature ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions, have been studied using low-temperature Electron Paramagnetic Resonance (EPR). Several classes of radicals have been identified and related to reactions of the primary radiolytically generated electrons and holes. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium and pyrrolidinium cations, but not for imidazolium cation. This pattern can be accounted for by efficient deprotonation of a hole trapped on the cation (the radical dication) that competes with rapid charge transfer to a nearby anion. The latter leads to the formation of stable N- or O-centered radicals. The electrons either react with the protic impurity (for nonaromatic cations) yielding H atoms or the aromatic moiety (for imidazolium cations). Excitation of b...

  12. Enzymic Pathways for Formation of Carotenoid Cleavage Products

    Science.gov (United States)

    Fleischmann, Peter; Zorn, Holger

    Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].

  13. Contemporary Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2011-01-01

    Full Text Available Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates.

  14. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    Science.gov (United States)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  15. Treating ballast water with hydroxyl radical on introduced organisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With physical method of micro-gap gas discharge, a large amount of hydroxyl radical can be produced in 20t/h pilot-scale system using the ionization of O2 and H2O. In this paper, the effect of biochemistry of hydroxyl radicals on introduced organisms in ballast water was experimentally investigated. The results indicate that the contents of chlorophyl-a, chlorophyl-b, chlorophyl-c and carotenoid are decreased by 35%-64% within 8.0s and further to the lowest limit of test 5 minutes. In addition, the main reasons of cell death are the lipid peroxidation, the strong destruction to the monose, amylose, protein, DNA and RNA of cell, and damage in CAT, POD and SOD of antioxidant enzyme system.

  16. Seeking carotenoid pigments in amber-preserved fossil feathers

    Science.gov (United States)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  17. Synthesis and characterisation of cationically modified phospholipid polymers.

    Science.gov (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  18. Forgotten Radicals in Biology

    OpenAIRE

    2008-01-01

    Redox reactions play key roles in intra- and inter-cellular signaling, and in adaptative processes of tissues towards stress. Among the major free radicals with essential functions in cells are reactive oxygen species (ROS) including superoxide anion (O2 •-), hydroxyl radical (•OH) and reactive nitrogen species (RNS) such as nitric oxide (•NO). In this article, we review the forgotten and new radicals with potential relevance to cardiovascular pathophysiology. Approximately 0.3% of O2 •- pres...

  19. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater.

    Science.gov (United States)

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-12-11

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source.

  20. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2015-12-01

    Full Text Available This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae, Nannochloropsis sp. (Eustigmatophyceae, Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta, were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH radical scavenging activity, ferrous reduction power (FRAP, and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein, tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source.

  1. Diversity, physiology, and evolution of avian plumage carotenoids and the role of carotenoid-protein interactions in plumage color appearance.

    Science.gov (United States)

    LaFountain, Amy M; Prum, Richard O; Frank, Harry A

    2015-04-15

    The diversity of vibrant plumage colors in birds has evolved as a direct result of social and environmental pressures. To fully understand these underlying pressures it is necessary to elucidate the mechanisms for the creation of novel plumage colors which include the metabolic transformations of dietary carotenoids and spectral tuning of the molecules within the feather protein environment. Recent advances in this field have greatly expanded the number and breadth of avian species for which plumage pigmentation has been characterized, making it possible to reconstruct the phylogenetic history of carotenoid usage in plumage. Resonance Raman and classical Raman spectroscopic techniques have been employed with great effect in the study of carotenoids in situ. The application of these methods have two benefits: to identify carotenoids in feathers that are unavailable for destructive sampling; and to study the spectral tuning resulting from the interaction between the carotenoids and the proteins to which they are bound. This review presents a summary of recent advances in the understanding of the molecular factors controlling the coloration of avian carotenoid plumage obtained through the application of both bioanalytical and spectroscopic methodologies.

  2. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Vargas, Ester; Conrad, Jürgen; Hempel, Judith; Gras, Claudia C; Ziegler, Jochen U; Mayer, Angelika; Jiménez, Víctor; Esquivel, Patricia; Carle, Reinhold

    2016-06-01

    Pigment profiles of yellow-, orange-, and red-peeled cashew (Anacardium occidentale L.) apples were investigated. Among 15 identified carotenoids and carotenoid esters, β-carotene, and β-cryptoxanthin palmitate were the most abundant in peels and pulp of all samples. Total carotenoid concentrations in the pulp of yellow- and red-peeled cashew apples were low (0.69-0.73 mg/100g FW) compared to that of orange-peeled samples (2.2mg/100g FW). The color difference between the equally carotenoid-rich yellow and red colored samples indicated the presence of a further non-carotenoid pigment type in red peels. Among four detected anthocyanins, the major anthocyanin was unambiguously identified as 7-O-methylcyanidin 3-O-β-D-galactopyranoside by NMR spectroscopy. Red and yellow peel color was chiefly determined by the presence and absence of anthocyanins, respectively, while the orange appearance of the peel was mainly caused by increased carotenoid concentrations. Thus, orange-peeled fruits represent a rich source of provitamin A (ca. 124 μg retinol-activity-equivalents/100g pulp, FW).

  3. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  4. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  5. Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores

    Science.gov (United States)

    Tokarz, Danielle Barbara

    Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid

  6. Validation model for Raman based skin carotenoid detection.

    Science.gov (United States)

    Ermakov, Igor V; Gellermann, Werner

    2010-12-01

    Raman spectroscopy holds promise as a rapid objective non-invasive optical method for the detection of carotenoid compounds in human tissue in vivo. Carotenoids are of interest due to their functions as antioxidants and/or optical absorbers of phototoxic light at deep blue and near UV wavelengths. In the macular region of the human retina, carotenoids may prevent or delay the onset of age-related tissue degeneration. In human skin, they may help prevent premature skin aging, and are possibly involved in the prevention of certain skin cancers. Furthermore, since carotenoids exist in high concentrations in a wide variety of fruits and vegetables, and are routinely taken up by the human body through the diet, skin carotenoid levels may serve as an objective biomarker for fruit and vegetable intake. Before the Raman method can be accepted as a widespread optical alternative for carotenoid measurements, direct validation studies are needed to compare it with the gold standard of high performance liquid chromatography. This is because the tissue Raman response is in general accompanied by a host of other optical processes which have to be taken into account. In skin, the most prominent is strongly diffusive, non-Raman scattering, leading to relatively shallow light penetration of the blue/green excitation light required for resonant Raman detection of carotenoids. Also, sizable light attenuation exists due to the combined absorption from collagen, porphyrin, hemoglobin, and melanin chromophores, and additional fluorescence is generated by collagen and porphyrins. In this study, we investigate for the first time the direct correlation of in vivo skin tissue carotenoid Raman measurements with subsequent chromatography derived carotenoid concentrations. As tissue site we use heel skin, in which the stratum corneum layer thickness exceeds the light penetration depth, which is free of optically confounding chromophores, which can be easily optically accessed for in vivo RRS

  7. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root

    Science.gov (United States)

    Several groups have reported on massive accumulation of total carotenoids in cassava storage root (CSR). Naturally occurring color variation associated with carotenoid accumulation was observed in cassava (Manihot esculenta Crantz) storage root of landraces from Amazon. Here carotenoid profiles from...

  8. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  9. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans

    DEFF Research Database (Denmark)

    Maiani, Giuseppe; Castón, María Jesús Periago; Catasta, Giovina

    2009-01-01

    Carotenoids are one of the major food micronutrients in human diets and the overall objective of this review is to re-examine the role of carotenoids in human nutrition. We have emphasized the attention on the following carotenoids present in food and human tissues: -carotene, -cryptoxanthin......, -carotene, lycopene, lutein and zeaxanthin; we have reported the major food sources and dietary intake of these compounds. We have tried to summarize positive and negative effects of food processing, storage, cooking on carotenoid content and carotenoid bioavailability. In particular, we have evidenced...... the possibility to improve carotenoids bioavailability in accordance with changes and variations of technology procedures....

  10. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  11. Carotenoids and bioactive compounds : relationship between free radical scavenger properties and color in tropical fruits

    OpenAIRE

    Gisela Pizarro de Mattos Barreto

    2008-01-01

    Resumo: O aumento da demanda dos consumidores por maior qualidade de vida tem impulsionado o interesse da indústria de alimentos pelo segmento de alimentos funcionais, definidos como qualquer alimento com potencial para conferir benefícios à saúde do consumidor. Os compostos bioativos, como os carotenóides, compostos fenólicos e ácido ascórbico, presentes em alimentos estão envolvidos nestas ações benéficas. Inicialmente, foi realizado um estudo com alguns padrões de carotenóides, que não som...

  12. Carotenoids in bird testes: links to body carotenoid supplies, plumage coloration, body mass and testes mass in house finches (Carpodacus mexicanus).

    Science.gov (United States)

    Rowe, Melissah; Tourville, Elizabeth A; McGraw, Kevin J

    2012-01-01

    Carotenoid pigments can be allocated to different parts of the body to serve specific functions. In contrast to other body tissues, studies of carotenoid resources in the testes of animals are relatively scarce. We used high-performance liquid chromatography to determine the types and concentrations of carotenoids in the testes of house finches (Carpodacus mexicanus). Additionally, we examined the relationships between testes carotenoid concentrations and carotenoid pools in other body tissues, as well as body mass, testes mass and plumage coloration. We detected low concentrations of several carotenoids - lutein (the predominant carotenoid), zeaxanthin, anhydrolutein, β-cryptoxanthin, β-carotene and an unknown carotene - in the testes of wild house finches. We also found that testes lutein levels were significantly and positively associated with circulating lutein levels, while the concentration of zeaxanthin in testes was positively associated with zeaxanthin levels in liver, though in this instance the relationship was much weaker and only marginally significant. Furthermore, lutein levels in testes were significantly negatively associated with testes mass. Finally, plumage coloration was not associated with either the concentration of carotenoids in the testes or relative testes mass. These results suggest that testes carotenoids are reflective of the pool of circulating carotenoids in house finches, and that plumage coloration is unlikely to signal either the carotenoid content of testes tissue or a male's capacity for sperm production.

  13. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  14. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2016-08-08

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative, microalgal sources for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed.

  15. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  16. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    1996-01-01

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  17. The Radicalization Puzzle [video

    OpenAIRE

    Mohammed Hafez; Center for Homeland Defense and Security Naval Postgraduate School

    2015-01-01

    This 20 minute lecture, by Dr. Mohammad Hafez of the Naval Postgraduate School examines the driving factors behind the process of radicalization, turning seemingly ordinary men and women into potential terrorists. The lecture is based on the article "The Radicalization Puzzle: A Theoretical Synthesis of Empirical Approaches to Homegrown Extremism" in Studies in Conflict and Terrorism, by Mohammad Hafez and Creighton Mullins.

  18. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  19. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 2. Imidazolium cations.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Hatcher, Jasmine L; Wishart, James F

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual

  20. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms.

  1. Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives.

    Science.gov (United States)

    Mishra, B; Kumbhare, L B; Jain, V K; Priyadarsini, K I

    2008-04-10

    Reactions of hydroxyl radicals (*OH) with selenocystine (SeCys) and two of its analogues, diselenodipropionic acid (SeP) and selenocystamine (SeA), have been studied in aqueous solutions at pHs of 1, 7, and 10 using the pulse radiolysis technique coupled with absorption detection. All of these diselenides react with *OH radicals with rate constants of approximately 10(10) M(-1) s(-1), producing diselenide radical cations ( approximately 1-5 micros after the pulse), with an absorption maximum at 560 nm, by elimination of H(2)O or OH(-) from hydroxyl radical adducts. Assignment of the 560 nm band to the diselenide radical cation was made by comparing the transient spectra with those produced upon reaction of diselenides with specific one-electron oxidants, Cl(2)(*-) (pH 1) and Br(2)(*-) radicals (pHs of 7 and 10). SeP having a carboxylic acid functionality showed quantitative conversion of hydroxyl radical adducts to radical cations. The compounds SeCys and SeA, having an amino functional group, in addition to the radical cations, produced a new transient with lambda(max) at 460 nm, at later time scales ( approximately 20-40 micros after the pulse). The rate and yield of formation of the 460 nm band increased with increasing concentrations of either SeCys or SeA. In analogy with similar studies reported for analogous disulfides, the 460 nm transient absorption band has been assigned to a triselenide radical adduct. The one-electron reduction potentials of the compounds were estimated to be 0.96, 1.3, and 1.6 V versus NHE, respectively, for SeP, SeCys, and SeA at pH 7. From these studies, it has been concluded that the electron-donating carboxylic acid group decreases the reduction potential and facilitates quantitative conversion of hydroxyl radical adducts to radical cations, while the electron-withdrawing NH(3)(+) group not only increases the reduction potential but also leads to fragmentation of the hydroxyl radical adduct to selenyl radicals, which are converted

  2. Vibronic coupling in the excited-states of carotenoids.

    Science.gov (United States)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2016-04-28

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B(u)(+) and 1B(u)(-) states via solvent interaction.

  3. Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum.

    Science.gov (United States)

    Lipkie, Tristan E; De Moura, Fabiana F; Zhao, Zuo-Yu; Albertsen, Marc C; Che, Ping; Glassman, Kimberly; Ferruzzi, Mario G

    2013-06-19

    Biofortified sorghum (Sorghum bicolor (L.) Moench) lines are being developed to target vitamin A deficiency in Sub-Saharan Africa, but the delivery of provitamin A carotenoids from such diverse germplasms has not been evaluated. The purpose of this study was to screen vectors and independent transgenic events for the bioaccessibility of provitamin A carotenoids using an in vitro digestion model. The germplasm background and transgenic sorghum contained 1.0-1.5 and 3.3-14.0 μg/g β-carotene equivalents on a dry weight basis (DW), respectively. Test porridges made from milled transgenic sorghum contained up to 250 μg of β-carotene equivalents per 100 g of porridge on a fresh weight basis (FW). Micellarization efficiency of all-trans-β-carotene was lower (p transgenic sorghum (1-5%) than from null/nontransgenic sorghum (6-11%) but not different between vector constructs. Carotenoid bioaccessibility was significantly improved (p Transgenic sorghum event Homo188-A contained the greatest bioaccessible β-carotene content, with a 4-8-fold increase from null/nontransgenic sorghum. While the bioavailability and bioconversion of provitamin A carotenoids from these grains must be confirmed in vivo, these data support the notion that biofortification of sorghum can enhance total and bioaccessible provitamin A carotenoid levels.

  4. Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Lodato, P; Alcaíno, J; Barahona, S; Niklitschek, M; Carmona, M; Wozniak, A; Baeza, M; Jiménez, A; Cifuentes, V

    2007-01-01

    In the yeast Xanthophyllomyces dendrorhous the genes idi, crtE, crtYB, crtl and ast are involved in the biosynthesis of astaxanthin from isopentenyl pyrophosphate. The carotenoid production and the kinetics of mRNA expression of structural genes controlling the carotenogenesis in a wild-type ATCC 24230 and in carotenoid overproducer deregulated atxS2 strains were studied. The biosynthesis of carotenoid was induced at the late exponential growth phase in both strains. However, the cellular carotenoid concentration was four times higher in atxS2 than in the wild-type strain in the exponential growth phase, suggesting that carotenogenesis was deregulated in atxS2 at the beginning of growth. In addition, the maximum expression of the carotenogenesis genes at the mRNA level was observed during the induction period of carotenoid biosynthesis in the wild-type strain. The mRNA level of the crtYB, crtl, ast genes and to a lesser extent the idi gene, decayed at the end of the exponential growth phase. The mRNA levels of the crtE gene remained high along the whole growth curve of the yeast. In the atxS2 strain the mRNA levels of crtE gene were about two times higher than the wild-type strain in the early phase of the growth cycle.

  5. Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.D.; Valinger, D.; Vegvari, G.

    2014-01-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC)

  6. Stability of carotenoids recovered from shrimp waste and their use as colorant in fish sausage.

    Science.gov (United States)

    Sachindra, N M; Mahendrakar, N S

    2010-01-01

    The stability of carotenoids recovered from shrimp waste using organic solvents and vegetable oils as affected by antioxidants and pigment carriers was evaluated during storage under different conditions. Solvent extracted carotenoid incorporated into alginate and starch as carriers was stored in metallised polyester and polypropylene pouches. Oil extracted carotenoids were stored in transparent and amber bottles. Also the use of recovered pigments as colorants in fish sausage was evaluated. Antioxidants, packaging material and storage period had a significant effect (p≤0.001) on the reduction of carotenoid content, while type of carrier had marginal effect (p≥0.05) on solvent extracted carotenoids during storage. Carotenoid content in pigmented oil was significantly affected by antioxidants (p≤0.001), packaging material (p≤0.05) and storage period (p≤0.001). Addition of carotenoid to the sausage enhanced the sensory colour, flavour and overall quality score of sausage and the added carotenoid was stable during processing.

  7. Genus specific unusual carotenoids in purple bacteria, Phaeospirillum and Roseospira: structures and biosyntheses.

    Science.gov (United States)

    Takaichi, Shinichi; Maoka, Takashi; Sasikala, Ch; Ramana, Ch V; Shimada, Keizo

    2011-07-01

    Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and a few phototrophic purple bacteria accumulate unusual carotenoids. The carotenoids in the genera Phaeospirillum and Roseospira were identified using spectroscopic methods. All species of the genus Phaeospirillum contained characteristic polar carotenoids in addition to lycopene and hydroxylycopene (rhodopin); hydroxylycopene glucoside, dihydroxylycopene, and its mono- and/or diglucosides. From the structures of these carotenoids, their accumulation was suggested to be due to absence of CrtD (acyclic carotenoid C-3,4 desaturase) and to possession of glucosyltransferase. Species of the genus Roseospira have been reported to have unusual absorption spectra in acetone extract, and they were found to accumulate 3,4-didehydrorhodopin as a major carotenoid. This may be due to low activity of CrtF (acyclic 1-hydroxycarotenoid methyltransferase). The study concludes in identifying genus specific unusual carotenoids, which is probably due to characteristic nature of some carotenogenesis enzymes.

  8. Development of carotenoid-enriched vegetables with increased nutritional quality and visual appearance

    Science.gov (United States)

    Carotenoids are a class of red, orange and yellow pigments widely distributed in nature. Biotech approach has been proved to be effective in successfully engineering of carotenoid content in food crops with better health and visual appearance....

  9. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    Science.gov (United States)

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  10. Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges

    Science.gov (United States)

    Carotenoid accumulation and biosynthetic gene expression levels during fruit maturation were compared between ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV). The two cultivars exhibited different carotenoid profiles and regulatory mechanisms in flavedo and...

  11. 酮基类胡萝卜素的生理功能及应用研究%Physiological function and application research of Keto-carotenoid

    Institute of Scientific and Technical Information of China (English)

    王冉冉; 张慧; 陶正国; 李涛; 张祥敏; 张万青; 王延霞

    2011-01-01

    作为具有较高应用价值和经济价值的添加剂,酮基类胡萝卜素在食品、医药、保健品、饲料和日用化妆品等行业中应用广泛,并引起人们的日益关注.酮基类胡萝卜素是一类具有特殊官能团的类胡萝卜素,它不仅具有共轭双键,而且在共轭双键链的末端还有不饱和酮基,这些结构都具有比较活泼的电子效应,使它与自由基反应,进而更加容易清除自由基,达到抗氧化作用和保护人体健康的目的.本文综述了酮基类胡萝卜素的概念、结构、性质、生理功能、在自然界的分布以及分析检测手段,也介绍了它的生产技术、主要用途及研究进展,并对其应用前景做出了展望,为酮类类胡萝卜素的进一步开发研究提供参考.%As an additive with high application value and economic value, Keto- carotenoid has a widely application in food, medicine, health -care products, animal feed and daily cosmetics industry etc, and it raises more and more attention. Keto - carotenoid is a class of special functional group of carotenoid. It not only has conjugated double bonds and unsaturated ketonic group at the end of the conjugated double bonds. These structures have lively electronic effects which make Keto - carotenoid has a reaction with the free radical, and It is easier to eliminate free radicals, enhance the capacity of antioxidant defense systems and protect human health. The study of the Keto - carotenoid was introduced entirely in this article including basic concept, structure, physical chemistry properties, biological function, and distribution in nature, analysis and measure methods. This paper also introduces the production technology, main application and research progress of Keto - carotenoid, and foretells its application prospect, as reference for further research and development.

  12. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  13. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  14. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  15. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  16. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  17. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids.

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon

    2013-06-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  18. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Science.gov (United States)

    Jeon, Sookyoung; Neuringer, Martha; Johnson, Emily E.; Kuchan, Matthew J.; Pereira, Suzette L.; Johnson, Elizabeth J.; Erdman, John W.

    2017-01-01

    Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group). All samples were analyzed by high pressure liquid chromatography (HPLC). Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions. PMID:28075370

  19. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices

    Directory of Open Access Journals (Sweden)

    Sidney Pacheco

    2014-10-01

    Full Text Available In order to generate simple, efficient analytical methods that are also fast, clean, and economical, and are capable of producing reliable results for a large number of samples, a micro scale extraction method for analysis of carotenoids in vegetable matrices was developed. The efficiency of this adapted method was checked by comparing the results obtained from vegetable matrices, based on extraction equivalence, time required and reagents. Six matrices were used: tomato (Solanum lycopersicum L., carrot (Daucus carota L., sweet potato with orange pulp (Ipomoea batatas (L. Lam., pumpkin (Cucurbita moschata Duch., watermelon (Citrullus lanatus (Thunb. Matsum. & Nakai and sweet potato (Ipomoea batatas (L. Lam. flour. Quantification of the total carotenoids was made by spectrophotometry. Quantification and determination of carotenoid profiles were formulated by High Performance Liquid Chromatography with photodiode array detection. Microscale extraction was faster, cheaper and cleaner than the commonly used one, and advantageous for analytical laboratories.

  20. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    NARCIS (Netherlands)

    Casagrande, Stefania; Dijkstra, Cor; Tagliavini, James; Goerlich, Vivian C.; Groothuis, Ton G. G.

    2011-01-01

    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion

  1. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  2. Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults

    Science.gov (United States)

    Phytoene is a tomato carotenoid which may contribute to the apparent health benefits of tomato consumption. While phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lyc...

  3. Absorption of beta-carotene and other carotenoids in humans and animal models : a review

    NARCIS (Netherlands)

    Vliet, T. van

    1996-01-01

    Objective: To review available information on absorption and further metabolism of different carotenoids in man and to discuss animal models and approaches in the study of carotenoid absorption and metabolism in man. Conclusions: Humans appear to absorb various carotenoids in a relatively non-specif

  4. [The effect of beta-ionine on biosynthesis of carotenes by Actinomyces chrysomallus var. carotenoides].

    Science.gov (United States)

    Sverdlova, A N; Alekseeva, L N; Nefelova, M V

    1977-01-01

    Biosynthesis of carotenoids by a growing culture of Actinomyces chrysomallus var. carotenoides is totally inhibited by beta-ionone added at different concentrations, at various time of the cultural growth, and in various combinations with oil. The inhibition of carotenoid synthesis by beta-ionone is of a specific character since the biomass growth under the same conditions does not increase.

  5. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  6. Radical prostatectomy - discharge

    Science.gov (United States)

    ... to 6 months. You will learn exercises (called Kegel exercises) that strengthen the muscles in your pelvis. ... Radical prostatectomy Retrograde ejaculation Urinary incontinence Patient Instructions Kegel exercises - self-care Suprapubic catheter care Urinary catheters - ...

  7. Estabilidad de los pigmentos carotenoides en los alimentos

    OpenAIRE

    Meléndez Martínez, Antonio Jesús; Vicario Romero, Isabel; Heredia Mira, Francisco José

    2004-01-01

    Los pigmentos carotenoides son compuestos responsables de la coloración de gran número de alimentos vegetales y animales. Numerosos estudios publicados recientemente han demostrado el efecto beneficioso de estos compuestos en la salud humana, por lo que, desde un punto de vista nutricional, resulta de gran importancia conocer qué factores intervienen en la degradación de los carotenoides, ya que su pérdida, además de producir cambios de color en el alimento, conlleva una disminución de su val...

  8. Los carotenoides dietéticos en el organismo animal

    OpenAIRE

    Brenes-Soto, Andrea

    2014-01-01

    Los compuestos carotenoides se encuentran en plantas, algas y bacterias, principalmente, y son ingeridos por los animales en sus dietas. Estos compuestos lipofílicos se dividen en carotenos y xantofilas, dependiendo de su estructura y composición molecular.  Además de su función como precursores de la vitamina A y como antioxidantes, los carotenoides también se pueden depositar en varios tejidos y órganos como el ojo, hígado, músculo, piel, picos y plumas de aves, en los cuales también cumple...

  9. Estabilidad del Carotenoide Licopeno en Tomates en Conserva Lycopene Carotenoide Stability in Canned Tomatoes

    Directory of Open Access Journals (Sweden)

    Alicia L Ordóñez

    2009-01-01

    Full Text Available El objetivo de este trabajo fue determinar la estabilidad del carotenoide licopeno durante el proceso de elaboración de conservas de tomates peritas y evaluar la misma durante su almacenamiento como producto terminado. Se trabajó con muestras provenientes de elaboraciones industriales extraídas en distintos puntos del proceso: tomates frescos, en la boquilla de alimentación de la línea; tomate pelado, a la salida de la peladora termofísica y producto terminado a la salida del esterilizador-enfriador, de distintos lotes de elaboración y en tres ocasiones durante la temporada 2007. El producto terminado, envasado en hojalata, fue evaluado durante un año, cada tres meses. El licopeno fue extraído con una mezcla de hexano-acetona-etanol y determinado por espectrofotometría visible a 472nm. Los resultados se analizaron estadísticamente mostrando que la esterilización industrial produce liberación celular del licopeno.The objective of this work was to determine lycopene carotenoid stability during manufacturing process in canned peeled whole tomatoes and during its storage as final product. Samples were taken during industrial manufacturing at different process points: fresh tomatoes when they were feeding to process line, peeled tomatoes from thermophysical peeler and finished product after it passed the cooker-cooler. Samples were obtained from different manufacturing lots at three times during the 2007 harvesting season. Canned tomatoes were analyzed every three months, during one year. Lycopene was extracted with hexane-acetone-ethyl alcohol and measured by spectrophotometry at 472 nm. Statistical analysis of the results shows that industrial sterilization produces cell release of lycopene.

  10. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels.

    Science.gov (United States)

    Ndolo, Victoria U; Beta, Trust

    2013-08-15

    To compare the distribution of carotenoids across the grain, non-corn and corn cereals were hand dissected into endosperm, germ and aleurone fractions. Total carotenoid content (TCC) and carotenoid composition were analysed using spectrophotometry and HPLC. Cereal carotenoid composition was similar; however, concentrations varied significantly (paleurone layer had zeaxanthin levels 2- to 5-fold higher than lutein among the cereals. Positive significant correlations (paleurone layer. Our findings suggest that the aleurone of wheat, oat, corn and germ of barley have significantly enhanced carotenoid levels.

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. Free Radical Reactions in Food.

    Science.gov (United States)

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  13. Effect of electron-withdrawing power of the substituted group on ${}^{\\bullet}$OH radical reaction with substituted aryl sulphides: A pulse radiolysis study

    Indian Academy of Sciences (India)

    Hari Mohan

    2002-12-01

    In neutral aqueous solution of (phenylthio)acetic acid, hydroxyl radical is observed to react with a bimolecular rate constant of 7.2 × 109 dm3 mol-1 s-1 and the transient absorption bands are assigned to ${}^{\\bullet}$OH radical addition to benzene and sulphur with a rough estimated values of 50 and 40% respectively. The reaction of the ${}^{\\bullet}$OH radical with diphenyl sulphide ( = 4.3 × 108 dm3 mol-1 s-1) is observed to take place with formation of solute radical cation, OH-adduct at sulphur and benzene with estimated values of about 12, 28 and 60% respectively. The transient absorption bands observed on reaction of ${}^{\\bullet}$OH radical, in neutral aqueous solution of 4-(methylthio) phenyl acetic acid, are assigned to solute radical cation (max = 550 and 730 nm), OH-adduct at sulphur (max = 360 nm) and addition at benzene ring (max = 320 nm). The fraction of ${}^{\\bullet}$OH radical reacting to form solute radical cation is observed to depend on the electron-withdrawing power of substituted group. In acidic solutions, depending on the concentration of acid and electron-withdrawing power, solute radical cation is the only transient species formed on reaction of ${}^{\\bullet}$OH radical with the sulphides studied.

  14. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  15. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2'-dirhamnoside.

    Science.gov (United States)

    Takaichi, Shinichi; Maoka, Takashi; Takasaki, Kazuto; Hanada, Satoshi

    2010-03-01

    Gemmatimonas aurantiaca strain T-27(T) is an orange-coloured, Gram-negative, facultatively aerobic, polyphosphate-accumulating bacterium belonging to a recently proposed phylum, Gemmatimonadetes. We purified its pigments and identified them as carotenoids and their glycoside derivatives using spectral data. The major carotenoid was (2S,2' S)-oscillol 2,2'-di-(alpha-l-rhamnoside), and the minor carotenoids were (2S)-deoxyoscillol 2-( alpha-l-rhamnoside) and didemethylspirilloxanthin. Deoxyoscillol 2-rhamnoside is a novel carotenoid. Oscillol 2,2'-diglycosides have hitherto only been reported in a limited number of cyanobacteria, and this is believed to be the first finding of such carotenoids in another bacterial phylum. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence, we propose a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. We propose the involvement of geranylgeranyl pyrophosphate synthase (CrtE), phytoene synthase (CrtB) and phytoene desaturase (CrtI) for lycopene synthesis; and of carotenoid 1,2-hydratase (CruF) and carotenoid 2-O-rhamnosyltransferase (CruG) for oscillol 2,2'-dirhamnoside synthesis. Further, isopentenyl pyrophosphate could be synthesized by a non-mevalonate pathway (DXP pathway).

  16. Effect of carbon and nitrogen sources on carotenoids production by native strain of Aurantiochytrium Ch25

    Directory of Open Access Journals (Sweden)

    Mahdiye Esmizade

    2016-09-01

    Full Text Available Introduction: Microorganisms produce carotenoids as a part of their response to environmental stresses. Carotenoids have many applications in human health, such as antioxidant, anti-cancer, light protection activity and as a precursor for hormones. Materials and methods: In this study, the effect of different carbon and nitrogen sources was evaluated on carotenoids production by native Aurantiochytrium strain. The effects of different carbon and nitrogen sources were studied on biomass and carotenoid production. Then, carotenoids were extracted and analyzed by TLC, spectrophotometry and HPLC methods. Results: Results showed that glycerol is the best carbon source for production of high carotenoids content. Selected medium contained: glycerol (1.5% v/v, peptone (1g/l, yeast extract (1g/l and 50% of sea water. Total carotenoids content was 134.8 µg/g CDW in this medium. TLC analysis showed that the extracted carotenoid is included: beta-carotene, astaxanthin monoester, astaxanthin diester and free astaxanthin. The results of HPLC analysis showed presence of astaxanthin, canthaxanthin, echinenone and β-carotene in the carotenoid extract. Discussion and conclusion: In this research, production of carotenoids was investigated in native strain of Aurantiochytrium and carotenoids profile was included astaxanthin, canthaxanthin, β-carotene and echinenone.

  17. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  18. Vitamins, carotenoids, dietary fiber, and the risk of gastric carcinoma

    NARCIS (Netherlands)

    Botterweck, A.A.M.; Brandt, P.A. van den; Goldbohm, R.A.

    2000-01-01

    BACKGROUND. Numerous components of fruit and vegetables are considered to decrease the risk of gastric carcinoma. In the current prospective study, the authors examined the association between the intake of vitamins, carotenoids, and dietary fiber and vitamin supplement use and the incidence rate of

  19. Colour and carotenoid changes of pasteurised orange juice during storage.

    Science.gov (United States)

    Wibowo, Scheling; Vervoort, Liesbeth; Tomic, Jovana; Santiago, Jihan Santanina; Lemmens, Lien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc; Van Loey, Ann

    2015-03-15

    The correlation of carotenoid changes with colour degradation of pasteurised single strength orange juice was investigated at 20, 28, 35 and 42°C for a total of 32 weeks of storage. Changes in colour were assessed using the CIELAB system and were kinetically described by a zero-order model. L(∗), a(∗), b(∗), ΔE(∗), Cab(∗) and hab were significantly changed during storage (pcolour parameters were 64-73 kJ mol(-1). Several carotenoids showed important changes and appeared to have different susceptibilities to storage. A decrease of β-cryptoxanthin was observed at higher temperatures, whereas antheraxanthin started to decrease at lower temperatures. Depending on the time and temperature, changes in carotenoids could be due to isomerisation reactions, which may lead to a perceptible colour change. Although the contribution of carotenoids was recognised to some extent, other reactions seem of major importance for colour degradation of orange juice during storage.

  20. Serum carotenoids and vitamins in relation to markers of endothelial

    NARCIS (Netherlands)

    Herpen-Broekmans, W. van; Klöpping-Ketelaars, I.; Michiel, B.; Cornelis, K.; Hans, P.; Hendriks, F.J.; Tijburg, L.; Poppel, G. van; Kardinaal, A.

    2004-01-01

    Background: Endothelial cell dysfunction may be related to an increase in cellular oxidative stress. Carotenoids and vitamins could have an antioxidant-mediated tempering influence on endothelial function and inflammation, thereby reducing the risk of atherosclerosis. Methods: We measured serum caro

  1. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  2. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  3. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  4. Excited Electronic States, Photochemistry and Photophysics of Carotenoids

    Science.gov (United States)

    Frank, Harry A.; Christensen, Ronald L.

    The most striking characteristic of carotenoids is their palette of colours. Absorption of light in the visible region of the electromagnetic spectrum by molecules such as β-carotene (3) and lycopene (31) not only readily accounts for their colours but also signals the ability of these long-chain polyenes to serve as antenna pigments in diverse photosynthetic systems [1-4].

  5. Strigolactones, a Novel Carotenoid-Derived Plant Hormone

    NARCIS (Netherlands)

    Al-Babili, S.; Bouwmeester, H.J.

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availa

  6. Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids.

    Science.gov (United States)

    Marshall, J H; Wilmoth, G J

    1981-01-01

    The pigments of Staphylococcus aureus were isolated and purified, and their chemical structures were determined. All of the 17 compounds identified were triterpenoid carotenoids possessing a C30 chain instead of the C40 carotenoid structure found in most other organisms. The main pigment, staphyloxanthin, was shown to be alpha-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate) 6-O-(12-methyltetradecanoate), in which glucose is esterified with both a triterpenoid carotenoid carboxylic acid and a C15 fatty acid. It is accompanied by isomers containing other hexoses and homologs containing C17 fatty acids. The carotenes 4,4'-diapophytoene, 4,4'-diapophytofluene, 4-4'-diapophytofluene, 4-4'-diapo-zeta-carotene, 4,4'-diapo-7,8,11,12-tetrahydrolycopene, and 4,4'-diaponeurosporene and the xanthophylls 4,4'-diaponeurosporenal, 4,4'-diaponeurosporenoic acid, and glucosyl diaponeurosporenoate were also identified, together with some of their isomers or breakdown products. The symmetrical 4,4'-diapo- structure was adopted for these triterpenoid carotenoids, but an alternative unsymmetrical 8'-apo-structure could not be excluded. PMID:7275936

  7. Differential effects of environment on potato phenylpropanoid and carotenoid expression

    OpenAIRE

    2012-01-01

    Abstract Background Plant secondary metabolites, including phenylpropanoids and carotenoids, are stress inducible, have important roles in potato physiology and influence the nutritional value of potatoes. The type and magnitude of environmental effects on tuber phytonutrients is unclear, especially under modern agricultural management that minimizes stress. Understanding factors that influence tuber secondary metabolism could facilitate production of more nutritious crops. Metabolite pools o...

  8. Rewiring carotenoid biosynthesis in plants using a viral vector

    Science.gov (United States)

    Majer, Eszter; Llorente, Briardo; Rodríguez-Concepción, Manuel; Daròs, José-Antonio

    2017-01-01

    Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers. PMID:28139696

  9. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters.

    Science.gov (United States)

    Ahmed, Faruq; Fanning, Kent; Netzel, Michael; Turner, Warwick; Li, Yan; Schenk, Peer M

    2014-12-15

    Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, 12 microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.

  10. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2014-03-01

    Full Text Available Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction.

  11. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release.

  12. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    CERN Document Server

    Lewis, Alan M; Hore, P J

    2014-01-01

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene (CPF) triad containing considerably more nu...

  13. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration.

    Science.gov (United States)

    Pedro, André M K; Ferreira, Márcia M C

    2005-04-15

    Tomato is an important player in the agricultural market. It is the second most consumed vegetable in the world and is a source of important micronutrients such as lycopene and beta-carotene. Recent research has demonstrated that these carotenoids can act as free-radical quenchers in the body and prevent aging, tissue damage, heart disease, and certain cancers. Besides these microcomponents, tomato is composed of soluble and insoluble solids. In industry, these solids govern factory yield and play a major role in the tomato trade. Nowadays, standard methods for determining tomato solids and carotenoids are time and labor consuming. In this work, we present the development of a simultaneous and nondestructive method for determining total and soluble solids, as well as lycopene and beta-carotene, in tomato products by near-infrared spectroscopy. PLS-1 was the calibration technique chosen. For spectra preprocessing, MSC and second derivative were applied. As variable selection techniques, the correlogram cutoff, the successive projections algorithm, the dimension wise selection, and spectra splitting approach were applied. Best models presented satisfactory prediction abilities evaluated through its RMSEP and r values: total solids 0.4157, 0.9998; soluble solids 0.6333, 0.9996; lycopene 21.5779, 0.9996; beta-carotene 0.7296, 0.9981.

  14. Evaluation of carotenoid contents in irradiated buriti (Mauritia flexuosa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jaqueline M. da; Coelho, Maysa J.; Lima, Keila S.C.; Lima, Antonio L.S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear]. E-mail: maysa@ime.eb.br; Godoy, Ronoel L.O.; Pacheco, Sidney [EMBRAPA Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil)]. E-mail: ronoel@ctaa.embrapa.br; Ferreira, Rubemar S. [Centro Regional de Ciencias Nucleares do Centro-Oeste CRCN-CO/CNEN, Abadia de Goias, GO (Brazil); E-mail: rferreira@cnen.gov.br

    2007-07-01

    Buriti (Mauritia flexuosa L.), a typical Brazilian fruit, can be found at north, northeast and center-west regions in Brazil. It has a high nutritional value and is considered an excellent source of vitamin A precursors, called carotenoids, showing a majority of {beta}-carotene. It can be used in many regional dishes. In this study, Buriti in natura was treated with gamma irradiation, deriving from a cavity type research irradiator which has a Cs-137 radiation source, with the doses of 0.5 and 1.0 kGy. The objective is to evaluate the irradiation effects on nutritional quality maintenance and conservation of Buriti, focusing in optimizer the processing conditions and increase consumption as a way to fight vitamin A deficiency. Clinical, biological and dietetic studies have indicated that the lack of vitamin A is the main cause of night blindness and xerophthalmia. The use of food irradiation is growing and represents an economic benefit to the agriculture through the reduction of post harvesting losses. The irradiated fruits and the control group were evaluated through the total carotenoids analysis, by spectrophotometry, and the carotenoids (a and b-carotene and luteine) determined by High Performance Liquid Chromatography (HPLC). ANOVA was used to treat the results. The results show that buriti is an excellent source of total carotenoids, with a concentration of 44500 {mu}g/100 g in the pulp (70% of {beta}-carotene). The reduction of carotenoids contents due to the irradiation process does not compromise its nutritional quality that is still very above of recommendations, being the dose of 0.5 kGy more appropriate. (author)

  15. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  16. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  17. Gangs, Terrorism, and Radicalization

    Directory of Open Access Journals (Sweden)

    Scott Decker

    2011-01-01

    Full Text Available What can street gangs tell us about radicalization and extremist groups? At first glance, these two groups seem to push the boundaries of comparison. In this article, we examine the important similarities and differences across criminal, deviant, and extremist groups. Drawing from research on street gangs, this article explores issues such as levels of explanation,organizational structure, group process, and the increasingly important role of technology and the Internet in the context of radicalization. There are points of convergence across these groups, but it is important to understand the differences between these groups. This review finds little evidence to support the contention that American street gangs are becoming increasingly radicalized. This conclusion is based largely on organizational differences between gangs and terror groups.

  18. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten;

    2017-01-01

    INTRODUCTION: Radical prostatectomies can result in urinary incontinence and sexual dysfunction. Traditionally, these issues have been studied separately, and the sexual problem that has received the most focus has been erectile dysfunction. AIM: To summarize the literature on sexually related side...... effects and their consequences after radical prostatectomy and focus on the occurrence and management of problems beyond erectile dysfunction. METHODS: The literature on sexuality after radical prostatectomy was reviewed through a Medline search. Original research using quantitative and qualitative...... methodologies was considered. Priority was given to studies exploring aspects of sexuality other than erectile function. MAIN OUTCOME MEASURES: The prevalence, predictive factors, and management of post-prostatectomy sexual problems beyond erectile dysfunction. RESULTS: Most patients will develop urinary...

  19. Spectroscopic characterization of mechanisms of oxidation of Phe by SO4- radical: A pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    储高升; 韩镇辉; 都志文; 张淑娟; 姚思德; 张志成

    2002-01-01

    By using time-resolved kinetic spectrophotometry and pulse radiolysis technique, the oxidation of Phe by SO4- radical has been investigated both in aqueous and water/acetonitrilemixed solutions. The results reveal that attack of the oxidizing SO4- radical on Phe leads directlyto the formation of Phe cation radical 3 with a strong absorption peak at 310 nm, then it proceeds in three competitive reactions via either hydroxylation, deprotonation or decarboxylation, which were found to be strongly dependent upon the ionization state of the substitutes -COOH and -NH2 and the nature of the solvents. Decarboxylation takes place only when the carboxyl group is deprotonated. At high pH deprotonation of Phe cation radical 3 is much easier to occur than that in neutral or acid solutions. Moreover, with addition of acetonitrile, deprotonation is more predominant than hydroxylation, whereas in aqueous solutions hydroxylation is much easier to occur.

  20. Spectroscopic characterization of mechanisms of oxidation of Phe by SO.-4 radical: A pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    储高升; 张淑娟; 姚思德; 韩镇辉; 都志文; 张志成

    2002-01-01

    By using time-resolved kinetic spectrophotometry and pulse radiolysis technique, the oxidation of Phe by radical has been investigated both in aqueous and water/acetonitrile mixed solutions. The results reveal that attack of the oxidizing SO4-radical on Phe leads directly to the formation of Phe cation radical 3 with a strong absorption peak at 310 nm, then it proceeds in three competitive reactions via either hydroxylation, deprotonation or decarboxylation, which were found to be strongly dependent upon the ionization state of the substitutes -COOH and -NH2 and the nature of the solvents. Decarboxylation takes place only when the carboxyl group is deprotonated. At high pH deprotonation of Phe cation radical 3 is much easier to occur than that in neutral or acid solutions. Moreover, with addition of acetonitrile, deprotonation is more predominant than hydroxylation, whereas in aqueous solutions hydroxylation is much easier to occur.

  1. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  2. Different Response of Carbonyl Carotenoids to Solvent Proticity Helps To Estimate Structure of the Unknown Carotenoid from Chromera velia.

    Science.gov (United States)

    Keşan, Gürkan; Durchan, Milan; Tichý, Josef; Minofar, Babak; Kuznetsova, Valentyna; Fuciman, Marcel; Šlouf, Václav; Parlak, Cemal; Polívka, Tomáš

    2015-10-01

    In order to estimate the possible structure of the unknown carbonyl carotenoid related to isofucoxanthin from Chromera velia denoted as isofucoxanthin-like carotenoid (Ifx-l), we employed steady-state and ultrafast time-resolved spectroscopic techniques to investigate spectroscopic properties of Ifx-l in various solvents. The results were compared with those measured for related carotenoids with known structure: fucoxanthin (Fx) and isofucoxanthin (Ifx). The experimental data were complemented by quantum chemistry calculations and molecular modeling. The data show that Ifx-l must have longer effective conjugation length than Ifx. Yet, the magnitude of polarity-dependent changes in Ifx-l is larger than for Ifx, suggesting significant differences in structure of these two carotenoids. The most interesting spectroscopic feature of Ifx-l is its response to solvent proticity. The transient absorption data show that (1) the magnitude of the ICT-like band of Ifx-l in acetonitrile is larger than in methanol and (2) the S1/ICT lifetime of Ifx-l in acetonitrile, 4 ps, is markedly shorter than in methanol (10 ps). This is opposite behavior than for Fx and Ifx whose S1/ICT lifetimes are always shorter in protic solvent methanol (20 and 13 ps) than in aprotic acetonitrile (30 and 17 ps). Comparison with other carbonyl carotenoids reported earlier showed that proticity response of Ifx-l is consistent with presence of a conjugated lactone ring. Combining the experimental data and quantum chemistry calculations, we estimated a possible structure of Ifx-l.

  3. Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives%Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    靳瑞岌; 李杰

    2012-01-01

    A series of shikonin derivatives have been designed and their radical scavenging activity has been characterized by the B3LYP/6-31 +G(d) approach. The hydrogen bond properties of the studied structures were investigated using the atoms in molecules (AIM) theory. The calculated results reveal that the hydrogen bond is important for good scavenging activity. The introduction of electron-drawing (electron-donating) groups increases (decreases) the scavenging activities of radical and radical cations of shikonin derivatives. Shikonin derivatives appear to be good candidates for the single-electron-transfer mechanism, particularly for -N(CH3)2 derivative. Taking this system as an example, we present an efficient method for the investigation of radical scavenging activity from theoretical point of view. With the current work, we hope to highlight the radical scavenging activity of hydroxynaphtho- quinones derivatives and stimulate the interest for further studies and exploitation in pharmaceutical industry.

  4. Carotenoid-Based Colours Reflect the Stress Response in the Common Lizard

    Science.gov (United States)

    Fitze, Patrick S.; Cote, Julien; San-Jose, Luis Martin; Meylan, Sandrine; Isaksson, Caroline; Andersson, Staffan; Rossi, Jean-Marc; Clobert, Jean

    2009-01-01

    Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake) or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations). Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara), we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic) and environmentally elements, the latter reflecting the lizard's PSR. PMID:19352507

  5. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  6. Carotenoids extraction from Japanese persimmon (Hachiya-kaki) peels by supercritical CO(2) with ethanol.

    Science.gov (United States)

    Takahashi, Mayako; Watanabe, Hiromoto; Kikkawa, Junko; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Inomata, Hiroshi; Sato, Nobuyuki

    2006-11-01

    The extraction of carotenoids from Japanese persimmon peels by supercritical fluid extraction (SFE), of which the solvent was CO(2), was performed. In order to enhance the yield and selectivity of the extraction, some portion of ethanol (5 - 20 mol%) was added as an entrainer. The extraction temperature ranged from 313 to 353 K and the pressure was 30 MPa. The effect of temperature on the extraction yield of carotenoids was investigated at 10 mol% of the ethanol concentration in the extraction solvent, and a suitable temperature was found to be 333 K among the temperatures studied with respect to the carotenoid yield. With increasing the entrainer amount from 0 to 10 mol% at a constant temperature (333 K), the carotenoid yield in the extraction was improved, whereas the selectivity of the extracted carotenoids was drastically depressed. We also conducted qualitative and quantitative analyses for the carotenoid components in the extract by HPLC, and analyzed the extraction behavior of each individual carotenoid (alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein, and zeaxanthin). The selectivity of each carotenoid changed with the elapsed time and its time evolution was dependent on the carotenoid component, indicating that the location profile and the content can be important factors to understand the SFE behavior of each carotenoid in persimmon peels.

  7. Carotenoid-based colours reflect the stress response in the common lizard.

    Directory of Open Access Journals (Sweden)

    Patrick S Fitze

    Full Text Available Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations. Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara, we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic and environmentally elements, the latter reflecting the lizard's PSR.

  8. Carotenoid-based colours reflect the stress response in the common lizard.

    Science.gov (United States)

    Fitze, Patrick S; Cote, Julien; San-Jose, Luis Martin; Meylan, Sandrine; Isaksson, Caroline; Andersson, Staffan; Rossi, Jean-Marc; Clobert, Jean

    2009-01-01

    Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake) or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations). Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara), we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic) and environmentally elements, the latter reflecting the lizard's PSR.

  9. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit.

    Science.gov (United States)

    Cao, Shifeng; Liang, Minhua; Shi, Liyu; Shao, Jiarong; Song, Chunbo; Bian, Kun; Chen, Wei; Yang, Zhenfeng

    2017-01-01

    To understand better the regulatory mechanism of the carotenoid accumulation, the expression profile of relevant carotenoid genes and metabolites were compared between two peach cultivars with different colors during fruit development. Meanwhile, the change pattern of carotenoid content and expression of carotenoid metabolic genes in peaches after harvest in response to blue light were also investigated. As compared to the yellow fleshed-cultivar 'Jinli', lower carotenoid levels were observed in skin and pulp in white peach cultivar 'Hujing', which might be explained by differentially expression of PpCCD4 gene. With respect to 'Jinli', the carotenoid accumulation during fruit development in fruit skin was partially linked with the transcriptional regulation of PpFPPS, PpGGPS, PpLCYB and PpCHYB. However, in the pulp, the accumulation might be also associated with the increased transcriptions of PpPDS, along with the above four genes. Blue light treatment induced carotenoid accumulation in 'Jinli' peaches during storage. In addition, the treated-fruit displayed higher expression of all the eight genes analysed with a lesser extent on PpCCD4, which suggested that the much more increased carotenoid synthesis rate could result in the higher carotenoid content in blue light-treated fruit. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation in peach fruit.

  10. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds.

    Science.gov (United States)

    Thomas, Daniel B; McGraw, Kevin J; Butler, Michael W; Carrano, Matthew T; Madden, Odile; James, Helen F

    2014-08-07

    The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66-56 Myr), and not at the base of crown-lineage birds.

  11. Beyond Radical Educational Cynicism.

    Science.gov (United States)

    Wood, George H.

    1982-01-01

    An alternative is presented to counter current radical arguments that the schools cannot bring about social change because they are instruments of capitalism. The works of Samuel Bowles, Herbert Gintis, and Louis Althusser are discussed. Henry Giroux's "Ideology, Culture and the Process of Schooling" provides an alternative to cynicism.…

  12. Electromeric rhodium radical complexes

    NARCIS (Netherlands)

    Puschmann, F.F.; Harmer, J.; Stein, D.; Rüegger, H.; de Bruin, B.; Grützmacher, H.

    2010-01-01

    Radical changes: One single P-Rh-P angle determines whether the odd electron in the paramagnetic complex [Rh(trop2PPh)(PPh3)] is delocalized over the whole molecule (see picture, blue) or is localized on the P—Rh unit (red). The two energetically almost degenerate electromers exist in a fast equilib

  13. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...

  14. Radical School Reform.

    Science.gov (United States)

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  15. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    and their families. Existing literature and ways of thinking about the social psychological process of radicalization will be reviewed, such as social identity theory and transformative learning theory, and a theoretical framework based on a focus on belonging, recognition and the sense of community will be proposed...

  16. On Radical Feminism

    Institute of Scientific and Technical Information of China (English)

    翟良锴

    2015-01-01

    <正>All men are created equal.For centuries,human have been struggling for their rights.Women,as a special social force,are fighting vigorously for their equal rights with men.According to an introduction to feminism,there are three main types of feminism:socialist,reformist and radical(Feminism 101).In order

  17. Effects of experimental brood size manipulation and gender on carotenoid levels of Eurasian kestrels Falco tinnunculus.

    Directory of Open Access Journals (Sweden)

    Toni Laaksonen

    Full Text Available BACKGROUND: Animals use carotenoid-pigments for coloration, as antioxidants and as enhancers of the immune system. Carotenoid-dependent colours can thus signal individual quality and carotenoids have also been suggested to mediate life-history trade-offs. METHODOLOGY: To examine trade-offs in carotenoid allocation between parents and the young, or between skin coloration and plasma of the parents at different levels of brood demand, we manipulated brood sizes of Eurasian kestrels (Falco tinnunculus. PRINCIPAL FINDINGS: Brood size manipulation had no overall effect on plasma carotenoid levels or skin hue of parents, but female parents had twice the plasma carotenoid levels of males. Males work physically harder than females and they might thus also use more carotenoids against oxidative stress than females. Alternatively, females could be gaining back the carotenoid stores they depleted during egg-laying by eating primarily carotenoid-rich food items during the early nestling stage. Fledglings in enlarged broods had higher plasma carotenoid concentrations than those in reduced broods. This difference was not explained by diet. In light of recent evidence from other species, we suggest it might instead be due to fledglings in enlarged broods having higher testosterone levels, which in turn increased plasma carotenoid levels. The partial cross-foster design of our experiment revealed evidence for origin effects (genetic or maternal on carotenoid levels of fledglings, but no origin-environment interaction. SIGNIFICANCE: These results from wild birds differ from studies in captivity, and thus offer new insights into carotenoid physiology in relation to division of parental care and demands of the brood.

  18. Differential effects of environment on potato phenylpropanoid and carotenoid expression

    Directory of Open Access Journals (Sweden)

    Payyavula Raja S

    2012-03-01

    Full Text Available Abstract Background Plant secondary metabolites, including phenylpropanoids and carotenoids, are stress inducible, have important roles in potato physiology and influence the nutritional value of potatoes. The type and magnitude of environmental effects on tuber phytonutrients is unclear, especially under modern agricultural management that minimizes stress. Understanding factors that influence tuber secondary metabolism could facilitate production of more nutritious crops. Metabolite pools of over forty tuber phenylpropanoids and carotenoids, along with the expression of twenty structural genes, were measured in high-phenylpropanoid purple potatoes grown in environmentally diverse locations in North America (Alaska, Texas and Florida. Results Phenylpropanoids, including chlorogenic acid (CGA, were higher in samples from the northern latitudes, as was the expression of phenylpropanoid genes including phenylalanine ammonia lyase (PAL, which had over a ten-fold difference in relative abundance. Phenylpropanoid gene expression appeared coordinately regulated and was well correlated with metabolite pools, except for hydroxycinnamoyl-CoA:quinatehydroxcinnamoyl transferase (HQT; r = -0.24. In silico promoter analysis identified two cis-acting elements in the HQT promoter not found in the other phenylpropanoid genes. Anthocyanins were more abundant in Alaskan samples and correlated with flavonoid genes including DFR (r = 0.91, UFGT (r = 0.94 and F3H (r = 0.77. The most abundant anthocyanin was petunidin-3-coum-rutinoside-5-glu, which ranged from 4.7 mg g-1 in Alaska to 2.3 mg g-1 in Texas. Positive correlations between tuber sucrose and anthocyanins (r = 0.85, suggested a stimulatory effect of sucrose. Smaller variation was observed in total carotenoids, but marked differences occurred in individual carotenoids, which had over a ten-fold range. Violaxanthin, lutein or zeaxanthin were the predominant carotenoids in tubers from Alaska, Texas and Florida

  19. Histidine-containing radicals in the gas phase.

    Science.gov (United States)

    Turecek, Frantisek; Yao, Chunxiang; Fung, Y M Eva; Hayakawa, Shigeo; Hashimoto, Mami; Matsubara, Hiroshi

    2009-05-21

    Radicals containing the histidine residue have been generated in the gas phase by femtosecond electron transfer to protonated histidine-N-methylamide (1H+), Nalpha-acetylhistidine-N-methylamide (2H+), Nalpha-glycylhistidine (3H+), and Nalpha-histidylglycine (4H+). Radicals generated by collisional electron transfer from dimethyldisulfide to ions 1H+ and 2H+ at 7 keV collision energies were found to dissociate completely on the microsecond time scale, as probed by reionization to cations. The main dissociations produced fragments from the imidazole side chain and the cleavage of the C(alpha)CO bond, whereas products of NCalpha bond cleavage were not observed. Electron transfer from gaseous potassium atoms to ions 3H+ and 4H+ at 2.97 keV collision energies not only caused backbone NCalpha bond dissociations but also furnished fractions of stable radicals that were detected after conversion to anions. Ion structures, ion-electron recombination energies, radical structures, electron affinities, and dissociation and transition-state energies were obtained by combined density functional theory and Møller-Plesset perturbational calculations (B3-PMP2) and basis sets ranging from 6-311+G(2d,p) to aug-cc-pVTZ. The Rice-Ramsperger-Kassel-Marcus theory was used to calculate rate constants on the B3-PMP2 potential energy surfaces to aid interpretation of the mass spectrometric data. The stability of Nalpha-histidylglycine-derived radicals is attributed to an exothermic isomerization in the imidazole ring, which is internally catalyzed by reversible proton transfer from the carboxyl group. The isomerization depends on the steric accessibility of the histidine side chain and the carboxyl group and involves a novel cation radical-COO salt-bridge intermediate.

  20. Molecular structure, optical and magnetic properties of metal-free phthalocyanine radical anions in crystalline salts (H2Pc˙-)(cryptand[2,2,2][Na(+)])·1.5C6H4Cl2 and (H2Pc˙-)(TOA+)·C6H4Cl2 (TOA+ is tetraoctylammonium cation).

    Science.gov (United States)

    Konarev, Dmitri V; Zorina, Leokadiya V; Khasanov, Salavat S; Litvinov, Aleksey L; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2013-05-21

    Ionic compounds containing radical anions of metal-free phthalocyanine (H2Pc˙(-)): (H2Pc˙(-))(cryptand[2,2,2][Na(+)])·1.5C6H4Cl2 (1) and (H2Pc˙(-))(TOA(+))·C6H4Cl2 (2) have been obtained as single crystals for the first time. Their crystal structures have been determined, and optical and magnetic properties have been investigated. The H2Pc˙(-) radical anions have a slightly bowl-like shape with four pyrrole nitrogen atoms located below the molecular plane, while four phenylene substituents are located above this plane. Changes in the average length of N-C and C-C bonds in H2Pc˙(-) in comparison with those in neutral H2Pc indicate that negative charge is mainly delocalized over the 24-atom phthalocyanine ring rather than the phenylene substituents. The H2Pc˙(-) formation is accompanied by a shift of up to 10 cm(-1) and disappearance of some intense IR-active bands whereas the band of the N-H stretching mode is shifted by 21-27 cm(-1) to larger wavenumbers. New bands attributed to H2Pc˙(-) appear in the NIR spectra of the salts with maxima at 1033 and 1028 nm for 1 and 2, respectively. The formation of H2Pc˙(-) is accompanied by the splitting of the Soret and Q-bands of H2Pc into several bands and their blue-shift up to 32 nm. Narrow EPR signals with g = 2.0033 and linewidth of 0.16-0.24 mT at room temperature in the spectra of the salts were attributed to the H2Pc˙(-) radical anions. According to SQUID measurements they have S = 1/2 spin states with effective magnetic moments of 1.73 (1) and 1.78 (2) μB at 300 K. Magnetic behavior of 1 and 2 follows the Curie-Weiss law with negative Weiss temperatures of -0.9 and -0.5 K, respectively, indicating weak antiferromagnetic interactions of spins. The EPR signal splits into two lines below 120 and 80 K for 1 and 2, respectively and these lines are noticeably broadened below 25 K.

  1. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans

    DEFF Research Database (Denmark)

    Søltoft, Malene; Bysted, Anette; Madsen, K. H.

    2011-01-01

    BACKGROUND: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased...... health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from...... crops from these agricultural systems. RESULTS: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly...

  2. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.

    Science.gov (United States)

    Koul, Archana; Yogindran, Sneha; Sharma, Deepak; Kaul, Sanjana; Rajam, Manchikatla Venkat; Dhar, Manoj K

    2016-11-01

    Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.

  3. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy

    2003-01-01

    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  4. Carotenoid extraction from plants using a novel, environmentally friendly solvent.

    Science.gov (United States)

    Ishida, Betty K; Chapman, Mary H

    2009-02-11

    Few environmentally friendly solvents are available to extract carotenoids for use in foods. The most effective known solvents are products of the petroleum industry and toxic for human consumption. Yet carotenoid extracts are desirable for use in dietary supplements and as additives to enhance the health benefits of processed foods. Ethyl lactate is an excellent solvent to extract both trans- and cis-lycopene isomers from dried tomato powder, the extraction efficiency of which is enhanced by the addition of the antioxidants alpha-tocopherol and alpha-lipoic acid, both of which are known to benefit human health. It is also useful to extract lutein and beta-carotene from dried powders prepared from white corn and carrots. Because of its low flammability and its origin as a byproduct of the corn and soybean industries, it is more advantageous than ethyl acetate, which is a petroleum product.

  5. The very early events following photoexcitation of carotenoids.

    Science.gov (United States)

    Hashimoto, Hideki; Yanagi, Kazuhiro; Yoshizawa, Masayuki; Polli, Dario; Cerullo, Giulio; Lanzani, Guglielmo; De Silvestri, Sandro; Gardiner, Alastair T; Cogdell, Richard J

    2004-10-01

    The recent availability of laser pulses with 10-20 fs duration, tunable throughout the visible and near infrared wavelengths, has facilitated the investigation, with unprecedented temporal resolution, into the very early events of energy relaxation in carotenoids [Science 298 (2002) 2395; Synth. Metals 139 (2003) 893]. This has enabled us to clearly demonstrate the existence of an additional intermediate state, Sx, lying between the S2 (1(1)Bu+) and S1 (2(1)Ag-) states. In addition, by applying time-resolved stimulated Raman spectroscopy with femtosecond time resolution, it has also been shown that vibrational relaxation in electronic excited states plays an important role in these interconversions. In this mini-review, we describe briefly the current understanding of Sx and the other intermediate excited states that can be formed by relaxation from S2, mainly focusing attention on the above two topics. Emphasis is also placed on some of the major remaining unsolved issues in carotenoid photochemistry.

  6. Colorful World of Microbes: Carotenoids and Their Applications

    Directory of Open Access Journals (Sweden)

    Kushwaha Kirti

    2014-01-01

    Full Text Available Microbial cells accumulate pigments under certain culture conditions, which have very important industrial applications. Microorganisms can serve as sources of carotenoids, the most widespread group of naturally occurring pigments. More than 750 structurally different yellow, orange, and red colored molecules are found in both eukaryotes and prokaryotes with an estimated market of $ 919 million by 2015. Carotenoids protect cells against photooxidative damage and hence found important applications in environment, food and nutrition, disease control, and as potent antimicrobial agents. In addition to many research advances, this paper reviews concerns with recent evaluations, applications of microbial pigments, and recommendations for future researches with an understanding of evolution and biosynthetic pathways along with other relevant aspects.

  7. Resonance Raman measurements of carotenoids using light emitting diodes

    CERN Document Server

    Bergeson, S D; Eyring, N J; Fralick, J F; Stevenson, D N; Ferguson, S B

    2008-01-01

    We report on the development of a compact commercial instrument for measuring carotenoids in skin tissue. The instrument uses two light emitting diodes (LEDs) for dual-wavelength excitation and four photomultiplier tubes for multichannel detection. Bandpass filters are used to select the excitation and detection wavelengths. The f/1.3 optical system has high optical throughput and single photon sensitivity, both of which are crucial in LED-based Raman measurements. We employ a signal processing technique that compensates for detector drift and error. The sensitivity and reproducibility of the LED Raman instrument compares favorably to laser-based Raman spectrometers. This compact, portable instrument is used for non-invasive measurement of carotenoid molecules in human skin with a repeatability better than 10%.

  8. A stable aminothioketyl radical in the gas phase.

    Science.gov (United States)

    Zimnicka, Magdalena; Gregersen, Joshua A; Tureček, František

    2011-07-06

    We report the first preparation of a stable aminothioketyl radical, CH(3)C(•)(SH)NHCH(3) (1), by fast electron transfer to protonated thioacetamide in the gas phase. The radical was characterized by neutralization-reionization mass spectrometry and ab initio calculations at high levels of theory. The unimolecular dissociations of 1 were elucidated with deuterium-labeled radicals CH(3)C(•)(SD)NHCH(3) (1a), CH(3)C(•)(SH)NDCH(3) (1b), CH(3)C(•)(SH)NHCD(3) (1c), and CD(3)C(•)(SH)NHCH(3) (1d). The main dissociations of 1 were a highly specific loss of the thiol H atom and a specific loss of the N-methyl group, which were competitive on the potential energy surface of the ground electronic state of the radical. RRKM calculations on the CCSD(T)/aug-cc-pVTZ potential energy surface indicated that the cleavage of the S-H bond in 1 dominated at low internal energies, E(int) < 232 kJ mol(-1). The cleavage of the N-CH(3) bond was calculated to prevail at higher internal energies. Loss of the thiol hydrogen atom can be further enhanced by dissociations originating from the B excited state of 1 when accessed by vertical electron transfer. Hydrogen atom addition to the thioamide sulfur atom is calculated to have an extremely low activation energy that may enable the thioamide group to function as a hydrogen atom trap in peptide radicals. The electronic properties and reactivity of the simple aminothioketyl radical reported here may be extrapolated and applied to elucidate the chemistry of thioxopeptide radicals and cation radicals of interest to protein structure studies.

  9. Proteomic analysis identifies proteins related to carotenoid accumulation in Yesso scallop (Patinopecten yessoensis).

    Science.gov (United States)

    Zhang, Yueyue; Zhang, Lingling; Sun, Jin; Qiu, Jianwen; Hu, Xiaoli; Hu, Jingjie; Bao, Zhenmin

    2014-03-15

    Carotenoids are powerful antioxidants that affect many physiological functions. As an important source of natural carotenoids, marine mollusks contain various types of carotenoids and are receiving increasing research attention. To better understand the molecular mechanism underlying carotenoid accumulation in marine mollusks, a new variety of carotenoid-enriched Yesso scallop (Patinopecten yessoensis), named "Haida golden scallop", was used in this study. A proteomic approach was applied to explore the differences between the new variety and common individuals, resulting in seven differentially expressed proteins. Real-time PCR showed that four of the corresponding genes were also significantly up-regulated at the mRNA level in the new variety. Genes involved in various biological processes, such as lipid and glucose metabolism, protein-folding and degradation, were altered. Peroxisome proliferator-activated receptors (PPARs) may play a vital role in these changes. This study represents the first step towards future work on the genetic basis of carotenoid accumulation in marine mollusks.

  10. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    Science.gov (United States)

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum.

  11. Analysis on Carotenoids Content and Other Quality Traits of 185 Wheat Varieties

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU; Yuanyuan WU; Wenyin ZHENG; Wenming ZHANG; Wenshang GUO; Danian YAO

    2015-01-01

    In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the carotenoids content, lipoxygenase activ-ity, whiteness, yel owness and some other quality traits of whole mil in wheat.The results showed that there were highly significant variations in lipoxygenase activity , carotenoids content, whiteness and yel owness among those sample of wheat vari-eties; carotenoids content was significantly and positively correlated with yel owness. Cluster analysis was performed based on carotenoids content clustered al the vari-eties or lines into three major groups. Additional y, carotenoids were discussed in the application of nutritional quality improvement in wheat.

  12. Análise de trilha para carotenoides em milho

    Directory of Open Access Journals (Sweden)

    Sara de Almeida Rios

    2012-06-01

    Full Text Available Ainda que sejam considerados os aspectos de magnitude e significância, o estudo de correlações entre caracteres por si só não garante causa e efeito entre eles. Dessa forma, o objetivo deste trabalho foi desdobrar as correlações fenotípicas em seus efeitos diretos e indiretos, pela análise de trilha, considerando o perfil de carotenoides em genótipos de milho. Foram utilizados dados obtidos do ensaio nacional de cultivares de milho conduzido pela Embrapa Milho e Sorgo, no ano agrícola 2004/2005, com média de 10 genótipos em cinco ambientes. Avaliaram-se os teores de carotenoides totais (CT, α e β-carotenos, luteína, zeaxantina e β-criptoxantina. A xantofila zeaxantina apresenta o maior efeito direto sobre β-caroteno. As altas correlações entre β-caroteno e carotenoides totais e entre β-caroteno e β-criptoxantina são devidas ao efeito indireto, via zeaxantina. A seleção direta de genótipos com altos teores de β-caroteno apresenta-se como a alternativa de maior efetividade, mas se outras frações de carotenoides também forem consideradas, esquemas de seleção simultânea de caracteres, por meio da utilização de índices de seleção, mostram-se mais eficientes na obtenção de genótipos com altos teores de β-caroteno do que a resposta correlacionada.

  13. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  14. The role of cis-carotenoids in abscisic acid biosynthesis.

    Science.gov (United States)

    Parry, A D; Babiano, M J; Horgan, R

    1990-08-01

    Evidence has been obtained which is consistent with 9'-cis-neoxanthin being a major precursor of abscisic acid (ABA) in higher plants. A mild, rapid procedure was developed for the extraction and analysis of carotenoids from a range of tissues. Once purified the carotenoids were identified from their light-absorbance properties, reactions with dilute acid, high-performance liquid chromatography Rts, mass spectra and the quasiequilibria resulting from iodine-catalysed or chlorophyllsensitised photoisomerisation. Two possible ABA precursors, 9'-cis-neoxanthin and 9-cis-violaxanthin, were identified in extracts of light-grown and etiolated leaves (of Lycopersicon esculentum, Phaseolus vulgaris, Vicia faba, Pisum sativum, Cicer arietinum, Zea mays, Nicotiana plumbaginifolia, Plantago lanceolata and Digitalis purpurea), and roots of light-grown and etiolated plants (Lycopersicon, Phaseolus and Zea). The 9,9'-di-cisisomer of violaxanthin was synthesised but its presence was not detected in any extracts. Levels of 9'-cis-neoxanthin and all-trans-violaxanthin were between 20- to 100-fold greater than those of ABA in light-grown leaves. The levels of 9-cis-violaxanthin were similar to those of ABA but unaffected by water stress. Etiolated Phaseolus leaves contained reduced amounts of carotenoids (15-20% compared with light-grown leaves) but retained the ability to synthesise large amounts of ABA. The amounts of ABA synthesised, measured as increases in ABA and its metabolites phaseic acid and dihydrophaseic acid, were closely matched by decreases in the levels of 9'-cis-neoxanthin and all-trans-violaxanthin. In etiolated seedlings grown on 50% D2O, deuterium incorporation into ABA was similar to that into the xanthophylls. Relative levels of carotenoids in roots and light-grown and etiolated leaves of the ABA-deficient mutants, notabilis, flacca and sitiens were the same as those found in wild-type tomato tissues.

  15. Physicochemical parameters that influence carotenoids bioaccessibility from a tomato juice.

    Science.gov (United States)

    Degrou, Antoine; Georgé, Stéphane; Renard, Catherine M G C; Page, David

    2013-01-15

    In vitro digestion models have been developed to estimate carotenoid bioavailability but most do not consider that their diffusion from fruit matrix to the lipid phase of the bolus could be a limiting step. Therefore we designed a model in which tomato juice is mixed with oil or oil/water emulsions, and the carotenoids diffusing to oil are measured by spectrometry. Temperature, pH and tomato juice/peanut oil ratio were evaluated for their influence on carotenoid diffusion. When oil/tomato ratio was between 0.11 and 1, extraction of lycopene was limited by the saturation of the oil phase. With a large excess of oil, diffusion was also limited, as only 31 ± 1% of lycopene could be extracted from the juice. Diffusion did not vary significantly with pH but doubled when temperature rose from 10°C to 37°C. When the juice was mixed in an emulsion stabilised with bovine serum albumin or phospholipids the maximum extraction decreased to 14.5 ± 0.2% and 18.5 ± 1.5% respectively, indicating that in addition to the saturation of the oil phase at low oil/tomato ratio and in addition to intrinsic properties of the tomato juice in non-saturating conditions, lycopene diffusion was limited by the structure of the interface in emulsions.

  16. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids.

    Science.gov (United States)

    Obruca, Stanislav; Benesova, Pavla; Kucera, Dan; Petrik, Sinisa; Marova, Ivana

    2015-12-25

    Coffee is one of the world's most popular beverages and has been growing steadily in commercial importance. Nowadays, coffee is the second largest traded commodity in the world, after petroleum. Hence, coffee industry is responsible for the generation of large amounts of waste, especially spent coffee grounds (SCG). Various attempts to valorize this waste stream of coffee industry were made. This article summarizes our research and publications aiming at the conversion of SCG into valuable products - polyhydroxyalkanoates (PHAs) and carotenoids. At first, oil extracted from SCG (approx. 15 wt% oil in SCG) can be efficiently (YP/S=0.82 g/g) converted into PHA employing Cupriavidus necator H16. Further, the solid residues after oil extraction can be hydrolyzed (by the combination of chemical and enzymatic hydrolysis) yielding fermentable sugars, which can be further used as a substrate for the production of PHAs employing Bacillus megaterium (YP/S=0.04 g/g) or Burkholderia cepacia (YP/S=0.24 g/g). Alternatively, SCG hydrolysate can be used as a substrate for biotechnological production of carotenoids by carotenogenic yeast Sporobolomyces roseus. Solid residues after either oil extraction or hydrolysis can be used as fuel in industrial boilers to generate heat and energy. Therefore, entire biomass of SCG can be used for sustainable production of PHAs and/or carotenoids employing bio-refinery approach.

  17. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  18. The role of carotenoids on the risk of lung cancer.

    Science.gov (United States)

    Epstein, Kenneth R

    2003-02-01

    Smoking prevention and cessation remain the primary methods of reducing the incidence of lung cancer. The limited success of efforts towards smoking cessation have led to increasing interest in the role of nutrition in lung cancer prevention. One class of nutrients that has attracted attention as potential chemopreventive agents is the carotenoids, especially beta-carotene, due to their antioxidant properties. In vitro, carotenoids exert antioxidant functions and inhibit carcinogen-induced neoplastic transformation, inhibit plasma membrane lipid oxidation, and cause upregulated expression of connexin 43. These in vitro results suggest that carotenoids have intrinsic cancer chemopreventive action in humans. Many cohort and case-control study data have shown an inverse relationship between fruit and vegetable consumption and lung cancer, although several more recent studies have cast doubt on these findings. Different effects of various dietary nutrients on lung cancer risk have been observed. Several prospective intervention trials were undertaken to examine the effect of supplementation on the risk of lung cancer. Some of these studies demonstrated an increased incidence and mortality from lung cancer in those receiving supplementation. Many hypotheses have emerged as to the reasons for these findings.

  19. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2014-07-28

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C{sup ·+}PF{sup ·−} radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical.

  20. [Detection of carotenoids in the vitreous body of the human eye during prenatal development].

    Science.gov (United States)

    Iakovleva, M A; Panova, I G; Fel'dman, T B; Zak, P P; Tatikolov, A S; Sukhikh, G T; Ostrovskiĭ, M A

    2007-01-01

    Carotenoids were found for the first time in the vitreous body of human eye during the fetal period from week 15 until week 28. Their maximum content was timed to week 16-22. No carotenoids were found the vitreous body of 31-week fetuses, as well as adult humans, which corresponds to the published data. It was shown using HPLC that chromatographic characteristics of these carotenoids correspond to those of lutein and zeaxanthin, characteristic pigments of the retinal yellow macula.

  1. Investigations of carotenoids in fungi. III. Fructifications of some species from the genus Suillus

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-11-01

    Full Text Available Using column and thin-layer chromatography the occurrence of carotenoids and their content was determined in fructifications of 5 species from the genus Suillus. 21 carotenoids were found, among them 3 which had not hitherto been detected in fungi (auroxanthin, 3,4-dihydroxy-α-carotene and myxoxantophyll. Moreover quantitative and qualitative differences were found in the content of carotenoids in fructifications of Boletus luteus which may be of importance in their taxonomy.

  2. Supercritical CO(2) extraction of carotenoids from pitanga fruits (Eugenia uniflora L.)

    OpenAIRE

    FILHO, Genival L.; ROSSO, VeridianaV. De; M. Angela A. MEIRELES; ROSA, Paulo T. V.; OLIVEIRA, Alessandra L.; MERCADANTE, Adriana Z.; CABRAL,Fernando A.

    2008-01-01

    Supercritical carbon dioxide (SC-CO(2)) extraction was employed to extract carotenoids from the freeze-dried pulp of pitanga fruits (Eugenia uniflora L.), an exotic fruit, rich in carotenoids and still little explored commercially. The SC-CO(2) extraction was carried out at two temperatures, 40 and 60 degrees C, and seven pressures, 100, 150, 200, 250, 300, 350 and 400 bar. The carotenoids were determined by high-performance liquid chromatography connected to photodiode array and mass spectro...

  3. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    OpenAIRE

    Emmanuelle Reboul

    2013-01-01

    Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were abs...

  4. Probability and radical behaviorism

    Science.gov (United States)

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  5. Probability and radical behaviorism

    OpenAIRE

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforc...

  6. Radical chic, javisst!

    NARCIS (Netherlands)

    Hartle, J.F.

    2012-01-01

    Det är lätt att raljera över engagerade människor, i synnerhet när engagemanget framstår som ytligt och chict snarare än grundläggande och autentiskt. Men vad ligger bakom ett sådant avfärdande? Johan Frederik Hartle läser om Tom Wolfes klassiska essä "Radical Chic" och visar hur Wolfe −− genom att

  7. Women and radicalization

    OpenAIRE

    Badran, Margot

    2006-01-01

    The paper focuses on women and radicalization within the context of Muslim societies (majority, minority, and half Muslim) societies and groups, mainly in Asia and Africa. The basic argument advanced in this paper is that Islamic feminism with its gender-egalitarian discourse and practices has a major role to play in the empowerment of Muslim women—and of men and society as a whole—and should be brought to bear in devising policy, strategy, and tools.

  8. Radical substitution with azide

    DEFF Research Database (Denmark)

    Pedersen, Christian Marcus; Marinescu, Lavinia Georgeta; Bols, Mikael

    2005-01-01

    and the substrate. A primary deuterium kinetic isotope effect was found for the azidonation of benzyl ethers both with TMSN3-PhI(OAc)2 and with IN3. Also a Hammett free energy relationship study of this reaction showed good correlation with sigma+ constants giving with rho-values of -0.47 for TMSN3-PhI(OAc)2 and -0.......39 for IN3. On this basis a radical mechanism of the reaction was proposed....

  9. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  10. [Radical prostatectomy - pro robotic].

    Science.gov (United States)

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  11. Maize provitamin A carotenoids, current resources and future metabolic engineering challenges.

    Directory of Open Access Journals (Sweden)

    Eleanore T Wurtzel

    2012-02-01

    Full Text Available Vitamin A deficiency is a serious global health problem that can be alleviated by improved nutrition. Development of cereal crops with increased provitamin A carotenoids can provide a sustainable solution to eliminating vitamin A deficiency worldwide. Maize is a model for cereals and a major staple carbohydrate source. Here, we discuss maize carotenogenesis with regard to pathway regulation, available resources, and current knowledge for improving carotenoid content and levels of provitamin A carotenoids in edible maize endosperm. This knowledge will be applied to improve the nutritional composition of related Poaceae crops. We discuss opportunities and challenges for optimizing provitamin A carotenoid biofortification of cereal food crops.

  12. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

    OpenAIRE

    Marcela Hernández-Ortega; Alicia Ortiz-Moreno; María Dolores Hernández-Navarro; Germán Chamorro-Cevallos; Lidia Dorantes-Alvarez; Hugo Necoechea-Mondragón

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4  μ g/g, pasilla 2933 ± 1  μ g/g, and ancho 1437 ± 6  μ g/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts e...

  13. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    Science.gov (United States)

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  14. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  15. Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model.

    Science.gov (United States)

    Fanciullino, A L; Bidel, L P R; Urban, L

    2014-02-01

    Carotenoids play an important role in plant adaptation to fluctuating environments as well as in the human diet by contributing to the prevention of chronic diseases. Insights have been gained recently into the way individual factors, genetic, environmental or developmental, control the carotenoid biosynthetic pathway at the molecular level. The identification of the rate-limiting steps of carotenogenesis has paved the way for programmes of breeding, and metabolic engineering, aimed at increasing the concentration of carotenoids in different crop species. However, the complexity that arises from the interactions between the different factors as well as from the coordination between organs remains poorly understood. This review focuses on recent advances in carotenoid responses to environmental stimuli and discusses how the interactions between the modulation factors and between organs affect carotenoid build-up. We develop the idea that reactive oxygen species/redox status and sugars/carbon status can be considered as integrated factors that account for most effects of the major environmental factors influencing carotenoid biosynthesis. The discussion highlights the concept of carotenoids or carotenoid-derivatives as stress signals that may be involved in feedback controls. We propose a conceptual model of the effects of environmental and developmental factors on carotenoid build-up in fruits.

  16. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves.

    Science.gov (United States)

    Lätari, Kira; Wüst, Florian; Hübner, Michaela; Schaub, Patrick; Beisel, Kim Gabriele; Matsubara, Shizue; Beyer, Peter; Welsch, Ralf

    2015-08-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation.

  17. Composition and spectra of copper-carotenoid sediments from a pyrite mine stream in Spain

    Science.gov (United States)

    Garcia-Guinea, Javier; Furio, Marta; Sanchez-Moral, Sergio; Jurado, Valme; Correcher, Virgilio; Saiz-Jimenez, Cesareo

    2015-01-01

    Mine drainages of La Poderosa (El Campillo, Huelva, Spain), located in the Rio Tinto Basin (Iberian Pyrite Belt) generate carotenoid complexes mixed with copper sulfates presenting good natural models for the production of carotenoids from microorganisms. The environmental conditions of Rio Tinto Basin include important environmental stresses to force the microorganisms to accumulate carotenoids. Here we show as carotenoid compounds in sediments can be analyzed directly in the solid state by Raman and Luminescence spectroscopy techniques to identify solid carotenoid, avoiding dissolution and pre-concentration treatments, since the hydrous copper-salted paragenesis do not mask the Raman emission of carotenoids. Raman spectra recorded from one of these specimens' exhibit major features at approximately 1006, 1154, and 1520 cm-1. The bands at 1520 cm-1 and 1154 cm-1 can be assigned to in-phase Cdbnd C (γ-1) and Csbnd C stretching (γ-2) vibrations of the polyene chain in carotenoids. The in-plane rocking deformations of CH3 groups linked to this chain coupled with Csbnd C bonds are observed in the 1006 cm-1 region. X-irradiation pretreatments enhance the cathodoluminescence spectra emission of carotenoids enough to distinguish organic compounds including hydroxyl and carboxyl groups. Carotenoids in copper-sulfates could be used as biomarkers and useful proxies for understanding remote mineral formations as well as for terrestrial environmental investigations related to mine drainage contamination including biological activity and photo-oxidation processes.

  18. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering.

  19. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Bhagavathy S; Sumathi P

    2012-01-01

    Objective:To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods:Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results: The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein,β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (P<0.05 for CA, P<0.001 for SCE). The MN frequencies of the cells were significantly decreased by the treatment with carotenoids when compared with the positive controls (P<0.05). Conclusions:The findings of the present study demonstrate that, the green algae C. humicola is a rich source of bioactive compounds especially carotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects.

  20. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    Science.gov (United States)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  1. Theoretical Study of the Benzene Cation%苯分子离子的理论研究

    Institute of Scientific and Technical Information of China (English)

    刘亚军; 邝平先; 黄明宝

    2001-01-01

    The Jahn-Teller distorted states, 2B2g and 2B1g of the benzene radical cation have been studied by using ab initio MPn and SDCI methods. The calculations indicate that 2B2g is the ground state of the benzene cation and that 2B1g is higher in energy than 2B2g and represents a saddle point. The calculated isotropic and anisotropic hyperfine coupling constants for the 2B2g state are in excellent agreement with those obtained from the ESR experiments. It is concluded that the benzene cation is in the 2B2g Jahn-Teller distorted state.

  2. Threshold photoelectron spectroscopy of the imidogen radical

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Gustavo A., E-mail: gustavo.garcia@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Gans, Bérenger [Institut des Sciences Moléculaires d’Orsay, Univ Paris-Sud, CNRS, Bât 210, Univ Paris-Sud, 91405 Orsay Cedex (France); Tang, Xiaofeng [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Ward, Michael; Batut, Sébastien [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Fittschen, Christa [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Loison, Jean-Christophe [ISM, Université de Bordeaux, CNRS, 351 cours de la Libération, 33405 Talence Cedex (France)

    2015-08-15

    We present the threshold photoelectron spectroscopy of the imidogen radical (NH) recorded in the photon energy region up to 1 eV above its first ionization threshold. The radical was produced by reaction of NH{sub 3} and F in a microwave discharge flow-tube and photoionized using vacuum ultraviolet (VUV) synchrotron radiation. A double imaging coincidence spectrometer was used to record mass-selected spectra and avoid contributions from the byproducts present in the reactor and background gas. The energy region includes the ground X{sup +2}Π and first electronically excited a{sup +4}Σ{sup −} states of NH{sup +}. Strong adiabatic transitions and weak vibrational progressions up to v{sup +} = 2 are observed for both electronic states. The rotational profile seen in the origin band has been modeled using existing neutral and cationic spectroscopic constants leading to a precise determination of the adiabatic ionization energy at 13.480 ± 0.002 eV.

  3. In vivo antioxidant activity of carotenoid powder from tomato byproduct and its use as a source of carotenoids for egg-laying hens.

    Science.gov (United States)

    Xue, Feng; Li, Chen; Pan, Siyi

    2013-04-25

    Ultrasound treatment was used to extract carotenoids from tomato waste. Gelatin and gum arabic were applied as coating materials for the encapsulation of carotenoids. The first-order reaction was used to determine the degradation of carotenoids in the microcapsules. The result of controlled release studies showed that microcapsules would protect most of the carotenoids from being released in the stomach. We investigated the modifications induced by an oral administration of carotenoid powder on lipid peroxidation, antioxidant enzymes and ion status in liver of rat. The 28 day treatment increased the activity of glutathione peroxidase and manganese superoxide dismutase and reduced malondialdehyde concentration in rat liver. The activity of catalase was not affected by treatment and greater iron concentration was found in liver from treatment groups. However, there was no dose-dependent change of antioxidant enzyme activity or malondialdehyde concentration with increasing carotenoid consumption. Furthermore, carotenoid powder was able to be used as forage material for egg-laying hens. The 28 day treatment did not affect the egg performance, but significantly increased yolk colour parameters and lycopene content.

  4. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9'-cis-echinenone as the dominant carotenoid in gonad colour determination.

    Science.gov (United States)

    Symonds, Rachael C; Kelly, Maeve S; Caris-Veyrat, Catherine; Young, Andrew J

    2007-12-01

    Regular sampling of wild Paracentrotus lividus was carried out over a 12-month period to examine seasonal effects on the pigment profile and content of the gonads, especially in comparison to gonad colour. The major pigments detected in the gut wall were breakdown products of fucoxanthin, namely fucoxanthinol and amarouciaxanthin A. Lower levels of other dietary carotenoids (lutein and beta-carotene) together with some carotenoids not found in the diet, namely isozeaxanthin and echinenone ( approximately 20% total carotenoid) were also detected in the gut wall. The presence of echinenone in the gut wall demonstrates that this organ acts as a major site of carotenoid metabolism. Echinenone is the dominant carotenoid in the gonads, accounting for approx. 50-60% of the total pigment. Both all-trans and 9'-cis forms of echinenone were detected in both the gut wall and in the gonad, with levels of the 9'-cis form typically 10-fold greater than the all-trans form in the gonad. The detection of large levels of 9'-cis-echinenone in wild sea urchins is unexpected due to the absence of 9- or 9'-cis forms of carotenoids in the natural, algal, diet. Whilst echinenone clearly contributes towards gonad pigmentation, levels of this carotenoid, cannot be directly linked to a qualitative assessment of gonad colour in terms of market acceptability. Indeed, unacceptable gonad colouration can be seen with both very low and high levels of echinenone and total carotenoid. The presence of 9'-cis-echinenone as the major carotenoid contributing to the pigmentation/colour of the gonad is an important observation in terms of developing artificial diets for urchin cultivation.

  5. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  6. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  7. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.

    Science.gov (United States)

    Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica

    2015-11-01

    The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.

  8. Carotenoids production: microorganisms as source of natural dyes Produção de carotenoides: microrganismos como fonte de pigmentos naturais

    Directory of Open Access Journals (Sweden)

    Eunice Valduga

    2009-01-01

    Full Text Available Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.

  9. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    Full Text Available O canistel (P. campechiana é uma fruta nativa da América Central e México, ainda pouco conhecida no Brasil. Apresenta uma polpa amarelo-alaranjada, rica em carotenoides, que tem despertado interesse como potencial de vitamina A. O objetivo deste trabalho foi determinar o teor de carotenoides e o valor provitamina A na polpa de canistel, assim como os teores de umidade e lipídeos na polpa e na semente. Os carotenoides foram separados por cromatografia em coluna aberta. O conteúdo de carotenoides totais foi de 226 ± 4 μg/g. Violaxantina e neoxantina foram os carotenóides predominantes, somando 196 ± 5 μg/g. seguidos por zetacaroteno, betacaroteno 5,6-epóxido, betacaroteno e fitoflueno. A semente foi a parte do fruto que apresentou maior teor de lipídeos totais, com 4,6 ± 0,2 %, e a polpa, 0,61 ± 0,03 %. Os resultados indicam que o canistel apresenta teores de carotenóides totais muito elevados e pode ser considerado uma boa fonte de provitamina A (59 ± 6 RAE/100g, se comparado com outras frutas normalmente consumidas. No entanto, os principais carotenoides encontrados em sua polpa são destituídos de atividade provitamina A.Canistel (Pouteria campechiana is a native fruit from Central America and Mexico. This fruit still not known in Brazil, presents an orange-yellow pulp rich in carotenoids, which has attracted interest as a potential source of vitamin A. The purpose of this study was to determine the carotenoids content and pro-vitamin A values in the pulp of canistel, as well as the percentage of moisture and lipids in the pulp and seeds. Carotenoids were separated by open column chromatography. The content of total carotenoids was 226 ± 4 μg/g. Violaxantin and neoxantin were the predominant carotenoids with 196 ± 5 μg/g followed by zeta-carotene, beta-carotene 5,6-epoxide, beta-carotene and phytofluene. The seeds presented higher levels of total lipids with 4.6 ± 0.2 %, while pulp had 0.61 ± 0.03 % of total lipid. These

  10. Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Rezaei

    2016-12-01

    Full Text Available Plant carotenoids have a key role in preventing various diseases in human because of their antioxidant and provitamin A properties. Chickpea is a good source of carotenoid among legumes and its diverse germplasm and genome accessibility makes it a good model for carotenogenesis studies. The structure, location and copy numbers of genes involved in carotenoid biosynthesis were retrieved from the chickpea genome. The majority of the single nucleotide polymorphism (SNPs within these genes across five diverse chickpea cultivars was synonymous mutation. We examined the expression of the carotenogenesis genes and their association with carotenoid concentration at different seed development stages of five chickpea cultivars. Total carotenoid concentration ranged from 22 μg g-1 in yellow cotyledon kabuli to 44 μg g-1 in green cotyledon desi at 32 days post anthesis (DPA. The majority of carotenoids in chickpea seeds consists of lutein and zeaxanthin. The expression of the selected 19 genes involved in carotenoid biosynthesis pathway showed common pattern across five cultivars with higher expression at 8 and/or 16 DPA then dropped considerably at 24 and 32 DPA. Almost all genes were up-regulated in CDC Jade cultivar. Correlation analysis between gene expression and carotenoid concentration showed that the genes involved in the primary step of carotenoid biosynthesis pathway including carotenoid desaturase and isomerase positively correlated with various carotenoid components in chickpea seeds. A negative correlation was found between hydroxylation activity and provitamin A concentration in the seeds. The highest provitamin A concentration including β-carotene and β-cryptoxanthin were found in green cotyledon chickpea cultivars.

  11. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Science.gov (United States)

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  12. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Directory of Open Access Journals (Sweden)

    Isabel López-Rull

    Full Text Available Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins, pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  13. Synchrotron-based valence shell photoionization of CH radical

    Science.gov (United States)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  14. Transformation of anthracene on various cation-modified clay minerals.

    Science.gov (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  15. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path.

  16. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    Science.gov (United States)

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

  17. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and place demand an explanation; my attempt to do so also takes into account the important differences between the gnostic and the radical feminist postures, notably the latter belief in progress and the former nostalgia for an ungendered era. Both the similarities and the differences, however, may offer...... support for approaching Gnosticism as first and foremost a cultural phenomenon (albeit exhibiting religious “symptoms”), and I attempt to show that such an approach can help to solve the recurrent problem of defining Gnosticism....

  18. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    Directory of Open Access Journals (Sweden)

    Leenawaty Limantara3

    2012-12-01

    Full Text Available Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarezii, Sargassum sp, and Caulerpa sp. Carotenoids from algae has been proven as a powerful antioxidant and may prevent some degenerative diseases, cardiovascular, and cancer. Carotenoid also has been applied as a natural dye and dietary supplements. Biotechnology has been developed to increase the production of carotenoids from micro- and macroalgae. The large-scale cultivation of microalgae, either in open or closed system are shown to increase carotenoid production. During cultivation, some stress conditions can be specifically manipulated to optimize carotenoid production from microalgae.

  19. Carotenoides bixina e norbixina extraídos do urucum (Bixa orellana L. como antioxidantes em produtos cárneos Carotenoids bixin and norbixin from annatto (Bixa orellana L. as antioxidants in meat products

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Rocha Garcia

    2012-08-01

    of this reaction. Antioxidants are substances used to inhibit or retard oxidative rancidity. However the use of these compounds has been drawing the attention of consumers and regulatory agencies about the safety of synthetic additives consumption. This study aimed to evaluate the use of carotenoids bixin and norbixin as antioxidants in meat products by review of the chemical characteristics, methods of production, toxicity and technological applications. These pigments are extracted from annatto (Bixa orellana L. using organic solvents, supercritical extraction or microwaves. In Brazil, the use of these substances is forecast by law as food colorant, however, this carotenoids show a large unsaturated carbon chains that allow the addition of free radicals and enable their use as antioxidant. The structural differences between bixin and norbixin result in distinct polarity, solubility and coloration, and consequently in different technological applications. At concentrations established by regulatory agencies, the use of these compounds is safe and, in addition to applications such as dyes, can be used by industries as natural antioxidants, which is an alternative capable of replace or minimize the use of synthetic additives in meat products.

  20. EXTRACTION AND IDENTIFICATION OF CAROTENOIDS IN GREEN EATABLE VEGETABLES – A PROPOSAL FOR PRACTICAL CLASSES

    Directory of Open Access Journals (Sweden)

    D.S Paiva

    2006-07-01

    β-carotene  protecting  against  low  vitamin  A  concentration  in  the  organisms  and  the  degenerative disturbs  related  to oxidative  reactions.  Finally, the students will be orientated  to correlate  the  carotenoids actions  in the prevention of diseases caused by free radicals.

  1. The distonic ion (·)CH 2CH 2CH (+)OH, keto ion CH 3CH 2CH=O (+·), enol ion CH 3CH=CHOH (+·), and related C 3H 6O (+·) radical cations. Stabilities and isomerization proclivities studied by dissociation and neutralization-reionization.

    Science.gov (United States)

    Polce, M J; Wesdemiotis, C

    1996-06-01

    Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion (·)CH2CH2CH(-)OH (2(+·)) and its enol-keto tautomers CH3CH=CHOH(-·) (1 (+·)) and CH3CH2CH=O (+·) (3(+·)). The major fragmentation of metastable 1(+·)-3(+·) is H(·) loss to yield the propanoyl cation, CH3CH2C≡O(+). This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH(+) OH is coproduced from all three precursors. The CAD and neutralization-reionization ((+)NR(+)) spectra of keto ion 3 (+·) are substantially different from those of tautomers 2(+·) and 1(+·). Hence, 3(+·) without sufficient energy for decomposition (i. e. , "stable" 3(+·)) does not isomerize to the ther-modynamically more stable ions 2(+·) or 1(+·), and the 1,4-H rearrangement H-CH2CH2CH=O(+·)(3 (+·)) → CH2CH2CH(+) O-H (2 (+·)) must require an appreciable critical energy. Although the fragment ion abundances in the (+) NR (+) (and CAD) spectra of 1 (+·) and 2 (+·) are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O(+·) ions in the (+)NR(+) spectra) are markedly distinct and independent of the internal energy of 1 (+·) and 2 (+·). Furthermore, 1 (+·) and 2 (+·) show different MI spectra. Based on these data, distonic ion 2 (+·) does not spontaneously rearrange to enol ion 1 (+·) (which is the most stable C3H6O(+·) of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 (+·)) and allyl alcohol (5 (+·)) isomerize readily to 2 (+·), via ring opening and 1,2-H(-) shift, respectively. The sample found to generate the purest 2 (+·) is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 (+·) by a least-motion reaction cogenerate detectable quantities of enol ion 1 (+·), or the enol ion of acetone (CH2=C(CH3

  2. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Science.gov (United States)

    Maggio, Marcello; de Vita, Francesca; Lauretani, Fulvio; Bandinelli, Stefania; Semba, Richard D.; Bartali, Benedetta; Cherubini, Antonio; Cappola, Anne R.; Ceda, Gian Paolo; Ferrucci, Luigi

    2015-01-01

    Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2) in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000) by High-Performance Liquid Chromatography. Estradiol and testosterone (T) levels were assessed by Radioimmunometry (RIA) and testosterone-to-estradiol ratio (T/E2), as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1) and further adjusted for other confounders including Body Mass Index (BMI) BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2) were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02) and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007) were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01). After adjustment for other confounders (Model 2), the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01), β-carotene (β ± SE = −0.29 ± 0.08, p

  3. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Directory of Open Access Journals (Sweden)

    Marcello Maggio

    2015-08-01

    Full Text Available Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2 in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000 by High-Performance Liquid Chromatography. Estradiol and testosterone (T levels were assessed by Radioimmunometry (RIA and testosterone-to-estradiol ratio (T/E2, as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1 and further adjusted for other confounders including Body Mass Index (BMI BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2 were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02 and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007 were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01. After adjustment for other confounders (Model 2, the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01, β-carotene (β ± SE = −0.29

  4. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  5. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  6. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  7. Bursectomy at radical gastrectomy

    Institute of Scientific and Technical Information of China (English)

    Cuneyt; Kayaalp

    2015-01-01

    Radical gastrectomy with extended lymph node dissec tion and prophylactic resection of the omentum, peri toneum over the posterior lesser sac, pancreas and/o spleen was advocated at the beginning of the 1960 s in Japan. In time, prophylactic routine resections of the pancreas and/or spleen were abandoned because of the high incidence of postoperative complications. However omentectomy and bursectomy continued to be standard parts of traditional radical gastrectomy. The bursaomentalis was thought to be a natural barrier against invasion of cancer cells into the posterior part of the stomach. The theoretical rationale for bursectomy was to reduce the risk of peritoneal recurrences by eliminating the peritoneum over the lesser sac, which might include free cancer cells or micrometastases. Over time, the indication for bursectomy was gradually reduced to only patients with posterior gastric wall tumors penetrating the serosa. Despite its theoretical advantages, its benefit for recurrence or survival has not been proven yet. The possible reasons for this inconsistency are discussed in this review. In conclusion, the value of bursectomy in the treatment of gastric cancer is still under debate and large-scale randomized studies are necessary. Until clear evidence of patient benefit is obtained, its routine use cannot be recommended.

  8. Radically innovative steelmaking technologies

    Science.gov (United States)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  9. Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus.

    Science.gov (United States)

    Ouchane, S; Picaud, M; Vernotte, C; Astier, C

    1997-08-01

    Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria.

  10. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    NARCIS (Netherlands)

    Dias, M.G.; Oliveira, L.; Camoes, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M.

    2010-01-01

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids a-carotene, ß-carotene, ß-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the ana

  11. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.

    Science.gov (United States)

    de Faria, A F; de Rosso, V V; Mercadante, A Z

    2009-06-01

    Carotenoids are pigments responsible for the yellow-reddish color of many foods and are related to important functions and physiological actions, preventing several chronic-degenerative diseases. The objective of this study was to confirm the carotenoid composition of jackfruit by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). The main carotenoids were all-trans-lutein (24-44%), all-trans-beta-carotene (24-30%), all-trans-neoxanthin (4-19%), 9-cis-neoxanthin (4-9%) and 9-cis-violaxanthin (4-10%). Either qualitative or quantitative differences, mainly related to the lutein proportion, were found among three batches of jackfruit. Since the fruits from batch A showed significantly lower contents for almost all carotenoids, it also had the lowest total carotenoid content (34.1 microg/100 g) and provitamin A value, whereas the total carotenoid ranged from 129.0 to 150.3 microg/100 g in the other batches. The provitamin A values from batches B and C were 3.3 and 4.3 microg RAE/100 g, respectively. The carotenoid composition of jackfruit was successfully determined, where 14 of the 18 identified carotenoids were reported for first time. Differences among batches may be due to genetic and/or agricultural factors.

  12. [Conformity of cancerous diagnosis of serum-fluorimetry under the influence of carotenoid fluorescence].

    Science.gov (United States)

    Meng, J; Zhang, Y; Ren, X; Ma, H; Ren, W; Xu, X; Cao, B; Li, W

    2000-08-01

    We observed that carotenoid had sensitization for fluorescence of porphyrin as cancerous diagnostic technology was applied in clinic by serum-fluorimetry. The Forster theory was used in order to analyse sensitized fluorescence between carotenoid and porphyrin in this paper. Transfer characteristic between energy donor and energy acceptor was calculated and discussed its influence on cancerous diagnosis.

  13. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.).

    Science.gov (United States)

    Kishimoto, Sanae; Maoka, Takashi; Sumitomo, Katsuhiko; Ohmiya, Akemi

    2005-11-01

    Nineteen carotenoids were identified in extracts of petals of orange- and yellow-flowered cultivars of calendula (Calendula officinalis L.). Ten carotenoids were unique to orange-flowered cultivars. The UV-vis absorption maxima of these ten carotenoids were at longer wavelengths than that of flavoxanthin, the main carotenoid of calendula petals, and it is clear that these carotenoids are responsible for the orange color of the petals. Six carotenoids had a cis structure at C-5 (C-5'), and it is conceivable that these (5Z)-carotenoids are enzymatically isomerized at C-5 in a pathway that diverges from the main carotenoid biosynthesis pathway. Among them, (5Z,9Z)-lycopene (1), (5Z,9Z,5'Z,9'Z)-lycopene (3), (5'Z)-gamma-carotene (4), and (5'Z,9'Z)-rubixanthin (5) has never before been identified. Additionally, (5Z,9Z,5'Z)-lycopene (2) has been reported only as a synthesized compound.

  14. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    Science.gov (United States)

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  15. Calorimetric studies of the effect of -carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers

    OpenAIRE

    Widomska, Justyna; Kostecka-Gugała, Anna; Latowski, Dariusz; Gruszecki, Wiesław I.; Strzałka, Kazimierz

    2009-01-01

    Abstract Carotenoid geometry is a factor that determines their solubility and orientation in the lipid memebrane as well as antioxidant capacities and bioavailability. The effects of the cis-isomers of carotenoids (zeaxanthin and ?-carotene) on the thermotropic properties of lipid membranes formed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) were investigated by means of differential scanning calorimetry. The results were compared with the ef...

  16. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation.

    Science.gov (United States)

    Xia, Shuqin; Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Qin, Fang

    2015-04-01

    Liposomes have become an attractive alternative to encapsulate carotenoids to improve their solubility, stability and bioavailability. The interaction mechanism of carotenoid with lipid bilayer is one of the major concerns in improving the delivery efficiency of liposomes. In this study, the microstructure and carotenoid encapsulation efficiency of liposomes composed of native phospholipid (egg yolk phosphatidylcholine, EYPC) and nonionic surfactant Tween 80 were investigated by atomic force microscopy, dynamic light scattering, and Raman spectroscopy, respectively. Subsequently, the effects of carotenoid incorporation on the physical properties of liposomal membrane were performed by Raman spectroscopy, fluorescence polarization, and electron paramagnetic resonance. Results showed that the incorporation of carotenoids affected the liposomes morphology, size and size distribution to various extents. Analysis on the Raman characteristic peaks of carotenoids revealed that lutein exhibited the strongest incorporating ability into liposomes, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, it was demonstrated that carotenoids modulated the dynamics, structure and hydrophobicity of liposomal membrane, highly depending on their molecular structures and incorporated concentration. These modulations were closely correlated with the stabilization of liposomes, including mediating particle aggregation and fusion. These findings should guide the rationale designing for liposomal encapsulation technology to efficiently deliver carotenoids in pharmaceutics, nutraceuticals and functional foods.

  17. Dietary carotenoids and risk of colorectal cancer in a pooled analysis of 11 cohort studies

    NARCIS (Netherlands)

    Männistö, S.; Yaun, S.S.; Hunter, D.J.; Spiegelman, D.; Adami, H.O.; Albanes, D.; Brandt, P.A. van den; Buring, J.E.; Cerhan, J.R.; Colditz, G.A.; Freudenheim, J.L.; Fuchs, C.S.; Giovannucci, E.; Goldbohm, R.A.; Harnack, L.; Leitzmann, M.; McCullough, M.L.; Miller, A.B.; Rohan, T.E.; Schatzkin, A.; Virtamo, J.; Willett, W.C.; Wolk, A.; Zhang, S.M.; Smith-Warner, S.A.

    2007-01-01

    Dietary carotenoids have been hypothesized to protect against epithelial cancers. The authors analyzed the associations between intakes of specific carotenoids (alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein + zeaxanthin, and lycopene) and risk of colorectal cancer using the primary data

  18. Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency.

    Science.gov (United States)

    Englberger, Lois; Darnton-Hill, Ian; Coyne, Terry; Fitzgerald, Maureen H; Marks, Geoffrey C

    2003-12-01

    This review article points out that bananas are an important food for many people in the world. Thus, banana cultivars rich in provitamin A carotenoids may offer a potential food source for alleviating vitamin A deficiency, particularly in developing countries. Many factors are associated with the presently known food sources of vitamin A that limit their effectiveness in improving vitamin A status. Acceptable carotenoid-rich banana cultivars have been identified in Micronesia, and some carotenoid-rich bananas have been identified elsewhere. Bananas are an ideal food for young children and families for many regions of the world, because of their sweetness, texture, portion size, familiarity, availability, convenience, versatility, and cost. Foods containing high levels of carotenoids have been shown to protect against chronic disease, including certain cancers, cardiovascular disease, and diabetes. Because the coloration of the edible flesh of the banana appears to be a good indicator of likely carotenoid content, it may be possible to develop a simple method for selecting carotenoid-rich banana cultivars in the community. Research is needed on the identification of carotenoid-rich cultivars, targeting those areas of the world where bananas are a major staple food; investigating factors affecting production, consumption, and acceptability; and determining the impact that carotenoid-rich bananas may have on improving vitamin A status. Based on these results, interventions should be undertaken for initiating or increasing homestead and commercial production.

  19. Fruit over sunbed: carotenoid skin colouration is found more attractive than melanin colouration.

    Science.gov (United States)

    Lefevre, Carmen E; Perrett, David I

    2015-01-01

    Skin colouration appears to play a pivotal part in facial attractiveness. Skin yellowness contributes to an attractive appearance and is influenced both by dietary carotenoids and by melanin. While both increased carotenoid colouration and increased melanin colouration enhance apparent health in Caucasian faces by increasing skin yellowness, it remains unclear, firstly, whether both pigments contribute to attractiveness judgements, secondly, whether one pigment is clearly preferred over the other, and thirdly, whether these effects depend on the sex of the face. Here, in three studies, we examine these questions using controlled facial stimuli transformed to be either high or low in (a) carotenoid colouration, or (b) melanin colouration. We show, firstly, that both increased carotenoid colouration and increased melanin colouration are found attractive compared to lower levels of these pigments. Secondly, we show that carotenoid colouration is consistently preferred over melanin colouration when levels of colouration are matched. In addition, we find an effect of the sex of stimuli with stronger preferences for carotenoids over melanin in female compared to male faces, irrespective of the sex of the observer. These results are interpreted as reflecting preferences for sex-typical skin colouration: men have darker skin than women and high melanization in male faces may further enhance this masculine trait, thus carotenoid colouration is not less desirable, but melanin colouration is relatively more desirable in males compared to females. Taken together, our findings provide further support for a carotenoid-linked health-signalling system that is highly important in mate choice.

  20. Context-dependent effects of carotenoid supplementation on reproduction in zebra finches

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Briga, Michael; Leenknegt, Bas; Verhulst, Simon

    2014-01-01

    Carotenoid-dependent sexual coloration is one of the best-studied sexual signals, but how the honesty of such signals is maintained remains uncertain. The main hypotheses focus on acquisition limits and physiological use of carotenoids in immune function and regulating oxidative stress. A hypothesis