WorldWideScience

Sample records for carotenoid protein acting

  1. Regulation of orange carotenoid protein activity in cyanobacterial photoprotection

    NARCIS (Netherlands)

    Thurotte, A.; Lopez Igual, R.; Wilson, A.; Comolet, L.; Bourcier de Carbon, C.; Xiao, F.; Kirilovsky, D.

    2015-01-01

    Plants, algae, and cyanobacteria have developed mechanisms to decrease the energy arriving at reaction centers to protect themselves from high irradiance. In cyanobacteria, the photoactive Orange Carotenoid Protein (OCP) and the Fluorescence Recovery Protein are essential elements in this mechanism.

  2. Orange carotenoid protein burrows into the phycobilisome to provide photoprotection.

    Science.gov (United States)

    Harris, Dvir; Tal, Ofir; Jallet, Denis; Wilson, Adjélé; Kirilovsky, Diana; Adir, Noam

    2016-03-22

    In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation. PMID:26957606

  3. Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot esculenta Crantz) storage root

    Science.gov (United States)

    Carotenoid-protein complex separation by size exclusion chromatography, protein fractionation by SDS-PAGE, and shotgun PROTEOMICS technology were used to identify and characterize carotenoid associated proteins (CAPs) of chromoplast-enriched suspensions from cassava intense yellow storage root. A no...

  4. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  5. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis. PMID:27485220

  6. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  7. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  8. Structural Determinats Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Adjele; Kinney, James N.; Zwart, Petrus H.; Punginelli, Claire; D' Haene, Sandrine; Perreau, Francois; Klein, Michael G.; Kirilovsky, Diana; Kerfeld, Cheryl

    2010-04-01

    The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the Orange Carotenoid Protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wildtype and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides highresolution detail of the carotenoidprotein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.

  9. Studies on Variation of Carotenoid-Proteins Content in Cassava (Manihot esculenta Crantz) Storage Root Reveal Implications for Breeding and the Use of Induced Mutations

    International Nuclear Information System (INIS)

    Carotenoid-Protein content in cassava storage root (CSR) is low but variable, and characterization of this variability is lacking. Accumulation of carotenoids occurs in chromoplast and depends on a broad class of proteins named carotenoid associated proteins (CAP), lipids and the biosynthesis of carotenoids. Twenty-nine landraces and progeny of 200 individuals were accessed for CAP and carotenoid content varied in two ways. First, related to landrace diversity, total buffer extractable proteins (TBEP), buffer insoluble proteins (BIP) and total carotenoid and β-carotene content were assessed. Significant differences were observed in the tested genotypes. Secondly, analyses related to storage root tissue age were assessed by TBEP. This showed protein content decreased and total carotenoid content increased as secondary growth proceeds. Further carotenoid-proteins complex (CPC) identified in carotenoid contrasting landraces showed different proteins profile in SDS-PAGE with proteins size of 18 and 33 kDa in low carotenoid (IAC12.829) and 18-20-30-33 kDa in a high total carotenoid landrace (Cas74.1). Progeny analysis for TBEP and total carotenoid content confirmed the interdependence of carotenoid-proteins association by correlation analysis, estimated heritability of individual traits and grouping clones for carotenoid-proteins content. Results allow us to conclude that: natural carotenoid-protein content varies due to differential genetic background and storage root tissue age; carotenoid-protein complex showed variation in protein and carotenoid types; estimated heritability of proteins and carotenoids traits showed different values. The establishment of a genetic component allows future strategies including traditional breeding and the use of induced mutations to create novel variation for the nutritional improvement of cassava tubers. (author)

  10. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  11. Comparing the photophysics of the two forms of the Orange Carotenoid Protein using 2D electronic spectroscopy

    Directory of Open Access Journals (Sweden)

    Mathies R.A.

    2013-03-01

    Full Text Available Broadband two-dimensional electronic spectroscopy is applied to investigate the photophysics of the photoactive orange carotenoid protein, which is involved in nonphotochemical quenching in cyanobacteria. Differences in dynamics between the light and dark forms arise from the different structure of the carotenoid in the protein pocket, with consequences for the biological role of the two forms.

  12. Variation in carotenoid-protein interaction in bird feathers produces novel plumage coloration.

    Science.gov (United States)

    Mendes-Pinto, Maria M; LaFountain, Amy M; Stoddard, Mary Caswell; Prum, Richard O; Frank, Harry A; Robert, Bruno

    2012-12-01

    Light absorption by carotenoids is known to vary substantially with the shape or conformation of the pigment molecule induced by the molecular environment, but the role of interactions between carotenoid pigments and the proteins to which they are bound, and the resulting impact on organismal coloration, remain unclear. Here, we present a spectroscopic investigation of feathers from the brilliant red scarlet ibis (Eudocimus ruber, Threskiornithidae), the orange-red summer tanager (Piranga rubra, Cardinalidae) and the violet-purple feathers of the white-browed purpletuft (Iodopleura isabellae, Tityridae). Despite their striking differences in colour, all three of these feathers contain canthaxanthin (β,β-carotene-4,4'-dione) as their primary pigment. Reflectance and resonance Raman (rR) spectroscopy were used to investigate the induced molecular structural changes and carotenoid-protein interactions responsible for the different coloration in these plumage samples. The results demonstrate a significant variation between species in the peak frequency of the strong ethylenic vibration (ν(1)) peak in the rR spectra, the most significant of which is found in I. isabellae feathers and is correlated with a red-shift in canthaxanthin absorption that results in violet reflectance. Neither polarizability of the protein environment nor planarization of the molecule upon binding can entirely account for the full extent of the colour shift. Therefore, we suggest that head-to-tail molecular alignment (i.e. J-aggregation) of the protein-bound carotenoid molecules is an additional factor.

  13. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haijun [Washington University; Zhang, Hao [Washington University; King, Jeremy D. [Washington University; Wolf, Nathan R. [Washington University; Prado, Mindy [Washington University; Gross, Michael L. [Washington University; Blankenship, Robert E. [Washington University

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  14. Carotenoids as signaling molecules in cardiovascular biology

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2014-09-01

    Full Text Available Oxidative stress and inflammation play important roles in the etiology of cardiovascular disease (CVD. Thus, natural antioxidant carotenoids existing in fruits and vegetables could have a significant role in the prevention of CVD. Nevertheless,clinical data are conflicting about the positive effect of some antioxidant carotenoids in reducing cardiovascular morbidity and mortality. Many biological actions of carotenoids have been attributed to their antioxidant effect; however, the precise mechanism by which carotenoids produce their beneficial effects is still under discussion. They might modulate molecular pathways involved in cell proliferation, acting at Akt, tyrosine kinases, mitogen activated protein kinase (MAP kinase and growth factor signaling cascades. Screening for a promising cardiovascular protective carotenoids therefore might be performed in vitro and in vivo with caution in cross-interaction with other molecules involved in signaling pathways especially those affecting microRNAs, performing a role in molecular modulation of cardiovascular cells.

  15. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  16. Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation.

    Science.gov (United States)

    Liu, Haijun; Zhang, Hao; Orf, Gregory S; Lu, Yue; Jiang, Jing; King, Jeremy D; Wolf, Nathan R; Gross, Michael L; Blankenship, Robert E

    2016-02-23

    Photosynthetic cyanobacteria make important contributions to global carbon and nitrogen budgets. A protein known as the orange carotenoid protein (OCP) protects the photosynthetic apparatus from damage by dissipating excess energy absorbed by the phycobilisome, the major light-harvesting complex in many cyanobacteria. OCP binds one carotenoid pigment, but the color of this pigment depends on conditions. It is orange in the dark and red when exposed to light. We modified the orange and red forms of OCP by using isotopically coded cross-linking agents and then analyzed the structural features by using liquid chromatography and tandem mass spectrometry. Unequivocal cross-linking pairs uniquely detected in red OCP indicate that, upon photoactivation, the OCP N-terminal domain (NTD) and C-terminal domain (CTD) reorient relative to each other. Our data also indicate that the intrinsically unstructured loop connecting the NTD and CTD not only is involved in the interaction between the two domains in orange OCP but also, together with the N-terminal extension, provides a structural buffer system facilitating an intramolecular breathing motion of the OCP, thus helping conversion back and forth from the orange to red form during the OCP photocycle. These results have important implications for understanding the molecular mechanism of action of cyanobacterial photoprotection. PMID:26848988

  17. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    OpenAIRE

    Emmanuelle Reboul

    2013-01-01

    Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were abs...

  18. Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses.

    Science.gov (United States)

    Francia, Francesco; Malferrari, Marco; Sacquin-Mora, Sophie; Venturoli, Giovanni

    2009-07-30

    The coupling between electron transfer and protein dynamics has been investigated in reaction centers (RCs) from the wild type (wt) and the carotenoid-less strain R26 of the photosynthetic bacterium Rhodobacter sphaeroides. Recombination kinetics between the primary photoreduced quinone acceptor (QA-) and photoxidized donor (P+) have been analyzed at room temperature in RCs incorporated into glassy trehalose matrices of different water/sugar ratios. As previously found in R26 RCs, also in the wt RC, upon matrix dehydration, P+QA- recombination accelerates and becomes broadly distributed, reflecting the inhibition of protein relaxation from the dark-adapted to the light-adapted conformation and the hindrance of interconversion between conformational substates. While in wet trehalose matrices (down to approximately one water per trehalose molecule) P+QA- recombination kinetics are essentially coincident in wt and R26 RCs, more extensive dehydration leads to two-times faster and more distributed kinetics in the carotenoid-containing RC, indicating a stronger inhibition of the internal protein dynamics in the wt RC. Coarse-grained Brownian dynamics simulations performed on the two RC structures reveal a markedly larger flexibility of the R26 RC, showing that a rigid core of residues, close to the quinone acceptors, is specifically softened in the absence of the carotenoid. These experimental and computational results concur to indicate that removal of the carotenoid molecule has long-range effects on protein dynamics and that the structural/dynamical coupling between the protein and the glassy matrix depends strongly upon the local mechanical properties of the protein interior. The data also suggest that the conformational change stabilizing P+QA- is localized around the QA binding pocket.

  19. Theoretical study on photophysical properties of 3‧-hydroxyechinenone and the effects of interactions with orange carotenoid protein

    Science.gov (United States)

    Otsuka, Miho; Mori, Yukie; Takano, Keiko

    2016-03-01

    3‧-Hydroxyechinenone (3‧-hECN) is a chromophore of the orange carotenoid protein (OCP). Excitation of 3‧-hECN bound to OCP to the S2(11Bu+) state yields an emission characteristic of an intramolecular charge transfer (ICT) state. The present computational results indicate that the S1 state of 3‧-hECN is of the 21Ag- character and slightly gains an ICT character through the mixing with the S2(11Bu+) state when the polyene chain is twisted. Formation of hydrogen bonds with OCP enhances the 21Ag-/11Bu+ mixing and hence the ICT character in the S1 state. Such carotenoid-protein interaction may explain the observation of the ICT emission.

  20. Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Stadnichuk, Igor N; Yanyushin, Mikhail F; Maksimov, Evgeni G; Lukashev, Evgeni P; Zharmukhamedov, Sergei K; Elanskaya, Irina V; Paschenko, Vladimir Z

    2012-08-01

    In cyanobacteria, the thermal dissipation of excess absorbed energy at the level of the phycobilisome (PBS)-antenna is triggered by absorption of strong blue-green light by the photoactive orange carotenoid protein (OCP). This process known as non-photochemical quenching, whose molecular mechanism remains in many respects unclear, is revealed in vivo as a decrease in phycobilisome fluorescence. In vitro reconstituted system on the interaction of the OCP and the PBS isolated from the cyanobacterium Synechocystis sp. PCC 6803 presents evidence that the OCP is not only a photosensor, but also an effecter that makes direct contacts with the PBS and causes dissipation of absorbed energy. To localize the site(s) of quenching, we have analyzed the role of chromophorylated polypeptides of the PBS using PBS-deficient mutants in conjunction with in vitro systems of assembled PBS and of isolated components of the PBS core. The results demonstrated that L(CM), the core-membrane linker protein and terminal emitter of the PBS, could act as the docking site for OCP in vitro. The ApcD and ApcF terminal emitters of the PBS core are not directly subjected to quenching. The data suggests that there could be close contact between the phycocyanobilin chromophore of L(CM) and the 3'-hydroxyechinenone chromophore present in OCP and that L(CM) could be involved in OCP-induced quenching. According to the reduced average life-time of the PBS-fluorescence and linear dependence of fluorescence intensity of the PBS on OCP concentration, the quenching has mostly dynamic character. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22483736

  1. A karyopherin acts in localized protein synthesis

    NARCIS (Netherlands)

    Veenhoff, Liesbeth M.; Meinema, Anne C.; Poolman, Bert

    2010-01-01

    Multiple mechanisms are in place to regulate adequate synthesis of proteins, ranging from ways to ensure sequence fidelity, polypeptide folding and protein modification, to control of amounts and subcellular localization of the molecules. Some of these mechanisms act at the level of mRNA export and

  2. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants.

    Science.gov (United States)

    Salama, Hediat M H; Al Watban, Ahlam A; Al-Fughom, Anoud T

    2011-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400-700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400-700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400-700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g(-1) f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g(-1) f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g(-1) f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all

  3. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants.

    Science.gov (United States)

    Salama, Hediat M H; Al Watban, Ahlam A; Al-Fughom, Anoud T

    2011-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400-700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400-700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400-700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g(-1) f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g(-1) f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g(-1) f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all

  4. Studies on variation of carotenoid-proteins content in Cassava (Manihot esculenta Crantz) storage root reveal implications for breeding and the use of induced mutations

    Science.gov (United States)

    Protein content in storage roots of cassava is low but variable and characterization of this variability is lacking. Total buffer extractable proteins (TBEP) content in pigmented cassava landraces varied from 0.9-7.5 (mg/gDWt.) and correlated with total carotenoid content (R2=0.4757). More than 3x T...

  5. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  6. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  7. Key to xenobiotic carotenoids

    OpenAIRE

    Hans-Richard Sliwka; Vassilia Partali

    2012-01-01

    A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe) directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H) and xanthophylls (C,H,O) has become obsolete.

  8. Femtosecond Nonlinear Optical Studies of Radiationless Decay in Carotenoids and in the Peridinin-Chlorophyll a Protein

    Science.gov (United States)

    Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Beck, Warren F.; Frank, Harry A.

    2014-06-01

    Femtosecond transient-grating spectroscopy with optical heterodyne detection was employed to observe separately the time evolution of the absorption and dispersion components of the third-order nonlinear optical signal following resonant excitation of the S_2 (^1B_u^+) states of β-carotene in benzonitrile and peridinin in methanol using 40-fs pulses centered at 520 nm. The absorption and dispersion components exhibit distinctively different time profiles owing to the population of intermediate states. An initial intermediate state is populated on an ultrashort (carotenoids. Owing to the fast red-shifting of the stimulated emission part of the S_2-state transient grating signal, we suggest that the intermediate state arises from vibrational displacements on the S_2-state potential surface that eventually yield twisted or bent conformations. Motions of the molecule of this type in the S_2-state would contribute to a mixing of the diabatic S_2 and S_1 electronic states and would promote the formation of intramolecular charge-transfer character. Both of these effects would enhance the efficiency of energy transfer from the S_1 state to the (B)Chl Q_y state in photosynthetic light-harvesting proteins. The time-resolved transient-grating spectra obtained for peridinin in the peridinin-chlorophyll a protein from Amphidinium carterae suggest a more rapid formation of the intermediate than for peridinin in methanol. This finding suggests that the conformation of the peridinin chromophore is controlled in the binding site to optimize the formation of the twisted intermediate upon excitation of the S_2 state. (Supported by grant DE-SC0010847 from the Department of Energy, Office of Basic Energy Sciences, Photosynthetic Systems program.)

  9. Regulation of Carotenoid Biosynthesis During Fruit Development.

    Science.gov (United States)

    Lado, Joanna; Zacarías, Lorenzo; Rodrigo, María Jesús

    2016-01-01

    Carotenoids are recognized as the main pigments in most fruit crops, providing colours that range from yellow and pink to deep orange and red. Moreover, the edible portion of widely consumed fruits or their derived products represent a major dietary source of carotenoids for animals and humans. Therefore, these pigments are crucial compounds contributing to fruit aesthetic and nutritional quality but may also have protecting and ecophysiological functions in coloured fruits. Among plant organs, fruits display one of the most heterogeneous carotenoids patterns in terms of diversity and abundance. In this chapter a comprehensive list of the carotenoid content and profile in the most commonly cultivated fleshy fruits is reported. The proposed fruit classification systems attending to carotenoid composition are revised and discussed. The regulation of carotenoids in fruits can be rather complex due to the dramatic changes in content and composition during ripening, which are also dependent on the fruit tissue and the developmental stage. In addition, carotenoid accumulation is a dynamic process, associated with the development of chromoplasts during ripening. As a general rule, carotenoid accumulation is highly controlled at the transcriptional level of the structural and accessory proteins of the biosynthetic and degradation pathways, but other mechanisms such as post-transcriptional modifications or the development of sink structures have been recently revealed as crucial factors in determining the levels and stability of these pigments. In this chapter common key metabolic reactions regulating carotenoid composition in fruit tissues are described in addition to others that are restricted to certain species and generate unique carotenoids patterns. The existence of fruit-specific isoforms for key steps such as the phytoene synthase, lycopene β-cyclases or catabolic carotenoid cleavage dioxygenases has allowed an independent regulation of the pathway in fruit tissues

  10. Carotenoids in Marine Animals

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2011-02-01

    Full Text Available Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade.

  11. Apocarotenoids: A New Carotenoid-Derived Pathway.

    Science.gov (United States)

    Beltran, Juan Camilo Moreno; Stange, Claudia

    2016-01-01

    Carotenoids are precursors of carotenoid derived molecules termed apocarotenoids, which include isoprenoids with important functions in plant-environment interactions such as the attraction of pollinators and the defense against pathogens and herbivores. Apocarotenoids also include volatile aromatic compounds that act as repellents, chemoattractants, growth simulators and inhibitors, as well as the phytohormones abscisic acid and strigolactones. In plants, apocarotenoids can be found in several types of plastids (etioplast, leucoplast and chromoplast) and among different plant tissues such as flowers and roots. The structural similarity of some flower and spice isoprenoid volatile organic compounds (β-ionone and safranal) to carotenoids has led to the recent discovery of carotenoid-specific cleavage oxygenases, including carotenoid cleavage dioxygenases and 9-cis-epoxydioxygenases, which tailor and transform carotenoids into apocarotenoids. The great diversity of apocarotenoids is a consequence of the huge amount of carotenoid precursors, the variations in specific cleavage sites and the modifications after cleavage. Lycopene, β-carotene and zeaxanthin are the precursors of the main apocarotenoids described to date, which include bixin, crocin, picrocrocin, abscisic acid, strigolactone and mycorradicin.The current chapter will give rise to an overview of the biosynthesis and function of the most important apocarotenoids in plants, as well as the current knowledge about the carotenoid cleavage oxygenase enzymes involved in these biosynthetic pathways. PMID:27485225

  12. Carotenoids in Marine Animals

    OpenAIRE

    Takashi Maoka

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  13. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed.

    Science.gov (United States)

    Gonzalez-Jorge, Sabrina; Mehrshahi, Payam; Magallanes-Lundback, Maria; Lipka, Alexander E; Angelovici, Ruthie; Gore, Michael A; DellaPenna, Dean

    2016-07-01

    Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224

  14. Program PROTEUS for adding hydrogens to a protein structure and electrostatic field across carotenoids in light harvesting complexes and reaction centers from bacterial sources

    Science.gov (United States)

    Lipovaca, Samir

    The hydrogen construction method presented in the program PROTEUS treats hydrogens depending on their torsional degrees of freedom. The positions of hydrogens with restricted torsional degrees of freedom are completely determined by the heavy atoms positions in the structure. The hydroxyl and water hydrogens are the only hydrogens that PROTEUS accepts as movable hydrogens (having rotational degrees of freedom). Their positions are determined by the interactions with neighboring atoms. PROTEUS interaction energy corresponds to a view that the hydrogen bond is affected, besides electrostatic effects and steric constraints of neighboring groups, by an inherent energy barrier that opposes free rotation of the hydroxyl hydrogen. For the water hydrogens that barrier is zero. The hydroxyl and water hydrogens are minimized within a short distance using the Threshold Accepting (TA) energy minimization method. PROTEUS can provide reasonable positions of movable hydrogens and a good initial protein structure for further investigations. We applied the program PROTEUS to place hydrogens in several resolved three-dimensional crystal structures of light harvesting complexes (LHCs) and reaction centers (RCs) from bacterial sources. Using program DelPhi we calculated the local electrostatic field across carotenoid generated by the protein's charges. In each structure we identified amino acids responsible for the field. Much of the field is generated by the charged residues. There are different ways that a RC or LHC uses charged residues. A nearby dipole consisting of the charged residues which are ionized in the physiological pH range (like Arg-Asp), is often used. Clusters of charged residues or scattered isolated charged residues around the carotenoid molecule also contribute. The polarizable field is not necessarily along the carotenoid molecule principal axis. For soluble LHCs the contribution of polar residues to the field cannot be neglected. Our calculations indicate an

  15. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives. PMID:25846059

  16. The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation*

    OpenAIRE

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2009-01-01

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniq...

  17. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  18. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    Science.gov (United States)

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms. PMID:26750123

  19. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  20. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  1. Encapsulation of Carotenoids

    Science.gov (United States)

    Ribeiro, Henelyta S.; Schuchmann, Heike P.; Engel, Robert; Walz, Elke; Briviba, Karlis

    Carotenoids are natural pigments, which are synthesized by microorganisms and plants. More than 600 naturally occurring carotenoids have been found in the nature. The main sources of carotenoids are fruits, vegetables, leaves, peppers, and certain types of fishes, sea foods, and birds. Carotenoids may protect cells against photosensitization and work as light-absorbing pigments during photosynthesis. Some carotenoids may inhibit the destructive effect of reactive oxygen species. Due to the antioxidative properties of carotenoids, many investigations regarding their protective effects against cardiovascular diseases and certain types of cancers, as well as other degenerative illnesses, have been carried out in the last years (Briviba et al. 2004; Krinsky et al. 2004; Kirsh et al. 2006). A diet rich in carotenoids may also contribute to photoprotection against UV radiation (Stahl et al. 2006). In vitro studies have shown that carotenoids such as β-cryptoxanthin and lycopene stimulate bone formation and mineralization. The results may be related to prevention of osteoporosis (Kim et al. 2003; Yamaguchi and Uchiyama 2003; 2004; Yamaguchi et al. 2005).

  2. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    2016-01-01

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications. PMID:27485224

  3. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  4. Carotenoid Distribution in Nature.

    Science.gov (United States)

    Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed. PMID:27485217

  5. Biosynthesis of Carotenoids in Plants: Enzymes and Color.

    Science.gov (United States)

    Rosas-Saavedra, Carolina; Stange, Claudia

    2016-01-01

    Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed. PMID:27485218

  6. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid bioavailability.In a

  7. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  8. Carotenoid Formation by Staphylococcus aureus

    Science.gov (United States)

    Hammond, Ray K.; White, David C.

    1970-01-01

    The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; ζ-carotene; δ-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-14C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The incorporation and turnover of 14C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids. PMID:5423369

  9. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  10. ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803.

    Science.gov (United States)

    Jallet, Denis; Gwizdala, Michal; Kirilovsky, Diana

    2012-08-01

    In cyanobacteria, strong blue-green light induces a photoprotective mechanism involving an increase of energy thermal dissipation at the level of phycobilisome (PB), the cyanobacterial antenna. This leads to a decrease of the energy arriving to the reaction centers. The photoactive Orange Carotenoid Protein (OCP) has an essential role in this mechanism. The binding of the red photoactivated OCP to the core of the PB triggers energy and PB fluorescence quenching. The core of PBs is constituted of allophycocyanin trimers emitting at 660 or 680nm. ApcD, ApcF and ApcE are the responsible of the 680nm emission. In this work, the role of these terminal emitters in the photoprotective mechanism was studied. Single and double Synechocystis PCC 6803 mutants, in which the apcD or/and apcF genes were absent, were constructed. The Cys190 of ApcE which binds the phycocyanobilin was replaced by a Ser. The mutated ApcE attached an unusual chromophore emitting at 710nm. The activated OCP was able to induce the photoprotective mechanism in all the mutants. Moreover, in vitro reconstitution experiments showed similar amplitude and rates of fluorescence quenching. Our results demonstrated that ApcD, ApcF and ApcE are not required for the OCP-related fluorescence quenching and they strongly suggested that the site of quenching is one of the APC trimers emitting at 660nm. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22172739

  11. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  12. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  13. A study of protein-carotenoid interactions in the astaxanthin-protein crustacyanin by absorption and Stark spectroscopy; evidence for the presence of three spectrally distinct species.

    Science.gov (United States)

    Krawczyk, S; Britton, G

    2001-01-12

    Molecular mechanisms underlying the peculiar spectral properties of the carotenoid astaxanthin in alpha-crustacyanin, the blue carotenoprotein isolated from the exoskeleton of the lobster Homarus gammarus, were investigated by comparing the basic electrooptical parameters of astaxanthin free in vitro with those of astaxanthin in the complex. Absorption and electroabsorption (Stark effect) spectra were obtained for alpha-crustacyanin in low-temperature glasses to provide information about the molecular interactions that lead to the large bathochromic shift of the spectra resulting from this complexation. The low-temperature spectra reveal the presence of at least three spectral forms of alpha-crustacyanin, with vibronic (0-0) transitions at 14000 cm(-1), 13500 cm(-1) and 11600 cm(-1) (corresponding to approximately 630, 660 and 780 nm, respectively, at room temperature) and with relative aboundance 85%, 10% and 5%. The longer wavelength absorbing species have not previously been detected. The changes in polarizability and in permanent dipole moments associated with the S0-->S2 electronic transition for all these forms are about 1.5 times larger than for isolated astaxanthin. The results are discussed with reference to the symmetric polarization model for astaxanthin in alpha-crustacyanin. PMID:11341939

  14. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale. PMID:27045759

  15. Raman measurement of carotenoid composition in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  16. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    OpenAIRE

    Joanna Fiedor; Květoslava Burda

    2014-01-01

    Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present i...

  17. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers.

    Science.gov (United States)

    Li, Li; Yang, Yong; Xu, Qiang; Owsiany, Katherine; Welsch, Ralf; Chitchumroonchokchai, Chureeporn; Lu, Shan; Van Eck, Joyce; Deng, Xiu-Xin; Failla, Mark; Thannhauser, Theodore W

    2012-03-01

    Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality. To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability, we investigated transgenic potato tubers that expressed the cauliflower Orange (Or) gene. We found that the Or transgene not only promoted retention of β-carotene level, but also continuously stimulated its accumulation during 5 months of cold storage. In contrast, no increased levels of carotenoids were observed in the tubers of vector-only controls or a yellow-flesh variety during the same period of storage. The increased carotenoid accumulation was found to be associated with the formation of lipoprotein-carotenoid sequestering structures, as well as with the enhanced abundance of phytoene synthase, a key enzyme in the carotenoid biosynthetic pathway. Furthermore, the provitamin A carotenoids stored were shown to be stable during simulated digestion and accessible for uptake by human intestinal absorptive cells. Proteomic analysis identified three major functional groups of proteins (i.e. heat shock proteins, glutathione-S-transferases, and carbohydrate metabolic proteins) that are potentially important in the Or-regulated carotenoid accumulation. Our results show that regulation of carotenoid sequestration capacity is an important mechanism by which carotenoid stability is regulated. Our findings suggest that induction of a proper sink structure formation in staple crops may provide the crops with a unique ability to promote and/or stabilize provitamin A accumulation during plant growth and post-harvest storage. PMID:22155949

  18. Differential Expression of the Demosponge (Suberites domuncula Carotenoid Oxygenases in Response to Light: Protection Mechanism Against the Self-Produced Toxic Protein (Suberitine

    Directory of Open Access Journals (Sweden)

    Heinz C. Schröder

    2012-01-01

    Full Text Available The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7–8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15′-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin.

  19. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling.

    Science.gov (United States)

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-01-01

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution. PMID:27000655

  20. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes.

    OpenAIRE

    G. A. Armstrong; Alberti, M; Hearst, J E

    1990-01-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C40 carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. We report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhod...

  1. ASTAXANTHIN: A POTENTIAL CAROTENOID

    Directory of Open Access Journals (Sweden)

    Jyotika Dhankhar et al.

    2012-05-01

    Full Text Available Astaxanthin, a member of the carotenoid family, is a dark-red pigment which is the main carotenoid found in the marine world of algae and aquatic animals. Astaxanthin, is present in many types of seafood, including salmon, trout, red sea bream, shrimp and lobster, as well as in birds such as flamingo and quail. Synthetic Astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural Astaxanthin, are the green algae haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses unusual antioxidant property which has caused a surge in the nutraceutical market of the encapsulated products. Numerous studies have shown that astaxanthin has potential health-promoting effects in the prevention and treatment of various diseases, such as cancers, chronic inflammatory diseases, metabolic syndrome, diabetes, diabetic nephropathy, cardiovascular diseases, gastrointestinal diseases, liver diseases, neurodegenerative diseases, eye diseases, skin diseases, exercise-induced fatigue, male infertility, and renal failure. In this article, the currently available scientific literature regarding the most significant activities of astaxanthin is reviewed.

  2. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    2016-01-01

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds. PMID:27485232

  3. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    Science.gov (United States)

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  4. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes.

    Science.gov (United States)

    Tóth, Tünde N; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Győző; Kovács, László; Gombos, Zoltán; van Amerongen, Herbert

    2015-10-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of photosynthetic complexes in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803. Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosystems I and II. This is remarkable because these complexes do not bind xanthophylls. Oligomerization is even more disturbed in crtH mutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes are distorted despite the fact that these extramembranous light-harvesting complexes do not contain carotenoids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and functional organization of the cyanobacterial photosynthetic machinery. PMID:26045333

  5. Carotenoid Biosynthesis in Daucus carota.

    Science.gov (United States)

    Simpson, Kevin; Cerda, Ariel; Stange, Claudia

    2016-01-01

    Carrot (Daucus carota) is one of the most important vegetable cultivated worldwide and the main source of dietary provitamin A. Contrary to other plants, almost all carrot varieties accumulate massive amounts of carotenoids in the root, resulting in a wide variety of colors, including those with purple, yellow, white, red and orange roots. During the first weeks of development the root, grown in darkness, is thin and pale and devoid of carotenoids. At the second month, the thickening of the root and the accumulation of carotenoids begins, and it reaches its highest level at 3 months of development. This normal root thickening and carotenoid accumulation can be completely altered when roots are grown in light, in which chromoplasts differentiation is redirected to chloroplasts development in accordance with an altered carotenoid profile. Here we discuss the current evidence on the biosynthesis of carotenoid in carrot roots in response to environmental cues that has contributed to our understanding of the mechanism that regulates the accumulation of carotenoids, as well as the carotenogenic gene expression and root development in D. carota. PMID:27485223

  6. [Carotenoids: 1. Metabolism and physiology].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Le Moël, G; Steghens, J P; Van Kappel, A; Nabet, F

    1999-01-01

    Carotenoids are a family of pigments with at least 600 members. They derive from lycopene after steps of cyclisation, dehydrogenation and oxidation. It is their chemical structure that determines their physiochemical properties and, in part, their biological activities. About 50 carotenoids can be found in human diet and about 20 of them have been found in plasma and tissues. There is no RDA (Recommended Daily Allowance) for carotenoids. Quantities of carotenoids in diet are difficult to estimate, partly because methods used for the establishment of food composition tables were not specific and sensitive enough. Also, given values do not always take into account variations due to season and region of culture. Absorption of beta-carotene in humans has been the subject of numerous studies but only very little is known about other carotenoids. In general, absorption depends on bioavailability from the food matrix and solubility in micelles. After absorption through passive diffusion, carotenoids follow the chylomicrons metabolism. They are taken up by the liver and released in the blood stream in lipoproteins (VLDL). Carotenoids with no-substituted beta-ionone cycles (alpha and beta-carotene and beta-cryptoxanthin) have provitamin A activity. Highest activity has been found for all-trans beta-carotene. Not all steps of vitamin A biosynthesis and metabolism of other carotenoids have been clarified yet. Besides their provitamin A activity, carotenoids have numerous biological functions. They are efficient scavengers of free radicals, particularly of 1O2. In vitro they have been shown to protect LDL. However, results in vivo are inconsistent. Other functions include enhancement of gap junctions, immunomodulation and regulation of enzyme activity involved in carcinogenesis. PMID:10210743

  7. Marine Carotenoids: Biological Functions and Commercial Applications

    OpenAIRE

    Vega, José M.; Inés Garbayo; Francisco Bédmar; María Cuaresma; Carlos Vílchez; Eduardo Forján

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesised by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for wide range of commercial applications. Indeed, recent interest in the carotenoids has be...

  8. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics.

    Directory of Open Access Journals (Sweden)

    Jonathan L Klassen

    Full Text Available BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i Proteobacteria; (ii Firmicutes; (iii Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i horizontal gene transfer; (ii gene acquisition followed by differential gene loss; (iii co-evolution with other biochemical structures such as proteorhodopsins; and (iv positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident

  9. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    Science.gov (United States)

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%.

  10. 类胡萝卜素的生理作用研究%Research of Physiological Roles of Carotenoids

    Institute of Scientific and Technical Information of China (English)

    郑春红; 郭江峰; 王青; 贾龙略; 茆旋

    2016-01-01

    类胡萝卜素是一类广泛存在于自然界的脂溶性色素,体内外研究表明具有抗氧化、抗凋亡和抗癌作用。流行病学研究表明,富含类胡萝卜素的水果和蔬菜等食物能够降低慢性疾病的风险,例如老年性黄斑病变、心血管疾病以及各种癌症。类胡萝卜素通过作用于细胞内信号通路,从而影响基因表达和蛋白质翻译。随着科学技术的发展,类胡萝卜素的生物活性对预防慢性疾病的调控机制,特别是分子方面相关的蛋白表达和生理研究日趋深入。文章简述了类胡萝卜素在细胞内信号传导途径、体内外生理作用以及对人类健康的重要意义。%Carotenoids represent the most abundant lipid-soluble phytochemicals that are ubiq-uitously present in the nature. In vitro and in vivo studies have suggested that they have antioxidant, antiapoptotic , and anticancer properties. Several epidemiologic studies have shown that diets rich in fruits and vegetables reduce the risk of developing several chronic diseases, such as age-related macular degeneration, cardiovascular disease, and many kinds of cancers. Recently, carotenoids are found to influence gene expression and protein translation by acting on the intracellular signaling cascades. With the development of science and technology, roles of carotenoids in preventing chron-ic diseases have been elucidated, especially in molecular aspects, such as proteins expression and physiological researches related to carotenoids. The present review provides an insight into signaling pathways of carotenoids and the physiological roles of carotenoids in vitro and in vivo.

  11. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  12. The Or Gene Enhances Carotenoid Accumulation and Stability During Post-Harvest Storage of Potato Tubers

    Institute of Scientific and Technical Information of China (English)

    Li Li; Mark Failla; Theodore W.Thannhauser; Yong Yang; Qiang Xu; Katherine Owsiany; Ralf Welsch; Chureeporn Chitchumroonchokchai; Shan Lu; Joyce Van Eck; Xiu-Xin Deng

    2012-01-01

    Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality.To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability,we investigated transgenic potato tubers that expressed the cauliflower Orange (Or) gene.We found that the Or transgene not only promoted retention of β-carotene level,but also continuously stimulated its accumulation during 5 months of cold storage.In contrast,no increased levels of carotenoids were observed in the tubers of vector-only controls or a yellowflesh variety during the same period of storage.The increased carotenoid accumulation was found to be associated with the formation of lipoprotein-carotenoid sequestering structures,as well as with the enhanced abundance of phytoene synthase,a key enzyme in the carotenoid biosynthetic pathway.Furthermore,the provitamin A carotenoids stored were shown to be stable during simulated digestion and accessible for uptake by human intestinal absorptive cells.Proteomic analysis identified three major functional groups of proteins (i.e.heat shock proteins,glutathione-S-transferases,and carbohydrate metabolic proteins) that are potentially important in the Or-regulated carotenoid accumulation.Our results show that regulation of carotenoid sequestration capacity is an important mechanism by which carotenoid stability is regulated.Our findings suggest that induction of a proper sink structure formation in staple crops may provide the crops with a unique ability to promote and/or stabilize provitamin A accumulation during plant growth and post-harvest storage.

  13. Auxin acts independently of DELLA proteins in regulating gibberellin levels.

    Science.gov (United States)

    Reid, James B; Davidson, Sandra E; Ross, John J

    2011-03-01

    Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation, along with environmental and endogenous factors, including other hormones such as the brassinosteroids. The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism, since auxin up-regulates biosynthesis genes such as GA 3-oxidase and GA 20-oxidase and down regulates GA catabolism genes such as GA 2-oxidases, leading to elevated levels of bioactive GA 1. In our recent paper, we have provided evidence that this action of IAA is largely independent of DELLA proteins, the negative regulators of GA action, since the auxin effects are still present in the DELLA-deficient la cry-s genotype of pea. This was a crucial issue to resolve, since like auxin, the DELLAs also promote GA 1 synthesis and inhibit its deactivation. DELLAs are deactivated by GA, and thereby mediate a feedback system by which bioactive GA regulates its own level. However, our recent results, in themselves, do not show the generality of the auxin-GA relationship across species and phylogenetic groups or across different tissue types and responses. Further, they do not touch on the ecological benefits of the auxin-GA interaction. These issues are discussed below as well as the need for the development of suitable experimental systems to allow this process to be examined. PMID:21358281

  14. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Directory of Open Access Journals (Sweden)

    Isabel López-Rull

    Full Text Available Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins, pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  15. Potential production of carotenoids from Neurospora

    Directory of Open Access Journals (Sweden)

    SRI PRIATNI

    2014-05-01

    Full Text Available Priatni S. 2014. Review: Potential production of carotenoids from Neurospora. Nusantara Bioscience 6: 63-68. Carotenoids are abundant and widely distributed in plants, animals and microorganisms. Commercial use of carotenoids competes between microorganisms and synthetic manufacture. Carotenoids production can be increased by improving the efficiency of carotenoid synthesis in microbes. Some of the cultural and environmental stimulants are positively affecting the carotenoid content of carotenogenic strains such as Neurospora. Neurospora is a fungus that exhibits the formation of spores and conidia, the part of the cell for carotenoids biosynthesis. The Indonesian traditional fermented food, red peanut cake or oncom, especially in West Java, is produced from legume residues of Neurospora sp. This fungus has been isolated and identified as Neurospora intermedia. In order to apply this pigment for food and cosmetic colorants, encapsulation techniques of carotenoids have been developed to improve its solubility and stability.

  16. Cloning and Characterization of a Lycium chinense Carotenoid Isomerase Gene Enhancing Carotenoid Accumulation in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    李招娣; 季静; 王罡

    2015-01-01

    Carotenoid isomerase(CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all-trans lycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for the first time. The open reading frame of LcCRTISO was 1 815 bp encoding a protein of 604 amino acids with a molecular mass of 66.24 kDa. Amino acid sequence analysis revealed that the LcCRTISO had a high level of simi-larity to other CRTISO. Phylogenetic analysis displayed that LcCRTISO kept a closer relationship with the CRTISO of plants than with those of other species. Semi-quantitative PCR analysis indicated that LcCRTISO gene was expressed in all tissues tested with the highest expression in maturing fruits. The overexpression of LcCRTISO gene in transgenic tobacco resulted in an increase of total carotenoids in the leaves withβ-carotene and lutein being the predominants. The results obtained here clearly suggested that the LcCRTISO gene was a promising candidate for carotenoid production.

  17. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Ruiz-Sola, M Aguila; Botterweg, Esther; Pulido, Pablo; Andilla, Jordi; Loza-Alvarez, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.

  18. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.

    Science.gov (United States)

    Chi, Shuang C; Mothersole, David J; Dilbeck, Preston; Niedzwiedzki, Dariusz M; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J; Jackson, Philip J; Martin, Elizabeth C; Li, Ying; Holten, Dewey; Neil Hunter, C

    2015-02-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.

  19. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Tronina, Tomasz; Liu, Haijun; Staleva, Hristina; Komenda, Josef; Sobotka, Roman; Blankenship, Robert E; Polívka, Tomáš

    2016-09-01

    Chl synthase (ChlG) is an important enzyme of the Chl biosynthetic pathway catalyzing attachment of phytol/geranylgeraniol tail to the chlorophyllide molecule. Here we have investigated the Flag-tagged ChlG (f.ChlG) in a complex with two different high-light inducible proteins (Hlips) HliD and HliC. The f.ChlG-Hlips complex binds a Chl a and three different carotenoids, β-carotene, zeaxanthin and myxoxanthophyll. Application of ultrafast time-resolved absorption spectroscopy performed at room and cryogenic temperatures revealed excited-state dynamics of complex-bound pigments. After excitation of Chl a in the complex, excited Chl a is efficiently quenched by a nearby carotenoid molecule via energy transfer from the Chl a Qy state to the carotenoid S1 state. The kinetic analysis of the spectroscopic data revealed that quenching occurs with a time constant of ~2ps and its efficiency is temperature independent. Even though due to its long conjugation myxoxanthophyll appears to be energetically best suited for role of Chl a quencher, based on comparative analysis and spectroscopic data we propose that β-carotene bound to Hlips acts as the quencher rather than myxoxanthophyll and zeaxanthin, which are bound at the f.ChlG and Hlips interface. The S1 state lifetime of the quencher has been determined to be 13ps at room temperature and 21ps at 77K. These results demonstrate that Hlips act as a conserved functional module that prevents photodamage of protein complexes during photosystem assembly or Chl biosynthesis. PMID:27133505

  20. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  1. Reproductive hacking. A male seminal protein acts through intact reproductive pathways in female Drosophila.

    Science.gov (United States)

    Rubinstein, C Dustin; Wolfner, Mariana F

    2014-01-01

    Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones.

  2. Reproductive hacking. A male seminal protein acts through intact reproductive pathways in female Drosophila.

    Science.gov (United States)

    Rubinstein, C Dustin; Wolfner, Mariana F

    2014-01-01

    Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones. PMID:25483253

  3. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  4. Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men.

    Directory of Open Access Journals (Sweden)

    Jouni Karppi

    Full Text Available BACKGROUND: Several previous epidemiologic studies have shown that high blood levels of carotenoids may be protective against early atherosclerosis, but results have been inconsistent. We assessed the association between atherosclerotic progression, measured by intima-media thickness of the common carotid artery wall, and serum levels of carotenoids. METHODS: We studied the effect of carotenoids on progression of early atherosclerosis in a population-based study. The association between concentrations of serum carotenoids, and intima-media thickness of the common carotid artery wall was explored in 840 middle-aged men (aged 46-65 years from Eastern Finland. Ultrasonography of the common carotid arteries were performed at baseline and 7-year follow-up. Serum levels of carotenoids were analyzed at baseline. Changes in mean and maximum intima media thickness of carotid artery wall were related to baseline serum carotenoid levels in covariance analyses adjusted for covariates. RESULTS: In a covariance analysis with adjustment for age, ultrasound sonographer, maximum intima media thickness, examination year, body mass index, systolic blood pressure, smoking, physical activity, serum LDL cholesterol, family history of coronary heart disease, antihypertensive medication and serum high sensitivity C-reactive protein, 7-year change in maximum intima media thickness was inversely associated with lycopene (p = 0.005, α-carotene (p = 0.002 and β-carotene (p = 0.019, respectively. CONCLUSIONS: The present study shows that high serum concentrations of carotenoids may be protective against early atherosclerosis.

  5. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae.

    Directory of Open Access Journals (Sweden)

    Xiaorui Liu

    Full Text Available BACKGROUND: Microbial oxidative degradation is a potential way of removing pollutants such as heterocycles from the environment. During this process, reactive oxygen species or other oxidants are inevitably produced, and may cause damage to DNA, proteins, and membranes, thereby decreasing the degradation rate. Carotenoids can serve as membrane-integrated antioxidants, protecting cells from oxidative stress. FINDINGS: Several genes involved in the carotenoid biosynthetic pathway were cloned and characterized from a carbazole-degrading bacterium Sphingobium yanoikuyae XLDN2-5. In addition, a yellow-pigmented carotenoid synthesized by strain XLDN2-5 was identified as zeaxanthin that was synthesized from β-carotene through β-cryptoxanthin. The amounts of zeaxanthin and hydrogen peroxide produced were significantly and simultaneously enhanced during the biodegradation of heterocycles (carbazole < carbazole + benzothiophene < carbazole + dibenzothiophene. These higher production levels were consistent with the transcriptional increase of the gene encoding phytoene desaturase, one of the key enzymes for carotenoid biosynthesis. CONCLUSIONS/SIGNIFICANCE: Sphingobium yanoikuyae XLDN2-5 can enhance the synthesis of zeaxanthin, one of the carotenoids, which may modulate membrane fluidity and defense against intracellular oxidative stress. To our knowledge, this is the first report on the positive role of carotenoids in the biodegradation of heterocycles, while elucidating the carotenoid biosynthetic pathway in the Sphingobium genus.

  6. Microalgae as Sources of Carotenoids

    Directory of Open Access Journals (Sweden)

    Francisco Xavier Malcata

    2011-04-01

    Full Text Available Marine microalgae constitute a natural source of a variety of drugs for pharmaceutical, food and cosmetic applications—which encompass carotenoids, among others. A growing body of experimental evidence has confirmed that these compounds can play important roles in prevention (and even treatment of human diseases and health conditions, e.g., cancer, cardiovascular problems, atherosclerosis, rheumatoid arthritis, muscular dystrophy, cataracts and some neurological disorders. The underlying features that may account for such favorable biological activities are their intrinsic antioxidant, anti-inflammatory and antitumoral features. In this invited review, the most important issues regarding synthesis of carotenoids by microalgae are described and discussed—from both physiological and processing points of view. Current gaps of knowledge, as well as technological opportunities in the near future relating to this growing field of interest, are also put forward in a critical manner.

  7. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities.

    Science.gov (United States)

    Yibchok-anun, Sirintorn; Adisakwattana, Sirichai; Yao, Cheng Yu; Sangvanich, Polkit; Roengsumran, Sophon; Hsu, Walter Haw

    2006-06-01

    The protein from Thai bitter gourd (Momordica charantia) fruit pulp was extracted and studied for its hypoglycemic effect. Subcutaneous administration of the protein extract (5, 10 mg/kg) significantly and markedly decreased plasma glucose concentrations in both normal and streptozotocin-induced diabetic rats in a dose-dependent manner. The onset of the protein extract-induced antihyperglycemia/hypoglycemia was observed at 4 and 6 h in diabetic and normal rats, respectively. This protein extract also raised plasma insulin concentrations by 2 fold 4 h following subcutaneous administration. In perfused rat pancreas, the protein extract (10 microg/ml) increased insulin secretion, but not glucagon secretion. The increase in insulin secretion was apparent within 5 min of administration and was persistent during 30 min of administration. Furthermore, the protein extract enhanced glucose uptake into C2C12 myocytes and 3T3-L1 adipocytes. Time course experiments performed in rat adipocytes revealed that M. charantia protein extract significantly increased glucose uptake after 4 and 6 h of incubation. Thus, the M. charantia protein extract, a slow acting chemical, exerted both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. PMID:16755004

  8. Close Packing of Listeria monocytogenes ActA, a Natively Unfolded Protein, Enhances F-actin Assembly without Dimerization*

    OpenAIRE

    Footer, Matthew J.; Lyo, John K; Theriot, Julie A.

    2008-01-01

    Studies of the biochemistry of Listeria monocytogenes virulence protein ActA have typically focused on the behavior of bacteria in complex systems or on the characterization of the protein after expression and purification. Although prior in vivo work has proposed that ActA forms dimers on the surface of L. monocytogenes, dimerization has not been demonstrated in vitro, and little consideration has been given to the surface environment where ActA performs its pivotal r...

  9. Carotenoid changes of intact watermelons after storage.

    Science.gov (United States)

    Perkins-Veazie, Penelope; Collins, Julie K

    2006-08-01

    Watermelon contains lycopene, a red carotenoid pigment that has strong antioxidant properties. The lycopene content of watermelon is substantial, contributing 8-20 mg per 180 g serving. There are no reports on carotenoid changes in whole watermelon during storage. Three types of watermelon, open-pollinated seeded, hybrid seeded, and seedless types, were stored at 5, 13, and 21 degrees C for 14 days and flesh color, composition, and carotenoid content were compared to those of fruit not stored. Watermelons stored at 21 degrees C had increased pH, chroma, and carotenoid content compared to fresh fruit. Compared to fresh fruit, watermelons stored at 21 degrees C gained 11-40% in lycopene and 50-139% in beta-carotene, whereas fruit held at 13 degrees C changed little in carotenoid content. These results indicate that carotenoid biosynthesis in watermelons can be affected by temperature and storage. PMID:16881688

  10. Carotenoids in Aquaculture: Fish and Crustaceans

    Science.gov (United States)

    Bjerkeng, Bjorn

    This Chapter deals with selected topics on the use of carotenoids for colouration in aquaculture and incudes examples from ecological studies which support our understanding of functions and actions of carotenoids and colouration in fishes and crustaceans. Animal colours may be physical or structural in origin [1], e.g. Tyndall blues and iridescent diffraction colours, or they may be due to pigments, including carotenoids (Chapter 10).

  11. Carotenoids in Algae: Distributions, Biosyntheses and Functions

    OpenAIRE

    Shinichi Takaichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carote...

  12. The ActA polypeptides of Listeria ivanovii and Listeria monocytogenes harbor related binding sites for host microfilament proteins.

    OpenAIRE

    Gerstel, B; Gröbe, L; Pistor, S; Chakraborty, T.; Wehland, J

    1996-01-01

    The surface-bound ActA polypeptide of the intracellular bacterial pathogen Listeria monocytogenes acts as a nucleator protein, generating the actin cytoskeleton around intracellularly motile bacteria. In this work, we examined the functional similarity of ActA from Listeria ivanovii (iActA) ATCC 19119 to its L. monocytogenes counterpart. The amino acid sequence of iActA predicts a molecular mass of 123 kDa and harbors eight proline-rich repeats. For functional analysis, various iActA derivati...

  13. Fermentative production of carotenoids from marine actinomycetes

    Directory of Open Access Journals (Sweden)

    B Ashokkumar

    2009-12-01

    Full Text Available Background and Objectives: In marine actinomycetes, carotenoid production occurs in constitutive, light-dependent or cryptic manner. The present work deals with the fermentative production of carotenoids from marine actinomycetes."nMaterials and Methods: Marine actinomycetes namely Streptomyces strain AQBMM35 was isolated from the marine sponge Mycale mytilorum collected from South West coast of India using ISP media. The Streptomyces isolates were characterized for their colony characteristics, morphological properties, physiological and biochemical properties and were tentatively identified. Fermentation of the strain under fluorescent white light was carried out for the production of carotenoids. UV spectrum, TLC and HPLC analysis were done for the confirmation of carotenoids."nResults: The characteristics studied strongly suggest that the strain AQBMM35 belongs to the genus Streptomyces sp. It has been found that Streptomyces strain (AQBMM35 fermenting under fluorescent white light produced carotenoids. Spectrophotometric analysis of the carotenoid fraction revealed a peak at 280 nm. TLC analysis of the carotenoid extract showed the presence of phytoene (Rf of 0.81. HPLC confirmed the production of phytoene when compared with standards."nConclusion: The fermenting sponge-associated Streptomyces isolate (AQBMM35 produced carotenoids namely phytoene. If this symbiotic Streptomyces strain, from which secondary metabolite like carotenoids are derived, can be cultured under light, then it can be used for mass production of precursor pigment and it can be used as an antioxidant and also as a food additive.

  14. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.

    Science.gov (United States)

    Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2015-07-01

    The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. PMID:25366820

  15. Fasting plasma carotenoids concentrations in Crohn's and pancreatic cancer patients compared to control subjects.

    Science.gov (United States)

    Drai, J; Borel, P; Faure, H; Galabert, C; Le Moël, G; Laromiguière, M; Fayol, V

    2009-03-01

    Carotenoids are colored molecules that are widespread in the plant kingdom, but animals cannot synthesize them. Carotenes are long, apolar molecules which require fully functioning digestive processes to be absorbed properly. Hence they could be interesting markers of intestinal absorption and digestion. Indeed, only few tests are available to assess these processes and only the D-xylose tolerance test is routinely used. However D-xylose is a sugar that tests only the absorption of water-soluble compounds and it only tests duodenal absorption. In this study, we have evaluated carotenoids as markers of digestion and absorption. We compared fasting plasma carotenoids concentrations in 21 control subjects, 20 patients with Crohn's disease, and 18 patients with pancreatic cancer. Crohn's disease alters intestinal absorption while pancreatic cancer decreases pancreatic enzyme secretion thus impairing digestion. Results show that all carotenoids are significantly lower in Crohn's and cancer patients as compared to control subjects and the multifactorial analysis shows that this decrease is mostly independent of dietary intake. Interestingly, maldigestion as seen in pancreatic cancer more strongly influences plasma lutein and lycopene concentrations while malabsorption in Crohn's disease acts on other carotenoids. Thus carotenoids could be interesting alternatives for testing and following patients that are suspected of having malabsorption or maldigestion syndromes. PMID:20108210

  16. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Joanna Fiedor

    2014-01-01

    Full Text Available Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties.

  17. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  18. Method of producing purified carotenoid compounds

    Science.gov (United States)

    Eggink, Laura (Inventor)

    2007-01-01

    A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

  19. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  20. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functi

  1. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency. PMID:24928296

  2. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency.

  3. Carotenoid Metabolism: Biosynthesis, Regulation,and Beyond

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Li Li

    2008-01-01

    Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

  4. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  5. PHARMACOLOGICAL EFFECTS OF CAROTENOIDS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Sumita S. Kadia

    2012-01-01

    Full Text Available Vitamin A is an essential vitamin which is required in the vision process, epithelial maintenance, mucous secretion and reproduction obtained from carotenoids. Carotenoids have been considered to provide benefits in age-related diseases, against some forms of cancer (in especial lung cancer, strokes, macular degeneration, and cataracts. Till date, more than 600 carotenoids are known and 50 of them are consumed in meals to be transformed into the essential nutrient vitamin A. After their absorption, these carotenoids are metabolized by an oxidative rupture to retinal, retinoic acid and small quantities of breakdown products and are transported by plasma lipoproteins. Carotenes are mainly associated with low-density lipoproteins, while xanthophylls show a uniform distribution between the low- and high-density lipoproteins. The present review provides an insight into the recent status of pharmacological aspects of carotenoids.

  6. cmp, a cis-acting plasmid locus that increases interaction between replication origin and initiator protein.

    OpenAIRE

    Gennaro, M L; Novick, R P

    1986-01-01

    pT181, a 4.4-kilobase multicopy plasmid of Staphylococcus aureus, encodes a trans-acting initiator protein, RepC, which was rate limiting for replication. Deletions in a 500-base-pair region of the plasmid external to the minimal replicon decreased the ability of the plasmid to compete with a coexisting incompatible plasmid. These deletions, which define a region called cmp (for competition), appeared to affect the interaction of RepC and the plasmid origin of replication. However, in the hom...

  7. Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2012-03-01

    Full Text Available Pereskia aculeata Mill. (Ora-pro-nóbis is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector, total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.

  8. Structures and Analysis of Carotenoid Molecules.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    2016-01-01

    Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers. PMID:27485219

  9. Carotenoids and health in older people.

    Science.gov (United States)

    Woodside, Jayne V; McGrath, Alanna J; Lyner, Natalie; McKinley, Michelle C

    2015-01-01

    As the proportion of older people increases, so will chronic disease incidence and the proportion of the population living with disability. Therefore, new approaches to maintain health for as long as possible in this age group are required. Carotenoids are a group of polyphenolic compounds found predominantly in fruit and vegetables that have been proposed to have anti-inflammatory and antioxidant effects. Such properties may impact on the risk diseases which predominate in older people, and also ageing-related physiological changes. Working out the effect of carotenoid intake versus fruit and vegetable intake is difficult, and the strong correlation between individual carotenoid intakes also complicates any attempt to examine individual carotenoid health effects. Similarly, research to determine whether carotenoids consumed as supplements have similar benefits to increased dietary intake through whole foods, is still required. However, reviewing the recent evidence suggests that carotenoid intake and status are relatively consistently associated with reduced CVD risk, although β-carotene supplementation does not reduce CVD risk and increases lung cancer risk. Increased lycopene intake may reduce prostate cancer progression, with a potential role for carotenoids at other cancer sites. Lutein and zeaxanthin have a plausible role in the maintenance of eye health, whilst an association between carotenoid intake and cognitive and physical health appears possible, although research is limited to date. Given this accruing evidence base to support a specific role for certain carotenoids and ageing, current dietary advice to consume a diet rich in fruit and vegetables would appear prudent, and efforts maintained to encourage increased intake.

  10. Holographic films from carotenoid pigments

    Science.gov (United States)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  11. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health

    Science.gov (United States)

    Vinkler, Michal; Albrecht, Tomáš

    2010-01-01

    Despite a reasonable scientific interest in sexual selection, the general principles of health signalisation via ornamental traits remain still unresolved in many aspects. This is also true for the mechanism preserving honesty of carotenoid-based signals. Although it is widely accepted that this type of ornamentation reflects an allocation trade-off between the physiological utilisation of carotenoids (mainly in antioxidative processes) and their deposition in ornaments, some recent evidence suggests more complex interactions. Here, we further develop the models currently proposed to explain the honesty of carotenoid-based signalisation of heath status by adding the handicap principle concept regulated by testosterone. We propose that under certain circumstances carotenoids may be dangerous for the organism because they easily transform into toxic cleavage products. When reserves of other protective antioxidants are insufficient, physiological trade-offs may exist between maintenance of carotenoids for ornament expression and their removal from the body. Furthermore, we suggest that testosterone which enhances ornamentation by increasing carotenoid bioavailability may also promote oxidative stress and hence lower antioxidant reserves. The presence of high levels of carotenoids required for high-quality ornament expression may therefore represent a handicap and only individuals in prime health could afford to produce elaborate colourful ornaments. Although further testing is needed, this ‘carotenoid maintenance handicap’ hypothesis may offer a new insight into the physiological aspects of the relationship between carotenoid function, immunity and ornamentation.

  12. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins.

    Science.gov (United States)

    Rodrigo, María Jesús; Cilla, Antonio; Barberá, Reyes; Zacarías, Lorenzo

    2015-06-01

    Citrus fruits are a good source of carotenoids for the human diet; however, comparative studies of carotenoids in different citrus food matrices are scarce. In this work the concentration and bioaccessibility of carotenoids in sweet oranges and mandarins with marked differences in carotenoid composition were evaluated in pulp and compared to those in fresh juice. The pulp and juice of the red-fleshed Cara Cara sweet orange variety was highly rich in carotenes (mainly lycopene and phytoene) compared to standard Navel orange, while β-cryptoxanthin and phytoene predominated in mandarins. Total carotenoid content in the pulp of the ordinary Navel orange and in the red-fleshed Cara Cara orange, as well as in the Clementine mandarin were higher than in the corresponding juices, although individual carotenoids were differentially affected by juice preparation. Bioaccessibility of the bioactive carotenoids (the ones described to be absorbed by humans) was greater in both pulp and juice of the carotenoid-rich Cara Cara orange compared to the Navel orange while increasing levels of β-cryptoxanthin were detected in the bioaccessible fractions of pulp and juice of mandarins postharvest stored at 12 °C compared to freshly-harvested fruits. Overall, results indicated that higher soluble bioactive carotenoids from citrus fruits and, consequently, potential nutritional and health benefits are obtained by the consumption of pulp with respect to fresh juice.

  13. An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense.

    Science.gov (United States)

    Thirunavukkarasu, Nagarajan; Mishra, Mukti Nath; Spaepen, Stijn; Vanderleyden, Jos; Gross, Carol A; Tripathi, Anil K

    2008-07-01

    Strains Sp7 and Cd of Azospirillum brasilense, a plant growth-promoting rhizobacterium, differ in synthesis of carotenoids. While colonies of strain Sp7 have a white-cream colour on plates, colonies of strain Cd are orange-pink coloured because of the synthesis of carotenoids. Screening of a mini-Tn5 mutant library of A. brasilense Sp7 revealed two orange-pink-coloured mutants that produced carotenoids. Cloning and sequencing of the Tn5 flanking region in both the carotenoid-producing mutants of Sp7 revealed insertion of Tn5 in an ORF encoding anti-sigma factor, a ChrR-like protein. The upstream region of the Tn5-mutated ORF contained another ORF that encoded an extra-cytoplasmic function (ECF)-class sigma factor (sigma(E), RpoE). When the nucleotide sequences of the corresponding ORFs from the carotenoid-producing strain Cd were analysed, the sequence of the Cd sigma(E) was identical to that of the carotenoid non-producing strain Sp7, but the Cd anti-sigma(E) ORF had a deletion that caused frame shifting and creation of a stop codon. This resulted in the premature termination of the protein, which was about 7 kDa smaller than the Sp7 anti-sigma(E). Cloning of Sp7 anti-sigma(E) in a broad-host-range expression vector and expression in A. brasilense Cd and in the anti-sigma(E) knockout mutant of A. brasilense Sp7 resulted in the inhibition of carotenoid synthesis. Similarly, cloning and overexpression of A. brasilense Sp7 sigma(E) in A. brasilense Sp7 resulted in the production of carotenoids. These observations clearly indicate that carotenoid synthesis in A. brasilense is controlled by sigma(E) with its cognate anti-sigma(E).

  14. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes

    OpenAIRE

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between t...

  15. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs.

    Science.gov (United States)

    Llorente, Briardo

    2016-01-01

    A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants. PMID:27485221

  16. A pediatric non-protein losing Menetrier's disease successfully treated with octreotide long acting release

    Institute of Scientific and Technical Information of China (English)

    Giovanni Di Nardo; Salvatore Oliva; Marina Aloi; Federica Ferrari; Simone Frediani; Adriana Marcheggiano; Salvatore Cucchiara

    2012-01-01

    Pediatric Menetrier's disease (MD) is an uncommon,acute,self-limited hypertrophic gastropathy characterized by enlarged gastric folds associated with epithelial hyperplasia and usually accompanied by protein losing gastropathy.Gastric cytomegalovirus infection is found in one third of MD children and its treatment is often associated with remission.Diagnosis often requires fullthickness biopsy due to inability to detect typical histological findings with conventional endoscopic biopsy.We report an uncommon case of non self-limited pediatric MD needing endoscopic mucosal resection for diagnosis which was then successfully treated with octreotide long-acting release (LAR).To the best of our knowledge,this is the first pediatric MD case successfully treated with octreotide LAR.Our experience suggests octreotide LAR as treatment for refractory MD before gastrectomy.

  17. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability.

    Science.gov (United States)

    Sotomayor-Gerding, Daniela; Oomah, B Dave; Acevedo, Francisca; Morales, Eduardo; Bustamante, Mariela; Shene, Carolina; Rubilar, Mónica

    2016-05-15

    Carotenoid (astaxanthin or lycopene) emulsions obtained by high pressure homogenization were investigated for their physical, oxidative and storage stability and biological fate on an in vitro digestion model of bioaccessibility. Emulsion stability evaluated at various processing environments (20-50°C, 2-10 pH, 0-500 mM NaCl, and 0-35 days storage at 25°C) depended on carotenoid and homogenization pressures (5, 10, 100 MPa). Trolox increased the oxidative stability of nanoemulsions (100 MPa) and acted synergistically with BHT in increasing the stability of lycopene nanoemulsion. Intestinal digestibility depended on homogenization pressures with the fastest release and lower amount of free fatty acids observed at 100 MPa. Carotenoid nanoemulsions (100 MPa) were partially (66%) digested and highly bioaccessible (>70%). Therefore, nanoemulsions provide an effective and stable system for efficient astaxanthin or lycopene delivery and bioavailability in foods, beverages, nutraceuticals and/or other agriproducts. PMID:26775996

  18. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  19. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Seiji [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Kobayashi, Saori [Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Tsubota, Kazuo [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ozawa, Yoko, E-mail: ozawa@a5.keio.jp [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  20. Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation.

    Science.gov (United States)

    Koester, Julie A; Swanson, Willie J; Armbrust, E Virginia

    2013-02-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia, Ditylum, and Thalassiosira) that represent decreasing phylogenetic distances. The signal of positive selection was greatest between two strains of Thalassiosira pseudonana. Further testing among seven strains of T. pseudonana yielded 809 candidate genes of positive selection, which are 7% of the protein-coding genes. Orphan genes and genes encoding protein-binding domains and transcriptional regulators were enriched within the set of positively selected genes relative to the genome as a whole. Positively selected genes were linked to the potential selective pressures of nutrient limitation and sea surface temperature based on analysis of gene expression profiles and identification of positively selected genes in subsets of strains from locations with similar environmental conditions. The identification of positively selected genes presents an opportunity to test new hypotheses in natural populations and the laboratory that integrate selected genotypes in T. pseudonana with their associated phenotypes and selective forces. PMID:23097498

  1. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes.

    Science.gov (United States)

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown. PMID:27069398

  2. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes.

    Science.gov (United States)

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown.

  3. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Hearst, J.E. (Univ. of California, Berkeley (United States) Lawrence Berkeley Lab., CA (United States)); Alberti, M. (Lawrence Berkeley Lab., CA (United States))

    1990-12-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C{sub 40} carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. The authors report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium. CrtB (prephytoene pyrophosphate synthase), CrtE (phytoene synthase), and CrtI (phytoene dehydrogenase) are required for the first three reactions specific to the carotenoid branch of general isoprenoid metabolism. All three dehydrogenases possess a hydrophobic N-terminal domain containing a putative ADP-binding {beta}{alpha}{beta} fold characteristic of enzymes known to bind FAD or NAD(P) cofactors. These data indicate the structural conservation of early carotenoid biosynthesis enzymes in evolutionary diverse organisms.

  4. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects

    Science.gov (United States)

    Shewmaker; Sheehy; Daley; Colburn; Ke

    1999-11-01

    A bacterial phytoene synthase (crtB) gene was overexpressed in a seed-specific manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased significantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in flux through the carotenoid pathway and the other metabolic effects are discussed. PMID:10607293

  5. Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Messias

    2014-01-01

    Full Text Available Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which

  6. Supercritical Fluid Extraction of Palm Carotenoids

    Directory of Open Access Journals (Sweden)

    Puah C. Wei

    2005-01-01

    Full Text Available The extraction of carotenoids from crude palm oil was carried out in a dynamic (flow- through supercritical fluid extraction system. The carotenoids obtained were quantified using off-line UV-visible spectrophotometry. The effects of operating pressure and temperature, flow rate of the supercritical carbon dioxide (SC-CO2, sample size of feed used on the solubility of palm carotenoids were investigated. The results showed that the extraction of carotenoids was governed by its solubility in the SC-CO2 and can be enhanced by increasing pressure at a constant temperature or decreasing temperature at a constant pressure. Increasing the flow rate and decreasing the sample size can reduce the extraction time but do not enhance the solubility. Palm carotenoids have very low solubility in SC-CO2 in the range of 1.31 x 10-4 g kg-1 to 1.58 x 10-3 g kg-1 for the conditions investigated in this study. The experimental data obtained were compared with those published by other workers and correlated by a density-based equation as proposed by Chrastil.

  7. [Carotenoids: 2. Diseases and supplementation studies].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Moël, G L; Stephens, J; Nabet, F

    1999-05-01

    Inverse correlations have been found in most studies on the relationship between dietary intake and plasma concentrations of carotenoids on one side and degenerative diseases such as cancer and cardiovascular diseases on the other side. Protective effects of carotenoids have been found for pathologies of the retina and the skin. Concentrations of these molecules in blood are lower in digestive pathologies and HIV. Short- and long-term toxicity of carotenoids was found to be low. In combination with the beneficial effects found for diets rich in carotenoids, this has initiated trials with relatively high doses of carotenoid supplements. In the study in Linxian (China) in a rural population with poor nutritional status, supplementation with beta-carotene, zinc, selenium and vitamin E lowered total mortality and mortality from stomach cancer. Other studies (ATBC, Caret.) on well-fed subjects did not show beneficial effects on mortality from cancer and cardiovascular diseases. On the contrary, higher mortality and lung cancer incidence was found in supplemented subjects that were also exposed to asbestos and cigarette smoke. In these studies, doses of supplemental beta-carotene were high and varied from 20 to 50 mg/day. One still ongoing study, called Suvimax, doses subjects for eight years with a cocktail of vitamins and minerals including 6 mg per day of beta-carotene. This supplementation with physiologically seen more "normal" doses might give clarity on the question if beta-carotene is the protective factor in fruits and vegetables. PMID:10377477

  8. The Arabidopsis LYST INTERACTING PROTEIN 5 Acts in Regulating Abscisic Acid Signaling and Drought Response.

    Science.gov (United States)

    Xia, Zongliang; Huo, Yongjin; Wei, Yangyang; Chen, Qiansi; Xu, Ziwei; Zhang, Wei

    2016-01-01

    Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumens and play essential roles in many eukaryotic cellular processes. The Arabidopsis LYST INTERACTING PROTEIN 5 (LIP5), a positive regulator of MVB biogenesis, has critical roles in biotic and abiotic stress responses. However, whether the abscisic acid (ABA) signaling is involved in LIP5-mediated stress response is largely unknown. Here, we report that LIP5 functions in regulating ABA signaling and drought response in Arabidopsis. Analyses of a LIP5 promoter-β-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of LIP5 was induced by ABA and drought, and overexpression of LIP5 led to ABA hypersensitivity, enhanced stomatal closure, reduced water loss, and, therefore, increased drought tolerance. On the contrary, LIP5 knockdown mutants showed ABA-insensitive phenotypes and reduced drought tolerance; suggesting that LIP5 acts in regulating ABA response. Further analysis using a fluorescent dye revealed that ABA and water stress induced cell endocytosis or vesicle trafficking in a largely LIP5-dependent manner. Furthermore, expression of several drought- or ABA-inducible marker genes was significantly down-regulated in the lip5 mutant seedlings. Collectively, our data suggest that LIP5 positively regulates drought tolerance through ABA-mediated cell signaling. PMID:27313589

  9. Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity

    Science.gov (United States)

    Yang, Chao-Shun; Chang, Kung-Yen; Dang, Jason; Rana, Tariq M.

    2016-01-01

    The polycomb repressive complex 1 (PRC1) is a multi-subunit complex that plays critical roles in the epigenetic modulation of gene expression. Here, we show that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4, Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity. PMID:27247273

  10. Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-07-01

    Full Text Available Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB and partial-length cDNA clones encoding phytoene synthase (LcPSY, phytoene desaturase (LcPDS, ξ-carotene desaturase (LcZDS, lycopene β-cyclase (LcLCYB, lycopene ε-cyclase (LcLCYE, ε-ring carotene hydroxylase (LcCHXE, zeaxanthin epoxidase (LcZEP, carotenoid cleavage dioxygenase (LcCCD1, and 9-cis epoxycarotenoid dioxygenase (LcNCED were identified in L. chinense. The transcripts were constitutively expressed at high levels in leaves, flowers and red fruits, where the carotenoids are mostly distributed. In contrast, most of the carotenoid biosynthetic genes were weakly expressed in the roots and stems, which contained only small amounts of carotenoids. The level of LcLCYE transcripts was very high in leaves and correlated with the abundance of lutein in this plant tissue. During maturation, the levels of lutein and zeaxanthin in L. chinense fruits dramatically increased, concomitant with a rise in the level of β-cryptoxanthin. LcPSY, LcPDS, LcZDS, LcLCYB, and LcCHXE were highly expressed in red fruits, leading to their substantially higher total carotenoid content compared to that in green fruits. Total carotenoid content was high in both the leaves and red fruits of L. chinense. Our findings on the biosynthesis of carotenoids in L. chinense provide insights into the molecular mechanisms involved in carotenoid biosynthesis and may facilitate the optimization of carotenoid production in L. chinense.

  11. Carotenoid content of 50 watermelon cultivars.

    Science.gov (United States)

    Perkins-Veazie, Penelope; Collins, Julie K; Davis, Angela R; Roberts, Warren

    2006-04-01

    The lycopene content of 50 commercial cultivars of seeded and seedless red-fleshed watermelons was determined. Scanning colorimetric and spectrophotometric assays of total lycopene were used to separate watermelon cultivars into low (90 mg/kg fw). Cultivars varied greatly in lycopene content, ranging from 33 to 100 mg/kg. Most of the seeded hybrid cultivars had average lycopene contents. Sixteen of the 33 seedless types had lycopene contents in the high and very high ranges. All-trans-lycopene was the predominant carotenoid (84-97%) in all watermelon cultivars measured by high-performance liquid chromatography, but the germplasm differed in the relative amounts of cis-lycopene, beta-carotene, and phytofluene. Red-fleshed watermelon genotypes vary extensively in carotenoid content and offer opportunities for developing watermelons with specifically enhanced carotenoids. PMID:16569049

  12. Dehydrolutein: a metabolically derived carotenoid never observed in raptors

    Institute of Scientific and Technical Information of China (English)

    David COSTANTINI; Vittorio BERTACCHE; Barbara PASTURA; Anthony TURK

    2009-01-01

    @@ Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms (Brush, 1990). Conversely, animals are incapable of synthesizing carotenoids de novo, and they must obtain them through their diet. However, some animal species are able to make some alterations to the basic chemical structure, converting ingested carotenoids into more oxidized and differently coloured forms (Schiedt, 1998).

  13. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    2015-01-01

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes assoc

  14. The fate of carotenoids in sediments: An overview

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.

    1997-01-01

    Despite carotenoids being abundant natural products, there are only scattered literature reports of carotenoid derivatives (mainly in the form of their 'perhydro' derivatives) in ancient sediments and petroleum. This was thought to be due to the sensitivity of carotenoids toward oxygen and their pre

  15. Dietary factors that affect the bioavailability of carotenoids

    NARCIS (Netherlands)

    Hof, van het K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G.A.J.

    2000-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. Various dietary factors have an effect on the bioavailability of carotenoids. The type of food matrix in which carotenoids are located is a major factor. The bioavailability of ß-carotene from vegetab

  16. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    Science.gov (United States)

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes. PMID:26916155

  17. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    Science.gov (United States)

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes.

  18. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  19. Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots.

    Science.gov (United States)

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian

    2015-12-01

    The influence of the nature of the lipid phase in excipient emulsions on the bioaccessibility and transformation of carotenoid from carrots was investigated using a gastrointestinal tract (GIT) model. Excipient emulsions were fabricated using whey protein as an emulsifier and medium-chain triglycerides (MCT), fish oil, or corn oil as the oil phase. Changes in particle size, charge, and microstructure were measured as the carrot-emulsion mixtures were passed through simulated mouth, stomach, and small intestine regions. Carotenoid bioaccessibility depended on the type of lipids used to form the excipient emulsions (corn oil > fish oil ≫ MCT), which was attributed to differences in the solubilization capacity of mixed micelles formed from different lipid digestion products. The transformation of carotenoids was greater for fish oil and corn oil than for MCT, which may have been due to greater oxidation or isomerization. The bioaccessibility of the carotenoids was higher from boiled than raw carrots, which was attributed to greater disruption of the plant tissue facilitating carotenoid release. In conclusion, excipient emulsions are highly effective at increasing carotenoid bioaccessibility from carrots, but lipid type must be optimized to ensure high efficacy. PMID:26585671

  20. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Hiroshi, E-mail: yoshii@nirs.go.jp [Research Center for Radiation Emergency Medicine, National Institute of Radiological Science, Chiba 263-8555 (Japan); Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Yoshii, Yukie, E-mail: yukiey@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Asai, Tatsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Furukawa, Takako [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Takaichi, Shinichi [Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063 (Japan); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Some photo-excited carotenoids have photosensitizing ability. Black-Right-Pointing-Pointer They are able to produce ROS. Black-Right-Pointing-Pointer Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as {beta}-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  1. Evaluation of the clastogenicity and anticlastogenicity of the carotenoid bixin in human lymphocyte cultures.

    Science.gov (United States)

    Antunes, Lusânia M Greggi; Pascoal, Lívia M; Bianchi, Maria de Lourdes P; Dias, Francisca L

    2005-08-01

    Carotenoids are regarded as effective antioxidants, antimutagenic and anticarcinogenic agents. Annatto, a red-yellow extract obtained from seeds of Bixa orellana L. is a mixture of several carotenoids and one of them bixin (BXN), is known as its major coloring compound. Studies on BXN clastogenicity and anticlastogenicity in cultured human lymphocytes have not been reported so far. Therefore, the present study was undertaken to investigate the ability of BXN to induce chromosomal aberrations in human lymphocytes in vitro and to examine the possible anticlastogenic effect of this carotenoid in chromosomal damage induced by the clastogen cisplatin (cDDP). Human blood samples were obtained from six healthy, non-smoking volunteers; two females and four males aged 18-35 years. The concentrations of BXN (1.0; 2.5; 5.0 or 10 microg/mL) tested in combination with cDDP were established on the basis of mitotic index (MI) measurements. The data showed that BXN was not cytotoxic or clastogenic, when compared to untreated control. A marked decrease in the MI values compared to the untreated control and an increased percentage of aberrant metaphases was seen in all cultures treated with cDDP. The carotenoid efficiency in reducing the inhibitory effect of cDDP on lymphocyte MI is concentration-dependent. Cultures simultaneously treated with BXN and cDDP showed a statistically significant reduction in total chromosomal aberrations and aberrant metaphases. In our experiments, BXN may have acted as an antioxidant by intercepting free radicals generated by cDDP. The data obtained in the present study suggest that dietary carotenoids may act as protective agents against clastogenic effects of antitumor agents. However, extensive studies are necessary to elucidate the mechanism of action of BXN before its therapeutic use. PMID:15949968

  2. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Directory of Open Access Journals (Sweden)

    Marcello Maggio

    2015-08-01

    Full Text Available Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2 in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000 by High-Performance Liquid Chromatography. Estradiol and testosterone (T levels were assessed by Radioimmunometry (RIA and testosterone-to-estradiol ratio (T/E2, as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1 and further adjusted for other confounders including Body Mass Index (BMI BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2 were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02 and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007 were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01. After adjustment for other confounders (Model 2, the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01, β-carotene (β ± SE = −0.29

  3. Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids

    Science.gov (United States)

    Niedzwiedzki, Dariusz M.; Sandberg, Daniel J.; Cong, Hong; Sandberg, Megan N.; Gibson, George N.; Birge, Robert R.; Frank, Harry A.

    2009-02-01

    The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene ( n = 9), spheroidene ( n = 10), and spirilloxanthin ( n = 13), where n is the number of conjugated π-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all- trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans

  4. The carotenoid-continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again

    Directory of Open Access Journals (Sweden)

    Roberts Mark L

    2010-05-01

    Full Text Available Abstract Background Carotenoids are frequently used by birds to colour their plumage with green, yellow, orange or red hues, and carotenoid-based colours are considered honest signals of quality, although they may have other functions, such as crypsis. It is usually assumed that red through yellow colours have a signalling function while green is cryptic. Here we challenge this notion using the yellow and green colouration of blue tits (Cyanistes caeruleus, great tits (Parus major and greenfinches (Carduelis chloris as a model. Results The relationship between colouration (chroma, computed using visual sensitivities of conspecifics and detectability (contrast against natural backgrounds as perceived by conspecifics and avian predators followed a similar curvilinear pattern for yellow and green plumage with minimum detectability at intermediate levels of carotenoid deposition. Thus, for yellow and green plumage, colours at or close to the point of minimum detectability may aid in crypsis. This may be the case for blue and great tit green and yellow plumage, and greenfinch green plumage, all of which had comparably low levels of detectability, while greenfinch yellow plumage was more chromatic and detectable. As yellow and green blue tit colouration are strongly affected by carotenoid availability during moult, variation in pigment availability between habitats may affect the degree of background-matching or the costliness of producing cryptic plumage. Conclusions Increasing carotenoid-deposition in the integument does not always lead to more conspicuous colours. In some cases, such as in blue or great tits, carotenoid deposition may be selected through enhanced background-matching, which in turn suggests that producing cryptic plumage may entail costs. We stress however, that our data do not rule out a signalling function of carotenoid-based plumage in tits. Rather, it shows that alternative functions are plausible and that assuming a signalling

  5. Continuous production of carotenoids from Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2011-01-01

    During the in situ extraction of ß-carotene from Dunaliella salina, the causal relationship between carotenoid extraction and cell death indicated that cell growth and cell death should be at equilibrium for a continuous in situ extraction process. In a flat-panel photobioreactor that was operated a

  6. Influence of Phenylalanine on Carotenoid Aggregation

    Science.gov (United States)

    Lu, L.; Ni, X.; Luo, X.

    2015-01-01

    The carotenoids lutein and β-carotene form, in 1:1 ethanol-water mixtures H-aggregates, of different strengths. The effects of phenylalanine on these aggregates were recorded by UV-Vis absorption, steady-state fluorescence, and Raman spectra. The H-aggregate of lutein was characterized by a large 78 nm blue shift in the absorption spectra, confirming the strong coupling between hydroxyl groups of adjacent molecules. The 15 nm blue shift in the β-carotene mixture also indicates that it was assembled by weak coupling between polyenes. After adding phenylalanine, the reducing absorption strength of the aggregates of lutein and reappearance of vibrational substructure indicate that the hydroxyl and amino groups of phenylalanine may coordinate to lutein and disaggregate the H-aggregates. However, phenylalanine had no effect on aggregates of β-carotene. The Raman spectra show three bands of carotenoids whose intensities decreased with increasing phenylalanine concentration. The frequency of ν1 corresponding to the length of the conjugated region was more sensitive to the solution of lutein. This coordination of phenylalanine to lutein could increase the length of the conjugated region. In addition, phenylalanine significantly affected the excited electronic states of carotenoids, which were crucial in the energy transfer from carotenoids to chlorophyll a in vivo.

  7. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  8. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  9. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  10. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  11. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  12. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  13. Caught in the act: discovering secreted proteins from fungi and oomycetes in action

    DEFF Research Database (Denmark)

    Roth, Doris; Grell, Morten Nedergaard; Jensen, Annette Bruun;

    Host-microbe relationships largely rely on secreted proteins like enzymes, virulence factors and antimicrobial peptides. To discover proteins secreted by microbe and host during the interaction with each other, we produced dual-organism cDNA libraries from three different fungus- or oomycete...

  14. Evidence of Epigenetic Mechanisms Affecting Carotenoids.

    Science.gov (United States)

    Arango, Jacobo; Beltrán, Jesús; Nuñez, Jonathan; Chavarriaga, Paul

    2016-01-01

    Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants. PMID:27485227

  15. Raman spectra of carotenoids in natural products

    Science.gov (United States)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  16. Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma Carotenoids: properties, applications and biotransformation in flavor compounds

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-06-01

    Full Text Available Carotenoids are widely distributed in nature, providing yellow, orange or red color in a great number of vegetables, microorganisms and in some animals. Carotenoids act as biological antioxidants and seem to play an important role in human health by protecting cells and tissues from the damaging effects of free radicals and singlet oxygen. Several authors describe the oxidative cleavage of carotenoids in flavor compounds as occuring through chemical or photochemical degradations or through biotechnological processes. Biotransformation of carotenoids seems to be a reasonable alternative to produce flavor compounds since these compounds are considered 'natural' ingredients. In this work we describe the properties of some carotenoids, as well as biotechnological approaches to obtain its oxyfunctionalized derivatives.

  17. Study of transitory forms of carotenoids

    International Nuclear Information System (INIS)

    In order to explain the biological role of the carotenoids their transitory forms were studied with an apparatus measuring the small (∼10-3) short-lived (100 ns to 1 ms) optical density variations obtained by excitation with a ruby laser. Two forms were studied: a) Triplet state 3Car. - This state (t1/2∼6 μs) is obtained not by direct excitation but by T-T energy transfer from chlorophyll, in different media (chloroplasts, pigments in solution or in micelle). Two arguments can be advanced to explain in terms of triplet energy transfer an essential biological role of carotenoids, protection against photodynamic effects: - the energy level of 3Car is lower than that of the singlet of oxygen; - in vivo the T-T transfer from chlorophyll to the carotenoids is very fast: 30 ns.. b) Radical cation Car+. - This form is obtained by electron transfer from carotene to the triplet of Toluidine Blue, in ethanol. Car+ (t1/2∼200 μs) shows a strong absorption band at 910 nm. The properties of Car+ are discussed in relation to other polyene derivatives and to hydrocarbon ions. Car+ could be involved in certain biological electron transfers. (author)

  18. A Unified Picture of S* in Carotenoids.

    Science.gov (United States)

    Balevičius, Vytautas; Abramavicius, Darius; Polívka, Tomáš; Galestian Pour, Arpa; Hauer, Jürgen

    2016-09-01

    In π-conjugated chain molecules such as carotenoids, coupling between electronic and vibrational degrees of freedom is of central importance. It governs both dynamic and static properties, such as the time scales of excited state relaxation as well as absorption spectra. In this work, we treat vibronic dynamics in carotenoids on four electronic states (|S0⟩, |S1⟩, |S2⟩, and |Sn⟩) in a physically rigorous framework. This model explains all features previously associated with the intensely debated S* state. Besides successfully fitting transient absorption data of a zeaxanthin homologue, this model also accounts for previous results from global target analysis and chain length-dependent studies. Additionally, we are able to incorporate findings from pump-deplete-probe experiments, which were incompatible to any pre-existing model. Thus, we present the first comprehensive and unified interpretation of S*-related features, explaining them by vibronic transitions on either S1, S0, or both, depending on the chain length of the investigated carotenoid. PMID:27509302

  19. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    Science.gov (United States)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  20. Macular and serum carotenoid concentrations in patients with malabsorption syndromes.

    Science.gov (United States)

    Ward, Matthew S; Zhao, Da You; Bernstein, Paul S

    2008-03-01

    The carotenoids lutein and zeaxanthin are believed to protect the human macula by absorbing blue light and quenching free radicals. Intestinal malabsorption syndromes such as celiac and Crohn's disease are known to cause deficiencies of lipid-soluble nutrients. We hypothesized that subjects with nutrient malabsorption syndromes will demonstrate lower carotenoid levels in the macula and blood, and that these lower levels may correlate with early-onset maculopathy. Resonance Raman spectrographic (RRS) measurements of macular carotenoid levels were collected from subjects with and without a history of malabsorption syndromes. Carotenoids were extracted from serum and analyzed by high performance liquid chromatography (HPLC). Subjects with malabsorption (n = 22) had 37% lower levels of macular carotenoids on average versus controls (n = 25, P maculopathy were not observed. We conclude that intestinal malabsorption results in lower macular carotenoid levels. PMID:19081745

  1. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    OpenAIRE

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged. ...

  2. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species. PMID:18287201

  3. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  4. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    International Nuclear Information System (INIS)

    The pentapeptide repeat protein AlbG, provides self-resistance to the nonribosomally encoded hybrid polyketide-peptide termed albicidin. Analysis of the AlbG three-dimensional structure and the sequences of other pentapeptide repeat proteins that confer resistance to topiosomerase poisons suggests they have a similar dimer interface which may be critical to their interaction with topoisomerases. The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric

  5. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    OpenAIRE

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a c...

  6. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  7. Specific appetite for carotenoids in a colorful bird.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Senar

    Full Text Available BACKGROUND: Since carotenoids have physiological functions necessary for maintaining health, individuals should be selected to actively seek and develop a specific appetite for these compounds. METHODOLOGY/PRINCIPAL FINDINGS: Great tits Parus major in a diet choice experiment, both in captivity and the field, preferred carotenoid-enriched diets to control diets. The food items did not differ in any other aspects measured besides carotenoid content. CONCLUSIONS/SIGNIFICANCE: Specific appetite for carotenoids is here demonstrated for the first time, placing these compounds on a par with essential nutrients as sodium or calcium.

  8. Cyclisation and aromatisation of carotenoids during sediment diagenesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koster, J.; Baas, M.; Koopmans, M.; Kaam-Peters, H.M.E. van; Geenevasen, J.A.J.; Kruk, C.

    1995-01-01

    A novel diaryl isoprenoid with an additional aromatic ring, formed from the diaromatic carotenoid isorenieratene by cyclisation and aromatisation during sediment diagenesis, is identified in carbonaceous sedimentary rocks.

  9. Positive Selection within a Diatom Species Acts on Putative Protein Interactions and Transcriptional Regulation

    OpenAIRE

    Koester, Julie A.; Swanson, Willie J.; Armbrust, E. Virginia

    2012-01-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia,...

  10. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions.

    OpenAIRE

    Vogel, K.; Hörz, W; Hinnen, A

    1989-01-01

    The repressible acid phosphatase gene PHO5 of Saccharomyces cerevisiae requires the two positively acting regulatory proteins PHO2 and PHO4 for expression. pho2 or pho4 mutants are not able to derepress the PHO5 gene under low-Pi conditions. Here we show that both PHO2 and PHO4 bind specifically to the PHO5 promoter in vitro. Gel retardation assays using promoter deletions revealed two regions involved in PHO4 binding. Further characterization by DNase I footprinting showed two protected area...

  11. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum.

    Science.gov (United States)

    Lipschutz, Joshua H; Lingappa, Vishwanath R; Mostov, Keith E

    2003-06-01

    We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of m

  12. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  13. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation.

    Science.gov (United States)

    Zhai, Shengnan; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grains. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and carotenoid cleavage dioxygenases responsible for degradation, and orange gene conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and 10 gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be beneficial in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for provitamin A biofortification. PMID:27559339

  14. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation

    Science.gov (United States)

    Zhai, Shengnan; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grains. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and carotenoid cleavage dioxygenases responsible for degradation, and orange gene conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and 10 gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be beneficial in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for provitamin A biofortification. PMID:27559339

  15. Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, Clare L; Rees, Martin D; Davies, Michael Jonathan

    2002-01-01

    Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), ...

  16. The WW domain protein Kibra acts upstream of Hippo in Drosophila

    DEFF Research Database (Denmark)

    Baumgartner, Roland; Poernbacher, Ingrid; Buser, Nathalie;

    2010-01-01

    inactivating the transcriptional coactivator Yorkie is well established, much less is known about the upstream events that regulate Hippo signaling activity. The FERM domain proteins Expanded and Merlin appear to represent two different signaling branches that feed into the Hippo pathway. Signaling...

  17. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-04-01

    Full Text Available Nowadays the global tendency towards physical activity reduction and an augmented dietary intake of fats, sugars and calories is leading to a growing propagation of overweight, obesity and lifestyle-related diseases, such diabetes, hypertension, dyslipidemia and metabolic syndrome. In particular, obesity, characterized as a state of low-level inflammation, is a powerful determinant both in the development of insulin resistance and in the progression to type 2 diabetes. A few molecular targets offer hope for anti-obesity therapeutics. One of the keys to success could be the induction of uncoupling protein 1 (UCP1 in abdominal white adipose tissue (WAT and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity effects of fucoxanthin, a characteristic carotenoid, exactly belonging to xanthophylls, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups. Fucoxanthin, which can be isolated from edible brown seaweeds, recently displayed its many physiological functions and biological properties. We reviewed recent studies and this article aims to explain essential background of fucoxanthin, focusing on its promising potential anti-obesity effects. In this respect, fucoxanthin can be developed into promising marine drugs and nutritional products, in order to become a helpful functional food.

  18. Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli.

    Science.gov (United States)

    Song, Gyu Hyeon; Kim, Se Hyeuk; Choi, Bo Hyun; Han, Se Jong; Lee, Pyung Cheon

    2013-01-01

    A limited number of carotenoid pathway genes from microbial sources have been studied for analyzing the pathway complementation in the heterologous host Escherichia coli. In order to systematically investigate the functionality of carotenoid pathway enzymes in E. coli, the pathway genes of carotenogenic microorganisms (Brevibacterium linens, Corynebacterium glutamicum, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodopirellula baltica, and Pantoea ananatis) were modified to form synthetic expression modules and then were complemented with Pantoea agglomerans pathway enzymes (CrtE, CrtB, CrtI, CrtY, and CrtZ). The carotenogenic pathway enzymes in the synthetic modules showed unusual activities when complemented with E. coli. For example, the expression of heterologous CrtEs of B. linens, C. glutamicum, and R. baltica influenced P. agglomerans CrtI to convert its substrate phytoene into a rare product-3,4,3',4'-tetradehydrolycopene-along with lycopene, which was an expected product, indicating that CrtE, the first enzyme in the carotenoid biosynthesis pathway, can influence carotenoid profiles. In addition, CrtIs of R. sphaeroides and R. capsulatus converted phytoene into an unusual lycopene as well as into neurosporene. Thus, this study shows that the functional complementation of pathway enzymes from different sources is a useful methodology for diversifying biosynthesis as nature does. PMID:23144136

  19. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dabney-Smith, Carole [Miami Univ., Oxford, OH (United States)

    2016-07-18

    Assembly of functional photosystems complete with necessary intrinsic (membrane-bound) and extrinsic proteins requires the function of at least 3 protein transport pathways in thylakoid membranes. Our research focuses on one of those pathways, a unique and essential protein transport pathway found in the chloroplasts of plants, bacteria, and some archaebacteria, the Twin arginine translocation (Tat) system. The chloroplast Tat (cpTat) system is thought to be responsible for the proper location of ~50% of thylakoid lumen proteins, several of which are necessary for proper photosystem assembly, maintenance, and function. Specifically, cpTat systems are unique because they transport fully folded and assembled proteins across ion tight membranes using only three membrane components, Tha4, Hcf106, and cpTatC, and the protonmotive force generated by photosynthesis. Despite the importance of the cpTat system in plants, the mechanism of transport of a folded precursor is not well known. Our long-term goal is to investigate the role protein transport systems have on organelle biogenesis, particularly the assembly of membrane protein complexes in thylakoids of chloroplasts. The objective of this proposal is to correlate structural changes in the membrane-bound cpTat component, Tha4, to the mechanism of translocation of folded-precursor substrates across the membrane bilayer by using a cysteine accessibility and crosslinking approach. Our central hypothesis is that the precursor passes through a proteinaceous pore of assembled Tha4 protomers that have undergone a conformational or topological change in response to transport. This research is predicated upon the observations that Tha4 exists in molar excess in the membrane relative to the other cpTat components; its regulated assembly to the precursor-bound receptor; and our data showing oligomerization of Tha4 into very large complexes in response to transport. Our rationale for these studies is that understanding cp

  20. Inference of Episodic Changes in Natural Selection Acting on Protein Coding Sequences via CODEML.

    Science.gov (United States)

    Bielawski, Joseph P; Baker, Jennifer L; Mingrone, Joseph

    2016-01-01

    This unit provides protocols for using the CODEML program from the PAML package to make inferences about episodic natural selection in protein-coding sequences. The protocols cover inference tasks such as maximum likelihood estimation of selection intensity, testing the hypothesis of episodic positive selection, and identifying sites with a history of episodic evolution. We provide protocols for using the rich set of models implemented in CODEML to assess robustness, and for using bootstrapping to assess if the requirements for reliable statistical inference have been met. An example dataset is used to illustrate how the protocols are used with real protein-coding sequences. The workflow of this design, through automation, is readily extendable to a larger-scale evolutionary survey. © 2016 by John Wiley & Sons, Inc. PMID:27322407

  1. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Molly Lowndes

    2016-07-01

    Full Text Available The timing, location, and level of WNT signaling are highly regulated during embryonic development and for the maintenance of adult tissues. Consequently the ability to provide a defined and directed source of WNT proteins is crucial to fully understand its role in tissue development and to mimic its activity in vitro. Here we describe a one-step immobilization technique to covalently bind WNT3A proteins as a basal surface with easy storage and long-lasting activity. We show that this platform is able to maintain adult and embryonic stem cells while also being adaptable for 3D systems. Therefore, this platform could be used for recapitulating specific stem cell niches with the goal of improving tissue engineering.

  2. Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation

    OpenAIRE

    Kai eCao; Lirong eCui; Xiaoting eZhou; Lin eYe; Zhirong eZou; Shulin eDeng

    2016-01-01

    The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named a...

  3. Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation

    OpenAIRE

    Cao, Kai; Cui, Lirong; Zhou, Xiaoting; Lin YE; Zou, Zhirong; Deng, Shulin

    2016-01-01

    The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named a...

  4. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  5. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  6. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    Institute of Scientific and Technical Information of China (English)

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged.Results:Alcalase extraction produced (234.00±2.00) mg/L carotenoid and NaOH extraction produced (170.00±1.53) mg/L carotenoid. Based on the samples analyzed, alcalase enzyme showed more efficiency than NaOH extraction to achieve carotenoids from shrimp waste.Conclusions:It can be concluded that using alcalase enzyme for carotenoids extraction can produce higher carotenoids concentration than NaOH extraction method. So alcalase enzyme method can be used for achieving this kind of antioxidant.

  7. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    Directory of Open Access Journals (Sweden)

    Gholamreza jahed Khaniki

    2013-09-01

    Full Text Available Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged. Results: Alcalase extraction produced (234.00±2.00 mg/L carotenoid and NaOH extraction produced (170.00±1.53 mg/L carotenoid. Based on the samples analyzed, alcalase enzyme showed more efficiency than NaOH extraction to achieve carotenoids from shrimp waste. Conclusions: It can be concluded that using alcalase enzyme for carotenoids extraction can produce higher carotenoids concentration than NaOH extraction method. So alcalase enzyme method can be used for achieving this kind of antioxidant.

  8. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  9. Regulatory control of carotenoid accumulation in winter squash during storage

    Science.gov (United States)

    Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage imp...

  10. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    Science.gov (United States)

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health. PMID:27485228

  11. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    NARCIS (Netherlands)

    Beekwilder, M.J.; Meer, van der I.M.; Simic, A.; Uitdewilligen, J.; Arkel, van J.; Vos, de C.H.; Jonker, H.H.; Verstappen, F.W.A.; Bouwmeester, H.J.; Sibbesen, O.; Qvist, I.; Mikkelsen, J.D.; Hall, R.D.

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as ¿-ionone and ß-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry

  12. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A;

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  13. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  14. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  15. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2 treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998, Lon proteases (dr0349 and dr1974, NADH-quinone oxidoreductase (dr1506, thiosulfate sulfurtransferase (dr2531, the DNA repair protein UvsE (dr1819, PprA (dra0346, and RecN (dr1447, are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.

  16. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters

    OpenAIRE

    Hayashi, Katsuhiko; Nakashima, Ryosuke; Sakurai, Keisuke; Kitagawa, Kimie; Yamasaki, Seiji; Nishino, Kunihiko; Yamaguchi, Akihito

    2015-01-01

    The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA m...

  17. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Ping

    2011-08-01

    Full Text Available Abstract Background The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase, is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. Results The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. Conclusions This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression

  18. The kinase regulator mob1 acts as a patterning protein for stentor morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mark M Slabodnick

    2014-05-01

    Full Text Available Morphogenesis and pattern formation are vital processes in any organism, whether unicellular or multicellular. But in contrast to the developmental biology of plants and animals, the principles of morphogenesis and pattern formation in single cells remain largely unknown. Although all cells develop patterns, they are most obvious in ciliates; hence, we have turned to a classical unicellular model system, the giant ciliate Stentor coeruleus. Here we show that the RNA interference (RNAi machinery is conserved in Stentor. Using RNAi, we identify the kinase coactivator Mob1--with conserved functions in cell division and morphogenesis from plants to humans-as an asymmetrically localized patterning protein required for global patterning during development and regeneration in Stentor. Our studies reopen the door for Stentor as a model regeneration system.

  19. [PHARMACOLOGICAL STUDY OF NEW COMPOUNDS ACTING AS REGULATORS OF 18-KDA TRANSLOCATOR PROTEIN LIGANDS].

    Science.gov (United States)

    Yarkov, S A; Mokrov, G V; Gudasheva, T A; Yarkova, M A; Seredenin, S B

    2016-01-01

    The interaction of new original 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamide derivatives with mitochondrial translocator protein (MTP) 18 kDa has been studied by radioligand binding assay. Compounds GML-1 (Ki = 5.2 x 10⁻⁸ M) and GML-3 (Ki = 5.3 x 10⁻⁷ M) exhibit high binding affinity for MTP. GML-1 and GML-3 in a dose range of 0.1-1 mg/kg (i.p.) demonstrated anxiolytic-like effects in the elevated plus-maze test in CD-1 mice, which were blocked by the MTP selective antagonist PK11195. The data obtained on the molecular target, anxiolytic-like effects and low toxicity GML-1 and GML-3 suggest that these compounds are promising for further investigation as anxiolytics. PMID:27159950

  20. Host iron binding proteins acting as niche indicators for Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Philip W Jordan

    Full Text Available Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays.Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators.Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also

  1. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease.

    Science.gov (United States)

    Bernstein, Paul S; Li, Binxing; Vachali, Preejith P; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S; Nolan, John M

    2016-01-01

    The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. PMID:26541886

  2. Ionic liquids effects on the permeability of photosynthetic membranes probed by the electrochromic shift of endogenous carotenoids.

    Science.gov (United States)

    Malferrari, Marco; Malferrari, Danilo; Francia, Francesco; Galletti, Paola; Tagliavini, Emilio; Venturoli, Giovanni

    2015-11-01

    Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.

  3. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits.

    Science.gov (United States)

    Lin, Ming-Kuem; Belanger, Helene; Lee, Young-Jin; Varkonyi-Gasic, Erika; Taoka, Ken-Ichiro; Miura, Eriko; Xoconostle-Cázares, Beatriz; Gendler, Karla; Jorgensen, Richard A; Phinney, Brett; Lough, Tony J; Lucas, William J

    2007-05-01

    Cucurbita moschata, a cucurbit species responsive to inductive short-day (SD) photoperiods, and Zucchini yellow mosaic virus (ZYMV) were used to test whether long-distance movement of FLOWERING LOCUS T (FT) mRNA or FT is required for floral induction. Ectopic expression of FT by ZYMV was highly effective in mediating floral induction of long-day (LD)-treated plants. Moreover, the infection zone of ZYMV was far removed from floral meristems, suggesting that FT transcripts do not function as the florigenic signal in this system. Heterografting demonstrated efficient transmission of a florigenic signal from flowering Cucurbita maxima stocks to LD-grown C. moschata scions. Real-time RT-PCR performed on phloem sap collected from C. maxima stocks detected no FT transcripts, whereas mass spectrometry of phloem sap proteins revealed the presence of Cm-FTL1 and Cm-FTL2. Importantly, studies on LD- and SD-treated C. moschata plants established that Cmo-FTL1 and Cmo-FTL2 are regulated by photoperiod at the level of movement into the phloem and not by transcription. Finally, mass spectrometry of florally induced heterografted C. moschata scions revealed that C. maxima FT, but not FT mRNA, crossed the graft union in the phloem translocation stream. Collectively, these studies are consistent with FT functioning as a component of the florigenic signaling system in the cucurbits.

  4. The carotenoid biosynthetic pathway: thinking in all dimensions.

    Science.gov (United States)

    Shumskaya, Maria; Wurtzel, Eleanore T

    2013-07-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signaling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavor of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and predictability of metabolic engineering of carotenoids rests in the ability to target carotenoids for specific physiological purposes as well as to simultaneously modify carotenoids along with other desired traits. Here, we ask whether predictive metabolic engineering of the carotenoid pathway is indeed possible. Despite a long history of research on the pathway, at this point in time we can only describe the pathway as a parts list and have almost no knowledge of the location of the complete pathway, how it is assembled, and whether there exists any trafficking of the enzymes or the carotenoids themselves. We discuss the current state of knowledge regarding the "complete" pathway and make the argument that predictive metabolic engineering of the carotenoid pathway (and other pathways) will require investigation of the three dimensional state of the pathway as it may exist in plastids of different ultrastructures. Along with this message we point out the need to develop new types of visualization tools and resources that better reflect the dynamic nature of biosynthetic pathways. PMID:23683930

  5. A complex carotenoid palette tunes avian colour vision.

    Science.gov (United States)

    Toomey, Matthew B; Collins, Aaron M; Frederiksen, Rikard; Cornwall, M Carter; Timlin, Jerilyn A; Corbo, Joseph C

    2015-10-01

    The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. PMID:26446559

  6. The Capability of Rhodotorula slooffiae to Produce Carotenoid

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadat Naghavi

    2015-02-01

    Full Text Available Background: Rhodotorula is characterized by the absence of ballistoconidia, fermentation ability, and starch-like compounds. Biology of the species is not well-identified; therefore molecular identification is required. Sequence analysis of the D1/D2 region can be used for the identification of the majority of Basidiomycetous species. Carotenoids which are natural pigments can be synthesized by some genera of yeasts such as Rhodotorula. The increase of demand for carotenoids obtained from natural sources has promoted major efforts to recognize potential microbial sources. The aims of this study were to identify a strain isolated from leather wastewater and to investigate its carotenoid production ability. The effect of 2 different medium (Semi-synthetic medium (MMS and yeast malt extract medium (YM on biomass and carotenoid production was studied. Materials and Methods: In this experimental study, sequence analysis of the D1/D2 region in addition to morphological and biochemical characterization to identify the strain was carried out. To isolate the carotenoid pigment, cells were suspended in acetone and broken using a homogenizer, followed by centrifugation and supernatant was separated; thus pigments were measured spectrophotometrically at 450 nM using the extinction coefficient E1%450=2500. Results: Identification processes represented strain SG006 as a Rhodotorula slooffiae. The sequence was deposited in the Gene Bank database with accession number JX997835. The results showed that SG006 are able to produce carotenoid and MMS medium promoted carotenoid production. Conclusion: We found that Rhodotorula slooffiae showed the ability to produce carotenoid. However, further work is needed to optimize of the amount of product and to characterize the carotenoids.

  7. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization. PMID:26808446

  8. Carboidratos e carotenoides totais em duas variedades de mangarito

    OpenAIRE

    Ana Paula Sato Ferreira; Mário Puiatti; Ariana Mota Pereira; Paulo Roberto Cecon; Aline da Silva Bhering; Teresa Drummond Correia Mendes

    2014-01-01

    O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum) pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao long...

  9. Potential implications for epigenetic regulation of carotenoid biosynthesis during root and shoot development

    OpenAIRE

    Cazzonelli, Christopher Ian; Yin, Kuide; Pogson, Barry J.

    2009-01-01

    Major regulators of carotenoid biosynthesis have remained rather elusive even though the flux through the branch in the carotenoid pathway can affect plant development in response to environmental stimuli, such as light. Our recent investigations demonstrated that the production of the most abundant carotenoid in plants, lutein, is regulated by carotenoid isomerase (CRTISO) activity at a rate-limiting step of this branch point in carotenoid biosynthesis. CRTISO is required to isomerase cis-ca...

  10. Macular carotenoids and age-related maculopathy.

    Science.gov (United States)

    O'Connell, Eamonn; Neelam, Kumari; Nolan, John; Au Eong, Kah-Guan; Beatty, Stephan

    2006-11-01

    Lutein (L) and zeaxanthin (Z) are concentrated at the macula, where they are collectively known as macular pigment (MP), and where they are believed to play a major role in protecting retinal tissues against oxidative stress. Whilst the exact pathogenesis of age-related maculopathy (ARM) remains unknown, the disruption of cellular processes by oxidative stress may play an important role. Manipulation of dietary intake of L and Z has been shown to augment MP, thereby raising hopes that dietary supplementation with these carotenoids might prevent, delay, or modify the course of ARM. This article discusses the scientific rationale supporting the hypothesis that L and Z are protective against ARM, and presents the recent evidence germane to this theory. PMID:17160199

  11. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides.

    OpenAIRE

    Hunter, C N; Hundle, B S; Hearst, J E; Lang, H.P.; Gardiner, A.T.; Takaichi, S; Cogdell, R. J.

    1994-01-01

    Carotenoids have two major functions in bacterial photosynthesis, photoprotection and accessory light harvesting. The genes encoding many carotenoid biosynthetic pathways have now been mapped and cloned in several different species, and the availability of cloned genes which encode the biosynthesis of carotenoids not found in the photosynthetic genus Rhodobacter opens up the possibility of introducing a wider range of foreign carotenoids into the bacterial photosynthetic apparatus than would ...

  12. Study of carotenoids in cyanobacteria by Raman spectroscopy.

    Science.gov (United States)

    de Oliveira, Vanessa End; Neves Miranda, Marcela A C; Soares, Maria Carolina Silva; Edwards, Howell G M; de Oliveira, Luiz Fernando Cappa

    2015-01-01

    Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority.

  13. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    OpenAIRE

    Yueming Jiang; Amin Ismail; Kin-Weng Kong; Hock-Eng Khoo; K. Nagendra Prasad

    2011-01-01

    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables d...

  14. Macular and serum carotenoid concentrations in patients with malabsorption syndromes

    OpenAIRE

    Ward, Matthew S.; Zhao, Da You; Bernstein, Paul S

    2008-01-01

    The carotenoids lutein and zeaxanthin are believed to protect the human macula by absorbing blue light and quenching free radicals. Intestinal malabsorption syndromes such as celiac and Crohn’s disease are known to cause deficiencies of lipid-soluble nutrients. We hypothesized that subjects with nutrient malabsorption syndromes will demonstrate lower carotenoid levels in the macula and blood, and that these lower levels may correlate with early-onset maculopathy. Resonance Raman spectrographi...

  15. Seeking carotenoid pigments in amber-preserved fossil feathers

    Science.gov (United States)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  16. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  17. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    Science.gov (United States)

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc.

  18. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  19. Novel Cationic Carotenoid Lipids as Delivery Vectors of Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Vassilia Partali

    2012-01-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs. The cationic carotenoid lipid/PMO-AO lipoplexes yielded significant exon 45 skipping relative to a known commercial lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC.

  20. Validation model for Raman based skin carotenoid detection.

    Science.gov (United States)

    Ermakov, Igor V; Gellermann, Werner

    2010-12-01

    Raman spectroscopy holds promise as a rapid objective non-invasive optical method for the detection of carotenoid compounds in human tissue in vivo. Carotenoids are of interest due to their functions as antioxidants and/or optical absorbers of phototoxic light at deep blue and near UV wavelengths. In the macular region of the human retina, carotenoids may prevent or delay the onset of age-related tissue degeneration. In human skin, they may help prevent premature skin aging, and are possibly involved in the prevention of certain skin cancers. Furthermore, since carotenoids exist in high concentrations in a wide variety of fruits and vegetables, and are routinely taken up by the human body through the diet, skin carotenoid levels may serve as an objective biomarker for fruit and vegetable intake. Before the Raman method can be accepted as a widespread optical alternative for carotenoid measurements, direct validation studies are needed to compare it with the gold standard of high performance liquid chromatography. This is because the tissue Raman response is in general accompanied by a host of other optical processes which have to be taken into account. In skin, the most prominent is strongly diffusive, non-Raman scattering, leading to relatively shallow light penetration of the blue/green excitation light required for resonant Raman detection of carotenoids. Also, sizable light attenuation exists due to the combined absorption from collagen, porphyrin, hemoglobin, and melanin chromophores, and additional fluorescence is generated by collagen and porphyrins. In this study, we investigate for the first time the direct correlation of in vivo skin tissue carotenoid Raman measurements with subsequent chromatography derived carotenoid concentrations. As tissue site we use heel skin, in which the stratum corneum layer thickness exceeds the light penetration depth, which is free of optically confounding chromophores, which can be easily optically accessed for in vivo RRS

  1. Validation model for Raman based skin carotenoid detection.

    Science.gov (United States)

    Ermakov, Igor V; Gellermann, Werner

    2010-12-01

    Raman spectroscopy holds promise as a rapid objective non-invasive optical method for the detection of carotenoid compounds in human tissue in vivo. Carotenoids are of interest due to their functions as antioxidants and/or optical absorbers of phototoxic light at deep blue and near UV wavelengths. In the macular region of the human retina, carotenoids may prevent or delay the onset of age-related tissue degeneration. In human skin, they may help prevent premature skin aging, and are possibly involved in the prevention of certain skin cancers. Furthermore, since carotenoids exist in high concentrations in a wide variety of fruits and vegetables, and are routinely taken up by the human body through the diet, skin carotenoid levels may serve as an objective biomarker for fruit and vegetable intake. Before the Raman method can be accepted as a widespread optical alternative for carotenoid measurements, direct validation studies are needed to compare it with the gold standard of high performance liquid chromatography. This is because the tissue Raman response is in general accompanied by a host of other optical processes which have to be taken into account. In skin, the most prominent is strongly diffusive, non-Raman scattering, leading to relatively shallow light penetration of the blue/green excitation light required for resonant Raman detection of carotenoids. Also, sizable light attenuation exists due to the combined absorption from collagen, porphyrin, hemoglobin, and melanin chromophores, and additional fluorescence is generated by collagen and porphyrins. In this study, we investigate for the first time the direct correlation of in vivo skin tissue carotenoid Raman measurements with subsequent chromatography derived carotenoid concentrations. As tissue site we use heel skin, in which the stratum corneum layer thickness exceeds the light penetration depth, which is free of optically confounding chromophores, which can be easily optically accessed for in vivo RRS

  2. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans

    DEFF Research Database (Denmark)

    Maiani, Giuseppe; Castón, María Jesús Periago; Catasta, Giovina;

    2009-01-01

    Carotenoids are one of the major food micronutrients in human diets and the overall objective of this review is to re-examine the role of carotenoids in human nutrition. We have emphasized the attention on the following carotenoids present in food and human tissues: -carotene, -cryptoxanthin......, -carotene, lycopene, lutein and zeaxanthin; we have reported the major food sources and dietary intake of these compounds. We have tried to summarize positive and negative effects of food processing, storage, cooking on carotenoid content and carotenoid bioavailability. In particular, we have evidenced...... the possibility to improve carotenoids bioavailability in accordance with changes and variations of technology procedures....

  3. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  4. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  5. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  6. Long-acting β2-agonists increase fluticasone propionate-induced mitogen-activated protein kinase phosphatase 1 (MKP-1 in airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Melanie Manetsch

    Full Text Available Mitogen-activated protein kinase phosphatase 1 (MKP-1 represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol, alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone in primary human airway smooth muscle (ASM cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6 and interleukin 8 (IL-8 secretion. As IL-6 expression (like MKP-1 is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα. Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.

  7. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter.

  8. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits.

    Science.gov (United States)

    Delgado-Pelayo, Raúl; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2016-05-15

    The carotenoid composition of strawberry tree (Arbutus unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 μg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (>20 μg/g dw). (all-E)-Violaxanthin and 9Z-violaxanthin were found to be the major carotenoid pigments, accounting for more than 60%, responsible for the bright colour of the flesh of ripe fruits. In addition other 5,6-epoxide carotenoids, such as (all-E)-neoxanthin, (9'Z)-neoxanthin (all-E)-antheraxanthin and lutein 5,6-epoxide, together with (all-E)-lutein, (all-E)-zeaxanthin and (all-E)-β-carotene were found at high levels (>5-20 μg/g dw). The LC-MS (APCI+) analysis of the xanthophyll fraction in their native state (direct extract) revealed that most of them (>90%) were totally esterified with saturated fatty acids (capric, lauric, myristic, palmitic and stearic). Monoesters, homodiesters and heterodiesters of (all-E)-violaxanthin and 9Z-violaxanthin were the major pigments. PMID:26775958

  9. Vibronic coupling in the excited-states of carotenoids.

    Science.gov (United States)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2016-04-28

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B(u)(+) and 1B(u)(-) states via solvent interaction.

  10. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter. PMID:27485230

  11. Tropical bat as mammalian model for skin carotenoid metabolism.

    Science.gov (United States)

    Galván, Ismael; Garrido-Fernández, Juan; Ríos, José; Pérez-Gálvez, Antonio; Rodríguez-Herrera, Bernal; Negro, Juan José

    2016-09-27

    Animals cannot synthesize carotenoid pigments de novo, and must consume them in their diet. Most mammals, including humans, are indiscriminate accumulators of carotenoids but inefficiently distribute them to some tissues and organs, such as skin. This limits the potential capacity of these organisms to benefit from the antioxidant and immunostimulatory functions that carotenoids fulfill. Indeed, to date, no mammal has been known to have evolved physiological mechanisms to incorporate and deposit carotenoids in the skin or hair, and mammals have therefore been assumed to rely entirely on other pigments such as melanins to color their integument. Here we use high-performance liquid chromatography (HPLC) in combination with time-of-flight mass spectrometry (HPLC-TOF/MS) to show that the frugivorous Honduran white bat Ectophylla alba colors its skin bright yellow with the deposition of the xanthophyll lutein. The Honduran white bat is thus a mammalian model that may help developing strategies to improve the assimilation of lutein in humans to avoid macular degeneration. This represents a change of paradigm in animal physiology showing that some mammals actually have the capacity to accumulate dietary carotenoids in the integument. In addition, we have also discovered that the majority of the lutein in the skin of Honduran white bats is present in esterified form with fatty acids, thereby permitting longer-lasting coloration and suggesting bright color traits may have an overlooked role in the visual communication of bats. PMID:27621447

  12. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.;

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  13. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    Science.gov (United States)

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  14. Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.D.; Valinger, D.; Vegvari, G.

    2014-01-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC)

  15. Development of carotenoid-enriched vegetables with increased nutritional quality and visual appearance

    Science.gov (United States)

    Carotenoids are a class of red, orange and yellow pigments widely distributed in nature. Biotech approach has been proved to be effective in successfully engineering of carotenoid content in food crops with better health and visual appearance....

  16. Stability of carotenoids recovered from shrimp waste and their use as colorant in fish sausage.

    Science.gov (United States)

    Sachindra, N M; Mahendrakar, N S

    2010-01-01

    The stability of carotenoids recovered from shrimp waste using organic solvents and vegetable oils as affected by antioxidants and pigment carriers was evaluated during storage under different conditions. Solvent extracted carotenoid incorporated into alginate and starch as carriers was stored in metallised polyester and polypropylene pouches. Oil extracted carotenoids were stored in transparent and amber bottles. Also the use of recovered pigments as colorants in fish sausage was evaluated. Antioxidants, packaging material and storage period had a significant effect (p≤0.001) on the reduction of carotenoid content, while type of carrier had marginal effect (p≥0.05) on solvent extracted carotenoids during storage. Carotenoid content in pigmented oil was significantly affected by antioxidants (p≤0.001), packaging material (p≤0.05) and storage period (p≤0.001). Addition of carotenoid to the sausage enhanced the sensory colour, flavour and overall quality score of sausage and the added carotenoid was stable during processing.

  17. Carotenoid limitation of sexual coloration along an environmental gradient in guppies

    OpenAIRE

    Grether, G. F; Hudon, J; Millie, D. F.

    1999-01-01

    Carotenoids produce most of the brilliant orange and yellow colours seen in animals, but animals cannot synthesize these pigments and must rely on dietary sources. The idea that carotenoids make good signals because they are a scarce limiting resource was proposed two decades ago and has become the leading hypothesis for the role of carotenoids in animal communication. To our knowledge, until now, however, there has been no direct evidence that carotenoids are a limiting resource in nature. W...

  18. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    OpenAIRE

    María del Rocío Gómez-García; Neftalí Ochoa-Alejo

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ be...

  19. Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion

    OpenAIRE

    Apel, W.; R. Bock

    2009-01-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the ...

  20. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices

    Directory of Open Access Journals (Sweden)

    Sidney Pacheco

    2014-10-01

    Full Text Available In order to generate simple, efficient analytical methods that are also fast, clean, and economical, and are capable of producing reliable results for a large number of samples, a micro scale extraction method for analysis of carotenoids in vegetable matrices was developed. The efficiency of this adapted method was checked by comparing the results obtained from vegetable matrices, based on extraction equivalence, time required and reagents. Six matrices were used: tomato (Solanum lycopersicum L., carrot (Daucus carota L., sweet potato with orange pulp (Ipomoea batatas (L. Lam., pumpkin (Cucurbita moschata Duch., watermelon (Citrullus lanatus (Thunb. Matsum. & Nakai and sweet potato (Ipomoea batatas (L. Lam. flour. Quantification of the total carotenoids was made by spectrophotometry. Quantification and determination of carotenoid profiles were formulated by High Performance Liquid Chromatography with photodiode array detection. Microscale extraction was faster, cheaper and cleaner than the commonly used one, and advantageous for analytical laboratories.

  1. Noninvasive measurements of carotenoids in bovine udder by reflection spectroscopy

    Science.gov (United States)

    Klein, Julia; Darvin, Maxim E.; Müller, Kerstin E.; Lademann, Jürgen

    2012-10-01

    For a long time, the antioxidative status in cattle has been discussed as an indicator for stress conditions resulting from disease or exertion. Until now, invasive approaches have been necessary to obtain blood samples or biopsy materials and gain insights into the antioxidative status of cattle. Due to these efforts and the costs of the analyses, serial sampling is feasible in an experimental setting, but not for measurements on a routine basis. The present study focuses on the feasibility of an innovative, noninvasive spectroscopic technique that allows in vivo measurements of carotenoids in the skin by reflection spectroscopy. To this end, in a first trial, repeated measurements of the carotenoid concentration of the udder skin were performed on 25 healthy cattle from different breeds. Carotenoid concentrations showed highly significant differences between individual animals (Ptest) differed significantly (P<0.005), with higher concentrations observed in robust cows.

  2. 动物组织中类胡萝卜素分析、分布的研究进展%Process on Analysis and Distribution Research of Carotenoids in Animal Tissues

    Institute of Scientific and Technical Information of China (English)

    薛峰; 李晨; 潘思轶

    2011-01-01

    对动物组织中类胡萝卜素的分析、分布和类胡萝卜素特异性结合蛋白的研究进行了综述.动物组织中类胡萝卜素的提取主要采用混合有机溶剂提取;分析检测主要采用反相高效液相色谱法和二极管阵列检测器;类胡萝卜素主要由小肠黏膜吸收;脂蛋白被认为参与类胡萝卜素的转运;β-胡萝卜素可经生物转化生成视黄醇;动物各组织对类胡萝卜素表现出选择性吸收,且这种选择性吸收因物种不同而差异显著;类胡萝卜素在吸收过程中相互之间存在交互作用,且这种交互作用主要发生在碳氢类胡萝卜素和含氧类胡萝卜素之间;类胡萝卜素的选择性吸收与交互作用被认为与组织中某种特异性结合蛋白的存在相关.%The carotenoids analysis and distribution in animal tissues and the study of carotenoids binding protein were reviewed in this article. Complete extraction of carotenoids from animal tissues was reported by using slightly polar solvents plus non -polar solvents;Reversed Phase High Pedormance Liquid Chromatography, coupling a photodiode array detector,was most often employed in routine use to analyze the carotenoids;carotenoids were absorbed by the mucosa of the small intestine;lipoproteins played an important role in transportation of carotenoids;the various pathways of β - carotene biotransformation were either known or suspected of occurring in mammalian tissues, and pathways known or proposed were involved in the conversion of β - carotene to retinoids; selective absorption of carotenoids was found in animal tissues and there were obvious variabilities in the selective absorption of carotenoid among animal species;the interactions between carotenoids were found during the process of absorption and antagonistic effects had been reported between the hydrocarbon carotenoids and oxycarotenoids;special carotenoids binding proteins had been isolated and purified from animal tissues, which

  3. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability.

    Science.gov (United States)

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant'Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-11-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  4. Theory of relaxation dynamics within carotenoids via high frequency stretching modes

    Science.gov (United States)

    Balevicius, Vytautas; Abramavicius, Darius

    2015-03-01

    Carotenoids are ubiquitous natural pigment molecules acting as light harvesters in the blue-green region of the spectrum, and at the same time ensuring the photoprotection against excessive light by quenching the triplet state of chlorophylls and singlet oxygen. However, their photophysics is still not fully understood, because the absorption takes place not into the optically dark lowest excited state S1, but to the short-lived higher-lying state S2. This leads to complicated intramolecular energy redistribution schemes within carotenoids. From the transient absorption experiments it is known that the S1 state is populated shortly after the excitation of the S2 state (on the time-scale of tens of femtoseconds). The corresponding excited state absorption signal is blue-shifting and narrowing at early times, which is attributed to the vibrational cooling of the S1 state. We apply the secular density matrix theory to take into account both the internal conversion from the S2 into the S1 state and the subsequent relaxation within the manifold of high-frequency vibrational states corresponding to the carbon-carbon stretching modes (C-C and C=C). It allows us to obtain relevant pump-probe spectra in the time range from femto- to picoseconds.

  5. [The effect of beta-ionine on biosynthesis of carotenes by Actinomyces chrysomallus var. carotenoides].

    Science.gov (United States)

    Sverdlova, A N; Alekseeva, L N; Nefelova, M V

    1977-01-01

    Biosynthesis of carotenoids by a growing culture of Actinomyces chrysomallus var. carotenoides is totally inhibited by beta-ionone added at different concentrations, at various time of the cultural growth, and in various combinations with oil. The inhibition of carotenoid synthesis by beta-ionone is of a specific character since the biomass growth under the same conditions does not increase.

  6. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    NARCIS (Netherlands)

    Casagrande, Stefania; Dijkstra, Cor; Tagliavini, James; Goerlich, Vivian C.; Groothuis, Ton G. G.

    2011-01-01

    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion

  7. The contribution of various foods to intake of vitamin A and carotenoids in the Netherlands

    NARCIS (Netherlands)

    Goldbohm, R.A.; Brants, H.A.M.; Hulshof, K.F.A.M.; Brandt, P.A. van den

    1998-01-01

    This study presents data on dietary intake of specific carotenoids in the Netherlands, based on a recently developed food composition database for carotenoids. Regularly eaten vegetables, the main dietary source of carotenoids, were sampled comprehensively and analysed with modern analytic methods.

  8. Isolation and characterization of bioactive protein from green algae Halimeda macrobola acting as antioxidant and anticancer agent

    OpenAIRE

    Ahmad, Ahyar

    2014-01-01

    A protein fraction isolated from green algae Halimeda macrobola taken from the sea of Selayar and Kapoposang Island in South Sulawesi was tested for antioxidant and anticancer properties. The protein was isolated using buffer Tris (hydroxymethyl) amino methane. Initial purification of protein was conducted by using the fractionation method with ammonium sulphate, followed by dialysis process. Protein concentration was determined by Lowry method. Antioxidant assay was done by using DPPH method...

  9. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica

    Directory of Open Access Journals (Sweden)

    Rie eYatsunami

    2014-03-01

    Full Text Available The carotenoids produced by extremely halophilic archaeon Haloarcula japonica were extracted and identified by their chemical, chromatographic, and spectroscopic characteristics (UV-Vis and mass spectrometry. The composition (mol% was 68.1% bacterioruberin, 22.5% monoanhydrobacterioruberin, 9.3% bisanhydrobacterioruberin, < 0.1% isopentenyldehydrorhodopin, and trace amounts of lycopene and phytoene. The in vitro scavenging capacity of a carotenoid, bacterioruberin, extracted from Ha. japonica cells against 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals was evaluated. The antioxidant capacity of bacterioruberin was much higher than that of β-carotene.

  10. Estabilidad del Carotenoide Licopeno en Tomates en Conserva Lycopene Carotenoide Stability in Canned Tomatoes

    Directory of Open Access Journals (Sweden)

    Alicia L Ordóñez

    2009-01-01

    Full Text Available El objetivo de este trabajo fue determinar la estabilidad del carotenoide licopeno durante el proceso de elaboración de conservas de tomates peritas y evaluar la misma durante su almacenamiento como producto terminado. Se trabajó con muestras provenientes de elaboraciones industriales extraídas en distintos puntos del proceso: tomates frescos, en la boquilla de alimentación de la línea; tomate pelado, a la salida de la peladora termofísica y producto terminado a la salida del esterilizador-enfriador, de distintos lotes de elaboración y en tres ocasiones durante la temporada 2007. El producto terminado, envasado en hojalata, fue evaluado durante un año, cada tres meses. El licopeno fue extraído con una mezcla de hexano-acetona-etanol y determinado por espectrofotometría visible a 472nm. Los resultados se analizaron estadísticamente mostrando que la esterilización industrial produce liberación celular del licopeno.The objective of this work was to determine lycopene carotenoid stability during manufacturing process in canned peeled whole tomatoes and during its storage as final product. Samples were taken during industrial manufacturing at different process points: fresh tomatoes when they were feeding to process line, peeled tomatoes from thermophysical peeler and finished product after it passed the cooker-cooler. Samples were obtained from different manufacturing lots at three times during the 2007 harvesting season. Canned tomatoes were analyzed every three months, during one year. Lycopene was extracted with hexane-acetone-ethyl alcohol and measured by spectrophotometry at 472 nm. Statistical analysis of the results shows that industrial sterilization produces cell release of lycopene.

  11. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.

    Science.gov (United States)

    Holden, Neil S; George, Tresa; Rider, Christopher F; Chandrasekhar, Ambika; Shah, Suharsh; Kaur, Manminder; Johnson, Malcolm; Siderovski, David P; Leigh, Richard; Giembycz, Mark A; Newton, Robert

    2014-01-01

    In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and

  12. The Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro

    Directory of Open Access Journals (Sweden)

    Hossein Zarei Jaliani

    2013-01-01

    Full Text Available Objective(s: Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functions in nearly all kinds of cellular processes. The aim of this study was to investigate whether crocin affects microtubule polymerization and tubulin structure. Materials and Methods: Microtubules were extracted from sheep brains after two cycles of temperature-dependant assembly-disassembly in the polymerization buffer (PMG. Then phosphocellulose P11 column was used to prepare MAP-free tubulin. Turbidimetric assay of microtubules was performed by incubation of tubulins at 37 ºC in PIPES buffer. To investigate the intrinsic fluorescence spectra of tubulins, the emission spectra of tryptophans was monitored. To test the interaction of crocin with tubulin in more details, ANS has been used. Results: Crocin extremely affected the tubulin polymerization and structure. Ultraviolet spectroscopy indicated that crocin increased polymerization of microtubules by nearly a factor of two. Fluorescence spectroscopic data also pointed to significant conformational changes of tubulin. Conclusion: We showed that crocin increased tubulin polymerization and microtubule nucleation rate and this effect was concentration dependant. After entering cell, crocin can modulate cellular proteins and their functions. Concerning the results of this study, crocin would be able to affect several cell processes through interaction with tubulin proteins or microtubules.

  13. Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins.

    Science.gov (United States)

    Kovács, István A; Szalay, Máté S; Csermely, Peter

    2005-04-25

    Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and stabilizing their native structure. In kinetic terms water and chaperones may make the punctuated equilibrium of conformational changes less punctuated and help protein relaxation. Finally, water and chaperones may help the convergence of multiple energy landscapes during protein-macromolecule interactions. We also discuss the possibility of the introduction of protein games to narrow the multitude of the energy landscapes when a protein binds to another macromolecule. Both water and chaperones provide a diffuse set of rapidly fluctuating weak links (low affinity and low probability interactions), which allow the generalization of all these statements to a multitude of networks. PMID:15848154

  14. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons.

    Science.gov (United States)

    Edwards, Stacey L; Morrison, Logan M; Yorks, Rosalina M; Hoover, Christopher M; Boominathan, Soorajnath; Miller, Kenneth G

    2015-09-01

    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

  15. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels.

    Science.gov (United States)

    Ndolo, Victoria U; Beta, Trust

    2013-08-15

    To compare the distribution of carotenoids across the grain, non-corn and corn cereals were hand dissected into endosperm, germ and aleurone fractions. Total carotenoid content (TCC) and carotenoid composition were analysed using spectrophotometry and HPLC. Cereal carotenoid composition was similar; however, concentrations varied significantly (paleurone layer had zeaxanthin levels 2- to 5-fold higher than lutein among the cereals. Positive significant correlations (paleurone layer. Our findings suggest that the aleurone of wheat, oat, corn and germ of barley have significantly enhanced carotenoid levels.

  16. Growth and accumulation of carotenoids and nitrogen compounds in Gracilaria domingensis (Kütz. Sonder ex Dickie (Gracilariales, Rhodophyta cultured under different irradiance and nutrient levels

    Directory of Open Access Journals (Sweden)

    Fernanda Ramlov

    2011-04-01

    Full Text Available Effects of the interaction of irradiance and nutrient levels on growth and contents of photosynthetic pigments, carotenoids and proteins in Gracilaria domingensis (Kütz. Sonder ex Dickie (Gracilariales, Rhodophyta were investigated experimentally. Nutrient availability provided by dilutions of the nutrient solution of von Stosch (25 and 50%, which corresponded to nitrate concentrations of 125 and 250 μmol, respectively and two photon flux densities [low PFD (50±5 and high PFD (100±5 μmol photons.m-2.s-1] were tested. Growth rates of G. domingensis were stimulated by high PFD. The interaction between high nutrient availability (50% VSES and high PFD stimulated the accumulation of total soluble protein. Phycobiliprotein concentrations (phycoerythrin, phycocyanin, and allophycocyanin and carotenoid contents were influenced by irradiance levels. Phycobiliprotein concentrations were higher at low PFD and high irradiances stimulated carotenoid accumulation. These results reflect the function of these pigments in photoprotection and the acclimation of G. domingensis to changes in irradiance levels. Our results indicate that light is a limiting factor for G. domingensis growth, that variations in phycobiliprotein contents under different irradiance levels are related to photoacclimation process, and that higher carotenoid contents at high irradiances are due to a photoprotection mechanism.

  17. Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids.

    Science.gov (United States)

    Marshall, J H; Wilmoth, G J

    1981-01-01

    The pigments of Staphylococcus aureus were isolated and purified, and their chemical structures were determined. All of the 17 compounds identified were triterpenoid carotenoids possessing a C30 chain instead of the C40 carotenoid structure found in most other organisms. The main pigment, staphyloxanthin, was shown to be alpha-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate) 6-O-(12-methyltetradecanoate), in which glucose is esterified with both a triterpenoid carotenoid carboxylic acid and a C15 fatty acid. It is accompanied by isomers containing other hexoses and homologs containing C17 fatty acids. The carotenes 4,4'-diapophytoene, 4,4'-diapophytofluene, 4-4'-diapophytofluene, 4-4'-diapo-zeta-carotene, 4,4'-diapo-7,8,11,12-tetrahydrolycopene, and 4,4'-diaponeurosporene and the xanthophylls 4,4'-diaponeurosporenal, 4,4'-diaponeurosporenoic acid, and glucosyl diaponeurosporenoate were also identified, together with some of their isomers or breakdown products. The symmetrical 4,4'-diapo- structure was adopted for these triterpenoid carotenoids, but an alternative unsymmetrical 8'-apo-structure could not be excluded. PMID:7275936

  18. Vitamins, carotenoids, dietary fiber, and the risk of gastric carcinoma

    NARCIS (Netherlands)

    Botterweck, A.A.M.; Brandt, P.A. van den; Goldbohm, R.A.

    2000-01-01

    BACKGROUND. Numerous components of fruit and vegetables are considered to decrease the risk of gastric carcinoma. In the current prospective study, the authors examined the association between the intake of vitamins, carotenoids, and dietary fiber and vitamin supplement use and the incidence rate of

  19. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  20. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  1. Colour and carotenoid changes of pasteurised orange juice during storage.

    Science.gov (United States)

    Wibowo, Scheling; Vervoort, Liesbeth; Tomic, Jovana; Santiago, Jihan Santanina; Lemmens, Lien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc; Van Loey, Ann

    2015-03-15

    The correlation of carotenoid changes with colour degradation of pasteurised single strength orange juice was investigated at 20, 28, 35 and 42°C for a total of 32 weeks of storage. Changes in colour were assessed using the CIELAB system and were kinetically described by a zero-order model. L(∗), a(∗), b(∗), ΔE(∗), Cab(∗) and hab were significantly changed during storage (pcolour parameters were 64-73 kJ mol(-1). Several carotenoids showed important changes and appeared to have different susceptibilities to storage. A decrease of β-cryptoxanthin was observed at higher temperatures, whereas antheraxanthin started to decrease at lower temperatures. Depending on the time and temperature, changes in carotenoids could be due to isomerisation reactions, which may lead to a perceptible colour change. Although the contribution of carotenoids was recognised to some extent, other reactions seem of major importance for colour degradation of orange juice during storage.

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

    Science.gov (United States)

    2016-01-01

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  3. Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins

    OpenAIRE

    Kovacs, Istvan A.; Szalay, Mate S.; Csermely, Peter

    2004-01-01

    Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and stabilizing their native structure. In kinetic terms water and chaperones may make the punctuated equ...

  4. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available BACKGROUND: Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  5. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.

    Science.gov (United States)

    Bertsova, Y V; Arutyunyan, A M; Bogachev, A V

    2016-04-01

    Carotenoid-binding properties of Na+-translocating rhodopsin (NaR) from Dokdonia sp. PRO95 were studied. Carotenoids were extracted from Dokdonia sp. PRO95 cells. It was found that zeaxanthin is the predominant carotenoid of this bacterium. Incubation of recombinant NaR purified from Escherichia coli cells with carotenoids from Dokdonia sp. PRO95 did not result in any changes in optical absorption or circular dichroism spectra, indicating the absence of binding of the carotenoids by NaR. The same results were obtained using salinixanthin as the carotenoid. These data along with genome analysis of Dokdonia sp. PRO95 and other flavobacteria indicate that NaR from Dokdonia sp. PRO95 and possibly the other flavobacterial Na+-translocating rhodopsins do not contain a carotenoid antenna. PMID:27293099

  6. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2014-03-01

    Full Text Available Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction.

  7. Changes in membrane lipids and carotenoids during light acclimation in a marine cyanobacterium Synechococcus sp.

    Indian Academy of Sciences (India)

    Olimpio Montero; Alberto Sánchez-Guijo; Luis M Lubián; Gonzalo Martínez-Rodríguez

    2012-09-01

    Time course of carotenoid and membrane lipid variation during high light (HL) acclimation (about 85 mol m−2 s−1), after transfer from low light (LL) (5–10 μmol m−2 s−1), was determined in a marine Synechococcus strain. High-performance liquid chromatography (HPLC) coupled to diode array detector (DAD) or electrospray ionization mass spectrometry (ESI-MS) was used for compound separation and detection. Myxoxanthophyll rose within a time interval of 8 h to 24 h after the onset of exposure to HL. -carotene content started to decrease after 4 h of the onset of exposure to HL. Zeaxanthin content rose with exposure to HL, but it was only significant after 24 h of exposure. Carotenoid changes are in agreement with a coordinated activity of the enzymes of the myxoxanthophyll biosynthetic pathway, with no rate-limiting intermediate steps. Lipid analysis showed all species with a C18:3/C16:0 composition increased their content, the changes of PG(18:3/16:0) and MGDG(18:3/16:0) being primarily significant. Major lipid changes were also found to occur within 24 h. These changes might suggest reduction and reorganization of the thylakoid membrane structure. Hypotheses are also drawn on the role played by lipid molecule shape and their possible effect in membrane fluidity and protein accommodation.

  8. Dietary protein intake and incidence of type 2 diabetes in Europe: the EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Nielen, van M.; Feskens, E.J.M.; Mensink, M.R.; Sluijs, van der I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.J.; Boeing, H.; The InterAct Consortium, A.

    2014-01-01

    OBJECTIVE The long-term association between dietary protein and type 2 diabetes incidence is uncertain. We aimed to investigate the association between total, animal, and plant protein intake and the incidence of type 2 diabetes. RESEARCH DESIGN AND METHODS The prospective European Prospective Inves

  9. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release.

  10. The antioxidant potential of carotenoid extract from Phaffia rhodozyma

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2010-06-01

    Full Text Available Background. Carotenoids are components playing an important role in biological systems, starting with light protection, immunoenhancement, protection against carcinogens and finishing with antioxidant activity. Food additives market is based mainly on synthetic additives; however, higher consumer awareness has resulted in an increased use of natural substances. One of the potentially antioxidant compounds could be a lipid soluble carotenoid – astaxanthin (xanthophyll, found in the microbial world. The aim of this study was to evaluate the antioxidant potential of carotenoid extract from Phaffia rhodozyma extract. Material and methods. Carotenoids extracted from Phaffia rhodozyma and the astaxanthin standard was selected for the investigations. Antioxidant potential was evaluated by radical scavenging activity (DPPH• and ABTS•+ radicals and in lipid oxidative stability measurements (Rancimat, Oxidograph and Schaal oven tests. Results. It was found that the examined extracts presented a significantly higher ability to scavenge the DPPH• radical in comparison to the ABTS•+ radical. Evaluations of linoleic acid emulsion oxidative stability showed a higher antioxidant effect of the Phaffia rhodozyma extract than that of astaxanthin during 19 h of incubation. That potential however, was not detected in linoleic acid emulsion incubated for 96 h, where both additives accelerated oxidation process. In bulk sunflower oil a protective effect of Phaffia rhodozyma extract was observed. In both Rancimat and Oxidograph tests antioxidant activity measured using the induction period was evaluated. However, results of the Schaal oven test indicated that a 144 h incubation of sunflower oil offered a significantly better protection of the lipid against oxidation when the Phaffia rhodozyma extract was added. Conclusions. On the basis of recorded results it was found that the Phaffia rhodozyma carotenoid extract showed moderate antioxidant properties

  11. Evaluation of carotenoid contents in irradiated buriti (Mauritia flexuosa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jaqueline M. da; Coelho, Maysa J.; Lima, Keila S.C.; Lima, Antonio L.S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear]. E-mail: maysa@ime.eb.br; Godoy, Ronoel L.O.; Pacheco, Sidney [EMBRAPA Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil)]. E-mail: ronoel@ctaa.embrapa.br; Ferreira, Rubemar S. [Centro Regional de Ciencias Nucleares do Centro-Oeste CRCN-CO/CNEN, Abadia de Goias, GO (Brazil); E-mail: rferreira@cnen.gov.br

    2007-07-01

    Buriti (Mauritia flexuosa L.), a typical Brazilian fruit, can be found at north, northeast and center-west regions in Brazil. It has a high nutritional value and is considered an excellent source of vitamin A precursors, called carotenoids, showing a majority of {beta}-carotene. It can be used in many regional dishes. In this study, Buriti in natura was treated with gamma irradiation, deriving from a cavity type research irradiator which has a Cs-137 radiation source, with the doses of 0.5 and 1.0 kGy. The objective is to evaluate the irradiation effects on nutritional quality maintenance and conservation of Buriti, focusing in optimizer the processing conditions and increase consumption as a way to fight vitamin A deficiency. Clinical, biological and dietetic studies have indicated that the lack of vitamin A is the main cause of night blindness and xerophthalmia. The use of food irradiation is growing and represents an economic benefit to the agriculture through the reduction of post harvesting losses. The irradiated fruits and the control group were evaluated through the total carotenoids analysis, by spectrophotometry, and the carotenoids (a and b-carotene and luteine) determined by High Performance Liquid Chromatography (HPLC). ANOVA was used to treat the results. The results show that buriti is an excellent source of total carotenoids, with a concentration of 44500 {mu}g/100 g in the pulp (70% of {beta}-carotene). The reduction of carotenoids contents due to the irradiation process does not compromise its nutritional quality that is still very above of recommendations, being the dose of 0.5 kGy more appropriate. (author)

  12. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  13. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer. PMID:26048106

  14. Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o.

    Science.gov (United States)

    Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X

    2016-05-15

    Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. PMID:26987813

  15. Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery.

    Science.gov (United States)

    Ruohonen, L; Toikkanen, J; Tieaho, V; Outola, M; Soderlund, H; Keranen, S

    1997-03-30

    Increased production of secreted proteins in Saccharomyces cerevisiae was achieved by overexpressing the yeast syntaxins. Sso1 or Sso2 protein, the t-SNAREs functioning at the targeting/fusion of the Golgi-derived secretory vesicles to the plasma membrane. Up to four- or six-fold yields of a heterologous secreted protein, Bacillus alpha-amylase, or an endogenous secreted protein, invertase, were obtained respectively when expressing either one of the SSO genes, SSO1 or SSO2, from the ADH1 promoter on a multicopy plasmid. Direct correlation between the Sso protein level and the amount of secreted alpha-amylase was demonstrated by modulating the expression level of the SSO2 gene. Quantitation of the alpha-amylase activity in the culture medium, periplasmic space and cytoplasm suggests that secretion into the periplasmic space is the primary stage at which the SSO genes exert the secretion-enhancing function. Pulse-chase data also support enhanced secretion efficiently obtained by SSO overexpression. Our data suggest that the Sso proteins may be rate-limiting components of the protein secretion machinery at the exocytosis step in yeast. PMID:9133737

  16. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    Science.gov (United States)

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  17. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  18. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  19. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation

    OpenAIRE

    Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd

    2008-01-01

    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets...

  20. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    Directory of Open Access Journals (Sweden)

    Meehan Maria

    2012-02-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA, an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA's primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  1. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  2. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability.

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8'-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of Capryol(TM)90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  3. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  4. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit.

    Science.gov (United States)

    Cao, Shifeng; Liang, Minhua; Shi, Liyu; Shao, Jiarong; Song, Chunbo; Bian, Kun; Chen, Wei; Yang, Zhenfeng

    2017-01-01

    To understand better the regulatory mechanism of the carotenoid accumulation, the expression profile of relevant carotenoid genes and metabolites were compared between two peach cultivars with different colors during fruit development. Meanwhile, the change pattern of carotenoid content and expression of carotenoid metabolic genes in peaches after harvest in response to blue light were also investigated. As compared to the yellow fleshed-cultivar 'Jinli', lower carotenoid levels were observed in skin and pulp in white peach cultivar 'Hujing', which might be explained by differentially expression of PpCCD4 gene. With respect to 'Jinli', the carotenoid accumulation during fruit development in fruit skin was partially linked with the transcriptional regulation of PpFPPS, PpGGPS, PpLCYB and PpCHYB. However, in the pulp, the accumulation might be also associated with the increased transcriptions of PpPDS, along with the above four genes. Blue light treatment induced carotenoid accumulation in 'Jinli' peaches during storage. In addition, the treated-fruit displayed higher expression of all the eight genes analysed with a lesser extent on PpCCD4, which suggested that the much more increased carotenoid synthesis rate could result in the higher carotenoid content in blue light-treated fruit. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation in peach fruit. PMID:27507458

  5. Effects of experimental brood size manipulation and gender on carotenoid levels of Eurasian kestrels Falco tinnunculus.

    Directory of Open Access Journals (Sweden)

    Toni Laaksonen

    Full Text Available BACKGROUND: Animals use carotenoid-pigments for coloration, as antioxidants and as enhancers of the immune system. Carotenoid-dependent colours can thus signal individual quality and carotenoids have also been suggested to mediate life-history trade-offs. METHODOLOGY: To examine trade-offs in carotenoid allocation between parents and the young, or between skin coloration and plasma of the parents at different levels of brood demand, we manipulated brood sizes of Eurasian kestrels (Falco tinnunculus. PRINCIPAL FINDINGS: Brood size manipulation had no overall effect on plasma carotenoid levels or skin hue of parents, but female parents had twice the plasma carotenoid levels of males. Males work physically harder than females and they might thus also use more carotenoids against oxidative stress than females. Alternatively, females could be gaining back the carotenoid stores they depleted during egg-laying by eating primarily carotenoid-rich food items during the early nestling stage. Fledglings in enlarged broods had higher plasma carotenoid concentrations than those in reduced broods. This difference was not explained by diet. In light of recent evidence from other species, we suggest it might instead be due to fledglings in enlarged broods having higher testosterone levels, which in turn increased plasma carotenoid levels. The partial cross-foster design of our experiment revealed evidence for origin effects (genetic or maternal on carotenoid levels of fledglings, but no origin-environment interaction. SIGNIFICANCE: These results from wild birds differ from studies in captivity, and thus offer new insights into carotenoid physiology in relation to division of parental care and demands of the brood.

  6. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. PMID:26281765

  7. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Roland Baumgartner

    Full Text Available Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig, an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1 and Caprin (Capr and directly interacts with and regulates the RNA-binding protein Rasputin (Rin in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  8. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Science.gov (United States)

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  9. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans

    DEFF Research Database (Denmark)

    Søltoft, Malene; Bysted, Anette; Madsen, K. H.;

    2011-01-01

    BACKGROUND: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased...... health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from...... crops from these agricultural systems. RESULTS: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly...

  10. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins.

    Science.gov (United States)

    Davies, Rebecca G; Wagstaff, Kylie M; McLaughlin, Eileen A; Loveland, Kate L; Jans, David A

    2013-12-01

    Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development. PMID:23707952

  11. Resonance Raman measurements of carotenoids using light emitting diodes

    CERN Document Server

    Bergeson, S D; Eyring, N J; Fralick, J F; Stevenson, D N; Ferguson, S B

    2008-01-01

    We report on the development of a compact commercial instrument for measuring carotenoids in skin tissue. The instrument uses two light emitting diodes (LEDs) for dual-wavelength excitation and four photomultiplier tubes for multichannel detection. Bandpass filters are used to select the excitation and detection wavelengths. The f/1.3 optical system has high optical throughput and single photon sensitivity, both of which are crucial in LED-based Raman measurements. We employ a signal processing technique that compensates for detector drift and error. The sensitivity and reproducibility of the LED Raman instrument compares favorably to laser-based Raman spectrometers. This compact, portable instrument is used for non-invasive measurement of carotenoid molecules in human skin with a repeatability better than 10%.

  12. The very early events following photoexcitation of carotenoids.

    Science.gov (United States)

    Hashimoto, Hideki; Yanagi, Kazuhiro; Yoshizawa, Masayuki; Polli, Dario; Cerullo, Giulio; Lanzani, Guglielmo; De Silvestri, Sandro; Gardiner, Alastair T; Cogdell, Richard J

    2004-10-01

    The recent availability of laser pulses with 10-20 fs duration, tunable throughout the visible and near infrared wavelengths, has facilitated the investigation, with unprecedented temporal resolution, into the very early events of energy relaxation in carotenoids [Science 298 (2002) 2395; Synth. Metals 139 (2003) 893]. This has enabled us to clearly demonstrate the existence of an additional intermediate state, Sx, lying between the S2 (1(1)Bu+) and S1 (2(1)Ag-) states. In addition, by applying time-resolved stimulated Raman spectroscopy with femtosecond time resolution, it has also been shown that vibrational relaxation in electronic excited states plays an important role in these interconversions. In this mini-review, we describe briefly the current understanding of Sx and the other intermediate excited states that can be formed by relaxation from S2, mainly focusing attention on the above two topics. Emphasis is also placed on some of the major remaining unsolved issues in carotenoid photochemistry.

  13. Colorful World of Microbes: Carotenoids and Their Applications

    Directory of Open Access Journals (Sweden)

    Kushwaha Kirti

    2014-01-01

    Full Text Available Microbial cells accumulate pigments under certain culture conditions, which have very important industrial applications. Microorganisms can serve as sources of carotenoids, the most widespread group of naturally occurring pigments. More than 750 structurally different yellow, orange, and red colored molecules are found in both eukaryotes and prokaryotes with an estimated market of $ 919 million by 2015. Carotenoids protect cells against photooxidative damage and hence found important applications in environment, food and nutrition, disease control, and as potent antimicrobial agents. In addition to many research advances, this paper reviews concerns with recent evaluations, applications of microbial pigments, and recommendations for future researches with an understanding of evolution and biosynthetic pathways along with other relevant aspects.

  14. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  15. A novel C1qDC protein acting as pattern recognition receptor in scallop Argopecten irradians.

    Science.gov (United States)

    Wang, Leilei; Wang, Lingling; Kong, Pengfei; Yang, Jialong; Zhang, Huan; Wang, Mengqiang; Zhou, Zhi; Qiu, Limei; Song, Linsheng

    2012-08-01

    The C1q domain containing (C1qDC) proteins refer to a family of proteins containing the versatile charge pattern recognition globular C1q domain in the C-terminus, which could bind various ligands including PAMPs and trigger a serial of immune response. In this study, a novel C1qDC protein was identified from Argopecten irradians (designated as AiC1qDC-2). Its full-length cDNA was of 1062 bp with an open reading frame of 720 bp encoding a polypeptide of 240 amino acids containing a typical gC1q domain. This gC1q domain possessed the typical 10-stranded β-sandwich fold with a jelly-roll topology common to all C1q family members, and shared high homology with most of the other identified gC1q domains. The mRNA transcripts of AiC1qDC-2 were mainly detected in hepatopancreas, and also marginally detectable in mantle, gonad, adductor, gill and hemocytes. Its relative expression level in hemocytes was significantly up-regulated after challenges of fungi Pichia pastoris GS115 (P pattern recognition receptor to recognize various PAMPs on different pathogens in the innate immune responses of scallop, and provided new clues to understand the role of invertebrate C1qDC proteins in the ancient complement system.

  16. Análise de trilha para carotenoides em milho

    Directory of Open Access Journals (Sweden)

    Sara de Almeida Rios

    2012-06-01

    Full Text Available Ainda que sejam considerados os aspectos de magnitude e significância, o estudo de correlações entre caracteres por si só não garante causa e efeito entre eles. Dessa forma, o objetivo deste trabalho foi desdobrar as correlações fenotípicas em seus efeitos diretos e indiretos, pela análise de trilha, considerando o perfil de carotenoides em genótipos de milho. Foram utilizados dados obtidos do ensaio nacional de cultivares de milho conduzido pela Embrapa Milho e Sorgo, no ano agrícola 2004/2005, com média de 10 genótipos em cinco ambientes. Avaliaram-se os teores de carotenoides totais (CT, α e β-carotenos, luteína, zeaxantina e β-criptoxantina. A xantofila zeaxantina apresenta o maior efeito direto sobre β-caroteno. As altas correlações entre β-caroteno e carotenoides totais e entre β-caroteno e β-criptoxantina são devidas ao efeito indireto, via zeaxantina. A seleção direta de genótipos com altos teores de β-caroteno apresenta-se como a alternativa de maior efetividade, mas se outras frações de carotenoides também forem consideradas, esquemas de seleção simultânea de caracteres, por meio da utilização de índices de seleção, mostram-se mais eficientes na obtenção de genótipos com altos teores de β-caroteno do que a resposta correlacionada.

  17. THE CAROTENOID BIOSYNTHETIC PATHWAY: THINKING IN ALL DIMENSIONS

    OpenAIRE

    Shumskaya, Maria; Wurtzel, Eleanore T.

    2013-01-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signalling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavour of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and...

  18. Study of RP HPLC Retention Behaviours in Analysis of Carotenoids.

    Science.gov (United States)

    Ligor, M; Kováčová, J; Gadzała-Kopciuch, R M; Studzińska, S; Bocian, Sz; Lehotay, J; Buszewski, B

    2014-01-01

    For determination of selected carotenoids, various types of columns for high-performance liquid chromatography (HPLC) with different properties have been used. The characteristics of the laboratory-used packing material containing monomeric alkyl-bonded phases (C18, C30) and phenyl as well as phenyl-hexyl stationary phases were studied. The retention data of the examined compounds were used to determine the hydrophobicity and silanol activity of stationary phases applied in the study. The presence of the polar and carboxyl groups in the structure of the bonded ligand strongly influences the polarity of the stationary phase. Columns were compared according to methylene selectivity using a series of benzene homologues. The measurements were done using a methanol-water mobile phase. Knowledge of the properties of the applied stationary phase provided the possibility to predict the RP HPLC retention behaviours in analysis of carotenoids including lutein, lycopene and β-carotene. The composition of the mobile phase, the addition of triethylamine and the type of stationary phase had been taken into account in designing the method of carotenoid identification. Also a monolithic column characterised by low hydrodynamic resistance, high porosity and high permeability was applied. The presented results show that the coverage density of the bonded ligands on silica gel packings and length of the linkage strongly influence the carotenoid retention behaviours. In our study, the highest retention parameters for lutein, lycopene and β-carotene were observed for C30 and C18 stationary phase. This effect corresponds with pore size of column packing greater than 100 Å and carbon content higher than 11 %. PMID:25089049

  19. Identification and Quantification of Major Carotenoids in Some Vegetables

    OpenAIRE

    Jafar M. El-Qudah

    2009-01-01

    An HPLC study of 6 raw vegetables (Okra, green beans, eggplant zucchini, carrot and tomato) most frequently consumed worldwide was carried out to determine their carotenoid composition. The samples were purchased from supermarket in the city of Boston, USA. Neoxanthin, violaxanthin and lutein were contained in all samples except tomato for neoxanthin, carrot and tomato for violaxanthin and carrot for lutein. β-carotene was contained in all samples while α-carotene was contained only...

  20. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  1. Resonance Raman detection of carotenoid antioxidants in living human tissue

    OpenAIRE

    Ermakov, Igor V.; M Sharifzadeh; Ermakova, Maia; Gellermann, W.

    2005-01-01

    Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with incr...

  2. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    Science.gov (United States)

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  3. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids.

    Science.gov (United States)

    Obruca, Stanislav; Benesova, Pavla; Kucera, Dan; Petrik, Sinisa; Marova, Ivana

    2015-12-25

    Coffee is one of the world's most popular beverages and has been growing steadily in commercial importance. Nowadays, coffee is the second largest traded commodity in the world, after petroleum. Hence, coffee industry is responsible for the generation of large amounts of waste, especially spent coffee grounds (SCG). Various attempts to valorize this waste stream of coffee industry were made. This article summarizes our research and publications aiming at the conversion of SCG into valuable products - polyhydroxyalkanoates (PHAs) and carotenoids. At first, oil extracted from SCG (approx. 15 wt% oil in SCG) can be efficiently (YP/S=0.82 g/g) converted into PHA employing Cupriavidus necator H16. Further, the solid residues after oil extraction can be hydrolyzed (by the combination of chemical and enzymatic hydrolysis) yielding fermentable sugars, which can be further used as a substrate for the production of PHAs employing Bacillus megaterium (YP/S=0.04 g/g) or Burkholderia cepacia (YP/S=0.24 g/g). Alternatively, SCG hydrolysate can be used as a substrate for biotechnological production of carotenoids by carotenogenic yeast Sporobolomyces roseus. Solid residues after either oil extraction or hydrolysis can be used as fuel in industrial boilers to generate heat and energy. Therefore, entire biomass of SCG can be used for sustainable production of PHAs and/or carotenoids employing bio-refinery approach. PMID:25721970

  4. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids.

    Science.gov (United States)

    Obruca, Stanislav; Benesova, Pavla; Kucera, Dan; Petrik, Sinisa; Marova, Ivana

    2015-12-25

    Coffee is one of the world's most popular beverages and has been growing steadily in commercial importance. Nowadays, coffee is the second largest traded commodity in the world, after petroleum. Hence, coffee industry is responsible for the generation of large amounts of waste, especially spent coffee grounds (SCG). Various attempts to valorize this waste stream of coffee industry were made. This article summarizes our research and publications aiming at the conversion of SCG into valuable products - polyhydroxyalkanoates (PHAs) and carotenoids. At first, oil extracted from SCG (approx. 15 wt% oil in SCG) can be efficiently (YP/S=0.82 g/g) converted into PHA employing Cupriavidus necator H16. Further, the solid residues after oil extraction can be hydrolyzed (by the combination of chemical and enzymatic hydrolysis) yielding fermentable sugars, which can be further used as a substrate for the production of PHAs employing Bacillus megaterium (YP/S=0.04 g/g) or Burkholderia cepacia (YP/S=0.24 g/g). Alternatively, SCG hydrolysate can be used as a substrate for biotechnological production of carotenoids by carotenogenic yeast Sporobolomyces roseus. Solid residues after either oil extraction or hydrolysis can be used as fuel in industrial boilers to generate heat and energy. Therefore, entire biomass of SCG can be used for sustainable production of PHAs and/or carotenoids employing bio-refinery approach.

  5. The role of carotenoids on the risk of lung cancer.

    Science.gov (United States)

    Epstein, Kenneth R

    2003-02-01

    Smoking prevention and cessation remain the primary methods of reducing the incidence of lung cancer. The limited success of efforts towards smoking cessation have led to increasing interest in the role of nutrition in lung cancer prevention. One class of nutrients that has attracted attention as potential chemopreventive agents is the carotenoids, especially beta-carotene, due to their antioxidant properties. In vitro, carotenoids exert antioxidant functions and inhibit carcinogen-induced neoplastic transformation, inhibit plasma membrane lipid oxidation, and cause upregulated expression of connexin 43. These in vitro results suggest that carotenoids have intrinsic cancer chemopreventive action in humans. Many cohort and case-control study data have shown an inverse relationship between fruit and vegetable consumption and lung cancer, although several more recent studies have cast doubt on these findings. Different effects of various dietary nutrients on lung cancer risk have been observed. Several prospective intervention trials were undertaken to examine the effect of supplementation on the risk of lung cancer. Some of these studies demonstrated an increased incidence and mortality from lung cancer in those receiving supplementation. Many hypotheses have emerged as to the reasons for these findings.

  6. Analysis on Carotenoids Content and Other Quality Traits of 185 Wheat Varieties

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU; Yuanyuan WU; Wenyin ZHENG; Wenming ZHANG; Wenshang GUO; Danian YAO

    2015-01-01

    In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the carotenoids content, lipoxygenase activ-ity, whiteness, yel owness and some other quality traits of whole mil in wheat.The results showed that there were highly significant variations in lipoxygenase activity , carotenoids content, whiteness and yel owness among those sample of wheat vari-eties; carotenoids content was significantly and positively correlated with yel owness. Cluster analysis was performed based on carotenoids content clustered al the vari-eties or lines into three major groups. Additional y, carotenoids were discussed in the application of nutritional quality improvement in wheat.

  7. A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus.

    Science.gov (United States)

    Sun, Zongtao; Shen, Shaochuan; Wang, Chao; Wang, Hu; Hu, Yaping; Jiao, Jiandong; Ma, Tingting; Tian, Bing; Hua, Yuejin

    2009-08-01

    A novel carotenoid 1,2-hydratase (CruF) responsible for the C-1',2' hydration of gamma-carotene was identified in the non-photosynthetic bacteria Deinococcus radiodurans R1 and Deinococcus geothermalis DSM 11300. Gene expression and disruption experiments demonstrated that dr0091 and dgeo2309 encode CruF in D. radiodurans and D. geothermalis, respectively. Their homologues were also found in the genomes of cyanobacteria, and exhibited little homology to the hydroxyneurosporene synthase (CrtC) proteins found mainly in photosynthetic bacteria. Phylogenetic analysis showed that CruF homologues form a separate family, which is evolutionarily distant from the known CrtC family.

  8. Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome.

    Science.gov (United States)

    Chu, Derrick; Ren, Songyang; Hu, Stacy; Wang, Wei Gang; Subramanian, Aparna; Contreras, Deisy; Kanagavel, Vidhya; Chung, Eric; Ko, Justine; Amirtham Jacob Appadorai, Ranjit Singh; Sinha, Sanjeev; Jalali, Ziba; Hardy, David W; French, Samuel W; Arumugaswami, Vaithilingaraja

    2013-05-01

    Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.

  9. The calcium-dependent protease of Loxosceles gaucho venom acts preferentially upon red cell band 3 transmembrane protein

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2003-01-01

    Full Text Available Eighty micrograms red blood cell (RBC ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.

  10. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice.

    OpenAIRE

    Korfhagen, T R; Glasser, S W; Wert, S E; Bruno, M D; Daugherty, C C; McNeish, J D; Stock, J L; Potter, S S; Whitsett, J A

    1990-01-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, ...

  11. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    OpenAIRE

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; NAKAJIMA, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimula...

  12. Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens).

    Science.gov (United States)

    Du, J; Foissac, X; Carss, A; Gatehouse, A M; Gatehouse, J A

    2000-04-01

    The mannose-specific snowdrop lectin [Galanthus nivalis agglutinin (GNA)] displays toxicity to the rice brown planthopper Nilaparvata lugens. A 26kDa GNA-binding polypeptide from N. lugens midgut was identified by lectin blotting and affinity chromatography, and characterized by N-terminal sequencing. This polypeptide is the most abundant binding protein for GNA in the N. lugens midgut. A cDNA (fersub2) encoding this protein was isolated from an N. lugens cDNA library. The deduced amino acid sequence shows significant homology to ferritin subunits from Manduca sexta and other arthropods, plants and vertebrates, and contains a putative N-glycosylation site. Native ferritin was purified from whole insects as a protein of more than 400kDa in size and characterized biochemically. Three subunits of 20, 26 and 27kDa were released from the native complex. The 26kDa subunit binds GNA, and its N-terminal sequence was identical to that of fersub2. A second cDNA (fersub1), exhibiting strong homology with dipteran ferritin, was identified as an abundant cDNA in an N. lugens midgut-specific cDNA library, and could encode the larger ferritin subunit. The fersub1 cDNA carries a stem-loop structure (iron-responsive element) upstream from the start codon, similar to structures that have been shown to play a role in the control of ferritin synthesis in other insects.

  13. Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes.

    OpenAIRE

    Kakitani, T; Honig, B.; Crofts, A R

    1982-01-01

    Molecular orbital calculations are carried out on a number of carotenoids in the presence of an external charge and a constant electric field. The external charge is used to represent the strong permanent field that is believed to polarize carotenoids in photosynthetic membranes and thus to account for their linear response to the transmembrane potential. Our calculations show that the in vitro leads to in vivo spectral shifts of carotenoids (approximately 25 nm) can be produced by a charge i...

  14. The nature and the content of carotenoid pigments from faded leaves of Aesculus hippocastanum L.

    OpenAIRE

    Gino ROSCA; Sanda CRAPATUREANU; Socaciu, Carmen; Gavrila NEAMTU

    1995-01-01

    Faded leaves of Aesculus hippocastanum L. harvested in October and November have a high and various content of carotenoids. The content of lutein and zeaxanthin is much higher in faded leaves than in the green ones, that is why they are recommended as an important natural source for extraction (at an industrial level) of the mentioned carotenoids. Faded leaves have a low biological value, because they have a low content of provitaminic A carotenoids. They have also a low content of hydrocarbo...

  15. Nematode parasites reduce carotenoid-based signalling in male red grouse

    OpenAIRE

    Martínez-Padilla, Jesús; Mougeot, François; Pérez-Rodríguez, Lorenzo; Gary R. Bortolotti

    2007-01-01

    Carotenoids determine the yellow–red colours of many ornaments, which often function as signals of quality. Carotenoid-based signalling may reliably advertise health and should be particularly sensitive to parasite infections. Nematodes are among the commonest parasites of vertebrates, with well-documented negative effects on their hosts. However, to date, little is known about the effects that these parasites may have on carotenoid-based signalling. Tetraonid birds (grouse) exhibit supra-orb...

  16. Studies on carotenoids and oxidative stability of winter squash seed and soybean oils

    OpenAIRE

    Helmy, H. E.

    1992-01-01

    Winter squash seed and soybean oils were extracted with commercial hexane. Carotenoids and other pigments m the oils were studied using spectrophotometric and thin layer chromatographic analysis. Three types of pigments were identified: carotenoids. mainly lutein and β-carotene, chlorophyll and some unidentified pigments. Carotenoids content were 70, 60, 0 ppm in crude, refined and bleached winter squash seed oil, and 80, 65, 0 ppm in crude, refined and bleached soybean oil respectively. ...

  17. Investigations of carotenoids in fungi. III. Fructifications of some species from the genus Suillus

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-11-01

    Full Text Available Using column and thin-layer chromatography the occurrence of carotenoids and their content was determined in fructifications of 5 species from the genus Suillus. 21 carotenoids were found, among them 3 which had not hitherto been detected in fungi (auroxanthin, 3,4-dihydroxy-α-carotene and myxoxantophyll. Moreover quantitative and qualitative differences were found in the content of carotenoids in fructifications of Boletus luteus which may be of importance in their taxonomy.

  18. Serum Carotenoids Reduce Progression of Early Atherosclerosis in the Carotid Artery Wall among Eastern Finnish Men

    OpenAIRE

    Jouni Karppi; Sudhir Kurl; Kimmo Ronkainen; Jussi Kauhanen; Laukkanen, Jari A.

    2013-01-01

    BACKGROUND: Several previous epidemiologic studies have shown that high blood levels of carotenoids may be protective against early atherosclerosis, but results have been inconsistent. We assessed the association between atherosclerotic progression, measured by intima-media thickness of the common carotid artery wall, and serum levels of carotenoids. METHODS: We studied the effect of carotenoids on progression of early atherosclerosis in a population-based study. The association between conce...

  19. Plasma carotenoid levels in passerines are related to infection by (some parasites

    Directory of Open Access Journals (Sweden)

    Jordi eFiguerola

    2014-08-01

    Full Text Available Plumage coloration plays an important role in intra and inter-sexual competition in birds. Many of the yellow, orange or red colours present in birds are carotenoid dependent. Carotenoids can not be synthetized de novo by birds and consequently should be obtained through their diet, and access to carotenoids may differ between individuals and species. In addition to ornamentation, carotenoids are important for bird physiology and it has been proposed that a trade-off in their allocation to these two functions occurs. Under this scenario parasites may play a central role in maintaining the honesty of plumage as a signaling system by increasing the demands for carotenoids for infection or damage control and/or by reducing carotenoid absorption in the intestines. We analyzed the relationship between (1 carotenoid concentrations in plasma and (2 blood and intestinal parasite richness and abundance in 22 species of passerines sampled in spring. Loads of different groups of parasites were unrelated so conclusions drawn from examining a particular group of parasites cannot be extrapolated to the whole community of pathogens and parasites inhabiting a host. At intraspecific level plasma carotenoid concentration was negatively related to the richness of intestinal parasites and the abundance of some groups of intestinal parasites, at interspecific level plasma carotenoid concentration was negatively related with the abundance of intestinal parasites. No relationship at intra- nor interpecific level was found between carotenoids and blood parasites. The results suggest that intestinal parasites play an important role in the evolution and maintenance of carotenoid-derived sexually selected ornamentations probably through a negative impact on the uptake of carotenoids at the gut.

  20. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals.

    Science.gov (United States)

    García-de Blas, Esther; Mateo, Rafael; Alonso-Alvarez, Carlos

    2016-01-01

    Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual's capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids). Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa), the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein) and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat) developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin) in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring higher oxidative

  1. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk.

    Science.gov (United States)

    Wood, Adrian D; Strachan, Anna A; Thies, Frank; Aucott, Lorna S; Reid, David M; Hardcastle, Antonia C; Mavroeidi, Alexandra; Simpson, William G; Duthie, Garry G; Macdonald, Helen M

    2014-10-28

    Dietary modification may affect inflammatory processes and protect against chronic disease. In the present study, we examined the relationship between dietary patterns, circulating carotenoid and tocopherol concentrations, and biomarkers of chronic low-grade systemic inflammation in a 10-year longitudinal study of Scottish postmenopausal women. Diet was assessed by FFQ during 1997-2000 (n 3237, mean age 54·8 (SD 2·2) years). Participants (n 2130, mean age 66·0 (SD 2·2) years) returned during 2007-11 for follow-up. Diet was assessed by FFQ (n 1682) and blood was collected for the analysis of serum high-sensitivity C-reactive protein (hs-CRP), IL-6, serum amyloid A, E-selectin, lipid profile and dietary biomarkers (carotenoids, tocopherols and retinol). Dietary pattern and dietary biomarker (serum carotenoid) components were generated by principal components analysis. A past 'prudent' dietary pattern predicted serum concentrations of hs-CRP and IL-6 (which decreased across the quintiles of the dietary pattern; P= 0·002 and P= 0·001, respectively; ANCOVA). Contemporary dietary patterns were also associated with inflammatory biomarkers. The concentrations of hs-CRP and IL-6 decreased across the quintiles of the 'prudent' dietary pattern (P= 0·030 and P= 0·006, respectively). hs-CRP concentration increased across the quintiles of a 'meat-dominated' dietary pattern (P= 0·001). Inflammatory biomarker concentrations decreased markedly across the quintiles of carotenoid component score (Pfruit and vegetable consumption) and a serum carotenoid profile characteristic of a fruit and vegetable-rich diet are associated with lower concentrations of intermediary markers that are indicative of CVD risk reduction.

  2. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Bhagavathy S; Sumathi P

    2012-01-01

    Objective:To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods:Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results: The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein,β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (P<0.05 for CA, P<0.001 for SCE). The MN frequencies of the cells were significantly decreased by the treatment with carotenoids when compared with the positive controls (P<0.05). Conclusions:The findings of the present study demonstrate that, the green algae C. humicola is a rich source of bioactive compounds especially carotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects.

  3. The nature and the content of carotenoid pigments from faded leaves of Aesculus hippocastanum L.

    Directory of Open Access Journals (Sweden)

    Gino ROSCA

    1995-08-01

    Full Text Available Faded leaves of Aesculus hippocastanum L. harvested in October and November have a high and various content of carotenoids. The content of lutein and zeaxanthin is much higher in faded leaves than in the green ones, that is why they are recommended as an important natural source for extraction (at an industrial level of the mentioned carotenoids. Faded leaves have a low biological value, because they have a low content of provitaminic A carotenoids. They have also a low content of hydrocarbon carotenoids, but a high hydroxylic and epoxydic content.

  4. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    Science.gov (United States)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  5. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  6. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  7. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.).

    Science.gov (United States)

    Gómez-García, María del Rocío; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  8. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  9. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops. PMID:19587100

  10. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. PMID:26377817

  11. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules.

    Science.gov (United States)

    Bemer, Marian; Wolters-Arts, Mieke; Grossniklaus, Ueli; Angenent, Gerco C

    2008-08-01

    MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein-beta-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt.

  12. An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation

    KAUST Repository

    Gao, Zhihuan

    2010-04-21

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm. © 2010 Macmillan Publishers Limited. All rights reserved.

  13. The C-terminus of DSX(F5) protein acts as a novel regulatory domain in Bombyx mori.

    Science.gov (United States)

    Duan, Jianping; Meng, Xianxin; Ma, Sanyuan; Wang, Feng; Guo, Huozhen; Zhang, Liying; Zhao, Ping; Kan, Yunchao; Yao, Lunguang; Xia, Qingyou

    2016-08-01

    The doublesex gene regulates the somatic sexual development of Bombyx mori by alternatively splicing into sex-specific splice forms. In our previous study, the splice form Bmdsx (F7) , which encodes the BmDSX(F5) protein, was found to be expressed in a female-specific manner and to contain a novel C-terminus. In this study, we aimed to investigate the role of this C-terminus. Two transgenic lines, L1 and L2, were constructed to ectopically express Bmdsx (F7) in males. Phenotype and W chromosome-specific polymerase chain reaction (PCR) analysis showed that developmental abnormalities and sex reversal did not occur. Moreover, the sex ratio was also normal. Quantitative PCR revealed that the expression levels of SP1 and Vg were upregulated in the fat body of transgenic males. Additionally, the expression level of PBP was downregulated in the antenna of transgenic males. The results suggested that the C-terminus of BmDSX(F5) functioned as a regulatory domain during regulation of downstream target gene expression and that BmDSX(F5) participated in the sexual development of somatic cells together with other DSX proteins in B. mori. PMID:26975733

  14. RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq

    OpenAIRE

    Argaman, Liron; Elgrably-Weiss, Maya; Hershko, Tal; Vogel, Jörg; Altuvia, Shoshy

    2012-01-01

    The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA–mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remaine...

  15. The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b.

    Directory of Open Access Journals (Sweden)

    Katrin Haupt

    2008-12-01

    Full Text Available The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1 from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG as a ligand that interacts with Factor H by a-to our knowledge-new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite SbiratioC3ratioFactor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and beta(2-glycoprotein I and interferes with innate immune recognition.

  16. Carotenoids production: microorganisms as source of natural dyes Produção de carotenoides: microrganismos como fonte de pigmentos naturais

    Directory of Open Access Journals (Sweden)

    Eunice Valduga

    2009-01-01

    Full Text Available Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.

  17. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    Full Text Available O canistel (P. campechiana é uma fruta nativa da América Central e México, ainda pouco conhecida no Brasil. Apresenta uma polpa amarelo-alaranjada, rica em carotenoides, que tem despertado interesse como potencial de vitamina A. O objetivo deste trabalho foi determinar o teor de carotenoides e o valor provitamina A na polpa de canistel, assim como os teores de umidade e lipídeos na polpa e na semente. Os carotenoides foram separados por cromatografia em coluna aberta. O conteúdo de carotenoides totais foi de 226 ± 4 μg/g. Violaxantina e neoxantina foram os carotenóides predominantes, somando 196 ± 5 μg/g. seguidos por zetacaroteno, betacaroteno 5,6-epóxido, betacaroteno e fitoflueno. A semente foi a parte do fruto que apresentou maior teor de lipídeos totais, com 4,6 ± 0,2 %, e a polpa, 0,61 ± 0,03 %. Os resultados indicam que o canistel apresenta teores de carotenóides totais muito elevados e pode ser considerado uma boa fonte de provitamina A (59 ± 6 RAE/100g, se comparado com outras frutas normalmente consumidas. No entanto, os principais carotenoides encontrados em sua polpa são destituídos de atividade provitamina A.Canistel (Pouteria campechiana is a native fruit from Central America and Mexico. This fruit still not known in Brazil, presents an orange-yellow pulp rich in carotenoids, which has attracted interest as a potential source of vitamin A. The purpose of this study was to determine the carotenoids content and pro-vitamin A values in the pulp of canistel, as well as the percentage of moisture and lipids in the pulp and seeds. Carotenoids were separated by open column chromatography. The content of total carotenoids was 226 ± 4 μg/g. Violaxantin and neoxantin were the predominant carotenoids with 196 ± 5 μg/g followed by zeta-carotene, beta-carotene 5,6-epoxide, beta-carotene and phytofluene. The seeds presented higher levels of total lipids with 4.6 ± 0.2 %, while pulp had 0.61 ± 0.03 % of total lipid. These

  18. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    Directory of Open Access Journals (Sweden)

    Leenawaty Limantara3

    2012-12-01

    Full Text Available Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarezii, Sargassum sp, and Caulerpa sp. Carotenoids from algae has been proven as a powerful antioxidant and may prevent some degenerative diseases, cardiovascular, and cancer. Carotenoid also has been applied as a natural dye and dietary supplements. Biotechnology has been developed to increase the production of carotenoids from micro- and macroalgae. The large-scale cultivation of microalgae, either in open or closed system are shown to increase carotenoid production. During cultivation, some stress conditions can be specifically manipulated to optimize carotenoid production from microalgae.

  19. The retinoblastoma protein: a master tumor suppressor acts as a link between cell cycle and cell adhesion

    Directory of Open Access Journals (Sweden)

    Engel BE

    2014-12-01

    Full Text Available Brienne E Engel,1 W Douglas Cress,1 Pedro G Santiago-Cardona2 1Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; 2Department of Biochemistry, Ponce School of Medicine, Ponce, Puerto Rico, USA Abstract: RB1 was the first tumor suppressor gene discovered. Over 4 decades of work have revealed that the Rb protein (Rb is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability, and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight Rb’s role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis. Keywords: cadherin, integrin, Rb, cancer, aggressiveness, metastasis

  20. Chlorophyll and carotenoid pigments in solar saltern microbial mats

    Science.gov (United States)

    Villanueva, Joan; Grimalt, Joan O.; de Wit, Rutger; Keely, Brendan J.; Maxwell, James R.

    1994-11-01

    The distributions of carotenoids, chlorophylls, and their degradation products have been studied in two microbial mat systems developed in the calcite and calcite/gypsum evaporite domains of a solar saltern system. Phormidium valderianum and Microcoleus chthonoplastes are the dominant cyanobacterial species, respectively, and large amounts of Chloroflexus-like bacteria occur in the carbonate/gypsum mat. In both systems, the major pigments are chlorophyll a, zeaxanthin, β-carotene and myxoxanthophyll, which originate from these mat-building cyanobacteria. This common feature contrasts with differences in other pigments that are specific for each mat community. Thus, chlorophyll c and fucoxanthin, reflecting diatom inputs, are only found in the calcite mat, whereas the calcite/gypsum mat contains high concentrations of bacteriochlorophylls c produced by the multicellular green filamentous bacteria. In both cases, the depth concentration profiles (0-30 and 0-40 mm) show a relatively good preservation of the cyanobacterial carotenoids, zeaxanthin, β-carotene, myxoxanthophyll, and echinenone. This contrasts with the extensive biodegradation of cyanobacterial remains observed microscopically. Fucoxanthin in the calcite mat is also transformed at a faster rate than the cyanobacterial carotenoids. Chlorophyll a, the major pigment in both mats, exhibits different transformation pathways. In the calcite/gypsum mat, it is transformed via C-13 2 carbomethoxy defunctionalization prior to loss of the phytyl chain, leading to the formation of pyrophaeophytin a and, subsequently, pyrophaeophorbide a. On the other hand, the occurrence of the enzyme chlorophyllase, attributed to diatoms in the calcite mat, gives rise to extensive phytyl hydrolysis, with the formation of chlorophyllide a, pyrophaeophorbide a and, in minor proportion, phaeophorbide a. Studies of the sources of the photosynthetic pigments and of their transformation pathways in such simplified ecosystems provide a

  1. Overexpression of SlRBZ Results in Chlorosis and Dwarfism through Impairing Chlorophyll, Carotenoid, and Gibberellin Biosynthesis in Tomato.

    Science.gov (United States)

    Fan, Mingqin; Gao, Shenghua; Ren, Junling; Yang, Qihong; Li, Hanxia; Yang, Changxian; Ye, Zhibiao

    2016-01-01

    ZFPs play important roles in many biological processes, including plant development, stress response, and phytohormone response. RanBP2-type zinc finger transcription factors have been characterized in animals and humans. However, their functions remain largely unknown in plants. In this study, we identified a RanBP2-type zinc finger protein gene (SlRBZ) in tomato. SlRBZ was constitutively expressed in roots, stems, leaves, flowers, and fruits. The SlRBZ-GFP fused protein was localized in the nucleus. Overexpression of SlRBZ resulted in chlorosis and dwarf phenotypes in tomato. Determination of physiological index showed that chlorophyll, carotenoid, and GAs contents were evidently decreased in transgenic plants. Furthermore, the qRT-PCR and RNA-Seq analyses demonstrated that the transcription of the genes involved in these biosynthesis pathways obviously decreased in SlRBZ-OE plants. In addition, ultrastructural observation by transmission electron microscopy indicated that plastids could not develop into mature chloroplasts with normal chloroplast membrane and thylakoid membrane system in SlRBZ-OE plants. The results suggest that overexpression of SlRBZ may impair the biosynthesis of chlorophyll, carotenoid, and gibberellin through blocking chloroplast development, resulting in chlorosis and dwarfism in tomato. PMID:27446137

  2. Clorofilas y carotenoides: del screening a la bioactividad tisular

    OpenAIRE

    Pérez Gálvez, Antonio

    2008-01-01

    La funcionalidad de clorofilas y carotenoides surge a partir de los efectos derivados de su función, su acción y su asociación. Con estos pigmentos fotosintéticos se ha realizado un amplio screening de sus propiedades funcionales en sistemas in vitro y condiciones modelo, destacando su capacidad antioxidante y anti-mutagénica así como la inducción de eventos ligados a la diferenciación y proliferación celular. Como con la mayoría de compuestos funcionales, el establecimiento concreto de la bi...

  3. Long-Acting Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) in Children

    Science.gov (United States)

    Chambost, Hervé; Male, Christoph; Lambert, Thierry; Halimeh, Susan; Chernova, Tatiana; Mancuso, Maria Elisa; Curtin, Julie; Voigt, Christine; Li, Yanyan; Jacobs, Iris; Santagostino, Elena

    2016-01-01

    Summary A global phase 3 study evaluated the pharmacokinetics, efficacy and safety of a recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 27 previously treated male children (1–11 years) with severe and moderately severe haemophilia B (factor IX [FIX] activity ≤2 IU/dl). All patients received routine prophylaxis once every seven days for up to 77 weeks, and treated any bleeding episodes on-demand. The mean terminal half-life of rIX-FP was 91.4 hours (h), 4.3-fold longer than previous FIX treatment and clearance was 1.11 ml/h/kg, 6.4-fold slower than previous FIX treatment. The median (Q1, Q3) annualised spontaneous bleeding rate was 0.00 (0.00, 0.91) and was similar between the <6 years and ≥6 years age groups, with a weekly median prophylactic dose of 46 IU/kg. In addition, patients maintained a median trough level of 13.4 IU/dl FIX activity on weekly prophylaxis. Overall, 97.2% of bleeding episodes were successfully treated with one or two injections of rIX-FP (95% CI: 92% to 99%), 88.7% with one injection, and 96% of the treatments were rated effective (excellent or good) by the Investigator. No patient developed FIX inhibitors and no safety concerns were identified. These results indicate that rIX-FP is safe and effective for preventing and treating bleeding episodes in children with haemophilia B with weekly prophylaxis. Routine prophylaxis with rIX-FP at treatment intervals of up to 14 days are currently being investigated in children with severe and moderately severe haemophilia B. Clinicaltrials.gov (NCT01662531) PMID:27583313

  4. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    Directory of Open Access Journals (Sweden)

    Andrea eNesler

    2015-09-01

    Full Text Available Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB, against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  5. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  6. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  7. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake

    Science.gov (United States)

    Naziri, Davood; Hamidi, Masoud; Hassanzadeh, Salar; Tarhriz, Vahideh; Maleki Zanjani, Bahram; Nazemyieh, Hossein; Hejazi, Mohammd Amin; Hejazi, Mohammad Saeid

    2014-01-01

    Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v). The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC) in the presence of antimony pentachloride (SbCl5). The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS) techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR). Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786). Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies. PMID:24409411

  8. CAROTENOID RETENTION IN MINIMALLY PROCESSED BIOFORTIFIED GREEN CORN STORED UNDER RETAIL MARKETING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Natália Alves Barbosa

    2015-08-01

    Full Text Available Storing processed food products can cause alterations in their chemical compositions. Thus, the objective of this study was to evaluate carotenoid retention in the kernels of minimally processed normal and vitamin A precursor (proVA-biofortified green corn ears that were packaged in polystyrene trays covered with commercial film or in multilayered polynylon packaging material and were stored. Throughout the storage period, the carotenoids were extracted from the corn kernels using organic solvents and were quantified using HPLC. A completely factorial design including three factors (cultivar, packaging and storage period was applied for analysis. The green kernels of maize cultivars BRS1030 and BRS4104 exhibited similar carotenoid profiles, with zeaxanthin being the main carotenoid. Higher concentrations of the carotenoids lutein, β-cryptoxanthin, and β-carotene, the total carotenoids and the total vitamin A precursor carotenoids were detected in the green kernels of the biofortified BRS4104 maize. The packaging method did not affect carotenoid retention in the kernels of minimally processed green corn ears during the storage period.

  9. Hepatoprotection by carotenoids in isoniazid-rifampicin induced hepatic injury in rats.

    Science.gov (United States)

    Rana, S V; Pal, R; Vaiphei, K; Ola, R P; Singh, K

    2010-10-01

    This study evaluates the hepatoprotective effect of carotenoids against isoniazid (INH) and rifampicin (RIF). Thirty-six adult rats were divided into the following 4 groups: (1) control group treated with normal saline; (2) INH + RIF group treated with 50 mg·(kg body mass)-1·day-1 of INH and RIF each; (3) INH + RIF+ carotenoids group treated with 50 mg·(kg body mass)-1·day-1 of INH and RIF each and 10 mg·(kg body mass)-1·day-1 of carotenoids; and (4) carotenoids group treated with 10 mg·(kg body mass)-1·day-1 of carotenoids for 28 days intragastrically. Oxidative stress and antioxidant levels in liver and blood, liver histology and change in transaminases were measured in all the above-mentioned groups. There was an increase in lipid peroxidation with a reduction in thiols, catalase, and superoxide dismutase (SOD) in the liver and blood of rats accompanied by an increase in transaminases, bilirubin, and alkaline phosphatase. Treatment with carotenoids along with INH + RIF partially reversed lipid peroxidation, thiols, catalase, and SOD in the liver and blood of rats. Elevated levels of the enzymes in serum were also reversed partially by this treatment. The degree of necrosis, portal triaditis, and inflammation were also lowered in the carotenoids group. In conclusion, carotenoids supplementation in INH + RIF treated rats showed partial protection.

  10. Separation of the Carotenoid Bixin from Annatto Seeds Using Thin-Layer and Column Chromatography

    Science.gov (United States)

    McCullagh, James V.; Ramos, Nicholas

    2008-01-01

    In this experiment the carotenoid bixin is isolated from annatto ("Bixa orellana") seeds using column chromatography. The experiment has several key advantages over previous pigment separation experiments. First, unlike other experiments significant quantities of the carotenoid (typically 20 to 25 mg) can be isolated from small quantities of plant…

  11. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both si

  12. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    Science.gov (United States)

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  13. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    NARCIS (Netherlands)

    Dias, M.G.; Oliveira, L.; Camoes, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M.

    2010-01-01

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids a-carotene, ß-carotene, ß-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the ana

  14. More than meets the eye: from carotenoid biosynthesis to new insights into apocarotenoid signaling

    Science.gov (United States)

    Carotenoids are a class of isoprenoid compounds synthesized almost exclusively in plants and are involved in a myriad of roles including the provision of flower and fruit pigmentation for the attraction of pollinators and seed dispersing organisms. While carotenoids are essential throughout plant de...

  15. Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing.

    Science.gov (United States)

    Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Pivec, Vladimír; Orsák, Matyáš; Hamouz, Karel

    2016-04-15

    This research aimed to investigate the effect of thermal processing on carotenoid profile, quantity and stability in 22 colour-fleshed potato cultivars grown in the Czech Republic. The total of nine carotenoids was analysed by HPLC using a C30 column and PDA detection. The total carotenoid content for all cultivars ranged from 1.44 to 40.13 μg/g DM. Yellow cultivars showed a much higher average total carotenoid content (26.22 μg/g DM) when compared to red/purple-fleshed potatoes (5.69 μg/g DM). Yellow cultivars were dominated by antheraxanthin, whereas neoxanthin was the main carotenoid in red/purple cultivars. Thermal processing significantly impacted all potato cultivars. Boiling decreased the total carotenoids by 92% compared to baking (88%). Lutein was the most stable carotenoid against thermal processing (decreased by 24-43%) followed by β-carotene (decreased by 78-83%); other carotenoids were degraded nearly completely. Increased formation of (Z)-isomers by thermal processing has not been confirmed. PMID:26617045

  16. Dietary carotenoids and risk of colorectal cancer in a pooled analysis of 11 cohort studies

    NARCIS (Netherlands)

    Männistö, S.; Yaun, S.S.; Hunter, D.J.; Spiegelman, D.; Adami, H.O.; Albanes, D.; Brandt, P.A. van den; Buring, J.E.; Cerhan, J.R.; Colditz, G.A.; Freudenheim, J.L.; Fuchs, C.S.; Giovannucci, E.; Goldbohm, R.A.; Harnack, L.; Leitzmann, M.; McCullough, M.L.; Miller, A.B.; Rohan, T.E.; Schatzkin, A.; Virtamo, J.; Willett, W.C.; Wolk, A.; Zhang, S.M.; Smith-Warner, S.A.

    2007-01-01

    Dietary carotenoids have been hypothesized to protect against epithelial cancers. The authors analyzed the associations between intakes of specific carotenoids (alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein + zeaxanthin, and lycopene) and risk of colorectal cancer using the primary data

  17. Dietary Carotenoids and Risk of Lung Cancer in a Pooled Analysis of Seven Cohort Studies

    NARCIS (Netherlands)

    Männistö, S.; Smith-Warner, S.A.; Spiegelman, D.; Albanes, D.; Anderson, K.; Brandt, P.A. van den; Cerhan, J.R.; Colditz, G.; Feskanich, D.; Freudenheim, J.L.; Giovannucci, E.; Goldbohm, R.A.; Graham, S.; Miller, A.B.; Rohan, T.E.; Virtamo, J.; Willett, W.C.; Hunter, D.J.

    2004-01-01

    Intervention trials with supplemental β-carotene have observed either no effect or a harmful effect on lung cancer risk. Because food composition databases for specific carotenoids have only become available recently, epidemiological evidence relating usual dietary levels of these carotenoids with l

  18. Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus.

    Science.gov (United States)

    Ouchane, S; Picaud, M; Vernotte, C; Astier, C

    1997-08-01

    Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria.

  19. Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  20. Context-dependent effects of carotenoid supplementation on reproduction in zebra finches

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Briga, Michael; Leenknegt, Bas; Verhulst, Simon

    2014-01-01

    Carotenoid-dependent sexual coloration is one of the best-studied sexual signals, but how the honesty of such signals is maintained remains uncertain. The main hypotheses focus on acquisition limits and physiological use of carotenoids in immune function and regulating oxidative stress. A hypothesis

  1. Identification of catalytically important residues of the carotenoid 1,2-hydratases from Rubrivivax gelatinosus and Thiocapsa roseopersicina

    NARCIS (Netherlands)

    Hiseni, A.; Otten, L.G.; Arends, I.W.C.E.

    2015-01-01

    Carotenoid 1,2-hydratases (CrtC) catalyze the selective addition of water to an isolated carbon–carbon double bond. Although their involvement in the carotenoid biosynthetic pathway is well understood, little is known about the mechanism by which these hydratases transform carotenoids such as lycope

  2. Chronic alcohol intake up-regulates hepatic expressions of carotenoid cleavage enzymes and peroxisomal proliferator-activated receptors in rats

    Science.gov (United States)

    Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism.Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15’-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9910’-monooxygenase 2 (CMO2)...

  3. Special AT-rich sequence-binding protein 2 acts as a negative regulator of stemness in colorectal cancer cells

    Science.gov (United States)

    Li, Ying; Liu, Yu-Hong; Hu, Yu-Ying; Chen, Lin; Li, Jian-Ming

    2016-01-01

    AIM To find the mechanisms by which special AT-rich sequence-binding protein 2 (SATB2) influences colorectal cancer (CRC) metastasis. METHODS Cell growth assay, colony-forming assay, cell adhesion assay and cell migration assay were used to evaluate the biological characteristics of CRC cells with gain or loss of SATB2. Sphere formation assay was used to detect the self-renewal ability of CRC cells. The mRNA expression of stem cell markers in CRC cells with upregulated or downregulated SATB2 expression was detected by quantitative real-time polymerase chain reaction. Chromatin immunoprecipitation (ChIP) was used to verify the binding loci of SATB2 on genomic sequences of stem cell markers. The Cancer Genome Atlas (TCGA) database and our clinical samples were analyzed to find the correlation between SATB2 and some key stem cell markers. RESULTS Downregulation of SATB2 led to an aggressive phenotype in SW480 and DLD-1 cells, which was characterized by increased migration and invasion abilities. Overexpression of SATB2 suppressed the migration and invasion abilities in SW480 and SW620 cells. Using sequential sphere formation assay to detect the self-renewal abilities of CRC cells, we found more secondary sphere formation but not primary sphere formation in SW480 and DLD-1 cells after SATB2 expression was knocked down. Moreover, most markers for stem cells such as CD133, CD44, AXIN2, MEIS2 and NANOG were increased in cells with SATB2 knockdown and decreased in cells with SATB2 overexpression. ChIP assay showed that SATB2 bound to regulatory elements of CD133, CD44, MEIS2 and AXIN2 genes. Using TCGA database and our clinical samples, we found that SATB2 was correlated with some key stem cell markers including CD44 and CD24 in clinical tissues of CRC patients. CONCLUSION SATB2 can directly bind to the regulatory elements in the genetic loci of several stem cell markers and consequently inhibit the progression of CRC by negatively regulating stemness of CRC cells.

  4. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E;

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  5. The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group Musa Cultivar.

    Science.gov (United States)

    Buah, Stephen; Mlalazi, Bulukani; Khanna, Harjeet; Dale, James L; Mortimer, Cara L

    2016-04-27

    The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.

  6. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Kazutoshi Shindo

    2014-03-01

    Full Text Available Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R-saproxanthin and (3R,2′S-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures.

  7. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm.

    Science.gov (United States)

    Ha, Sun-Hwa; Liang, Ying Shi; Jung, Harin; Ahn, Mi-Jeong; Suh, Seok-Cheol; Kweon, Soon-Jong; Kim, Dong-Hern; Kim, Young-Mi; Kim, Ju-Kon

    2010-10-01

    Coordination of multiple transgenes is essential for metabolic engineering of biosynthetic pathways. Here, we report the utilization of two bicistronic systems involving the 2A sequence from the foot-and-mouth disease virus and the internal ribosome entry site (IRES) sequence from the crucifer-infecting tobamovirus to the biosynthesis of carotenoids in rice endosperm. Two carotenoid biosynthetic genes, phytoene synthase (Psy) from Capsicum and carotene desaturase (CrtI) from Pantoea, were linked via either the synthetic 2A sequence that was optimized for rice codons or the IRES sequence under control of the rice globulin promoter, generating PAC (Psy-2A-CrtI) and PIC (Psy-IRES-CrtI) constructs, respectively. The transgenic endosperm of PAC rice had a more intense golden color than did PIC rice, demonstrating that 2A was more efficient than IRES in coordinating gene expression. The 2A and IRES constructs were equally effective in driving transgene transcription. However, immunoblot analysis of CRTI, a protein encoded by the downstream open reading frame of the bicistronic constructs, revealed that 2A was ninefold more effective than IRES in driving translation. The PAC endosperms accumulated an average of 1.3 μg/g of total carotenoids, which was ninefold higher than was observed for PIC endosperms. In particular, accumulation of β-carotene was much higher in PAC endosperms than in PIC endosperms. Collectively, these results demonstrate that both 2A and IRES systems can coordinate the expression of two biosynthetic genes, with the 2A system exhibiting greater efficiency. Thus, the 2A expression system described herein is an effective new tool for multigene stacking in crop biotechnology. PMID:20649940

  8. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    Full Text Available We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.

  9. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Science.gov (United States)

    Costes, Audrey; Lecointe, François; McGovern, Stephen; Quevillon-Cheruel, Sophie; Polard, Patrice

    2010-01-01

    We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter) deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter) acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome. PMID:21170359

  10. Carotenoid supplementation positively affects the expression of a non-visual sexual signal.

    Directory of Open Access Journals (Sweden)

    Alain J-M Van Hout

    Full Text Available Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris. After only 3-7 days, we found a significant (body-mass independent positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T, we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual signalling need not be dependent on their function as pigments.

  11. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8′-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of CapryolTM90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  12. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2006-02-01

    expression of genes involved in iron metabolism and exerts a dual regulatory function as repressor of genes participating in iron uptake and utilization and as activator of genes responsible for iron storage and DNA protection. The data suggest that the DtxR protein acts as global regulator by controlling the expression of other regulatory proteins that might take care of an iron-dependent regulation of a broader transcriptional network of C. glutamicum genes.

  13. Developing an emulsifier system to improve the bioaccessibility of carotenoids.

    Science.gov (United States)

    Fernández-García, Elisabet; Rincón, Francisco; Pérez-Gálvez, Antonio

    2008-11-12

    Food emulsion designs, with the aim of delivering lipophilic bioactive compounds, should include an estimate of their bioaccessibility to support the claimed effect. With this goal in mind, in vitro digestion models and experimental design of mixtures were used as analytical tools to measure this parameter and to optimize the formulation of an O/W emulsion, including carotenoids as functional ingredients. Two experimental stages were applied. First, a screening phase was completed to detect the critical factors that exerted a significant effect on the response (bioaccessibility). During this phase, we observed that the response was modified mainly by secondary effects such as synergies and antagonisms of the emulsifying mixture. A group of four emulsifiers was selected at this phase to perform the second experimental stage, the optimization phase. This allowed us to obtain the mixture that produced the maximum carotenoid bioaccessibility. This formulation had emulsifying properties of the liposugars, acyl- and polyacyl-glycerides, as well as the synergistic effect arising from the combination of materials; this maximized the response. The analytical approach applied in this work is of interest for food designers for screening and controlling the bioaccessibility of bioactive compounds in a given matrix and, consequently, selecting the formulation conditions for higher bioaccessibilities. PMID:18937490

  14. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  15. ACTS 2014

    DEFF Research Database (Denmark)

    Co-curator of ACTS 2014 together with Rasmus Holmboe, Judith Schwarzbart and Sanne Kofoed. ACTS is the Museum of Contemporary Art’s international bi-annual festival. ACTS was established in 2011 and, while the primary focus is on sound and performance art, it also looks toward socially oriented art...... various possibilities and public spaces as a stage. ACTS takes place in and around the museum and diverse locations in Roskilde city. ACTS is partly curated by the museum staff and partly by guest curators. ACTS 2014 is supported by Nordea-fonden and is a part of the project The Museum goes downtown....

  16. Cloning of the full-length gene of activin receptor-interacting protein2a and characterization of its interaction with ActR Ⅱ A

    Institute of Scientific and Technical Information of China (English)

    CUI Xueling; TAI Guixiang; ZHANG Hongjun; FANG Lin; LIU Zhonghui

    2007-01-01

    To investigate the mechanism of intracellular signal transduction mediated by activin receptors, the full-length gene encoding a novel activin receptor-interacting protein2a (ARIP2a) was identified from a mouse brain cDNA library. The sequences of ARIP2a and ARIP2, distribution of ARIP2a and ARIP2 mRNA in mouse tissues, and expression of ARIP2a and ARIP2 in activin-induced RAW264.7 cell were compared, and the interaction between ARIP2a and ActRIIA was confirmed. The sequence analysis revealed that the full-length gene of ARIP2a, which composed of 1008 bp and encoded 153 amino acid residues, shared high sequence identity with ARIP2 except the position of the 99th amino acid. RT-PCR assay showed that ARIP2a mRNA was highly expressed in brain, pituitary and testis, and moderately in pancreas and ovary, but undetectable in other tissues. Whereas, ARIP2 mRNA was widely distributed in all mouse tissues that we tested. Moreover, expression of ARIP2a mRNA was significantly decreased in activin-stimulated RAW264.7 cells;however, the expression of ARIP2 mRNA was increased. Additionally, the interaction between ARIP2a and activin type ⅡA receptor (ActRIIA) was further demonstrated by mammalian two-hybrid assays and pull-down assays. Taken together, those results indicate that although ARIP2a is homologous to ARIP2, they are different in tissue distribution and responses to activin. ARIP2a could also interact with activin type Ⅱ receptor as a novel member of ARIP family.

  17. Carotenoid-based coloration, condition, and immune responsiveness in the nestlings of a sexually dimorphic bird of prey.

    Science.gov (United States)

    Sternalski, Audrey; Mougeot, François; Pérez-Rodríguez, Lorenzo; Bretagnolle, Vincent

    2012-01-01

    In many birds, nestlings exhibit brightly colored traits that are pigmented by carotenoids. Carotenoids are diet limited and also serve important health-related physiological functions. The proximate mechanisms behind the expression of these carotenoid-pigmented traits are still poorly known, especially in nestlings with sexual size dimorphism. In these nestlings, intrabrood competition levels and growth strategies likely differ between sexes, and this may in turn influence carotenoid allocation rules. We used dietary carotenoid supplementation to test whether wild marsh harrier (Circus aeruginosus) nestlings were carotenoid limited and whether carotenoid allocation strategies varied between sexes, which differ in their size and growth strategies. When supplemented, nestlings used the supplemental carotenoids to increase their coloration independently of their sex. We showed that the condition dependence of the carotenoid level and the response to an immune challenge (phytohemagglutinin test) differed between sexes, possibly because sexual size dimorphism influences growth strategies and/or intrabrood competition levels and access to different types of food. In this species, which often feeds on mammals, a trade-off likely exists between food quantity (energy) and quality (carotenoid content). Finally, carotenoid-based coloration expressed in marsh harrier nestlings appeared to be indicative of immune responsiveness rather than condition, therefore potentially advertising to parents nestling quality or value rather than nutritional need. PMID:22705486

  18. Is oxidative status influenced by dietary carotenoid and physical activity after moult in the great tit (Parus major)?

    Science.gov (United States)

    Vaugoyeau, Marie; Decencière, Beatriz; Perret, Samuel; Karadas, Filiz; Meylan, Sandrine; Biard, Clotilde

    2015-07-01

    In the context of sexual and natural selection, an allocation trade-off for carotenoid pigments may exist because of their obligate dietary origin and their role both in the antioxidant and immune systems and in the production of coloured signals in various taxa, particularly birds. When birds have expended large amounts of carotenoids to feather growth such as after autumn moult, bird health and oxidative status might be more constrained. We tested this hypothesis in a bird species with carotenoid-based plumage colour, by manipulating dietary carotenoids and physical activity, which can decrease antioxidant capacity and increase reactive oxygen metabolite (ROM) concentration. Great tits were captured after moult and kept in aviaries, under three treatments: physical handicap and dietary supplementation with carotenoids, physical handicap and control diet, and no handicap and control diet. We measured plasma composition (antioxidant capacity, ROM concentration, and vitamin A, vitamin E and total carotenoid concentrations), immune system activation (blood sedimentation) and stress response (heterophil/lymphocyte ratio) and predicted that handicap treatment should influence these negatively and carotenoid supplementation positively. Coloration of yellow feathers was also measured. Carotenoid supplementation increased total plasma carotenoid concentration, decreased feather carotenoid chroma and marginally increased ROM concentration. Handicap increased blood sedimentation only in males but had no clear influence on oxidative stress, which contradicted previous studies. Further studies are needed to investigate how physical activity and carotenoid availability might interact and influence oxidative stress outside the moult period, and their combined potential influence on attractiveness and reproductive investment later during the breeding season.

  19. Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Jae Kwang; Kim, Yeon Bok; Lee, Sanghyun; Park, Sang Un

    2013-12-15

    Seven partial-length cDNAs and 1 full-length cDNA that were involved in carotenoid biosynthesis and 2 partial-length cDNAs that encoded carotenoid cleavage dioxygenases were first isolated and characterised in 2 tartary buckwheat cultivars (Fagopyrum tataricum Gaertn.), Hokkai T8 and Hokkai T10. They were constitutively expressed at high levels in the leaves and flowers, where carotenoids are mostly distributed. During the seed development of tartary buckwheat, an inverse correlation between transcription level of carotenoid cleavage dioxygenase and carotenoid content was observed. The light-grown sprouts exhibited higher levels of expression of carotenoid biosynthetic genes in T10 and carotenoid content in both T8 and T10 compared to the dark-grown sprouts. The predominant carotenoids in tartary buckwheat were lutein and β-carotene, and very abundant amounts of these carotenoids were found in light-grown sprouts. This study might broaden our understanding of the molecular mechanisms involved in carotenoid biosynthesis and indicates targets for increasing the production of carotenoids in tartary buckwheat.

  20. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.

    Science.gov (United States)

    Azevedo-Meleiro, Cristiane H; Rodriguez-Amaya, Delia B

    2007-05-16

    Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposição' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.

  1. [Effects of light on carotenoid biosynthesis and color formation of citrus fruit peel].

    Science.gov (United States)

    Tao, Jun; Zhang, Shanglong; An, Xinmin; Zhao, Zhizhong

    2003-11-01

    The effects of shading fruit with opaque paper bag at the late stage of fruit enlargement on the contents of chlorophyll, carotenoid and in "Hongshigan" citrus (C. reticulata x C. sinensis) fruit peel and its color were examined. The results showed that after shading, the chlorophyll content in peel decreased quickly, which resulted in its earlier color shifting. In contrast, the contents of total carotenoids and each carotenoid component did not increase, but decreased significantly. At the stage of fruit riping, both chlorophyll in shaded and unshaded fruit disappeared, and the shaded fruit, owing to its lower level of carotenoids, had a lighter color than the unshaded fruit. The sugar content in peel of shaded fruit did not differ obviously from that of unshaded fruit at the earlier stage, but dropped markedly at the late stage of shading. Removing the enclosing paper bag from shaded fruit at the late stage of shading resulted in the increase of sugar, and correspondingly in the increase of carotenoid, especially of beta-cryptoxanthin accumulation with consequent darkening of fruit color. These results stressed the effect of light on stimulating carotenoid synthesis, especially the accumulation of beta-cryptoxanthin in citrus fruit peel. The light is the enviromental signal essential for carotenoid synthesis in citrus fruit during certain stage of fruit development. PMID:14997627

  2. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz [Washington Univ., St. Louis, MO (United States); Collins, Aaron M. [Washington Univ., St. Louis, MO (United States); LaFountain, Amy M. [Univ. of Connecticut, Storrs, CT (United States); Enriquez, Miriam M. [Univ. of Connecticut, Storrs, CT (United States); Frank, Harry A. [Washington Univ., St. Louis, MO (United States); Blankenship, R. E. [Washington Univ., St. Louis, MO (United States)

    2010-06-14

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S1(21Ag-) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  3. Influence of dietary carotenoids on radical scavenging capacity of the skin and skin lipids.

    Science.gov (United States)

    Meinke, M C; Friedrich, A; Tscherch, K; Haag, S F; Darvin, M E; Vollert, H; Groth, N; Lademann, J; Rohn, S

    2013-06-01

    Nutrition rich in carotenoids is well known to prevent cell damage, premature skin aging, and skin cancer. Cutaneous carotenoids can be enriched in the skin by nutrition and topically applied antioxidants have shown an increase in radical protection after VIS/NIR irradiation. In this paper, it was investigated whether orally administered carotenoids increase the radical scavenging activity and the radical protection of the skin using in vivo electron paramagnetic resonance spectroscopy and the skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, in vivo Raman resonance spectroscopy was used to measure the cutaneous carotenoid concentration. A double blind placebo controlled clinical study was performed with 24 healthy volunteers, who have shown a slow but significant and effective increase in cutaneous carotenoids in the verum group. The enhancement in carotenoids increases the radical scavenging activity of the skin and provides a significant protection against stress induced radical formation. Furthermore, the skin lipids in the verum group increased compared to the placebo group but only significantly for ceramide [NS]. These results indicate that a supplementation with dietary products containing carotenoids in physiological concentrations can protect the skin against reactive oxygen species and could avoid premature skin aging and other radical associated skin diseases.

  4. Statistical optimisation of cell growth and carotenoid production by Rhodotorula mucilaginosa

    Directory of Open Access Journals (Sweden)

    Iriani R. Maldonade

    2012-03-01

    Full Text Available Sequential statistical methods were used to maximise carotenoid production by a strain of Rhodotorula mucilaginosa, isolated from the Brazilian ecosystem. Initially, a factorial 2(5-1 experimental design was used, and the variables were pH and the levels of glucose, yeast extract, MgSO4.7H2O and KH2PO4. The nitrogen source (yeast extract was the most important variable in enhancing carotenoid production; MgSO4.7H2O and KH2PO4 had a negative influence. The initial pH had no significant effect on carotenoid and cell productions. We further investigated the effects of glucose and yeast extract effects, using a second-order central composite design (CCD to optimise carotenoid production, which was adequately approximated with a full quadratic equation obtained from a two-factor-2-level design. The analysis of quadratic surfaces showed that after 5 days of cultivation at 25ºC, the maximum carotenoid concentration (745 µg l-1 was obtained with 15 g l-1 of yeast extract and 20 g l-1 of glucose. The maximum carotenoid production (152 µg g-1 was obtained with 5 g l-1 yeast extract and 10 g l-1 glucose. Carotenoid formation was more sensitive to changes in yeast extract concentration than to changes in glucose concentration. Maximum cell production was achieved with 15-17 g l-1 of yeast extract and 15-20 g l-1 of glucose.

  5. Storage at low temperature differentially affects the colour and carotenoid composition of two cultivars of banana.

    Science.gov (United States)

    Facundo, Heliofabia Virginia De Vasconcelos; Gurak, Poliana Deyse; Mercadante, Adriana Zerlotti; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-03-01

    Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).

  6. Effect of alcoholic fermentation on the carotenoid composition and provitamin A content of orange juice.

    Science.gov (United States)

    Cerrillo, Isabel; Escudero-López, Blanca; Hornero-Méndez, Dámaso; Martín, Francisco; Fernández-Pachón, María-Soledad

    2014-01-29

    Orange juice is considered a rich source of carotenoids, which are thought to have diverse biological functions. In recent years, a fermentation process has been carried out in fruits resulting in products that provide higher concentrations of bioactive compounds than their original substrates. The aim of this study was to evaluate the effect of a controlled alcoholic fermentation process (15 days) on the carotenoid composition of orange juice. Twenty-two carotenoids were identified in samples. The carotenoid profile was not modified as result of the fermentation. Total carotenoid content and provitamin A value significantly increased from day 0 (5.37 mg/L and 75.32 RAEs/L, respectively) until day 15 (6.65 mg/L and 90.57 RAEs/L, respectively), probably due to a better extractability of the carotenoids from the food matrix as a result of processing. Therefore, the novel beverage produced could provide a rich source of carotenoids and exert healthy effects similar to those of orange juice.

  7. Regular consumption of fresh orange juice increases human skin carotenoid content.

    Science.gov (United States)

    Massenti, Roberto; Perrone, Anna; Livrea, Maria Antonietta; Lo Bianco, Riccardo

    2015-01-01

    Dermal carotenoids are a good indicator of antioxidant status in the body. This study aimed to determine whether regular consumption of orange juice could increase dermal carotenoids. Two types of orange juice, obtained from regularly (CI) and partially (PRD) irrigated trees, were tested to reveal any possible association between juice and dermal carotenoids. Soluble solids, titratable acidity, and total carotenoids were quantified in the juice; skin carotenoid score (SCS) was assessed by Raman spectroscopy. Carotenoid content was 7.3% higher in PRD than in CI juice, inducing no difference in SCS. In a first trial with daily juice intakes for 25 days, SCS increased linearly (10%) in the individual with higher initial SCS, and exponentially (15%) in the individual with lower initial SCS. In a second trial, SCS showed a 6.5% increase after 18 days of drinking juice every other day, but returned to initial values three days after last intake. Skin carotenoids can be increased by regular consumption of fresh orange juice, while their persistence may depend on the accumulation level, environmental conditions or living habits.

  8. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  9. Carotenoids in Rhodoplanes species: variation of compositions and substrate specificity of predicted carotenogenesis enzymes.

    Science.gov (United States)

    Takaichi, Shinichi; Sasikala, Ch; Ramana, Ch V; Okamura, Keiko; Hiraishi, Akira

    2012-08-01

    Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in "Rpl. cryptolactis". Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1'-dihydroxylycopene and 3,4,3',4'-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of "Rpl. cryptolactis", and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.

  10. Carotenoid-based nestling colouration and parental favouritism in the great tit.

    Science.gov (United States)

    Tschirren, Barbara; Fitze, Patrick S; Richner, Heinz

    2005-04-01

    While elaborate carotenoid-based traits in adult birds may have evolved as honest signals of individual quality in the context of sexual selection or other social interactions, the function of carotenoid-based colours in juveniles is less well understood. We investigated the hypothesis that carotenoid-based nestling colouration has evolved in response to parental preference of intensely coloured offspring during food provisioning. In a field experiment, we manipulated nestling plumage colouration by a carotenoid-supplementation and analysed the parental food provisioning behaviour before feather appearance and at the end of the nestling stage. Carotenoids per se did not influence the nestling's begging behaviour or parental feeding decisions and we found no evidence that carotenoid-based colouration in nestling great tits has a signalling function in parent-offspring interactions. Parents did not discriminate between intensely coloured and control offspring in their food provisioning and in accordance with this finding intensely coloured nestlings were not heavier or larger at the end of the nestling stage. Alternative explanations for the evolution of carotenoid-based colours in nestling birds are discussed. PMID:15678330

  11. Cloning and Characterization of the Phytoene Desaturase(pds) Gene-a Key Enzyme for Carotenoids Synthesis in Dunaliella (Chlorophyta)

    Institute of Scientific and Technical Information of China (English)

    SUN Guohua; SUI Zhenghong; ZHANG Xuecheng

    2008-01-01

    The unicellular green alga Dunaliella is outstanding for its ability of massive accumulation of carotenoids. To elucidate the carotenoids synthesis pathway in this alga, phytoene desaturase (pals) gene cDNA together with its DNA sequences were isolated and their structures and functions analyzed. The full-length pds cDNA of 2290 bp (GenBank Accession No. DQ243892) was de- duced from RACE results, including untranslated 21 bp 5'- and 520 bp 3'- flanking regions and an open reading frame of 582 amino acids, coding a protein of 64.196 kDa. The DNA sequence of 2908 bp (GenBank Accession No. DQ845248) including five introns was obtained. The fifth intron was uncompleted and complex, including two bases' perfect repeats (GT)10 and large different-sized repeats within the last 400 bp. The Southern blot hybridization result demonstrated that this gene occurred as a single copy in this species, and the quantitative RT-PCR result showed that the transcription of this gene was constitutive. The evolutional significance ofpds was discussed.

  12. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kumar, Santosh; Kateriya, Suneel; Singh, Vijay Shankar; Tanwar, Meenakshi; Agarwal, Shweta; Singh, Hina; Khurana, Jitendra Paul; Amla, Devinder Vijay; Tripathi, Anil Kumar

    2012-01-01

    Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.

  13. Supplementation with fruit and vegetable soups and beverages increases plasma carotenoid concentrations but does not alter markers of oxidative stress or cardiovascular risk factors.

    Science.gov (United States)

    Paterson, Elaine; Gordon, Michael H; Niwat, Chutamat; George, Trevor W; Parr, Laura; Waroonphan, Saran; Lovegrove, Julie A

    2006-11-01

    This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.

  14. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death.

    Science.gov (United States)

    Bhatelia, Khyati; Singh, Aru; Tomar, Dhanendra; Singh, Kritarth; Sripada, Lakshmi; Chagtoo, Megha; Prajapati, Paresh; Singh, Rochika; Godbole, Madan M; Singh, Rajesh

    2014-02-01

    Emerging evidences suggest that chronic inflammation is one of the major causes of tumorigenesis. The role of inflammation in regulation of breast cancer progression is not well established. Recently Mediator of IRF3 Activation (MITA) protein has been identified that regulates NF-κB and IFN pathways. Role of MITA in the context of inflammation and cancer progression has not been investigated. In the current report, we studied the role of MITA in the regulation of cross talk between cell death and inflammation in breast cancer cells. The expression of MITA was significantly lower on in estrogen receptor (ER) positive breast cancer cells than ER negative cells. Similarly, it was significantly down regulated in tumor tissue as compared to the normal tissue. The overexpression of MITA in MCF-7 and T47D decreases the cell proliferation and increases the cell death by activation of caspases. MITA positively regulates NF-κB transcription factor, which is essential for MITA induced cell death. The activation of NF-κB induces TNF-α production which further sensitizes MITA induced cell death by activation of death receptor pathway through capsase-8. MITA expression decreases the colony forming units and migration ability of MCF-7 cells. Thus, our finding suggests that MITA acts as a tumor suppressor which is down regulated during tumorigenesis providing survival advantage to tumor cell.

  15. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  16. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties.

    Science.gov (United States)

    Kaulmann, Anouk; André, Christelle M; Schneider, Yves-Jacques; Hoffmann, Lucien; Bohn, Torsten

    2016-04-15

    Plum and cabbage are rich in carotenoids and polyphenols. However, their bioactivity depends on their release and intestinal uptake. Four varieties of Brassicaceae (Duchy, Scots Kale, Kale, Kalorama) and Prunus (Cherry Plum, Plum 620, Ersinger, Italian Plum) were studied; bioaccessibility following in vitro digestion, cellular uptake (Caco-2 vs. co-culture cell model: Caco-2:HT-29-MTX (90:10%) and colonic fermentation were determined for carotenoids/polyphenols; the influence of certain kitchen preparations was likewise studied. Carotenoids were non-significantly influenced by the latter, while for polyphenols, boiling and steaming significantly reduced total phenolics (pfuture.

  17. Noninvasive laser Raman detection of carotenoid antioxidants in living human skin

    Science.gov (United States)

    Gellermann, Werner; Ermakov, Igor V.; Ermakova, Maia R.; McClane, Robert W.

    2001-05-01

    We have used resonance Raman scattering as a novel non- invasive optical technology to measure carotenoid antioxidants in human skin of healthy volunteers. Using blue-green laser excitation, clearly distinguishable carotenoid Raman spectra are obtained which are superimposed on a large skin autofluorescence background. The Raman spectra are obtained rapidly, i.e. within about 30 seconds, and the required laser light exposure levels are well within safety standards. Our technique can be used for rapid screening of carotenoid antioxidant levels in large populations and may have applications for assessing the risk for cutaneous diseases.

  18. [Substrate specificity of carotenoid 3',4'-desaturase from Deinococcus radiodurans].

    Science.gov (United States)

    Sun, Zongtao; Tian, Bing; Shen, Shaochuan; Hu, Yuejin

    2010-10-01

    To examine the substrate specificity of carotenoid 3',4'-desaturase (DR2250) from Deinococcus radiodurans, we amplified the dr2250 gene by using PCR methods. The PCR products were digested by Hind III-BamH I and ligated into the vector pUC19, yielding recombinant vector pUC-CRTD. We analyzed the carotenoids of E. coli transformants containing pACCRT-EBI(Eu) and (or) pRK-CRTC and (or) pUC-CRTD. Our results demonstrated that DR2250 had substrate specificity on the carotenoids with hydroxyl group at C1 (1').

  19. Validating Resonance Raman Spectroscopy: a Non-invasive Assessment of Skin Carotenoids as a Biomarker of Fruit and Vegetable Intake in Children

    OpenAIRE

    Aguilar, Sheryl Swain

    2013-01-01

    Background: Adult studies have found a strong correlation between serum carotenoids and skin carotenoids measured by resonance Raman spectroscopy (RRS). No published studies have examined correlations between skin and serum carotenoids among children. Objectives: (1) To validate skin RRS methodology against serum carotenoid measurements by high-performance liquid chromatography and (2) to determine if RRS skin carotenoids can be used as a valid biomarker of total fruit and vegetable (FV) inta...

  20. The New Carotenoid Pigment Moraxanthin Is Associated with Toxic Microalgae

    Directory of Open Access Journals (Sweden)

    Alfonso Mangoni

    2011-02-01

    Full Text Available The new pigment “moraxanthin” was found in natural samples from a fish mortality site in the Inland Bays of Delaware, USA. Pure cultures of the species, tentatively named Chattonella cf. verruculosa, and natural samples contained this pigment as a dominant carotenoid. The pigment, obtained from a 10 L culture of C. cf. verruculosa, was isolated and harvested by HPLC and its structure determined from MS and 1D- and 2D-NMR. The data identified this pigment as a new acylated form of vaucheriaxanthin called moraxanthin after the berry like algal cell. Its presence in pure cultures and in natural bloom samples indicates that moraxanthin is specific to C. cf. verruculosa and can be used as a marker of its presence when HPLC is used to analyze natural blooms samples.

  1. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    Science.gov (United States)

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids. PMID:14740205

  2. Astaxanthin protecting membrane integrity against photosensitized oxidation through synergism with other carotenoids

    DEFF Research Database (Denmark)

    Du, Hui-Hui; Liang, Ran; Han, Rui-Min;

    2015-01-01

    using optical microscopy and digital image heterogeneity analysis. The lowest initial rate of GUV budding after the lag phase was seen for GUVs with astaxanthin as the least reducing carotenoid, while the lowest final level of entropy appeared for those with lycopene or β-carotene as a more reducing...... carotenoid. The combination of astaxanthin and lycopene gave optimal protection against budding with respect to both a longer lag phase and lower final level of entropy by combining good electron acceptance and good electron donation. Quenching of singlet oxygen by carotenoids close to chlorophyll...... a in the membrane interior in parallel with scavenging of superoxide radicals by astaxanthin anchored in the surface may explain the synergism between carotenoids involving both type I and type II photosensitization by chlorophyll a....

  3. Carotenoids and flavonoids in organically grown spinach (Spinacia oleracea L) genotypes after deep frozen storage

    DEFF Research Database (Denmark)

    Kidmose, U.; Knuthsen, Pia; Edelenbos, M.;

    2001-01-01

    After frozen storage the content of individual carotenoids and flavonoids was determined in organically grown spinach genotypes (Spinacia oleracea L) which differed in leaf colour and shape. The spinach was sorted, washed, blanched in steam for 3 min and frozen in liquid nitrogen. After frozen...... storage the green colour was determined by sensory evaluation and HunterLab colorimetry. The content of individual chlorophylls, carotenoids and flavonoids was determined using HPLC. Lutein, beta -carotene, violaxanthin and 9 '-(Z)-neoxanthin were the main carotenoids in processed spinach. The total...... content of carotenoids varied from 176.6 mg kg(-1) 'wet weight' as eaten in the lightest green genotype to 226.3 mg kg(-1) 'wet weight' as eaten in the darkest green genotype. The highest content of beta -carotene (83.1 mg kg(-1) 'wet weight' as eaten) was found in the dark green genotype. The content...

  4. Carotenoids in certain higher plants from various ecological niches of Egypt

    Directory of Open Access Journals (Sweden)

    B. Czeczuga

    2015-05-01

    Full Text Available The carotenoids content in Posidonia oceanica, Nelumbium nuciferum, Opuntia ficus-indica and Zygophyllum album from different ecological niches in Egypt was studied. Considerable differences, both qualitative and quantitative among four investigated plant species were found.

  5. Carotenoids in certain higher plants from various ecological niches of Egypt

    OpenAIRE

    B. Czeczuga

    2015-01-01

    The carotenoids content in Posidonia oceanica, Nelumbium nuciferum, Opuntia ficus-indica and Zygophyllum album from different ecological niches in Egypt was studied. Considerable differences, both qualitative and quantitative among four investigated plant species were found.

  6. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food.

    Science.gov (United States)

    Rutz, Josiane K; Borges, Caroline D; Zambiazi, Rui C; da Rosa, Cleonice G; da Silva, Médelin M

    2016-07-01

    Carotenoids are susceptible to isomerization and oxidation upon exposure to oxygen, light and heat, which can result in loss of color, antioxidant activity, and vitamin activity. Microencapsulation helps retain carotenoid stability and promotes their release under specific conditions. Thus, the aim of the study was to encapsulate palm oil and β-carotene with chitosan/sodium tripolyphosphate or chitosan/carboxymethylcellulose and to assess the performance of these microparticles in food systems by analyzing their release profile under simulated gastric and intestinal conditions. Encapsulation efficiency was greater than 95%, and the yield of microparticles coated with chitosan/sodium tripolyphosphate was approximately 55%, while that of microparticles coated with chitosan/carboxymethylcellulose was 87%. Particles encapsulated with chitosan/carboxymethylcellulose exhibited ideal release behavior in water and gastric fluid, but showed low release in the intestinal fluid. However, when applied to food systems these particles showed enhanced carotenoid release but showed low release of carotenoids upon storage. PMID:26920301

  7. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    Science.gov (United States)

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.

  8. Developmental effects on phenolic, flavonol, anthocyanin, and carotenoid metabolites and gene expression in potatoes

    Science.gov (United States)

    Potato phytonutrients include phenolic acids, flavonols, anthocyanins and carotenoids. Developmental effects on phytonutrient concentrations and gene expression was studied in white, yellow and purple potatoes. Purple potatoes contained the most total phenolics, which decreased during development (1...

  9. PLASMA AND LUNG MACROPHAGE CAROTENOID RESPONSIVENESS TO SUPPLEMENTATION AND OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    OBJECTIVE:: To examine the effect of ozone exposure and vegetable juice supplementation on plasma and lung macrophage concentrations of carotenoids. DESIGN:: A randomized trial. SETTING:: Subjects were exposed to ambient air prior to antioxidant supplementation and to ozone after...

  10. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-08-01

    Full Text Available Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  11. Increasing Carotenoid Bioaccessibility from Yellow Peppers Using Excipient Emulsions: Impact of Lipid Type and Thermal Processing.

    Science.gov (United States)

    Liu, Xuan; Bi, Jinfeng; Xiao, Hang; McClements, David Julian

    2015-09-30

    Many phytochemicals from fruits and vegetables exert biological activities that may be beneficial to human health, but these benefits are not fully realized because of their poor oral bioavailability. The objective of this research was to establish the potential of excipient emulsions to increase carotenoid bioaccessibility from raw and cooked yellow peppers using a gastrointestinal model that included oral, gastric, and intestine phases. The influence of oil type (medium chain triglycerides, MCT; long chain triglycerides, LCT; and, indigestible orange oil, OO) on microstructural changes, particle properties, lipid digestibility, and carotenoid bioaccessibility was investigated. Oil type had a major impact, with carotenoid bioaccessibility decreasing in the following order: LCT > MCT > OO > control (no oil). Conversely, thermal treatment (raw versus boiled) had little influence on carotenoid bioaccessibility. These results will facilitate the rational design of excipient emulsions that boost the bioavailability of phytochemicals in fruits and vegetables. PMID:26357977

  12. Carotenoids in certain lichens of Białowieża Forest

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-02-01

    Full Text Available Column-, and thin-layer chromatography revealed the presence of the following carotenoids in the thalli of 29 lichen species from Białowieża Forest: α-carotene, β-carotene, α-cryptoxanthin, β-cryptoxanthin, lutein, 3'-epilutein, zeaxanthin, β-carotene monoepoxide, lutein epoxide, antheraxanthin, 3'-hydroxyechinenone, α-doradexanthin, canthaxanthin, astaxanthin, neoxani thin, violaxanthin and mutatoxanthin. The total content of carotenoids ranged from 16.83 (Cladonia rangiferina to 92.98 µg g dry wt (Xanthoria parietina. There were differences in carotenoid composition, concentration of each carotenoid, and in the total content in the thalli of four species collected from niches with different insolation.

  13. Carotenoids of aleurone, germ, and endosperm fractions of barley, corn and wheat differentially inhibit oxidative stress.

    Science.gov (United States)

    Masisi, Kabo; Diehl-Jones, William L; Gordon, Joseph; Chapman, Donald; Moghadasian, Mohammed H; Beta, Trust

    2015-03-18

    The antioxidant potential of carotenoids from aleurone, germ, and endosperm fractions of barley, corn, and wheat has been evaluated. HPLC analysis confirmed the presence of lutein and zeaxanthin carotenoids (nd-15139 μg/kg) in extracts of cereal grain fractions. The antioxidant properties using 2,2-diphenyl-1-picrylhydrazyl, oxygen radical absorbance capacity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays revealed significantly higher (Paleurone and endosperm fractions. Using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, 2,2'azobis (2-amidinopropane)dihydrochloride (AAPH)-induced cell loss was effectively reduced by preincubating Caco-2, HT-29, and FHs 74 Int cells with carotenoid extracts. Moreover, carotenoid extracts reduced (Paleurone, and endosperm fractions improved antioxidant capacity and thus have the potential to mitigate oxidative stress.

  14. The effects of sun exposure on carotenoid accumulation and oxidative stress in the retina of the House Finch (Haemorhous mexicanus)

    Institute of Scientific and Technical Information of China (English)

    Matthew B Toomey; Kevin J McGraw

    2016-01-01

    Background: Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of func-tions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmenta-tion has been shown to respond to large manipulations in light exposure and provide protection against photodam-age. However, it is not known if or how wild birds respond to ecologically relevant variation in sun exposure. Methods: We manipulated the duration of natural sunlight exposure and dietary carotenoid levels in wild-caught captive House Finches (Haemorhous mexicanus), then measured carotenoid accumulation and oxidative stress in the retina. Results: We found no signiifcant effects of sun exposure on retinal levels of carotenoids or lipid peroxidation, in rep-licate experiments, in winter (Jan–Mar) and spring/summer (May–June). Dietary carotenoid supplementation in the spring/summer experiment led to signiifcantly higher retinal carotenoid levels, but did not affect lipid peroxidation. Carotenoid levels differed signiifcantly between the winter and spring/summer experiments, with higher retinal and lower plasma carotenoid levels in birds from the later experiment. Conclusion: Our results suggest that variation in the duration of exposure to direct sunlight have limited inlfuence on intraspeciifc variation in retinal carotenoid accumulation, but that accumulation may track other seasonal–envi-ronmental cues and physiological processes.

  15. Ultra high performance liquid chromatography versus high performance liquid chromatography: stationary phase selectivity for generic carotenoid screening.

    Science.gov (United States)

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-03-01

    Aim of study was to find the most suitable LC column for generic carotenoid screening. To represent the diversity of carotenoids in nature and to optimize chromatographic separation, a set of carotenoid standards was carefully chosen to account for the various classes of carotenoids. The HPLC C30 column has since long been the 'golden standard' in the chromatographic separation of carotenoids. Since approximately one decade, new UHPLC technology has led to much shorter analysis times, smaller peak widths and higher chromatographic resolution. However, there are currently no UHPLC columns on the market containing the specific stationary phase chemistry of the HPLC C30 column. Therefore during this study, we investigated the separation of carotenoids on a set of UHPLC columns and compared it to their separation on the HPLC C30 column. Comparison of carotenoids separations on the different stationary phases with objective column comparison parameters clearly indicated that the HPLC C30 column is an overall better performer in the separation of carotenoids. This is due to the lack of UHPLC column chemistries that are adapted for carotenoid analysis. However, analysis time on the HPLC C30 column takes about four times longer compared to UHPLC analysis. Therefore, with the range of columns that are commercially available nowadays, a choice has to be made between very high selectivity (HPLC C30 column) and analysis times that are adapted to modern laboratory requirements (UHPLC technology). Therefore, carotenoid separations would be even more performing if an appropriate UHPLC C30 column would be available. PMID:24534422

  16. Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model.

    Science.gov (United States)

    Daly, Trevor; Jiwan, Marvin A; O'Brien, Nora M; Aherne, S Aisling

    2010-06-01

    Herbs are a rich source of bioactive phytochemicals such as carotenoids, which are known to exert various positive biological effects. However, there is very limited information in the literature regarding the content and bioavailability of carotenoids from commonly consumed herbs. Therefore, the objectives of the present study were first, to determine the carotenoid content of eight herbs namely basil (Ocimum basilicum), coriander (Coriandrum sativum), dill (Anethum graveolens), mint (Metha L.), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), and tarragon (Artemisia dracunculus L.); and second, to assess carotenoid bioaccessibility from these herbs using a simulated human in vitro digestion model. Carotenoid bioaccessibility is defined as the amount of carotenoids transferred to micelles after digestion when compared with the original amount present in the food. The content of individual carotenoids varied significantly among the herbs tested. Carotenoid bioaccessibility varied from 0 to 42.8%. Basil and coriander, and their respective micelles, contained the highest levels of beta-carotene, beta-cryptoxanthin, and lutein + zeaxanthin. Our findings show that herbs are rich sources of carotenoids and that these foods can significantly contribute to the intake of bioaccessible carotenoids. PMID:20443063

  17. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-08-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur

  18. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Sangeetha Ravi Kumar

    2013-12-01

    Full Text Available Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.

  19. Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan

    OpenAIRE

    Fuh-Juin Kao; Yu-Shan Chiu; Wen-Dee Chiang

    2014-01-01

    Carotenoid-rich green leafy vegetables including cilantro, Thai basil leaves, sweet potato leaves, and choy sum were selected to evaluate the effects of water cooking or boiling on their total carotenoid content (TCC), total phenolic content (TPC), and total antioxidant capacity (TAC). The percentage inhibition of peroxidation (%IP), Trolox equivalent antioxidant capacity (TEAC), and metal-chelating effect were used to evaluate TAC. The results indicated that TCC reached the maximum after boi...

  20. Investigating carotenoid loss after drying and storage of orange-fleshed sweet potato

    OpenAIRE

    Bechoff, Aurélie

    2010-01-01

    Biofortified orange-fleshed sweetpotato (OFSP) is being promoted to tackle vitamin A deficiency, a serious public health problem affecting children and pregnant/lactating women in sub-Saharan Africa. The aim of the study was to quantify and understand the factors influencing carotenoid losses in dried OFSP. Losses were determined in chips after drying and storage. A preliminary study demonstrated that carotenoid levels were not significantly different following either solar or sun drying. Car...

  1. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    OpenAIRE

    Jehlička, Jan; Edwards, Howell G.M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the...

  2. The carotenoid content in certain plants from Abisko National Park (Swedish Lapland

    Directory of Open Access Journals (Sweden)

    B. Czeczuga

    2015-05-01

    Full Text Available By means of columnar and thin-layer chromatography, the presence of carotenoids in Lichens (2 species, Sphagnaceae (l species, Lycopodiaceae (l species and in 23 species of the higher plants from Abisko National Park (Swedish Lapland was studied. 34 carotenoids were identified and total content ranged from 0.05 mg/g to 0.85 mg/g dry mass.

  3. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging

    OpenAIRE

    Terao, Junji; Minami, Yuko; Bando, Noriko

    2010-01-01

    Carotenoids are known to be potent quenchers of singlet molecular oxygen [O2 (1Δg)]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O2 (1Δg) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified tha...

  4. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo c...

  5. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  6. The relationship between macular pigment optical density and its constituent carotenoids in diet and serum

    OpenAIRE

    Nolan, John; Stack, J; O'Connell, E; BEATTY, S

    2007-01-01

    PURPOSE: Lutein (L) and zeaxanthin (Z) are two dietary carotenoids that accumulate at the macula, where they are collectively known as macular pigment (MP). There is a biologically plausible rationale, with some supporting evidence, that MP may protect against age-related maculopathy (ARM). This study was undertaken to investigate the relationship between dietary intake of L and Z, serum concentrations of these carotenoids, and MP optical density in 828 healthy Irish subjects. METHODS: Dietar...

  7. Coordinated Regulation of Gene Expression for Carotenoid Metabolism in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Tian-Hu Sun; Cheng-Qian Liu; Yuan-Yuan Hui; Wen-Kai Wu; Zhi-Gang Zhou; Shan Lu

    2010-01-01

    Carotenoids are important plant pigments for both light harvesting and photooxidation protection.Using the model system of the unicellular green alga Chlamydomonas reinhardtii,we characterized the regulation of gene expression for carotenoid metabolism by quantifying changes in the transcript abundance of dxs,dxr and ipi in the plastidic methylerythritol phosphate pathway and of ggps,psy,pds,lcyb and bchy,directly involved in carotenoid metabolism,under different photoperiod,light and metabolite treatments.The expression of these genes fluctuated with light/dark shifting.Light treatment also promoted the accumulation of transcripts of all these genes.Of the genes studied,dxs,ggps and lcyb displayed the typical circadian pattern by retaining a rhythmic fluctuation of transcript abundance under both constant light and constant dark entrainments.The expression of these genes could also be regulated by metabolic intermediates.For example,ggps was significantly suppressed by a geranylgeranyl pyrophosphate supplement and ipi was upregulated by isopentenyl pyrophosphate.Furthermore,CrOr,a C.reinhardtii homolog of the recently characterized Or gene that accounts for carotenoid accumulation,also showed co-expression with carotenoid biosynthetic genes such as pds and lcyb.Our data suggest a coordinated regulation on carotenoid metabolism in C.reinhardtii at the transcriptional level.

  8. Carotenoid accumulation and function in seeds and non-green tissues.

    Science.gov (United States)

    Howitt, Crispin A; Pogson, Barry J

    2006-03-01

    Carotenoids are plant pigments that function as antioxidants, hormone precursors, colourants and essential components of the photosynthetic apparatus. Carotenoids accumulate in nearly all types of plastids, not just the chloroplast, and are thus found in most plant organs and tissues, albeit at trace levels in some tissues. In this review we summarise the current knowledge of the carotenoid content of non-green plastids and discuss what is known about the regulation of their biosynthesis in roots, fruits, flowers, tubers and seeds. The emphasis is on food crops as carotenoids are essential components of human diets, primarily as some are precursors of vitamin A. The low carotenoid content of many staple foods, such as cereals, can exacerbate dietary deficiencies. The World Health Organisation has estimated that more than 100 million children are vitamin A-deficient and up to 500,000 of these children become blind each year. Many of these children die within 12 months of going blind. Thus, understanding the regulation of carotenoid accumulation in food crops, especially tubers and cereals, should facilitate improvements to nutritional value with potentially significant health benefits.

  9. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  10. Positive carotenoid balance correlates with greater reproductive performance in a wild bird.

    Directory of Open Access Journals (Sweden)

    Rebecca J Safran

    Full Text Available BACKGROUND: Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual's ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. METHODOLOGY/PRINCIPAL FINDINGS: In a field study of North American barn swallows (Hirundo rustica erythrogaster, we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1 timing of breeding and (2 sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. CONCLUSIONS/SIGNIFICANCE: While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet, or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression.

  11. Positive Carotenoid Balance Correlates with Greater Reproductive Performance in a Wild Bird

    Science.gov (United States)

    Safran, Rebecca J.; McGraw, Kevin J.; Wilkins, Matthew R.; Hubbard, Joanna K.; Marling, Julie

    2010-01-01

    Background Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual's ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. Methodology/Principal Findings In a field study of North American barn swallows (Hirundo rustica erythrogaster), we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1) timing of breeding and (2) sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. Conclusions/Significance While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet), or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression. PMID:20195540

  12. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  13. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  14. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  15. Self-Assembly of Carotenoids During Solution Casting of Solar Devices

    Science.gov (United States)

    Alwis, Dusantha; Ratnaweera, Dilru; Etampawala, Thusitha; Dadmun, Mark; Chandrika, Udumalagala; Jayaweera, Pradeep

    2015-03-01

    Self assembly of carotenoids is a common phenomenon in nature and seems to be closely related to the functions of these natural dyes in solar devices. The large absorption coefficients in the visible region of carotenoids make them a well suited natural resource for dye-sensitized solar cells (DSSC). The performance of carotenoid based solar devices mainly depends on the photo-electrochemical properties of the active material (carotenoids) and their self-assembled morphology within solar devises. These associations of molecules will affect the light absorption, emission and energy harvesting abilities of these solar devices. Two types of highly conjugated natural carotenoids having mono and dicarboxy terminal groups, namely bixin and norbixin, were extracted from annatto seeds. In the current study, small angle neutron scattering experiments were carried out to examine the modes of assemblies of bixin and norbixin during solution processing of DSSCs. Spherical shape aggregates with rough interfaces were observed in acetone medium, which is a good solvent for hydrocarbon chain. The shape of the aggregates slightly deviates from spherical to slightly elongated shape at high volume fractions of carotenoids. Bixin and norbixin show different association behaviors as a function of their concentration.

  16. Effect of maternal Chlorella supplementation on carotenoid concentration in breast milk at early lactation.

    Science.gov (United States)

    Nagayama, Junya; Noda, Kiyoshi; Uchikawa, Takuya; Maruyama, Isao; Shimomura, Hiroshi; Miyahara, Michiyoshi

    2014-08-01

    Breast milk carotenoids provide neonates with a source of vitamin A and potentially, oxidative stress protection and other health benefits. Chlorella, which has high levels of carotenoids such as lutein, zeaxanthin and β-carotene, is an effective dietary source of carotenoids for humans. In this study, the effect of maternal supplementation with Chlorella on carotenoid levels in breast milk at early lactation was investigated. Ten healthy, pregnant women received 6 g of Chlorella daily from gestational week 16-20 until the day of delivery (Chlorella group); ten others did not (control group). Among the carotenoids detected in breast milk, lutein, zeaxanthin and β-carotene concentrations in the Chlorella group were 2.6-fold (p = 0.001), 2.7-fold (p = 0.001) and 1.7-fold (p = 0.049) higher, respectively, than those in the control group. Our study shows that Chlorella intake during pregnancy is effective in improving the carotenoid status of breast milk at early lactation.

  17. Detection of carotenoids present in blood of various animal species using Raman spectroscopy

    Science.gov (United States)

    Liaqat, Maryam; Younus, Ayesha; Saleem, Muhammad; Rashid, Imaad; Yaseen, Maria; Jabeen, Saher

    Raman spectroscopy is simple stable powerful diagnostic tool for body fluids, tissues and other biomolecules. Human blood possesses different kind of carotenoids that play a key role for protecting the cells from damaging by different viral and bacterial diseases. Carotenoids are antioxidative components which are capable to overcome the attack of different free radicals and reactive oxygen species. Carotenoids are not prepared by human body, therefore it is recommended to eat carotenoids enrich vegetable foods. No standard data is available on the concentration of useful carotenoids component in non-vegetable consumed items. In present research work, Raman spectroscopy is used to compare various blood components like plasma, serum, carotenoids present in blood of different animal species like goat, sheep, cow and buffalo consumed by human. Especially beta carotene is investigated. The Raman shift ranges from 600-1700 cm-1 for samples. Different characteristic peaks of the blood components are found which are not characterized before in animal samples. Doctrate Student in Photonics Deparatment of Electrical Engineering.

  18. Plasma carotenoids are associated with socioeconomic status in an urban Indigenous population: an observational study

    Directory of Open Access Journals (Sweden)

    Maple-Brown Louise

    2011-02-01

    Full Text Available Abstract Background Indigenous Australians experience poorer health than other Australians. Poor diet may contribute to this, and be related to their generally lower socioeconomic status (SES. Even within Indigenous populations, SES may be important. Our aim was to identify factors associated with plasma carotenoids as a marker of fruit and vegetable intake among urban dwelling Indigenous Australians, with a particular focus on SES. Methods Cross sectional study in urban dwelling Indigenous Australians participating in the DRUID (Darwin Region Urban Indigenous Diabetes Study. An SES score, based on education, employment, household size, home ownership and income was computed and plasma carotenoids measured by high performance liquid chromatography in 897 men and women aged 15 - 81 years (mean 36, standard deviation 15. Linear regression analysis was used to determine the relationship between SES and plasma carotenoids, adjusting for demographic, health and lifestyle variables, including frequency of intakes of food groups (fruit, vegetables, takeaway foods, snacks and fruit/vegetable juice. Results SES was positively associated with plasma concentrations of lutein/zeaxanthin (p trend Conclusions Even within urban Indigenous Australians, higher SES was associated with higher concentrations of plasma carotenoids. Low plasma carotenoids have been linked with poor health outcomes; increasing accessibility of fruit and vegetables, as well as reducing smoking rates could increase concentrations and otherwise improve health, but our results suggest there may be additional factors contributing to lower carotenoid concentrations in Indigenous Australians.

  19. Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds.

    Science.gov (United States)

    Federico, M L; Schmidt, M A

    2016-01-01

    There is an increasing demand for carotenoids, which are fundamental components of the human diet, for example as precursors of vitamin A. Carotenoids are also potent antioxidants and their health benefits are becoming increasingly evident. Protective effects against prostate cancer and age-related macular degeneration have been proposed for lycopene and lutein/zeaxanthin, respectively. Additionally, β-carotene, astaxanthin and canthaxanthin are high-value carotenoids used by the food industry as feed supplements and colorants. The production and consumption of these carotenoids from natural sources, especially from seeds, constitutes an important step towards fortifying the diet of malnourished people in developing nations. Therefore, attempts to metabolically manipulate β-carotene production in plants have received global attention, especially after the generation of Golden Rice (Oryza sativa). The endosperms of Golden Rice seeds synthesize and accumulate large quantities of β-carotene (provitamin A), yielding a characteristic yellow color in the polished grains. Classical breeding efforts have also focused in the development of cultivars with elevated seed carotenoid content, with maize and other cereals leading the way. In this communication we will summarize transgenic efforts and modern breeding strategies to fortify various crop seeds with nutraceutical carotenoids. PMID:27485229

  20. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus.

    Science.gov (United States)

    Wieland, B; Feil, C; Gloria-Maercker, E; Thumm, G; Lechner, M; Bravo, J M; Poralla, K; Götz, F

    1994-01-01

    The major pigment produced by Staphylococcus aureus Newman is the deep-yellow carotenoid 4,4'-diaponeurosporene; after prolonged cultivation, this pigment is in part converted to the orange end product staphyloxanthin. From this strain a 3.5-kb DNA fragment was identified which after being cloned into Escherichia coli and Staphylococcus carnosus conferred the ability to produce 4,4'-diaponeurosporene. DNA sequencing of this fragment revealed two open reading frames (ORFs) which are very likely cotranscribed. ORF1 encodes a 254-amino-acid hydrophobic protein, CrtM (M(r), 30,121). The deduced sequence of CrtM exhibits in three domains similarities to the sequences of Saccharomyces cerevisiae and human squalene synthases and phytoene synthases of various bacteria. ORF2 encodes a 448-amino-acid hydrophobic protein, CrtN, with an M(r) of 50,853 whose deduced sequence is similar to those of phytoene desaturases of other bacteria. At the N terminus of CrtN a classical FAD-, NAD(P)-binding domain is found. Spectrophotometry and gas chromatography-mass spectrometry analyses of the carotenoid production of E. coli and S. carnosus clones containing either ORF1 or both ORFs together suggest that ORF1 and ORF2 represent the dehydrosqualene synthase gene (crtM) and the dehydrosqualene desaturase gene (crtN), respectively. The results furthermore suggest that the biosynthesis of 4,4'-diaponeurosporene starts with the condensation of two molecules of farnesyl diphosphate by dehydrosqualene synthase (CrtM); it is shown that the reaction product of this enzyme is dehydrosqualene and not squalene. Dehydrosqualene (4,4'-diapophytoene) is successively dehydrogenated by a desaturase (CrtN) to form the yellow main intermediate 4,4'-diaponeurosporene. Images PMID:8002598

  1. A prospective study of XRCC1 haplotypes and their interaction with plasma carotenoids on breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Mohrenweiser, H W; Han, J; Hankinson, S E; De Vivo, I; Spiegelman, D; Tamimi, R M; Colditz, G A; Hunter, D J

    2004-01-15

    The XRCC1 protein is involved in the base excision repair pathway through interactions with other proteins. Polymorphisms in the XRCC1 gene may lead to variation in repair proficiency and confer inherited predisposition to cancer. We prospectively assessed the associations between polymorphisms and haplotypes in XRCC1 and breast cancer risk in a nested case-control study within the Nurses' Health Study (incident cases, n 1004; controls, n 1385). We further investigated gene-environment interactions between the XRCC1 variations and plasma carotenoids on breast cancer risk. We genotyped four haplotype-tagging single nucleotide polymorphisms Arg {sup 194}Trp, C26602T, Arg{sup 399}Gln, and Gln{sup 632}Gln in the XRCC1 gene. Five common haplotypes accounted for 99% of the chromosomes in the present study population of mostly Caucasian women. We observed a marginally significant reduction in the risk of breast cancer among {sup 194}Trp carriers. As compared with no-carriers, women with at least one {sup 194}Trp allele had a multivariate odds ratio of 0.79 (95% of the confidence interval, 0.60 -1.04). The inferred haplotype harboring the {sup 194}Trp allele was more common in controls than in cases (6.6 versus 5.3%, P 0.07). We observed that the Arg {sup 194}Trp modified the inverse associations of plasma -carotene level (P, ordinal test for interaction 0.02) and plasma -carotene level (P, ordinal test for interaction 0.003) with breast cancer risk. No suggestion of an interaction was observed between the Arg {sup 194}Trp and cigarette smoking. Our results suggest an inverse association between XRCC1 {sup 194}Trp allele and breast cancer risk. The findings of the effect modification of the Arg {sup 194}Trp on the relations of plasma -and -carotene levels with breast cancer risk suggest a potential protective effect of carotenoids in breast carcinogenesis by preventing oxidative DNA damage.

  2. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS.

    Science.gov (United States)

    Zhong, Lijie; Gustavsson, Karl-Erik; Oredsson, Stina; Głąb, Bartosz; Yilmaz, Jenny Lindberg; Olsson, Marie E

    2016-11-01

    Rose hip fruit, which contains high concentration of carotenoids is commonly used for different food products in Europe and it is considered to have medical properties. In this study, a simple, rapid and efficient HPLC-DAD-APCI(+)-MS method was developed and applied to identify and quantify the carotenoids in rose hip fruit of four rose species, including both unsaponified and saponified extract. In the unsaponified extract 23 carotenoid esters were detected, in which either rubixanthin ester or violaxanthin ester was the dominant component of the ester composition. In the saponified extract 21 carotenoids, including 11 xanthophylls and 10 carotenes were detected. This is the first time the total carotenoid composition, including the carotenoid esters in rose hip fruit were identified and quantified. This work reveals the potential of rose hip fruit to be utilized as a healthy dietary material and give chemical information for the possible future development in the pharmacology field.

  3. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS.

    Science.gov (United States)

    Zhong, Lijie; Gustavsson, Karl-Erik; Oredsson, Stina; Głąb, Bartosz; Yilmaz, Jenny Lindberg; Olsson, Marie E

    2016-11-01

    Rose hip fruit, which contains high concentration of carotenoids is commonly used for different food products in Europe and it is considered to have medical properties. In this study, a simple, rapid and efficient HPLC-DAD-APCI(+)-MS method was developed and applied to identify and quantify the carotenoids in rose hip fruit of four rose species, including both unsaponified and saponified extract. In the unsaponified extract 23 carotenoid esters were detected, in which either rubixanthin ester or violaxanthin ester was the dominant component of the ester composition. In the saponified extract 21 carotenoids, including 11 xanthophylls and 10 carotenes were detected. This is the first time the total carotenoid composition, including the carotenoid esters in rose hip fruit were identified and quantified. This work reveals the potential of rose hip fruit to be utilized as a healthy dietary material and give chemical information for the possible future development in the pharmacology field. PMID:27211680

  4. The effect of ionizing radiation on the content of chlorophylls and carotenoids in wheat seedlings in the presence of an iron complex

    International Nuclear Information System (INIS)

    The study of changes in the content of pigments and processes that take place in pigment-protein complexes of chloroplast membranes after irradiation with the use of radio-protectors are devoted to a a small number of works. Objective of our research was to study the influence of gamma irradiation on the content of chlorophylls and carotenoids in wheat seedlings by using a complex of iron with yuglon to determine its radioprotective properties. The data indicate that the iron yuglonate reduces damaging effects of radiation, and supports the normal course of pigment biosynthesis

  5. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review

    OpenAIRE

    Arimboor, Ranjith; Natarajan, Ramesh Babu; Menon, K. Ramakrishna; Chandrasekhar, Lekshmi P.; Moorkoth, Vidya

    2014-01-01

    Carotenoids are increasingly drawing the attention of researchers as a major natural food color due to their inherent nutritional characteristics and the implicated possible role in prevention and protection against degenerative diseases. In this report, we review the role of red pepper as a source for natural carotenoids. The composition of the carotenoids in red pepper and the application of different methodologies for their analysis were discussed in this report. The stability of red peppe...

  6. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    OpenAIRE

    Changho Jhin; Keum Taek Hwang

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were...

  7. Postprandial plasma carotenoid responses following consumption of strawberries, red wine, vitamin C or spinach by elderly women.

    Science.gov (United States)

    Paiva, S A; Yeum, K J; Cao, G; Prior, R L; Russell, R M

    1998-12-01

    This study investigated the postprandial plasma responses of carotenoids for 24 h after feeding five specific breakfast beverages; four of which had low or no carotenoid content. In seven fasting healthy elderly female subjects a blood sample (baseline) was obtained, after which they were given a breakfast beverage, containing one of the following: 1) strawberries (240 g); 2) ascorbic acid (1250 mg); 3) spinach (294 g); 4) red wine (300 mL); and 5) control (breakfast beverage only). Blood samples were collected at 0.5, 1, 4, 7, 11, 15 and 24 h. Plasma carotenoids were measured using HPLC. No significant differences were found in the levels of the plasma carotenoids measured among the various treatments at baseline. In the spinach treatment, plasma lutein, zeaxanthin and beta-carotene levels at 7, 11, 15 and 24 h were significantly higher than those at baseline, as expected. All of the carotenoids measured in the control and vitamin C treatments, at subsequent sampling times were not significantly different from those at baseline. However, for most carotenoids, strawberry and red wine feeding resulted in significantly lower carotenoids values from baseline at 11 and 15 h. Subjects who received a diet with low levels of carotenoids, but whose postprandial plasma levels of carotenoids remain steady, might be explained by a mechanism that promotes secretion of carotenoids into the circulation. Assuming that plasma carotenoids are being used over time, we hypothesize that strawberries and red wine contain some substances that interfere with the secretion of carotenoids into the circulation. PMID:9868186

  8. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    Science.gov (United States)

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-01

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed. PMID:19896942

  9. Ustilago maydis accumulates beta-carotene at levels determined by a retinal-forming carotenoid oxygenase.

    Science.gov (United States)

    Estrada, Alejandro F; Brefort, Thomas; Mengel, Carina; Díaz-Sánchez, Violeta; Alder, Adrian; Al-Babili, Salim; Avalos, Javier

    2009-10-01

    The basidiomycete Ustilago maydis, the causative agent of corn smut disease, has emerged as a model organism for dimorphism and fungal phytopathogenicity. In this work, we line out the key conserved enzymes for beta-carotene biosynthesis encoded by the U. maydis genome and show that this biotrophic fungus accumulates beta-carotene. The amount of this pigment depended on culture pH and aeration but was not affected by light and was not increased by oxidative stress. Moreover, we identified the U. maydis gene, cco1, encoding a putative beta-carotene cleavage oxygenase. Heterologous overexpression and in vitro analyses of purified enzyme demonstrated that Cco1 catalyzes the symmetrical cleavage of beta-carotene to yield two molecules of retinal. Analyses of beta-carotene and retinal contents in U. maydiscco1 deletion and over-expression strains confirmed the enzymatic function of Cco1, and revealed that Cco1 determines the beta-carotene content. Our data indicate that carotenoid biosynthesis in U. maydis is carried out to provide retinal rather than to deliver protective pigments. The U. maydis genome also encodes three potential opsins, a family of photoactive proteins that use retinal as chromophore. Two opsin genes showed different light-regulated expression patterns, suggesting specialized roles in photobiology, while no mRNA was detected for the third opsin gene in the same experiments. However, deletion of the cco1 gene, which should abolish function of all the retinal-dependent opsins, did not affect growth, morphology or pathogenicity, suggesting that retinal and opsin proteins play no relevant role in U. maydis under the tested conditions.

  10. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis Using fractional factorial design

    Science.gov (United States)

    Mandelli, Fernanda; Yamashita, Fábio; Pereira, José L.; Mercadante, Adriana Z.

    2012-01-01

    A fractional factorial design 25–1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch’s trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 µg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity. PMID:24031811

  11. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    Science.gov (United States)

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta. PMID:20549230

  12. Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs.

    Science.gov (United States)

    Rawson, A; Tiwari, B K; Tuohy, M G; O'Donnell, C P; Brunton, N

    2011-09-01

    The effect of ultrasound and blanching pretreatments on polyacetylene (falcarinol, falcarindiol and falcarindiol-3-acetate) and carotenoid compounds of hot air and freeze dried carrot discs was investigated. Ultrasound pretreatment followed by hot air drying (UPHD) at the highest amplitude and treatment time investigated resulted in higher retention of polyacetylenes and carotenoids in dried carrot discs than blanching followed by hot air drying. Freeze dried samples had a higher retention of polyacetylene and carotenoid compounds compared to hot air dried samples. Color parameters were strongly correlated with carotenoids (pblanching treatment in the drying of carrots.

  13. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Fernanda Mandelli

    2012-03-01

    Full Text Available A fractional factorial design 2(5-1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch's trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS. The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 mg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity.

  14. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates.

  15. Antioxidant activity of carotenoid lutein in vitro and in vivo.

    Science.gov (United States)

    Sindhu, Edakkadath R; Preethi, Korengath C; Kuttan, Ramadasan

    2010-08-01

    Carotenoid lutein was evaluated for its antioxidant potential both in vitro and in vivo. Lutein was found to scavenge superoxide radicals, hydroxyl radicals and inhibited in vitro lipid peroxidation. Concentrations needed for 50% inhibition (IC50) were 21, 1.75 and 2.2 microg/mL respectively. It scavenged 2,2-diphenyl-1-picryl hydrazyl (IC50 35 microg/mL) and nitric oxide radicals (IC50 3.8 microg/mL) while 2,2-azobis-3-ethylbenzthiozoline-6-sulfonic acid radicals were inhibited at higher concentration. Ferric reducing power (50%) of lutein was found to be equal 0.3 micromols/mL of FeSO4.7H2O. Its oral administration inhibited superoxide generation in macrophages in vivo by 34.18, 64.32 and 70.22% at doses of 50, 100 and 250 mg/kg body weight. The oral administration of lutein in mice for 1 month significantly increased the activity of catalase, superoxide dismutase, glutathione reductase and glutathione in blood and liver while the activity of glutathione peroxidase and glutathione-S-transferase were found to be increased in the liver tissue. Implication of these results in terms of its role in reducing degenerative diseases is discussed. PMID:21341544

  16. Fermented orange juice: source of higher carotenoid and flavanone contents.

    Science.gov (United States)

    Escudero-López, Blanca; Cerrillo, Isabel; Herrero-Martín, Griselda; Hornero-Méndez, Damaso; Gil-Izquierdo, Angel; Medina, Sonia; Ferreres, Federico; Berná, Genoveva; Martín, Francisco; Fernández-Pachón, Maria-Soledad

    2013-09-18

    The intake of bioactive compounds and moderate alcohol decreases the risk of cardiovascular diseases. These effects could be joined in a beverage created by a controlled alcoholic fermentation of orange juice. The influence of controlled alcoholic fermentation on the bioactive compound profile of orange juice has not been previously evaluated, and this is the purpose of the present study. Total and individual flavanones and carotenoids significantly increased throughout the fermentation. The reason for this was an enhanced extraction of these compounds from the pulp. Besides, the potential bioavailability of flavanones increased due to a higher content of hesperetin-7-O-glucoside (2-fold higher at the end of the fermentation process). Ascorbic acid did not undergo a significant change, and only total phenolics decreased. Antioxidant capacity was also evaluated. TEAC and FRAP values remained constant throughout the process. However, ORAC and DPPH values significantly increased. Correlation analysis concluded that the increase in ORAC and DPPH values could be due to enhancement of flavanones.

  17. Carotenoid isomerase is key determinant of petal color of Calendula officinalis.

    Science.gov (United States)

    Kishimoto, Sanae; Ohmiya, Akemi

    2012-01-01

    Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462-464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO. PMID:22069331

  18. Determination of major carotenoids in a few Indian leafy vegetables by high-performance liquid chromatography.

    Science.gov (United States)

    Lakshminarayana, Rangaswamy; Raju, Marisiddaiah; Krishnakantha, Thirumalai Parthasarathy; Baskaran, Vallikannan

    2005-04-20

    Leafy vegetables [Basella rubra L., Peucedanum sowa Roxb., Moringa oleifera Lam., Trigonella foenum-graecum L., Spinacia oleracea L., Sesbania grandiflora (L.) Poir., and Raphanus sativus L.] that are commonly used by the rural population in India were evaluated in terms of their main carotenoid pattern. The extracted carotenoids were purified by open column chromatography (OCC) on a neutral alumina column to verify their identity by their characteristic UV-visible absorption spectra. Reverse-phase high-performance liquid chromatography (HPLC) on a C18 column with UV-visible photodiode array detection under isocratic conditions was used for quantification of isolated carotenoids. Acetonitrile/methanol/dichloromethane (60:20:20 v/v/v) containing 0.1% ammonium acetate was used as a mobile phase. The major carotenoids identified by both methods were lutein, beta-carotene, violaxanthin, neoxanthin, and zeaxanthin. Among the carotenoids identified, lutein and beta-carotene levels were found to be higher in these leafy vegetables. Results show that P. sowa and S. oleracea are rich sources of lutein (77-92 mg/100 g of dry wt) and beta-carotene (36-44 mg/100 g of dry wt) compared with other leafy vegetables. The purity of carotenoids eluted by OCC was clarified by HPLC, and they were found to be 92% +/- 3% for neoxanthin, 94% +/- 2% for violaxanthin, 97% +/-2% for lutein and zeaxanthin, and 90% +/- 3% for beta-carotene. It could be recommended to use P. sowa and S. oleracea as rich sources of lutein and beta-carotene for health benefits. The OCC method proposed is relatively simple and provides purified carotenoids for feeding trials. PMID:15826027

  19. Comparison of three spectrophotometric methods for analysis of egg yolk carotenoids.

    Science.gov (United States)

    Islam, K M S; Schweigert, F J

    2015-04-01

    Carotenoids accumulated in the egg yolk are of importance for two reasons. Firstly they are important pigments influencing customer acceptance and secondly they are essential components with positive health effects either as antioxidants or as precursor of vitamin A. Different analytical methods are available to quantitatively identify carotenoids from egg yolk such as spectrophotometric methods described by AOAC (Association of Official Analytical Chemists) and HPLC (High Performance Liquid Chromatography). Both methods have in common that they are time consuming, need a laboratory environment and well trained technical operators. Recently, a rapid lab-independent spectrophotometric method (iCheck, BioAnalyt GmbH, Germany) has been introduced that claims to be less time consuming and easy to operate. The aim of the current study was therefore to compare the novel method with the two standard methods. Yolks of 80 eggs were analysed as aliquots by the three methods in parallel. While both spectrometric methods are only able measure total carotenoids as total ß-carotene, HPLC enables the determination of individual carotenoids such lutein, zeaxanthin, canthaxanthin, ß-carotene and β-apocarotenoic ester. In general, total carotenoids levels as obtained by AOAC were in average 27% higher than those obtained by HPLC. Carotenoid values obtained by the reference methods AOAC and HPLC are highly correlated with the iCheck method with r(2) of 0.99 and 0.94 for iCheck vs. AOAC and iCheck vs. HPLC, respectively (both p<0.001). Bland Altman analysis showed that the novel iCheck method is comparable to the reference methods. In conclusion, the novel rapid and portable iCheck method is a valid and effective tool to determine total carotenoid of egg yolk under laboratory-independent conditions with little trained personal.

  20. Dietary Intake of Selected Common Vegetable Foods and their Total Carotenoids Determination

    Directory of Open Access Journals (Sweden)

    Jafar EL-Qudah

    2008-01-01

    Full Text Available Problem statement: Vitamin A Deficiency (VAD remains widespread in many countries including Jordan, mainly due to inadequate dietary intake of vitamin A and carotenoids. Approach: Few researches on carotenoid content in vegetables and fruits are carried out. Thus, the aim of this study was to evaluate the dietary intake of selected common foods among a sample of adult Jordanians, by using Food Frequency Questionnaire (FFQ and to analyze the carotenoid contents in selected vegetable foods by using UV spectrophotometry . Results: Among the total sample of 200 adults men and women, the consumption per person per week of rice was 21.1 serving, olive oil 20.9 serving, fresh carrot 13.6 serving, tomato 8.28 serving, mint 6.63 serving, chickpea 5.07 serving and parsley 5.03 serving. The total carotenoid contents were found in high concentrations in mint 25.2 mg 100 g-1, parsley 21.8 mg 100g-1, mallow 12.6 mg 100 g-1 and carrot 8.79 mg 100g-1. Zucchini, okra, tomato and green beans also contained appreciable amounts of carotenoids 3.38, 2.54, 2.19 and 1.97 mg 100 g-1, respectively. Eggplant had the lowest content of carotenoids 0.48 mg 100g-1. Conclusions: These finding could help the meal planning at a community level by including such high content of carotenoid vegetables in meals, which will lead to decrease the incidence of vitamin A deficiency disease. Further studies in this concern is highly recommended to solve such problem worldwide.

  1. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.

    Science.gov (United States)

    Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro

    2010-12-01

    The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds.

  2. Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices.

    Science.gov (United States)

    Cortés, C; Esteve, M J; Rodrigo, D; Torregrosa, F; Frígola, A

    2006-11-01

    Liquid chromatography (LC) was the method chosen to evaluate the effects of high intensity pulsed electric fields (HIPEF), with different electric field intensities (25, 30, 35 and 40 kV/cm) and different treatment times (30-340 micros), on orange juice cis/trans carotenoid contents. In parallel, a conventional heat treatment (90 degrees C, 20 s) was applied to the orange juice in order to compare the effect on the carotenoid contents. HIPEF processing of orange juice is an alternative to the thermal treatment of pasteurization, provided that it is kept refrigerated, because, when the most extreme conditions of this kind of treatment are applied, the decrease in the concentration of carotenoids with vitamin A activity is very small, and also most of the carotenoids identified have a slightly increased concentration after application of the most intense treatments, although always less than in untreated fresh juice. In any case, pasteurization treatment causes a greater decrease in the concentration of most of the carotenoids identified and the carotenoids with vitamin A activity. The total carotenoid concentration decreased by 12.6% in pasteurized orange juice with respect to untreated fresh orange juice, as opposed to decreases of 9.6%, 6.3% or 7.8% when fields of 25, 30 or 40 kV/cm were applied. Orange juice treated with HIPEF shows a greater tendency towards the colour yellow and a lesser tendency towards red with respect to untreated orange juice, while the luminance of the juice remains practically invariable. This tendency is less than in pasteurized orange juice.

  3. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production

    Science.gov (United States)

    Córdova, Pamela; Marcoleta, Andrés E.; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis. PMID:27622474

  4. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.

    Science.gov (United States)

    Rubio-Moraga, Angela; Rambla, José Luis; Fernández-de-Carmen, Asun; Trapero-Mozos, Almudena; Ahrazem, Oussama; Orzáez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes

    2014-11-01

    Apocarotenoid compounds play diverse communication functions in plants, some of them being as hormones, pigments and volatiles. Apocarotenoids are the result of enzymatic cleavage of carotenoids catalyzed by carotenoid cleavage dioxygenase (CCD). The CCD4 family is the largest family of plant CCDs, only present in flowering plants, suggesting a functional diversification associated to the adaptation for specific physiological capacities unique to them. In saffron, two CCD4 genes have been previously isolated from the stigma tissue and related with the generation of specific volatiles involved in the attraction of pollinators. The aim of this study was to identify additional CCD4 members associated with the generation of other carotenoid-derived volatiles during the development of the stigma. The expression of CsCCD4c appears to be restricted to the stigma tissue in saffron and other Crocus species and was correlated with the generation of megastigma-4,6,8-triene. Further, CsCCD4c was up-regulated by wounding, heat, and osmotic stress, suggesting an involvement of its apocarotenoid products in the adaptation of saffron to environmental stresses. The enzymatic activity of CsCCD4c was determined in vivo in Escherichia coli and subsequently in Nicotiana benthamiana by analyzing carotenoids by HPLC-DAD and the volatile products by GC/MS. β-Carotene was shown to be the preferred substrate, being cleaved at the 9,10 (9',10') bonds and generating β-ionone, although β-cyclocitral resulting from a 7,8 (7',8') cleavage activity was also detected at lower levels. Lutein, neoxanthin and violaxanthin levels in Nicotiana leaves were markedly reduced when CsCCD4c is over expressed, suggesting that CsCCD4c recognizes these carotenoids as substrates.

  5. Book Act

    OpenAIRE

    Kivland, Sharon

    2014-01-01

    Book Act was a new project by AMBruno, initiated by Sophie Loss, in which artist book-makers performed and embodied the concept or essence of their books through the medium of film or performance. The exhibition at The Tetley, Leeds, comprised the originating books and corresponding video work, with live performances on Sunday 9 March 2014. Book Act took place during the 17th International Contemporary Artists' Book Fair (7th to 9th March) and the exhibition continued until 26th March 2014.

  6. Is oxidative status influenced by dietary carotenoid and physical activity after moult in the great tit (Parus major)?

    Science.gov (United States)

    Vaugoyeau, Marie; Decencière, Beatriz; Perret, Samuel; Karadas, Filiz; Meylan, Sandrine; Biard, Clotilde

    2015-07-01

    In the context of sexual and natural selection, an allocation trade-off for carotenoid pigments may exist because of their obligate dietary origin and their role both in the antioxidant and immune systems and in the production of coloured signals in various taxa, particularly birds. When birds have expended large amounts of carotenoids to feather growth such as after autumn moult, bird health and oxidative status might be more constrained. We tested this hypothesis in a bird species with carotenoid-based plumage colour, by manipulating dietary carotenoids and physical activity, which can decrease antioxidant capacity and increase reactive oxygen metabolite (ROM) concentration. Great tits were captured after moult and kept in aviaries, under three treatments: physical handicap and dietary supplementation with carotenoids, physical handicap and control diet, and no handicap and control diet. We measured plasma composition (antioxidant capacity, ROM concentration, and vitamin A, vitamin E and total carotenoid concentrations), immune system activation (blood sedimentation) and stress response (heterophil/lymphocyte ratio) and predicted that handicap treatment should influence these negatively and carotenoid supplementation positively. Coloration of yellow feathers was also measured. Carotenoid supplementation increased total plasma carotenoid concentration, decreased feather carotenoid chroma and marginally increased ROM concentration. Handicap increased blood sedimentation only in males but had no clear influence on oxidative stress, which contradicted previous studies. Further studies are needed to investigate how physical activity and carotenoid availability might interact and influence oxidative stress outside the moult period, and their combined potential influence on attractiveness and reproductive investment later during the breeding season. PMID:25964421

  7. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns.

    Science.gov (United States)

    Bijttebier, Sebastiaan K A; D'Hondt, Els; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2013-06-01

    Vegetables are a major source of carotenoids and carotenoids are identified as potentially important natural antioxidants that may aid in the prevention of several human chronic degenerative diseases. Characterization of carotenoids in organic biological matrices is a crucial step in any research valorization trajectory. This study reports for the first time the use of high mass resolution and exact mass orbitrap technology for the elucidation of carotenoid fragmentation pathways. This contributes to the generation of new tools for identifying unknown carotenoids based on fragmentation patterns. Two different chromatographic methods making use of different mobile phases resulted in the generation of different ion species because of the large influence of the mobile phase solvent composition on ionization. It was shown that depending on the molecular ion species that are generated (protonated ions or radical molecular ions), different fragments are formed when applying higher energy collisional dissociation. Fragmentation and the abundance of fragments provide valuable structural information on the type of functional groups, the polyene backbone and the location of double bonds in ring structures of carotenoids. Furthermore, coherence between specific substructures in the molecules and characteristic fragmentation patterns was observed allowing the assignment of fragmentation patterns for carotenoid substructures that can theoretically be extrapolated to carotenoids with similar (sub)structures. Differentiation between isomeric carotenoids by compound specific fragments could however not be made for all the isomeric groups under study. As a wide variety of isomeric forms of carotenoids exist in nature, the combination of good chromatographic separation with high resolution mass spectrometry and other complementary qualitative structure elucidation techniques such as a photo diode array detector and/or nuclear magnetic resonance spectroscopy are indispensable for

  8. Genetics of carotenoids for provitamin A biofortification in tropical-adapted maize

    Directory of Open Access Journals (Sweden)

    Alhassan D. Halilu

    2016-08-01

    Full Text Available Yellow maize contains high levels of β-carotene (βC, making it an important crop for combating vitamin A deficiency through biofortification. In this study, nine maize inbred lines were selected at random from 31 provitamin A (PVA maize inbred lines and crossed in a partial diallel mating design to develop 36 crosses. The crosses were evaluated in the field in two locations (Samaru and Kerawa and their seed carotenoid content were determined by high-performance liquid chromatography. The modes of gene action, heritability, and correlations between agronomic traits and carotenoid content were estimated. Additive genetic variances (σ2a were lower than non-additive genetic variances (σ2d for all the carotenoids, plant height (PH, and grain yield (GY, suggesting a preponderance of non-additive gene action. Broad-sense heritability (H2 was high (H2 > 60% for zeaxanthin, days to anthesis, and PH, moderate (30% < H2 < 60% for lutein and GY, and low (H2 < 30% for alpha carotene, beta cryptoxanthin, βC, and PVA. Genetic advance as a percentage of mean, considered with H2, also suggests a preponderance of non-additive gene action for PVA carotenoids. Hybrid variety development is thus an appropriate approach to improving grain yield and PVA. GY showed no significant genotypic correlations with carotenoid content, suggesting that these traits can be improved concurrently. Thus, there is ample scope for improvement of PVA and GY in the sample of tropical-adapted maize.

  9. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    Science.gov (United States)

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  10. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I–VI. The MSRRS sensor is commercially available under the brand name biozoom.

  11. Lycopene Accumulation Affects the Biosynthesis of Some Carotenoid-related Volatiles Independent of Ethylene in Tomato

    Institute of Scientific and Technical Information of China (English)

    Hongyan Gao; Hongliang Zhu; Yi Shao; Anjun Chen; Chengwen Lu; Benzhong Zhu; Yunbo Luo

    2008-01-01

    For elucidating the regulatory mechanism of ethylene on carotenoid-related volatiles (open chain) compounds and the relationship between lycopene and carotenoid-related volatiles,transgenic tomato fruits in which ACC synthase was suppressed were used.The transgenic tomato fruit showed a significant reduction of lycopene and aroma volatiles with low ethylene production.6-methyl-5-hepten-2-one,6-methyl-5-hepten-2-ol and geranylacetone,which were suspected to be lycopene degradation products,were lower than those in wild type tomato fruits.In order to identify whether lycopene accumulation effects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato or not,the capability of both wild type and transgenic tomato fruits discs to convert lycopene into carotenoid-related volatiles was evaluated.The data showed that external lycopene could convert into 6-methyl-5-hepten-2-one and 6-methyl-5-hepten-2-ol in vivo,Indicating that the strong inhibition of ethylene production had no effect on enzymes in the biosynthesis pathway of some carotenoid-related volatiles.Therefore,in ACS-suppression transgenic tomato fruits,the low levels of 6-methyl-5-hepten-2-one,6-methyl-5-hepten-2-ol was due to decreased lycopene accumulation,not ethylene production.Ethylene only affected the accumulation of lycopene,and then indirectly influenceed the level of lycopene-related volatiles.

  12. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  13. Development of carotenoid storage cells in Bixa orellana L. seed arils.

    Science.gov (United States)

    Louro, Ricardo P; Santiago, Laura J M

    2016-01-01

    The arils of Bixa orellana L. seeds contain carotenoid storage cells (CSCs). The main compounds in these cells include bixin and norbixin, which are important pigments in the food and pharmaceutical industries. Although many studies have been conducted on these chemical constituents, the cellular events that occur during the development of the carotenoid-accumulating cells in the arils and their relationship with the final carotenoid accumulation in the vacuoles remain unknown. In this study, the development of the CSCs in B. orellana arils was analyzed by light and transmission electron microscopy. Carotenoids formed in specialized cells, whose number and size increased during aril development. At various stages of development, the cytoplasm of the CSCs contained chromoplasts that held an extensive network of tubules and plastoglobules. Next to the chromoplasts, lipid droplets may fuse one another to form osmiophilic bodies. In addition, vesicles were observed next to the tonoplast. At the final stages of development, both the osmiophilic bodies and vesicles, which became quadrangular or rectangular, were stored in the vacuoles of the CSCs. This study reported for the first time the occurrence of different storage unit types within the vacuole of carotenoid storage cells. PMID:25786349

  14. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology.

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G M; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-12-13

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  15. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    Science.gov (United States)

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  16. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology.

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G M; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-12-13

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings.

  17. Effect of low doses of irradiation on the carotenoids in head to eat carrots

    International Nuclear Information System (INIS)

    This study aims was to evaluate the effect of low doses of g radiation on the total carotenoids, α and β-carotene content in minimally processed carrots, during the shelflife. Carrots are the mains vegetable source of carotenoids provitamin A (α and β-carotene). According to the Family Budget Survey (FBS) carried out in the Brazilian Southeast, within the roots and tubers group, carrots are widely consumed. The carotenoid stability varies largely during the stages of processing and storage, depending upon structure, temperature, oxygen availability, light exposure, humidity content, water activity and acid, metal anti-oxidant and pro-oxidant presence. The minimally processed carrots in this experiment were manually peeled, rinsed, cutted into diskis, packaged under 5% O2 / 10% CO2 and 21% O2 (sintetic air), g ionizing radiation treatments was carried out with a 137Cs source, of 0,25, 0,50, 0,75 and 1,0kGy doses, and shelf-stored at 5°C for 24 days. Total carotenoids quantification was by 449nm spectrophotometer. Determination of a and β-carotenes was made by High Performance Liquid Chromatography (HPLC). The different treatments and control group were, too, evaluated by analysing of colour and volatiles, by gas chromatography/mass spectroscopy with solid phase microextration (CG-MS/SPME), for study the significant carotenoids losses during the process

  18. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    Science.gov (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  19. SPECTROPHOTOMETRIC DETERMINATION OF CHLOROPHYLLS AND CAROTENOIDS. AN EFFECT OF SONICATION AND SAMPLE PROCESSING

    Directory of Open Access Journals (Sweden)

    Jana Braniša

    2014-02-01

    Full Text Available Chlorophylls and carotenoids are abundant pigments in plants, algae and cyanobacteria. In this study we verified the applicability of two previously developed UV-vis spectrophotometric methods for simultaneous quantitative determination of chlorophylls (a, b and carotenoids (lycopene, β-carotene or total carotenoids. The pigments were extracted from the strawberries, apricots and raspberries in both the acetone-water and acetone-hexane mixtures. Based on the statistical evaluation of the results the combination of mechanical disruption and sonication of fruit samples seems to be a suitable way to improve the pigment extraction efficiency from fruits in both types of solvents. In the case of apricot and raspberry fruit extracts the amount of chlorophylls and carotenoids calculated from the proposed equations was comparable to those published by other authors. However, the spectrophotometric determination of β-carotene content in strawberry acetone-hexane extract appeared to be problematic mainly due to the fact that carotenoids exhibited overlapping chlorophyll absorption bands. Overlap of bands leads to the negative values calculated from the proposed equation for the β-carotene content. The results indicate the limitations in use of the proposed set of equations for plant samples with comparable amounts of studied pigments.

  20. Orange protein has a role in phytoene synthase stabilization in sweetpotato.

    Science.gov (United States)

    Park, Seyeon; Kim, Ho Soo; Jung, Young Jun; Kim, Sun Ha; Ji, Chang Yoon; Wang, Zhi; Jeong, Jae Cheol; Lee, Haeng-Soon; Lee, Sang Yeol; Kwak, Sang-Soo

    2016-01-01

    Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants. PMID:27633588

  1. Evaluation of the Relationship between the Incubation Time and Carotenoid Production in Rhodotorula Slooffiae and R. Mucilaginosa Isolated from Leather Tanning Wastewater

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadat Naghavi

    2013-10-01

    It seemed that the maximum rate of total carotenoid was not directly associated with the maximum amount of cell biomass and the type of carotenoid and their relative amount may vary depending on genus of yeast.

  2. Oxidative stress and astaxanthin: The novel supernutrient carotenoid

    Directory of Open Access Journals (Sweden)

    Sasmita Biswal

    2014-01-01

    Full Text Available Background: Oxidative stress and inflammation leads to, generation and overproduction of the reactive oxygen species and reactive nitrogen species and hence are responsible for many diseases such as Alzheimer′s disease, Parkinson′s disease, diabetes mellitus, rheumatoid arthritis, and neurodegenerative motor neuron diseases. Antioxidants are found in varying amounts in vegetables, fruits, grain cereals, eggs, meat, legumes and nuts. However, there is always a search for antioxidants that can quench and breakup the chain of generation of free-radicals. Aims: Astaxanthin, a ketocarotenoid, has exceptional antioxidant activity and hence can be used for prevention of cardiovascular diseases, inflammatory and neurodegenerative diseases, boosting of the immune system, anti-Helicobacter pylori activity, and cataract prevention. Hence, an attempt has performed in this review to compile data on astaxanthin and its several diverse applications over the last decade with an aim to escalate the intense interest in undertaking new research on this natural fascinating molecule. Materials and Methods: A literature search using astaxanthin and antioxidants as keywords using Google as the search engine was done and the data obtained were compiled and presented. Results and Conclusions: Astaxanthin can be a great supplement for everyone in enhancing immunity, preventing a myriad of diseases in our hectic lifestyle by providing more energy, reducing oxidative damage, producing clarity of vision as well as protection from the harmful ultraviolet rays of the sun! Further the immunomodulatory, antioxidative, and antiinflammatory activity of astaxanthin a bioactive natural supernutrient carotenoid may be very important to human health in treating many such untreatable diseases.

  3. Protein engineering of insulin: Two novel fast-acting insulins [B16Ala]insulin and [B26Ala]insulin

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhou; (张舟); TANG; Yuehua; (唐月华); YAO; Shiyin; (姚矢音); ZHU; Shangquan; (朱尚权); FENG; Youmin; (冯佑民)

    2003-01-01

    Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast- acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.

  4. Collision Cross-Section Determination and Tandem Mass Spectrometric Analysis of Isomeric Carotenoids Using Electrospray Ion Mobility Time-of-Flight Mass Spectrometry

    OpenAIRE

    Dong, Linlin; Shion, Henry; Davis, Roderick G.; Terry-Penak, Brent; Castro-Perez, Jose; van Breemen, Richard B

    2010-01-01

    Carotenoids are natural pigments with provitamin A and antioxidant activities. Biosynthesized in plants as their all-trans isomers, carotenoids isomerize in solution and in humans to multiple cis isomers which can have different bioavailabilities and functions. Since separation and characterization of isomeric carotenoids using HPLC or LC-MS-MS is time consuming, the potential for ion mobility mass spectrometry (IM-MS) to resolve and characterize carotenoid isomers rapidly without chromatogra...

  5. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    Science.gov (United States)

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  6. Metabolism and Potential Health Effects of Carotenoids Following Digestion of Green Leafy Vegetables

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard

    Background: Green leafy vegetables are nutritionally valuable sources of the carotenoids lutein and β-carotene, which are thought to have potential beneficial health effects on different aspects of vision. Bioavailability of these compounds is low, however, and depends on a complex set of factors...... potential. The usefulness of these results is, however, limited by the lack of validated in vitro-in vivo results. Aims: The present PhD thesis investigates liberation and in vitro accessibility of the carotenoids lutein and β-carotene following domestic kitchen preparation procedures for green leafy...... vegetables of different cultivars. The aim was furthermore to test the validity of in vitro accessibility as a possible predictor of the bioavailability of carotenoids from green leafy vegetables in healthy subjects and in patients with surgically altered gut absorption. Methods: Influence of cultivar type...

  7. Reaction of carotenoids with CCl3OO· by using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    赵文恩; 姚思德; 王强; 钱素平; 王文峰; 韩雅珊

    2003-01-01

    The interactions of carotenoids (bixin, β-carotene and lycopene) with CCl3OO@ in aqueous and i-propylalcohol solution saturated with air have been studied by pulse radiolysis. For bixin and β-carotene reaction products from forming process, absorbing in the region of 650 nm, is observed with concomitant carotenoid bleaching (bixin at 500 nm, β-carotene at 450 nm). Their rate constants from forming process are 1.78×108 and 7.8×107 mol-1@L@s-1 respectively. However, in the case of lycopene, no such a forming process of reaction as bixin and β-carotene can be observed although there is the bleaching reaction (rate constant 4×107 mol-1@L@s-1). The results suggest that the carotenoid radical cationand an additional radical are produced in the case of bixin and β-carotene, whereas lycopene undergoes electron transfer with CCl3OO@, forming cation radical.

  8. Composition of Carotenoids and Flavonoids in Narcissus Cultivars and their Relationship with Flower Color.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Narcissus is widely used for cut flowers and potted plants, and is one of the most important commercial bulbous flowers in the floricultural industry. In this study, ten carotenoid and eighteen flavonoid compounds from the perianths and coronas of fifteen narcissus cultivars were measured by HPLC-APCI-MS/MS and UPLC-Q-TOF-MS/MS. Among these, six carotenoids, a total of seventeen flavonols and chlorogenic acid were identified in narcissus for the first time. A multivariate analysis was used to explore the relationship between flower color and pigment composition. We found that all-trans-violaxanthin and total carotenoid content were the main factors that affected flower color. These investigations could provide a global view of flower color formation and a theoretical basis for hybridization breeding in narcissus.

  9. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  10. High isoprenoid flux Escherichia coli as a host for carotenoids production.

    Science.gov (United States)

    Suh, Wonchul

    2012-01-01

    A noncarotenogenic microbe E. coli was engineered for high production of carotenoids. To increase the isoprenoid flux, the chromosomal native promoters of the rate-controlling steps (dxs, idi and ispDispF) in the isoprenoid pathway were replaced with a strong bacteriophage T5 promoter (P(T5)) by using the λ-Red recombinase system in combination with the Flp/FRT site-specific recombination system for marker excision and P1 transduction for gene trait stacking. The resulting high isoprenoid flux E. coli can be used as a starting strain to produce various carotenoids by introducing heterologous carotenoid genes. In this study, the high isoprenoid flux E. coli was transformed with a plasmid carrying the β-carotene biosynthetic genes from Pantoea stewartii for β-carotene production. PMID:22144352

  11. Analysis of carotenoid and porphyrin pigments of geochemical interest by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hajibrahim, S.K. (Univ. of Bristol, Eng.); Tibbetts, P.J.C.; Watts, C.D.; Maxwell, J.R.; Eglinton, G.; Colin, H.; Guiochon, G.

    1978-04-01

    High-performance liquid chromatography (HPLC) is shown to be a powerful tool in the analysis of carotenoid and porphyrin pigments. Columns packed with 5-..mu..m irregular silica gel particles by a high density and high constant pressure method allow efficient separation of mixtures of total nonsaponifiable carotenoids from recent sedimentary situations. Good reproducibility of retention times (within 2%) is achieved in the gradient elution mode. However, attention must be paid to reequilibration of the column after each injection by washing with the less polar solvent for a minimum of 15 min (for carotenoids) or of 30 min (for porphyrins). HPLC appears to be useful in ''fingerprinting'' petroporphyrin distributions in crude oil.

  12. Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review.

    Science.gov (United States)

    Monego, Debora Luana; da Rosa, Marcelo Barcellos; do Nascimento, Paulo Cícero

    2017-02-15

    A summary of the various quantum chemical analyses that have been employed to evaluate the free radical scavenger capacity of carotenoid molecules are tabulated in this review and the most important observations are discussed. These molecules are able to interact with reactive oxygen species through singlet oxygen scavenging, electron transfer, hydrogen atom abstraction and radical adduct formation. Most studies employ density functional theory to compare the antiradical capacity of different carotenoids with the ones that are most explored theoretically, such as lycopene and β-carotene. A significant number of these applications have been directed towards understanding the electron transfer mechanism, and a useful tool called the FEDAM (full-electron donor-acceptor map) was developed to better evaluate this mechanism. Important aspects that may affect the radical scavenging capacity of carotenoids, such as synergistic effects and solubility, are sometimes overlooked, and a greater number of such compounds should be explored. PMID:27664605

  13. Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review.

    Science.gov (United States)

    Monego, Debora Luana; da Rosa, Marcelo Barcellos; do Nascimento, Paulo Cícero

    2017-02-15

    A summary of the various quantum chemical analyses that have been employed to evaluate the free radical scavenger capacity of carotenoid molecules are tabulated in this review and the most important observations are discussed. These molecules are able to interact with reactive oxygen species through singlet oxygen scavenging, electron transfer, hydrogen atom abstraction and radical adduct formation. Most studies employ density functional theory to compare the antiradical capacity of different carotenoids with the ones that are most explored theoretically, such as lycopene and β-carotene. A significant number of these applications have been directed towards understanding the electron transfer mechanism, and a useful tool called the FEDAM (full-electron donor-acceptor map) was developed to better evaluate this mechanism. Important aspects that may affect the radical scavenging capacity of carotenoids, such as synergistic effects and solubility, are sometimes overlooked, and a greater number of such compounds should be explored.

  14. Total Content of Carotenoids in Corn Landraces and Their Potential Health Applications

    Directory of Open Access Journals (Sweden)

    Stăncuța Scrob

    2014-11-01

    Full Text Available The research was designed to quantify the carotenoid compounds from the experimental variability of the corn genotypes. The experimental material for the present investigation consisted of 19 corn hybrids from Agricultural Research and Development Station (ARDSTurda, Romania. The experiment was carried out during two seasons 2011 and 2012. Corn hybrids Turda 215, Mold Turda 188, Turda 200, Turda SU 181 and HS 105 were noticed by the fact that in the year of culture 2012, they showed a beginning of accumulation of total content of carotenoids more than 27 µg/g DW as compared to 15 µg/g DW corresponding to the year o culture 2011 due to soil and climate conditions favoring the accumulation of carotenoid compounds. According to our study, the highest concentration of TC was recorded in light yellow, dark yellow and orange hybrids.

  15. Quantitative Structure-activity Relationship Study on the Antioxidant Activity of Carotenoids

    Institute of Scientific and Technical Information of China (English)

    SUN Yu-Jing; PANG Jie; YE Xing-Qian; Lü Yuan; LI Jun

    2009-01-01

    Carotenoids are a family of effective active oxygen scavengers, which can reduce the danger of occurrence of chronic diseases such as cardiovascular disease, cataract, cancer, and so on. The quantitative structure-activity relationship (QSAR) equation between carotenoids and antioxidant activity was established by quantum chemistry AMI, molecular mechanism (MM+) and stepwise regression analysis methods, and the model was evaluated by leave-one-out approach. The results showed that the significant molecular descriptors related to the antioxidant activity of carotenoids were the energy difference (EHL) between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and ionization energy (Eiso). The model showed a good predictive ability (Q2 > 0.5).

  16. Simple saponification method for the quantitative determination of carotenoids in green vegetables.

    Science.gov (United States)

    Larsen, Erik; Christensen, Lars P

    2005-08-24

    A simple, reliable, and gentle saponification method for the quantitative determination of carotenoids in green vegetables was developed. The method involves an extraction procedure with acetone and the selective removal of the chlorophylls and esterified fatty acids from the organic phase using a strongly basic resin (Ambersep 900 OH). Extracts from common green vegetables (beans, broccoli, green bell pepper, chive, lettuce, parsley, peas, and spinach) were analyzed by high-performance liquid chromatography (HPLC) for their content of major carotenoids before and after action of Ambersep 900 OH. The mean recovery percentages for most carotenoids [(all-E)-violaxanthin, (all-E)-lutein epoxide, (all-E)-lutein, neolutein A, and (all-E)-beta-carotene] after saponification of the vegetable extracts with Ambersep 900 OH were close to 100% (99-104%), while the mean recovery percentages of (9'Z)-neoxanthin increased to 119% and that of (all-E)-neoxanthin and neolutein B decreased to 90% and 72%, respectively.

  17. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  18. Insight into the Strong Antioxidant Activity of Deinoxanthin, a Unique Carotenoid in Deinococcus Radiodurans

    Directory of Open Access Journals (Sweden)

    Hong-Fang Ji

    2010-11-01

    Full Text Available Deinoxanthin (DX is a unique carotenoid synthesized by Deinococcus radiodurans, one of the most radioresistant organisms known. In comparison with other carotenoids, DX was proven to exhibit significantly stronger reactive oxygen species (ROS-scavenging activity, which plays an important role in the radioresistance of D. radiodurans. In this work, to gain deeper insights into the strong antioxidant activity of DX, the parameters characterizing ROS-scavenging potential were calculated by means of quantum chemical calculations. It was found that DX possesses lower lowest triplet excitation energy for its unique structure than other carotenoids, such as β-carotene and zeaxanthin, which endows DX strong potential in the energy transfer-based ROS‑scavenging process. Moreover, the H-atom donating potential of DX is similar to zeaxanthin according to the theoretical homolytic O-H bond dissociation enthalpy. Thus, the large number of conjugated double bonds should be crucial for its strong antioxidant activity.

  19. TRACKING CHANGES IN CHLOROPHYLL AND CAROTENOIDS IN THE PRODUCTION PROCESS OF FROZEN SPINACH PURÉE

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2014-02-01

    Full Text Available Spinach is in the professional and general public considered highly nutritious vegetable with many beneficial effects on human health. It is a rich source of antioxidant active substances, especially chlorophyll, carotenoids, flavonoids and minerals especially zinc and copper. This work studies the changes of chlorophyll and carotenoids that occur after mass production technology of freezing at -37 °C. Before freezing was used blanching operation. In this work we used a variety Boeing, Boa, Beaver, Hudson and Chica. The highest content of all monitored parameters are found in fresh leaves of sampled Hudson. We found that within the processing decreases chlorophyll in 16.6%, 13.8% of chlorophyll b and carotenoids of 6.15%. This decrease was in all cases statistically significant.

  20. Software application for the calculation of dietary intake of individual carotenoids and of its contribution to vitamin A intake

    Directory of Open Access Journals (Sweden)

    Rocío Estévez-Santiago

    2013-06-01

    Full Text Available Introduction: The software applications utilized to assess dietary intake usually focus on macro- and micronutrients, but not on other components of the diet with potential beneficial effects on health, which include the carotenoids. The degree to which each carotenoid exerts diverse biological activities differs and, thus, it is in our interest to know their composition in foods on an individual basis. Objective: To develop a software application with individualized data on carotenoids that enables the calculation of their dietary intake and consultation of the contents of these compounds in foods. Material and methods: Software application developed with Java 7, which includes a database of the carotenoids (lutein, zeaxanthin, lycopene, β-cryptoxanthin, α-carotene and β-carotene in foods (including those that are major contributors to carotenoid intake in Europe, generated by HPLC. The variables include those relative to the foods, subjects and diets that are necessary to provide accurate information on the content of carotenoids in foods and to enable the calculation of their intake. Results: The software application enables the calculation of the dietary intake of individual carotenoids from 128 foods (raw and cooked, and their contribution to vitamin A intake, in the two forms employed at the present time: retinol equivalents (RE and retinol activity equivalents (RAE. Conclusions: This software application is a dynamic, specific and accurate tool for the consultation of carotenoid concentrations in foods and the calculation of their intake, aspects that are essential in research studies on diet and health.