WorldWideScience

Sample records for carotenoid cleavage dioxygenase7

  1. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark; Hofmann, Manuel; Vermathen, Martina; Alder, Adrian; Beyer, Peter D.; Al-Babili, Salim

    2014-01-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark

    2014-05-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia.

    Science.gov (United States)

    Drummond, Revel S M; Martínez-Sánchez, N Marcela; Janssen, Bart J; Templeton, Kerry R; Simons, Joanne L; Quinn, Brian D; Karunairetnam, Sakuntala; Snowden, Kimberley C

    2009-12-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.

  4. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  5. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  6. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Enzymatic carotenoid cleavage in star fruit (Averrhoa carambola).

    Science.gov (United States)

    Fleischmann, Peter; Watanabe, Naoharu; Winterhalter, Peter

    2003-05-01

    This paper presents the first description of an enzyme fraction exhibiting carotenoid cleavage activity isolated from fruit skin of Averrhoa carambola. Partial purification of the enzyme could be achieved by acetone precipitation, ultrafiltration (300 kDa, 50 kDa), isoelectric focusing (pH 3-10) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (7.5%). In this way, an enzymatically active protein fraction was obtained, consisting of four proteins in the molecular weight range of between 12 and 90 kDa. Using beta-carotene as substrate, the enzyme activity was detected spectrophotometrically at 505 nm. The main reaction product, detected by GC analysis, was beta-ionone. This proves that the isolated enzymes are closely related to aroma metabolism and release of star fruit. The time constant of the reaction was 16.6 min, the Michaelis Constant K(m)=3.6 micromol 1(-1) and the maximum velocity V(max)=10.5 x 10(-3) micromol l(-1) s(-1) mg((Protein))(-1). The optimum temperature was 45 degrees C.

  8. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions

    Directory of Open Access Journals (Sweden)

    Oussama Ahrazem

    2016-10-01

    Full Text Available Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs, a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  9. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, María J.

    2013-09-04

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  10. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, Marí a J.; Alqué zar, Berta; Aló s, Enriqueta; Medina, Ví ctor; Carmona, Lourdes; Bruno, Mark; Al-Babili, Salim; Zacarí as, Lorenzo

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  11. Isolation and Functional Characterization of Carotenoid Cleavage Dioxygenase-1 from Laurus nobilis L. (Bay Laurel) Fruits.

    Science.gov (United States)

    Yahyaa, Mosaab; Berim, Anna; Isaacson, Tal; Marzouk, Sally; Bar, Einat; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Ibdah, Mwafaq

    2015-09-23

    Bay laurel (Laurus nobilis L.) is an agriculturally important tree used in food, drugs, and the cosmetics industry. Many of the health beneficial properties of bay laurel are due to volatile terpene metabolites that they contain, including various norisoprenoids. Despite their importance, little is known about the norisoprenoid biosynthesis in Laurus nobilis fruits. We found that the volatile norisoprenoids 6-methyl-5-hepten-2-one, pseudoionone, and β-ionone accumulated in Laurus nobilis fruits in a pattern reflecting their carotenoid content. A full-length cDNA encoding a potential carotenoid cleavage dioxygenase (LnCCD1) was isolated. The LnCCD1 gene was overexpressed in Escherichia coli, and recombinant protein was assayed for its cleavage activity with an array of carotenoid substrates. The LnCCD1 protein was able to cleave a variety of carotenoids at the 9,10 (9',10') and 5,6 (5',6') positions to produce 6-methyl-5-hepten-2-one, pseudoionone, β-ionone, and α-ionone. Our results suggest a role for LnCCD1 in Laurus nobilis fruit flavor biosynthesis.

  12. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    Science.gov (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  13. From Carotenoids to Strigolactones

    KAUST Repository

    Jia, Kunpeng

    2017-12-13

    Strigolactones (SLs) are phytohormones that regulate different plant developmental and adaptation processes. When released into soil, SLs act as chemical signals attracting symbiotic arbuscular fungi and inducing seed germination in root parasitic weeds. SLs are carotenoid-derivatives characterized by the presence of a butenolide ring that is connected by an enol ether bridge to a less conserved, second moiety. Carotenoids are isopenoid pigments that differ in structure, number of conjugated double bonds and stereo-configuration. Genetic analysis and enzymatic studies demonstrate that SLs originate from all-trans-β-carotene in a pathway that involves the all-trans-/9-cis-β-carotene isomerase DWARF27 (D27) and the carotenoid cleavage dioxygenase 7 and 8 (CCD7, 8). The CCD7-mediated, regio- and stereospecific double bond cleavage of 9-cis-β-carotene leads to a 9-cis-configured intermediate that is converted by CCD8 via a combination of reactions into the central metabolite carlactone. By catalyzing repeated oxygenation reactions that can be coupled to ring closure, CYP711 enzymes convert carlactone into tricyclic ring containing, canonical and non-canonical SLs. Mostly unknown, modifying enzymes further increase SLs diversity. In this review, we touch on carotenogenesis, provide an update on SL biosynthesis, with emphasis on the substrate specificity and reactions catalyzed by the different enzymes, and describe the regulation of the pathway.

  14. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark; Beyer, Peter D.; Al-Babili, Salim

    2015-01-01

    amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating

  15. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Á ngela L.; Beyer, Peter D.; Gó mez-Gó mez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  16. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  17. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    Science.gov (United States)

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  19. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii.

    Science.gov (United States)

    Ahrazem, Oussama; Diretto, Gianfranco; Argandoña, Javier; Rubio-Moraga, Ángela; Julve, José Manuel; Orzáez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes

    2017-07-20

    Crocetin, one of the few colored apocarotenoids known in nature, is present in flowers and fruits and has long been used medicinally and as a colorant. Saffron is the main source of crocetin, although a few other plants produce lower amounts of this apocarotenoid. Notably, Buddleja davidii accumulates crocetin in its flowers. Recently, a carotenoid dioxygenase cleavage enzyme, CCD2, has been characterized as responsible for crocetin production in Crocus species. We searched for CCD2 homologues in B. davidii and identified several CCD enzymes from the CCD1 and CCD4 subfamilies. Unexpectedly, two out of the three CCD4 enzymes, namely BdCCD4.1 and BdCCD4.3, showed 7,8;7',8' activity in vitro and in vivo over zeaxanthin. In silico analyses of these enzymes and CCD2 allowed the determination of key residues for this activity. Both BdCCD4 genes are highly expressed during flower development and transcripts levels parallel the accumulation of crocins in the petals. Phylogenetic analysis showed that BdCCD4.2 grouped with almost all the characterized CCD4 enzymes, while BdCCD4.1 and BdCCD4.3 form a new sub-cluster together with CCD4 enzymes from certain Lamiales species. The present study indicates that convergent evolution led to the acquisition of 7,8;7',8' apocarotenoid cleavage activity in two separate CCD enzyme families. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species.

    Science.gov (United States)

    Zhang, Bao; Liu, Chao; Wang, Yaqin; Yao, Xuan; Wang, Fang; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-06-01

    In Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B. napus lines. Insertion of a CACTA-like transposable element 1 (TE1) into the coding region of BnaC3.CCD4 had disrupted its expression in yellow-flowered rapeseed lines. α-Ionone was identified as the major volatile apocarotenoid released from white petals but not from yellow petals. We speculate that BnaC3.CCD4 may use δ- and/or α-carotene as substrates. Four variations, including two CACTA-like TEs (alleles M1 and M4) and two insertion/deletions (INDELs, alleles M2 and M3), were identified in yellow-flowered Brassica oleracea lines. The two CACTA-like TEs were also identified in the coding region of BcaC3.CCD4 in Brassica carinata. However, the two INDELs were not detected in B. napus and B. carinata. We demonstrate that the insertions of TEs in BolC3.CCD4 predated the formation of the two allotetraploids. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  2. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Carotenoids

    Science.gov (United States)

    This short article indicated that greater understanding of the biological functions of carotenoids mediated via their oxidative metabolites through their effects on these important cellular pathways and molecular targets, as well as their significance to cancer prevention, is needed. In considering ...

  4. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  5. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  6. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Directory of Open Access Journals (Sweden)

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  7. Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica).

    Science.gov (United States)

    Chen, Hongfei; Zuo, Xiya; Shao, Hongxia; Fan, Sheng; Ma, Juanjuan; Zhang, Dong; Zhao, Caiping; Yan, Xiangyan; Liu, Xiaojie; Han, Mingyu

    2018-02-01

    Carotenoid cleavage oxygenases (CCOs) are able to cleave carotenoids to produce apocarotenoids and their derivatives, which are important for plant growth and development. In this study, 21 apple CCO genes were identified and divided into six groups based on their phylogenetic relationships. We further characterized the apple CCO genes in terms of chromosomal distribution, structure and the presence of cis-elements in the promoter. We also predicted the cellular localization of the encoded proteins. An analysis of the synteny within the apple genome revealed that tandem, segmental, and whole-genome duplication events likely contributed to the expansion of the apple carotenoid oxygenase gene family. An additional integrated synteny analysis identified orthologous carotenoid oxygenase genes between apple and Arabidopsis thaliana, which served as references for the functional analysis of the apple CCO genes. The net photosynthetic rate, transpiration rate, and stomatal conductance of leaves decreased, while leaf stomatal density increased under drought and saline conditions. Tissue-specific gene expression analyses revealed diverse spatiotemporal expression patterns. Finally, hormone and abiotic stress treatments indicated that many apple CCO genes are responsive to various phytohormones as well as drought and salinity stresses. The genome-wide identification of apple CCO genes and the analyses of their expression patterns described herein may provide a solid foundation for future studies examining the regulation and functions of this gene family. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. In vitro measurement of beta-carotene cleavage activity : methodological considerations and the effect of other carotenoids on beta-carotene cleavage

    NARCIS (Netherlands)

    Vliet, T. van; Schaik, F. van; Schreurs, W.H.P.; Berg, H. van den

    1996-01-01

    In view of controversies about assessment of the β-carotene cleavage activity, methodological aspects and problems of the dioxygenase assay are described. Using rat and hamster intestinal preparations the method was optimized on retinal formation, the only cleavage product we could demonstrate. It

  9. Biological roles of fungal carotenoids.

    Science.gov (United States)

    Avalos, Javier; Carmen Limón, M

    2015-08-01

    Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

  10. Legume carotenoids.

    Science.gov (United States)

    Sri Kantha, S; Erdman, J W

    1987-01-01

    In recent years, the results of research studies have suggested a positive beneficial relationship between a vegetarian-based diet and low incidence of diseases, including coronary heart disease, cancer, obesity, dental caries, and osteoporosis. beta-Carotene has specifically been suggested as a nutrient with antitumorigenic properties. In this regard there is a need to evaluate the carotenoid content of foods. Legumes are one of the staple components of a vegetarian diet. This review specifically surveys the prevalence of carotenoids in food and forage legumes. In addition, the methods available for carotenoid analysis are discussed; factors affecting the determination of carotenoid content during maturation, germination, processing and storage are identified; research areas which have been inadequately explored are identified; and suggestions are made for future lines of investigation.

  11. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  12. Key to Xenobiotic Carotenoids

    Directory of Open Access Journals (Sweden)

    Hans-Richard Sliwka

    2012-03-01

    Full Text Available A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H and xanthophylls (C,H,O has become obsolete.

  13. Key to Xenobiotic Carotenoids

    OpenAIRE

    Hans-Richard Sliwka; Vassilia Partali

    2012-01-01

    A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe) directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H) and xanthophylls (C,H,O) has become obsolete. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in...

  14. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  15. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  16. The path from beta-Carotene to Carlactone, a Strigolactone-Like Plant Hormone

    NARCIS (Netherlands)

    Alder, J.; Jamil, M.; Marzorati, M.; Bruno, F.; Bigler, J.; Bouwmeester, H.J.; Beyer, P.; Al-Babili, S.

    2012-01-01

    Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding

  17. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  18. Carotenoids in staple cereals: Metabolism, regulation, and genetic manipulation

    Directory of Open Access Journals (Sweden)

    shengnan zhai

    2016-08-01

    Full Text Available Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grain. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1 seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including DXS (1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, PSY (phytoene synthase, LCYB (β-cyclase and LCYE (ε-cyclase controlling biosynthesis, HYDB (1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase and CCDs (carotenoid cleavage dioxygenases responsible for degradation, and OR (orange conditioning sequestration sink; (2 pro-vitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3 QTLs for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and ten gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be benefitical in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for vitamin A biofortification.

  19. Cancer Chemoprevention by Carotenoids

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2012-03-01

    Full Text Available Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.

  20. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  1. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  2. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  3. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  4. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

  5. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling.

    Science.gov (United States)

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-03-22

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution.

  6. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  7. Carotenoids of human colostrum.

    Science.gov (United States)

    Patton, S; Canfield, L M; Huston, G E; Ferris, A M; Jensen, R G

    1990-03-01

    Colostrum, the initial postpartum secretion of the breast, ordinarily has a distinct yellow color due to carotenoids of its fat globules. This pigmentation progressively diminishes as milk production increases during the first week of lactation. Identity of these carotenoids was investigated by means of thin-layer chromatography, high performance liquid chromatography and spectral analysis. Alpha- and beta-carotene, lycopene and beta-cryptoxanthin were revealed as major chromogens. A component corresponding to lutein and/or zeaxanthin was also detected by both chromatographic techniques. Extracts of 23 saponified colostrum samples from 10 donors revealed considerable variation in total carotenoid concentration (0.34-7.57 micrograms/ml of colostrum). Multiparous mothers had greater mean colostrum carotenoid concentrations than did the primiparae, 2.18 +/- 1.94 vs 1.14 +/- 1.32 micrograms/ml, respectively. Seven of the eight primiparous donors' samples had little or no yellow color. These findings imply a difference in carotenoid transport by breasts that have lactated as compared to those that have not. The interrelation of carotenoids, lactation and breast cancer is discussed.

  8. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  9. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    Science.gov (United States)

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  10. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  11. Carotenoid fluorescence in Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Es, van M.A.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2010-01-01

    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid

  12. Biodisponibilidad de carotenoides

    Directory of Open Access Journals (Sweden)

    César M. Baracaldo

    1998-12-01

    Full Text Available La vitamina A y sus derivados conocidos como retinoides (de origen animal y compuestos pro-vitamina A denominados carotenoides (de origen vegetal son importantes en la prevención de cáncer, enfermedades crónicas y enfermedades relacionadas con la deficiencia de vitamina A; por tanto, es importante conocer la absorción, metabolismo, transporte y almacenamiento de estos compuestos en humanos. Debido a lo compleja que ha sido la utilización de modelos humanos para estudiar la biodisponibilidad de carotenoides de fuentes naturales y sintéticas, recientemente se han desarrollado modelos animales que permiten avances significativos en áreas de poca conocimiento. Esta revisión pretende dar la mayor información acerca de la farmacocinética y el metabolismo de este nutriente que permita a los interesados utilizar el modelo más apropiado para los fines que persiga.

  13. Carotenoids and colon cancer.

    Science.gov (United States)

    Slattery, M L; Benson, J; Curtin, K; Ma, K N; Schaeffer, D; Potter, J D

    2000-02-01

    Carotenoids have numerous biological properties that may underpin a role for them as chemopreventive agents. However, except for beta-carotene, little is known about how dietary carotenoids are associated with common cancers, including colon cancer. The objective of this study was to evaluate associations between dietary alpha-carotene, beta-carotene, lycopene, lutein, zeaxanthin, and beta-cryptoxanthin and the risk of colon cancer. Data were collected from 1993 case subjects with first primary incident adenocarcinoma of the colon and from 2410 population-based control subjects. Dietary data were collected from a detailed diet-history questionnaire and nutrient values for dietary carotenoids were obtained from the US Department of Agriculture-Nutrition Coordinating Center carotenoid database (1998 updated version). Lutein was inversely associated with colon cancer in both men and women [odds ratio (OR) for upper quintile of intake relative to lowest quintile of intake: 0.83; 95% CI: 0.66, 1.04; P = 0.04 for linear trend]. The greatest inverse association was observed among subjects in whom colon cancer was diagnosed when they were young (OR: 0.66; 95% CI: 0.48, 0.92; P = 0.02 for linear trend) and among those with tumors located in the proximal segment of the colon (OR: 0.65; 95% CI: 0.51, 0.91; P lettuce, tomatoes, oranges and orange juice, carrots, celery, and greens. These data suggest that incorporating these foods into the diet may help reduce the risk of developing colon cancer.

  14. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  15. [Carotenoids: 1. Metabolism and physiology].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Le Moël, G; Steghens, J P; Van Kappel, A; Nabet, F

    1999-01-01

    Carotenoids are a family of pigments with at least 600 members. They derive from lycopene after steps of cyclisation, dehydrogenation and oxidation. It is their chemical structure that determines their physiochemical properties and, in part, their biological activities. About 50 carotenoids can be found in human diet and about 20 of them have been found in plasma and tissues. There is no RDA (Recommended Daily Allowance) for carotenoids. Quantities of carotenoids in diet are difficult to estimate, partly because methods used for the establishment of food composition tables were not specific and sensitive enough. Also, given values do not always take into account variations due to season and region of culture. Absorption of beta-carotene in humans has been the subject of numerous studies but only very little is known about other carotenoids. In general, absorption depends on bioavailability from the food matrix and solubility in micelles. After absorption through passive diffusion, carotenoids follow the chylomicrons metabolism. They are taken up by the liver and released in the blood stream in lipoproteins (VLDL). Carotenoids with no-substituted beta-ionone cycles (alpha and beta-carotene and beta-cryptoxanthin) have provitamin A activity. Highest activity has been found for all-trans beta-carotene. Not all steps of vitamin A biosynthesis and metabolism of other carotenoids have been clarified yet. Besides their provitamin A activity, carotenoids have numerous biological functions. They are efficient scavengers of free radicals, particularly of 1O2. In vitro they have been shown to protect LDL. However, results in vivo are inconsistent. Other functions include enhancement of gap junctions, immunomodulation and regulation of enzyme activity involved in carcinogenesis.

  16. Carotenoids: biochemistry, pharmacology and treatment.

    Science.gov (United States)

    Milani, Alireza; Basirnejad, Marzieh; Shahbazi, Sepideh; Bolhassani, Azam

    2017-06-01

    Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.

  17. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  18. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  19. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moï se, Alexander R.; Al-Babili, Salim; Wurtzel, Eleanore T.

    2014-01-01

    precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological

  20. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  1. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  2. Potential production of carotenoids from Neurospora

    Directory of Open Access Journals (Sweden)

    SRI PRIATNI

    2014-05-01

    Full Text Available Priatni S. 2014. Review: Potential production of carotenoids from Neurospora. Nusantara Bioscience 6: 63-68. Carotenoids are abundant and widely distributed in plants, animals and microorganisms. Commercial use of carotenoids competes between microorganisms and synthetic manufacture. Carotenoids production can be increased by improving the efficiency of carotenoid synthesis in microbes. Some of the cultural and environmental stimulants are positively affecting the carotenoid content of carotenogenic strains such as Neurospora. Neurospora is a fungus that exhibits the formation of spores and conidia, the part of the cell for carotenoids biosynthesis. The Indonesian traditional fermented food, red peanut cake or oncom, especially in West Java, is produced from legume residues of Neurospora sp. This fungus has been isolated and identified as Neurospora intermedia. In order to apply this pigment for food and cosmetic colorants, encapsulation techniques of carotenoids have been developed to improve its solubility and stability.

  3. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  4. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.

    Science.gov (United States)

    Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro

    2010-12-01

    The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds. Copyright © 2010 Elsevier Inc

  5. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  6. Chromoplast biogenesis and carotenoid accumulation

    Science.gov (United States)

    Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplas...

  7. Effects of carotenoids on lipid bilayers.

    Science.gov (United States)

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  8. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  9. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.; F. Estrada, A.; Limon, M. C.; Al-Babili, Salim; Avalos, J.

    2013-01-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  10. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.

    2013-07-26

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  11. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  12. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Carotenoids content and sunlight susceptibility

    International Nuclear Information System (INIS)

    Oppezzo, Oscar J.; Costa, Cristina; Pizarro, Ramon A.

    2005-01-01

    Full text: An environmental pink pigmented bacterium was isolated and identified as Rhodococcus sp. Pigmentation mutants were obtained by chemical mutagenesis. Pigments present in the wild type strain (RMB90), in a pale yellow mutant (RMB91) and in two mutants exhibiting increased pigmentation (RMB92 and RMB93), were extracted with chloroform-methanol and analyzed by reverse phase HPLC. Survival of these strains after exposure to sunlight and ultraviolet radiation from artificial sources was studied under different physiological and irradiation conditions. The ability of RMB91 to survive sunlight exposure was reduced with respect to that of RMB90. Resistance was similar in both strains when bacteria grew in the presence of a carotenoid synthesis inhibitor, which had no effect on survival of RMB91. Reduced sunlight resistance in RMB91 was also observed during irradiations under N2. Using artificial radiation sources, non pigmented bacteria were less resistant to UVA, but not to UVB or UVC. Lethal effects of sunlight and UVA on RMB92 and RMB93 were increased with respect to the wild type strain. Carotenoids protect Rhodococcus sp against deleterious effects of sunlight. In non-photosynthetic bacteria studied to date, photo protection by carotenoids was dependent on [O 2 ]. This is not the case with Rhodococcus sp RMB90, suggesting the occurrence of a different mechanism for protection. UVA radiation seems to playa key role in photo-damage. (author)

  14. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  15. Carotenoids from Phaffia rhodozyma : Antioxidant activity and ...

    African Journals Online (AJOL)

    The main goal of this work was to establish the stability and antioxidant activity of the extracts obtained through different techniques for recovering carotenoids from Phaffia rhodozyma NRRL-Y 17268. The best conditions for extracting carotenoids through cell rupture with dimethylsulfoxide (DMSO) were found to be a ...

  16. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  17. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  18. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    Science.gov (United States)

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  19. Structures and Analysis of Carotenoid Molecules.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.

  20. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S1 signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S1 state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)1Pc to Car S1 energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between 1Pc and Car S1 and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment

  1. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status.

    Science.gov (United States)

    Henriksen, Bradley S; Chan, Gary; Hoffman, Robert O; Sharifzadeh, Mohsen; Ermakov, Igor V; Gellermann, Werner; Bernstein, Paul S

    2013-08-15

    Deposition of the macular pigment carotenoids lutein and zeaxanthin in the human retina occurs early in life. In this study, we examined the interrelationships of maternal carotenoid status and newborn infant macular pigment levels and systemic carotenoid status. As a secondary measure, we also evaluated the effects of intrauterine growth restriction (IUGR) on carotenoid status in term newborn infants. We measured mother and infant skin carotenoids using resonance Raman spectroscopy (RRS), serum carotenoids by HPLC, and mother breast milk carotenoids by HPLC. We measured infant macular pigment levels using noninvasive blue light reflectometry. We enrolled 30 healthy term infants, their mothers, and 10 IUGR infants and their mothers. A subset of 16 infants was imaged for macular pigment optical density (MPOD). Infant serum zeaxanthin levels correlated with MPOD (r = 0.68, P = 0.007). Mother serum zeaxanthin levels correlated with infant MPOD (r = 0.59, P = 0.032). Infant and mother serum lutein did not correlate with MPOD. Mother-infant correlations were found for total serum carotenoids (r = 0.42, P = 0.020) and skin carotenoids (r = 0.48, P = 0.001). No difference was seen between IUGR infants and controls in total serum or skin carotenoids. Mothers of IUGR infants had lower total serum carotenoids (P = 0.019) and breast milk carotenoids than controls (P = 0.006). Our findings suggest that maternal zeaxanthin status may play a more important role than lutein status in macular pigment deposition in utero. Controlled trials are needed to determine whether maternal zeaxanthin prenatal supplementation can raise infant macular pigment levels and/or improve ocular function.

  2. Latin American food sources of carotenoids.

    Science.gov (United States)

    Rodriguez-Amaya, D B

    1999-09-01

    Latin America has a wide variety of carotenogenic foods, notable for the diversity and high levels of carotenoids. A part of this natural wealth has been analyzed. Carrot, red palm oil and some cultivars of squash and pumpkin are sources of both beta-carotene and alpha-carotene. beta-carotene is the principal carotenoid of the palm fruits burití, tucumã and bocaiuva, other fruits such as loquat, marolo and West Indian cherry, and sweet potato. Buriti also has high amounts of alpha-carotene and gamma-carotene. beta-Cryptoxanthin is the major carotenoid in caja, nectarine, orange-fleshed papaya, orange, peach, tangerine and the tree tomato. Lycopene predominates in tomato, red-fleshed papaya, guava, pitanga and watermelon. Pitanga also has substantial amounts of beta-cryptoxanthin, gamma-carotene and rubixanthin. Zeaxanthin, principal carotenoid of corn, is also predominant only in piquí. delta-Carotene is the main carotenoid of the peach palm and zeta-carotene of passion fruit. Lutein and beta-carotene, in high concentrations, are encountered in the numerous leafy vegetables of the region, as well as in other green vegetables and in some varieties of squash and pumpkin. Violaxanthin is the principal carotenoid of mango and mamey and is also found in appreciable amounts in green vegetables. Quantitative, in some cases also qualitative, differences exist among cultivars of the same food. Generally, carotenoids are in greater concentrations in the peel than in the pulp, increase considerably during ripening and are in higher levels in foods produced in hot places. Other Latin America indigenous carotenogenic foods must be investigated before they are supplanted by introduced crops, which are often poorer sources of carotenoids.

  3. Skin Carotenoid Response to a High-Carotenoid Juice in Children: A Randomized Clinical Trial.

    Science.gov (United States)

    Aguilar, Sheryl S; Wengreen, Heidi J; Dew, Jeffrey

    2015-11-01

    Previous studies have shown an increase in serum carotenoid status among children when fed carotenoids. This study looked at the effect and dose-response of a known amount of carotenoid consumption on change in skin carotenoid status among children. Participants were children aged 5 to 17 years from Cache County, UT (n=58). Children were randomly assigned to one of three groups: high (n=18) or low (n=18) dose of a carotenoid-rich juice (2.75 mg carotenoids/30 mL juice), or placebo juice (n=22). Children were asked to drink an assigned dose of the juice (30 to 120 mL/day) based on the weight of the child and group assignment, every day for 8 weeks. Skin carotenoids were measured every 2 weeks by resonance Raman spectroscopy. Participants were asked to maintain their usual diet throughout the study. Usual diet was assessed using three averaged 24-hour recalls; diet constancy was measured using food frequency questionnaires administered at baseline, Week 4, and Week 8. Repeated measures analysis of variance was used to assess the group differences in skin carotenoid status over time. The high-dose and low-dose groups had mean±standard deviation increases in skin carotenoid status of 11,515±1,134 and 10,009±1,439 Raman intensity counts, respectively (both P values juice significantly increased skin carotenoid status over an 8-week period among children aged 5 to 17 years. The amount of carotenoids found in this amount of juice is equal to the amount found in approximately 23 to 92 g cooked carrots per day. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  4. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  5. Correlations Between Macular, Skin, and Serum Carotenoids

    Science.gov (United States)

    Conrady, Christopher D.; Bell, James P.; Besch, Brian M.; Gorusupudi, Aruna; Farnsworth, Kelliann; Ermakov, Igor; Sharifzadeh, Mohsen; Ermakova, Maia; Gellermann, Werner; Bernstein, Paul S.

    2017-01-01

    Purpose Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population. Methods Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality. Skin, macular, and serum carotenoid levels were measured by RRS, AFI, and HPLC, respectively. Results Skin RRS measurements and serum zeaxanthin concentrations correlated most strongly with AFI macular pigment volume under the curve (MPVUC) measurements up to 9° eccentricity relative to MPVUC or rotationally averaged macular pigment optical density (MPOD) measurements at smaller eccentricities. These measurements were reproducible and not significantly affected by cataracts. We also found that these techniques could readily identify subjects taking oral carotenoid-containing supplements. Conclusions Larger macular pigment volume AFI and skin RRS measurements are noninvasive, objective, and reliable methods to assess ocular and systemic carotenoid levels. They are an attractive alternative to psychophysical and optical methods that measure MPOD at a limited number of eccentricities. Consequently, skin RRS and MPVUC at 9° are both reasonable biomarkers of macular carotenoid status that could be readily adapted to research and clinical settings. PMID:28728169

  6. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  8. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  9. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  10. [Carotenoids: 2. Diseases and supplementation studies].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Moël, G L; Stephens, J; Nabet, F

    1999-05-01

    Inverse correlations have been found in most studies on the relationship between dietary intake and plasma concentrations of carotenoids on one side and degenerative diseases such as cancer and cardiovascular diseases on the other side. Protective effects of carotenoids have been found for pathologies of the retina and the skin. Concentrations of these molecules in blood are lower in digestive pathologies and HIV. Short- and long-term toxicity of carotenoids was found to be low. In combination with the beneficial effects found for diets rich in carotenoids, this has initiated trials with relatively high doses of carotenoid supplements. In the study in Linxian (China) in a rural population with poor nutritional status, supplementation with beta-carotene, zinc, selenium and vitamin E lowered total mortality and mortality from stomach cancer. Other studies (ATBC, Caret.) on well-fed subjects did not show beneficial effects on mortality from cancer and cardiovascular diseases. On the contrary, higher mortality and lung cancer incidence was found in supplemented subjects that were also exposed to asbestos and cigarette smoke. In these studies, doses of supplemental beta-carotene were high and varied from 20 to 50 mg/day. One still ongoing study, called Suvimax, doses subjects for eight years with a cocktail of vitamins and minerals including 6 mg per day of beta-carotene. This supplementation with physiologically seen more "normal" doses might give clarity on the question if beta-carotene is the protective factor in fruits and vegetables.

  11. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  12. Photodegradation of carotenoids in human subjects

    International Nuclear Information System (INIS)

    Roe, D.A.

    1987-01-01

    Photodegradation of vitamins in vitro is responsible for large losses of these nutrients in foods, beverages, and semisynthetic liquid formula diets. In vivo photodegradation of vitamins has been reported for riboflavin in jaundiced infants exposed to blue light and for folate in patients with chronic psoriasis given photochemotherapy. Two recent studies of normal subjects have also shown that photodegradation of carotenoids in plasma occurs with cumulative exposure of the skin to an artificial light source having maximal spectral emission in the UVA range. Females showed a larger effect of the UV light on their plasma carotenoid levels than males. These observations have identified a need for further investigation of the role of sunlight exposure as a determinant of plasma carotenoid levels and vitamin A status in human subjects

  13. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes

  14. Carotenoids and retinoids: molecular aspects and health issues

    National Research Council Canada - National Science Library

    Packer, Lester

    2005-01-01

    ... are byproducts of metabolism in humans. Indeed, the presence of carotenoids in the diet and their role in human health has become a subject of unprecedented interest. Some carotenoids are called provitamin A compounds because they are precursors of retinol and retinoic acid. The type of carotenoids found in human plasma depends on the...

  15. The fate of carotenoids in sediments: An overview

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.

    1997-01-01

    Despite carotenoids being abundant natural products, there are only scattered literature reports of carotenoid derivatives (mainly in the form of their 'perhydro' derivatives) in ancient sediments and petroleum. This was thought to be due to the sensitivity of carotenoids toward oxygen and their

  16. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to

  17. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase

    Science.gov (United States)

    Scherzinger, Daniel; Ruch, Sandra; Kloer, Daniel P.; Wilde, Annegret; Al-Babili, Salim

    2006-01-01

    The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts β-apo-carotenals instead of β-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography–MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting β-apo-carotenals, (3R)-3-hydroxy-β-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of β-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form. PMID:16759173

  18. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  19. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants.

    Science.gov (United States)

    Rubin, L P; Chan, G M; Barrett-Reis, B M; Fulton, A B; Hansen, R M; Ashmeade, T L; Oliver, J S; Mackey, A D; Dimmit, R A; Hartmann, E E; Adamkin, D H

    2012-06-01

    Dietary carotenoids (lutein, lycopene and β-carotene) may be important in preventing or ameliorating prematurity complications. Little is known about carotenoid status or effects of supplementation. This randomized controlled multicenter trial compared plasma carotenoid levels among preterm infants (n=203, lutein, lycopene and β-carotene with human milk (HM)-fed term infants. We assessed safety and health. Plasma carotenoid levels were higher in the supplemented group at all time points (Plutein levels correlated with the full field electroretinogram-saturated response amplitude in rod photoreceptors (r=0.361, P=0.05). The supplemented group also showed greater rod photoreceptor sensitivity (least squares means 6.1 vs 4.1; Plutein on preterm retina health and maturation.

  20. Carotenoid-protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Chábera, P.; Kerfeld, C.A.

    2013-01-01

    Roč. 1827, č. 3 (2013), s. 248-254 ISSN 0005-2728 Institutional support: RVO:60077344 Keywords : orange-carotenoid protein * excited states * photoprotection Subject RIV: BO - Biophysics Impact factor: 4.829, year: 2013

  1. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  2. Carotenoids from Haloarchaea and Their Potential in Biotechnology.

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-08-25

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

  3. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  4. The role of carotenoids in human health.

    Science.gov (United States)

    Johnson, Elizabeth J

    2002-01-01

    Dietary carotenoids are thought to provide health benefits in decreasing the risk of disease, particularly certain cancers and eye disease. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein, and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Furthermore, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.

  5. Solid-phase extraction of carotenoids.

    Science.gov (United States)

    Shen, Yao; Hu, Yumin; Huang, Ke; Yin, Shi'an; Chen, Bo; Yao, Shouzhuo

    2009-07-24

    In this work, solid-phase extraction (SPE) trapping performance of lutein and beta-carotene, which were used as the model molecules of carotenoids, was investigated. The absorption, elution, and enrichment of carotenoids on SPE cartridges with four different sorbents, i.e. C(30), C(18), diol, and silica, were compared respectively with the help of frontal analysis technique. The high retentions of both lutein and beta-carotene were achieved on the C(18) and C(30) cartridges. The diol and silica cartridges only had good retention for lutein. The optimized SPE method for sample pretreatment for the carotenoids analysis was obtained after the investigation of trapping performance. The method was applied successfully to the analysis of biological sample, i.e. serum and human breast milk. The recovery, accuracy, and precision of SPE method comparing with those of traditional liquid-liquid extraction (LLE) method for the sample pretreatment for the analysis of carotenoids owned a number of advantages such as rapid, no chloroform used, and accurate versus LLE.

  6. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  7. Excited state properties of aryl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Chábera, P.; Župčanová, Anita; Hříbek, P.; Arellano, J.B.; Vácha, František; Pšenčík, J.; Polívka, Tomáš

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3112-3120 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-states * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010

  8. Dietary Carotenoids and the Nervous System

    Directory of Open Access Journals (Sweden)

    Billy R. Hammond

    2015-12-01

    Full Text Available This issue of Foods is focused on the general topic of carotenoids within the nervous system. The focus is on the effects of the xanthophylls on the central nervous system (CNS, reflecting the majority of work in this area. [...

  9. Carotenoid content, sensory properties and microbiological quality ...

    African Journals Online (AJOL)

    The carotenoid content, sensory properties and microbiological assessment of stored cassava fufu from two cultivars of yellow cassava (TMS 01/1368 and TMS 01/1412) being multiplied for distribution in South-East and South-South Nigeria were investigated using standard techniques. There is scanty information on ...

  10. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  11. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  12. A Carotenoid Health Index Based on Plasma Carotenoids and Health Outcomes

    Science.gov (United States)

    Donaldson, Michael S.

    2011-01-01

    While there have been many studies on health outcomes that have included measurements of plasma carotenoids, this data has not been reviewed and assembled into a useful form. In this review sixty-two studies of plasma carotenoids and health outcomes, mostly prospective cohort studies or population-based case-control studies, are analyzed together to establish a carotenoid health index. Five cutoff points are established across the percentiles of carotenoid concentrations in populations, from the tenth to ninetieth percentile. The cutoff points (mean ± standard error of the mean) are 1.11 ± 0.08, 1.47 ± 0.08, 1.89 ± 0.08, 2.52 ± 0.13, and 3.07 ± 0.20 µM. For all cause mortality there seems to be a low threshold effect with protection above every cutoff point but the lowest. But for metabolic syndrome and cancer outcomes there tends to be significant positive health outcomes only above the higher cutoff points, perhaps as a triage effect. Based on this data a carotenoid health index is proposed with risk categories as follows: very high risk: 4 µM. Over 95 percent of the USA population falls into the moderate or high risk category of the carotenoid health index. PMID:22292108

  13. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  14. Carotenoid Metabolism in Plants: The Role of Plastids.

    Science.gov (United States)

    Sun, Tianhu; Yuan, Hui; Cao, Hongbo; Yazdani, Mohammad; Tadmor, Yaakov; Li, Li

    2018-01-08

    Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  16. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  17. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  18. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  19. Multinational study of major breast milk carotenoids of healthy mothers.

    Science.gov (United States)

    Canfield, Louise M; Clandinin, M Thomas; Davies, David P; Fernandez, Maria C; Jackson, Joan; Hawkes, Jo; Goldman, William J; Pramuk, Kathryn; Reyes, Horacio; Sablan, Benjamin; Sonobe, Tomoyoshi; Bo, Xu

    2003-06-01

    Carotenoids in serum vary between countries and within populations with evidence suggesting a qualitative relationship to diet. Breast milk carotenoids furnish a source of vitamin A and potentially provide immunoprotection and other health benefits for infants. There have been numerous studies of milk carotenoid concentrations in undernourished populations; however, carotenoid concentrations have not previously been compared in populations of well-nourished mothers. To compare concentrations of five major carotenoid groups: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene in breast milk of healthy women from Australia, Canada, Chile, China, Japan, Mexico, the Philippines, the United Kingdom, and the United States, and to qualitatively compare patterns of dietary intake with milk carotenoid concentrations. Breast milk collected from healthy lactating women was analyzed for concentrations of five carotenoids and retinol and quantitated relative to total milk lipid. All determinations were performed in a single research laboratory using standardized methodology. Mothers consumed their usual diets and provided a single 24-h dietary recall. Breast milk carotenoid concentrations varied greatly among countries, with the greatest differences in beta-cryptoxanthin (approximately 9-fold) and the least in alpha-carotene and lycopene (approximately 3-fold). Breast milk retinol concentrations varied approximately 2-fold across countries. The provitamin A carotenoids alpha-carotene, beta-carotene, and beta-cryptoxanthin as a group accounted for > 50 % of the carotenoids measured. Total breast milk carotenoids were highest in Japanese and lowest in Philippine mothers. Breast milk beta-carotene concentrations were highest in Chile and lowest in the Philippines. Patterns of breast milk carotenoids were unique to each country and qualitative patterns reflected the dietary carotenoid supply.

  20. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  1. Marine carotenoids: Bioactivities and potential benefits to human health.

    Science.gov (United States)

    Chuyen, Hoang Van; Eun, Jong-Bang

    2017-08-13

    Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.

  2. Study of transitory forms of carotenoids

    International Nuclear Information System (INIS)

    Mathis, Paul

    1970-01-01

    In order to explain the biological role of the carotenoids their transitory forms were studied with an apparatus measuring the small (∼10 -3 ) short-lived (100 ns to 1 ms) optical density variations obtained by excitation with a ruby laser. Two forms were studied: a) Triplet state 3 Car. - This state (t 1/2 ∼6 μs) is obtained not by direct excitation but by T-T energy transfer from chlorophyll, in different media (chloroplasts, pigments in solution or in micelle). Two arguments can be advanced to explain in terms of triplet energy transfer an essential biological role of carotenoids, protection against photodynamic effects: - the energy level of 3 Car is lower than that of the singlet of oxygen; - in vivo the T-T transfer from chlorophyll to the carotenoids is very fast: 30 ns.. b) Radical cation Car + . - This form is obtained by electron transfer from carotene to the triplet of Toluidine Blue, in ethanol. Car + (t 1/2 ∼200 μs) shows a strong absorption band at 910 nm. The properties of Car + are discussed in relation to other polyene derivatives and to hydrocarbon ions. Car + could be involved in certain biological electron transfers. (author) [fr

  3. Development of a rapid, simple assay of plasma total carotenoids

    Science.gov (United States)

    2012-01-01

    Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902

  4. ProCarDB: a database of bacterial carotenoids.

    Science.gov (United States)

    Nupur, L N U; Vats, Asheema; Dhanda, Sandeep Kumar; Raghava, Gajendra P S; Pinnaka, Anil Kumar; Kumar, Ashwani

    2016-05-26

    Carotenoids have important functions in bacteria, ranging from harvesting light energy to neutralizing oxidants and acting as virulence factors. However, information pertaining to the carotenoids is scattered throughout the literature. Furthermore, information about the genes/proteins involved in the biosynthesis of carotenoids has tremendously increased in the post-genomic era. A web server providing the information about microbial carotenoids in a structured manner is required and will be a valuable resource for the scientific community working with microbial carotenoids. Here, we have created a manually curated, open access, comprehensive compilation of bacterial carotenoids named as ProCarDB- Prokaryotic Carotenoid Database. ProCarDB includes 304 unique carotenoids arising from 50 biosynthetic pathways distributed among 611 prokaryotes. ProCarDB provides important information on carotenoids, such as 2D and 3D structures, molecular weight, molecular formula, SMILES, InChI, InChIKey, IUPAC name, KEGG Id, PubChem Id, and ChEBI Id. The database also provides NMR data, UV-vis absorption data, IR data, MS data and HPLC data that play key roles in the identification of carotenoids. An important feature of this database is the extension of biosynthetic pathways from the literature and through the presence of the genes/enzymes in different organisms. The information contained in the database was mined from published literature and databases such as KEGG, PubChem, ChEBI, LipidBank, LPSN, and Uniprot. The database integrates user-friendly browsing and searching with carotenoid analysis tools to help the user. We believe that this database will serve as a major information centre for researchers working on bacterial carotenoids.

  5. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  6. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  7. Photolysis of carotenoids in chloroform: enhanced yields of carotenoid radical cations in the presence of a tryptophan ester

    International Nuclear Information System (INIS)

    El-Agamey, Ali; Burke, Marc; Edge, Ruth; Land, Edward J.; McGarvey, David J.; Truscott, T. George

    2005-01-01

    The presence of an acetyl tryptophan ester gives rise to enhanced yields of carotenoid radical cations in chloroform following 355 nm laser excitation of the carotenoid, even though the tryptophan does not absorb at this wavelength. The increase is attributed to positive charge transfer from semi-oxidized tryptophan itself generated by light absorbed by the carotenoid. The mechanism of these radical processes has been elucidated by pulse radiolysis studies

  8. Screening and Selection of High Carotenoid Producing in Vitro Tomato Cell Culture Lines for [13C]-Carotenoid Production

    OpenAIRE

    Engelmann, Nancy J.; Campbell, Jessica K.; Rogers, Randy B.; Rupassara, S. Indumathie; Garlick, Peter J.; Lila, Mary Ann; Erdman, John W.

    2010-01-01

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)-triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-lab...

  9. Differences in carotenoid accumulation among three feeder-cricket species: implications for carotenoid delivery to captive insectivores.

    Science.gov (United States)

    Ogilvy, Victoria; Fidgett, Andrea L; Preziosi, Richard F

    2012-01-01

    There are a limited number of feeder-invertebrates available to feed captive insectivores, and many are deficient in certain nutrients. Gut-loading is used to increase the diversity of nutrients present in the captive insectivore diet; however, little is known about delivery of carotenoids via gut-loading. Carotenoids may influence health and reproduction due to their roles in immune and antioxidant systems. We assessed interspecific variation in carotenoid accumulation and retention in three feeder-cricket species (Gryllus bimaculatus, Gryllodes sigillatus and Acheta domesticus) fed one of three diets (wheat-bran, fish-food based formulated diet, and fresh fruit and vegetables). Out of the three species of feeder-cricket in the fish-food-based dietary treatment group, G. bimaculatus had the greatest total carotenoid concentration. All cricket species fed the wheat-bran diet had very low carotenoid concentrations. Species on the fish-food-based diet had intermediate carotenoid concentrations, and those on the fruit and vegetable diet had the highest concentrations. Carotenoid retention was poor across all species. Overall, this study shows that, by providing captive insectivores with G. bimaculatus crickets recently fed a carotenoid-rich diet, the quantity of carotenoids in the diet can be increased. © 2011 Wiley Periodicals, Inc.

  10. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces.

    Science.gov (United States)

    Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold

    2017-08-02

    Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS n . Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.

  11. Health Effects of Carotenoids during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Monika A. Zielińska

    2017-08-01

    Full Text Available Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child’s health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother’s diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity. Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm

  12. Health Effects of Carotenoids during Pregnancy and Lactation.

    Science.gov (United States)

    Zielińska, Monika A; Wesołowska, Aleksandra; Pawlus, Beata; Hamułka, Jadwiga

    2017-08-04

    Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child's health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother's diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity). Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm infants, who are

  13. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  14. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Šlouf, V.; Kuznetsova, V.; Fuciman, M.; de Carbon, C.B.; Wilson, A.; Kirilowsky, D.; Polívka, Tomáš

    2017-01-01

    Roč. 131, č. 1 (2017), s. 105-117 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Intramolecular charge-transfer state * Non-photochemical quenching * Orange carotenoid protein Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.864, year: 2016

  15. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  16. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω 70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  17. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  18. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  19. Comparative effect of carotenoid complex from golden neo-life ...

    African Journals Online (AJOL)

    Summary: The immunomodulatory effect of Carotenoid complex from Golden Neo-Life Dynamite (GNLD) and carrot extracted Carotenoid was assessed using 24 albino Wistar rats. The rats were assigned to 4 groups of 6 rats each consisting of group 1(control group treated with distilled water), group 2 (treated with olive oil) ...

  20. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  1. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  2. Improved extraction procedure for carotenoids from human milk.

    Science.gov (United States)

    Schweigert, F J; Hurtienne, A; Bathe, K

    2000-05-01

    An improved method for the extraction of the major carotenoids from human milk is described. Carotenoids were extracted from milk first with ethanol and n-hexane. Then, polar xanthophylls were extracted from n-hexane into ethanol/water. The remaining n-hexane was evaporated, the residue combined with the ethanolic milk fraction and the mixture briefly saponified. Carotenoids were extracted from the hydrolysate with n-hexane, combined with the polar xanthophylls from the non-saponified ethanol/water-extract and separated by HPLC. Using this method we were able to significantly improve the recovery of xanthophylls such as lutein and zeaxanthin from human milk. The recovery rate of all carotenoids was > 90%. This method might not only be of value for milk but should be especially useful in the extraction of carotenoids from human tissues such as the adipose tissue.

  3. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  4. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  5. Carotenoids from microalgae: A review of recent developments.

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2016-12-01

    Carotenoids have been receiving increasing attention due to their potential health benefits. Microalgae are recognized as a natural source of carotenoids and other beneficial byproducts. However, the production of micro-algal carotenoids is not yet sufficiently cost-effective to compete with traditional chemical synthetic methods and other technologies such as extraction from plant based sources. This review presents the recent biotechnological developments in microalgal carotenoid production. The current technologies involved in their bioprocessing including cultivation, harvesting, extraction, and purification are discussed with a specific focus on downstream processing. The recent advances in chemical and biochemical synthesis of carotenoids are also reviewed for a better understanding of suitable and economically feasible biotechnological strategies. Some possible future directions are also proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. On the role of labile oxocomplexes in carotenoids antioxidant activity

    International Nuclear Information System (INIS)

    Prokhorova, L.I.; Revina, A.A.

    2001-01-01

    Early stages of the interaction of carotenoids and molecular oxygen are studied and role of its interaction in the processes responsible for radiation resistance of carotenoids, superoxide dismutase activity to the singlet oxygen quenching. Ethanol and aqueous solutions of the carotenoids (phosphate buffer with pH 7.5) were exposed to accelerated electron flux at pulse regime and dose rate (0.7-2.0)x10 17 eV/ml imp in the dark and in case of combined effect of radiation and light. It is concluded that at the early stages of processes with the participation of carotenoids the formation of reversible complexes with charge transfer plays the important role. Properties and reaction capability of these complexes are determined by the peculiarities in chemical structure of carotenoid molecules [ru

  7. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  8. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  9. Assessment of carotenoids in pumpkins after different home cooking conditions

    Directory of Open Access Journals (Sweden)

    Lucia Maria Jaeger de Carvalho

    2014-06-01

    Full Text Available Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.

  10. Plasma carotenoid concentrations of infants are increased by feeding a milk-based infant formula supplemented with carotenoids.

    Science.gov (United States)

    Mackey, Amy D; Albrecht, Daniel; Oliver, Jeffery; Williams, Timberly; Long, Amy C; Price, Pamela T

    2013-06-01

    Human milk is the gold standard of infant nutrition and is a source of important substances, including carotenoids. Infant formulas are designed to mimic the composition and/or performance of human milk, although currently carotenoids are not routinely added to US infant formulas. The aim of this study was to assess plasma concentrations of β-carotene, lutein and lycopene 56 days after feeding infants milk-based infant formula without (CTRL) or with different concentrations of added carotenoids (L1 and L2). Plasma carotenoid concentrations increased in infants fed carotenoid-supplemented formulas as compared with the control formula with no added carotenoids. At study day 56, infants fed the supplemented formulas (L1 and L2) had mean plasma lutein, β-carotene and lycopene concentrations that were within the range of a concurrent group of human milk-fed infants (HM). Anthropometric measurements were comparable among all study groups. Plasma carotenoid concentrations of infants fed the supplemented formulas were within the range of the HM group and are consistent with reported plasma carotenoid ranges in human milk-fed infants. The experimental formulas were well tolerated and anthropometric measurements were comparable among all study groups. © 2012 Society of Chemical Industry.

  11. Genetic manipulation of carotenoid biosynthesis and photoprotection.

    Science.gov (United States)

    Pogson, B J; Rissler, H M

    2000-10-29

    There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.

  12. Carotenoid composition of hydroponic leafy vegetables.

    Science.gov (United States)

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  13. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  14. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  15. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  16. Biotechnological production of carotenoids by yeasts: an overview

    Science.gov (United States)

    2014-01-01

    Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates. PMID:24443802

  17. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.

    Science.gov (United States)

    McGraw, Kevin J; Toomey, Matthew B

    2010-01-01

    Carotenoid pigments produce the bright yellow to red ornamental colors of many animals, especially birds, and must ultimately be derived from the diet. However, they are also valuable for many physiological functions (e.g., antioxidants, immunostimulants, photoprotection, visual tuning, yolk nourishment to embryos), and as a result they are present in numerous internal body tissues (e.g., liver, adipose tissue, retina) whose carotenoid types and amounts are rarely studied in the context of color acquisition. Because male and female animals typically place different priorities on fitness-enhancing activities (e.g., gametic investment in females, sexual attraction in males), carotenoid allocation may track such investment patterns in the two sexes, and we can test for such sex-specific priorities of carotenoids by assessing body-tissue distributions of these pigments. We used high-performance liquid chromatography to identify and quantify carotenoid pigments from the plasma, liver, adipose tissue, and retina as well as the beak and legs of male and female zebra finches (Taeniopygia guttata), a species in which males display sexually attractive, red, carotenoid-based beak coloration and females also display some (albeit a less rich orange) beak color. To our knowledge, this is the first study of the predictors of carotenoid-based leg coloration-another potentially important visual signal-in this species. The same suite of dietary (e.g., lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (e.g., dehydrolutein, anhydrolutein) yellow and orange carotenoids was present in plasma, liver, and adipose tissue of both sexes. Retina contained two different metabolites (astaxanthin and galloxanthin) that serve specific functions in association with unique photoreceptor types in the eye. Beaks were enriched with four red ketocarotenoid derivatives in both sexes (alpha-doradexanthin, adonirubin, astaxanthin, and canthaxanthin), while the carotenoid profile of legs

  19. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  20. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2010-01-01

    Roč. 97, č. 1 (2010), s. 19-28 ISSN 0028-1042 R&D Projects: GA ČR GA206/06/0851; GA MŠk LC06073; GA ČR GA206/08/1281 Institutional research plan: CEZ:AV0Z60930519 Keywords : Carotenoids * Ornamentation * Oxidative stress * Testosterone * Trade-off Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.250, year: 2010

  1. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  2. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury

    2016-12-01

    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI: http://dx.doi.org/10.21881/abriluff.2016n17a378

  3. Individual carotenoid content of SRM 1548 total diet and influence of storage temperature, lyophilization, and irradiation on dietary carotenoids

    International Nuclear Information System (INIS)

    Craft, N.E.; Wise, S.A.

    1993-01-01

    A modified version of the AOAC procedure for the extraction of carotenoids from mixed feeds was coupled with an isocratic reversed-phase liquid chromatography (LC) method to measure individual carotenoids in SRM 1548 total diet and in a high-carotenoid mixed diet (HCMD). The major carotenoids identified in SRM 1548 were lycopene, beta-carotene, lutein, alpha-carotene, and zeaxanthin in descending order of concentration. The concentration of all carotenoids in SRM 1548 decreased as storage temperature increased. Significant differences in carotenoid concentrations occurred between -80 and 4 degrees C storage temperatures. Lyophilization of the HCMD significantly decreased beta-carotene and lycopene concentrations and produced an apparent increase in xanthophyll concentrations. Exposure to gamma-irradiation significantly decreased alpha-carotene and beta-carotene concentrations and led to an apparent increase in P-cryptoxanthin. SRM 1548 was found to be unsuitable for use as a reference material for carotenoid measurements, while HCMD has greater potential as a reference material

  4. Carotenoid-based breast plumage colour, body condition and clutch ...

    African Journals Online (AJOL)

    dependent ornamental trait. In some species of birds, red, orange and yellow feather colouration reflects male quality and advertises the carotenoid concentration of feathers. Such colouration is an important aspect of mate selection by females.

  5. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review

    Directory of Open Access Journals (Sweden)

    Natália Mezzomo

    2016-01-01

    Full Text Available Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.

  6. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim; Bouwmeester, Harro J.

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental

  7. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin

    2009-01-01

    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  8. No detectable carotenoid concentrations in serum of llamas and alpacas.

    Science.gov (United States)

    Raila, J; Schweigert, F J; Stanitznig, A; Lambacher, B; Franz, S; Baldermann, S; Wittek, T

    2017-08-01

    Carotenoids are lipid-soluble pigments and important for a variety of physiological functions. They are major dietary vitamin A precursors and act as lipophilic antioxidants in a variety of tissues and are associated with important health benefits in humans and animals. All animals must acquire carotenoids from their diet, but to our knowledge, there are no studies investigating the intestinal carotenoid absorption and their blood concentrations in New World camelids. The present study aimed to assess the serum concentrations of selected carotenoids in llamas (n = 13) and alpacas (n = 27). Serum carotenoids as well as retinol (vitamin A) and α-tocopherol (vitamin E) were determined by high-performance liquid chromatography coupled with mass spectrometry and these were unable to detect any carotenoids (α- and β-carotene, α- and β-cryptoxanthin, lutein, zeaxanthin, lycopene) in the samples. The concentrations of retinol in alpacas (2.89 ± 1.13 μmol/l; mean ± SD) were higher (p = 0.024) than those found in llamas (2.05 ± 0.87 μmol/l); however, the concentrations of α-tocopherol were not significantly (p = 0.166) different (llamas: 3.98 ± 1.83 μmol/l; alpacas: 4.95 ± 2.14 μmol/l). The results show that both llamas and alpacas are not able to absorb intact carotenoids, but efficiently convert provitamin A carotenoids to retinol. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Effect of genotype and environment on citrus juice carotenoid content.

    Science.gov (United States)

    Dhuique-Mayer, Claudie; Fanciullino, Anne-Laure; Dubois, Cecile; Ollitrault, Patrick

    2009-10-14

    A selection of orange and mandarin varieties belonging to the same Citrus accession and cultivated in Mediterranean (Corsica), subtropical (New Caledonia), and tropical areas (principally Tahiti) were studied to assess the effect of genotype and environmental conditions on citrus juice carotenoid content. Juices from three sweet orange cultivars, that is, Pera, Sanguinelli, and Valencia ( Citrus sinensis (L.) Osbeck), and two mandarin species ( Citrus deliciosa Ten and Citrus clementina Hort. ex Tan), were analyzed by HPLC using a C(30) column. Annual carotenoid content variations in Corsican fruits were evaluated. They were found to be very limited compared to variations due to varietal influences. The statistical analysis (PCA, dissimilarity tree) results based on the different carotenoid compounds showed that citrus juice from Corsica had a higher carotenoid content than citrus juices from tropical origins. The tropical citrus juices were clearly differentiated from citrus juices from Corsica, and close correlations were obtained between beta-cryptoxanthin and phytoene (r = 0.931) and beta-carotene and phytoene (r = 0.918). More broadly, Mediterranean conditions amplified interspecific differentiation, especially by increasing the beta-cryptoxanthin and cis-violaxanthin content in oranges and beta-carotene and phytoene-phytofluene content in mandarins. Thus, at a quantitative level, environmental conditions also had a major role in determining the levels of carotenoids of nutritional interest, such as the main provitamin A carotenoids in citrus juice (beta-cryptoxanthin and beta-carotene).

  10. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  11. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  12. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  13. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  14. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  15. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2017-01-01

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative microalgal sources used for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Incorporation of [1-C14] Isopentenyl Pyrophosphate into Carotenoids and Homo carotenoids using a Cell-free Preparation of Micrococcus Luteus

    International Nuclear Information System (INIS)

    Al-Wandawi, H.

    1998-01-01

    The early steps up to the formation of acyclic unsaturated carotenes (e.g.,phytoene to lycopene) are presumed to be common to the biosynthesis of all carotenoids with 40 or more carbon atoms, nevertheless, no direct evidence so far available to confirm this for homo carotenoids (c 45 and c 50 carotenoids). In the present study, an active cell-free preparation was obtained from diphenylamine-inhibited cells of Micrococcus Iuteus and found to be capable to incorporate radioactivity from Isopentenyl pyrophosphate (labelled with C-14)into carotenoids and homo carotenoids, providing for the first time a direct evidence which suggests that both carotenoids and homo carotenoids are sharing the same biological origin. Furthermore, the technique developed in this study may be considered as a valuable method for preparation of biological-active labelled compounds which may have some advantages over conventional chemical syntheses methods

  17. Carotenoids, versatile components of oxygenic photosynthesis.

    Science.gov (United States)

    Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina

    2013-10-01

    Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Recent patents on the extraction of carotenoids.

    Science.gov (United States)

    Riggi, Ezio

    2010-01-01

    This article reviews the patents that have been presented during the last decade related to the extraction of carotenoids from various forms of organic matter (fruit, vegetables, animals), with an emphasis on the methods and mechanisms exploited by these technologies, and on technical solutions for the practical problems related to these technologies. I present and classify 29 methods related to the extraction processes (physical, mechanical, chemical, and enzymatic). The large number of processes for extraction by means of supercritical fluids and the growing number of large-scale industrial plants suggest a positive trend towards using this technique that is currently slowed by its cost. This trend should be reinforced by growing restrictions imposed on the use of most organic solvents for extraction of food products and by increasingly strict waste management regulations that are indirectly promoting the use of extraction processes that leave the residual (post-extraction) matrix substantially free from solvents and compounds that must subsequently be removed or treated. None of the reviewed approaches is the best answer for every extractable compound and source, so each should be considered as one of several alternatives, including the use of a combination of extraction approaches.

  19. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  20. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  1. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  2. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  3. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits.

    Science.gov (United States)

    Delgado-Pelayo, Raúl; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2016-05-15

    The carotenoid composition of strawberry tree (Arbutus unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 μg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (>20 μg/g dw). (all-E)-Violaxanthin and 9Z-violaxanthin were found to be the major carotenoid pigments, accounting for more than 60%, responsible for the bright colour of the flesh of ripe fruits. In addition other 5,6-epoxide carotenoids, such as (all-E)-neoxanthin, (9'Z)-neoxanthin (all-E)-antheraxanthin and lutein 5,6-epoxide, together with (all-E)-lutein, (all-E)-zeaxanthin and (all-E)-β-carotene were found at high levels (>5-20 μg/g dw). The LC-MS (APCI+) analysis of the xanthophyll fraction in their native state (direct extract) revealed that most of them (>90%) were totally esterified with saturated fatty acids (capric, lauric, myristic, palmitic and stearic). Monoesters, homodiesters and heterodiesters of (all-E)-violaxanthin and 9Z-violaxanthin were the major pigments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  5. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.

    Science.gov (United States)

    Engelmann, Nancy J; Clinton, Steven K; Erdman, John W

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are readily absorbed from tomato foods and tomato extracts by humans. Animal models of carotenoid absorption suggest preferential accumulation of PE and PF in some tissues. The reasonably high concentrations of PE and PF detected in serum and tissues relative to the concentrations in foods suggest that absorption or metabolism of these compounds may be different from that of LYC. Experimental studies, both in vitro and in vivo, suggest that PE and PF exhibit bioactivity but little is known about their impact in humans. Methods for producing isotopically labeled PE, PF, and LYC tracers from tomato plant cell culture offer a unique tool for further understanding the differential bioavailability and metabolism of these 3 prominent tomato carotenoids and how they may affect health.

  6. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter.

  7. A comprehensive review on the colorless carotenoids phytoene and phytofluene.

    Science.gov (United States)

    Meléndez-Martínez, Antonio J; Mapelli-Brahm, Paula; Benítez-González, Ana; Stinco, Carla M

    2015-04-15

    Carotenoids and their derivatives are versatile isoprenoids involved in many varied actions, hence their importance in the agri-food industry, nutrition, health and other fields. All carotenoids are derived from the colorless carotenes phytoene and phytofluene, which are oddities among carotenoids due to their distinct chemical structure. They occur together with lycopene in tomato and other lycopene-containing foods. Furthermore, they are also present in frequently consumed products like oranges and carrots, among others. The intake of phytoene plus phytofluene has been shown to be higher than that of lycopene and other carotenoids in Luxembourg. This is likely to be common in other countries. However, they are not included in food carotenoid databases, hence they have not been linked to health benefits in epidemiological studies. Interestingly, there are evidences in vitro, animal models and humans indicating that they may provide health benefits. In this sense, the study of these colorless carotenes in the context of food science, nutrition and health should be further encouraged. In this work, we review much of the existing knowledge concerning their chemical characteristics, physico-chemical properties, analysis, distribution in foods, bioavailability and likely biological activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.D.; Valinger, D.; Vegvari, G.

    2014-01-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC)

  9. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans

    DEFF Research Database (Denmark)

    Bohn, Torsten; Desmarchelier, Charles; Dragsted, Lars Ove

    2017-01-01

    .g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also...

  10. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  11. Development of carotenoid-enriched vegetables with increased nutritional quality and visual appearance

    Science.gov (United States)

    Carotenoids are a class of red, orange and yellow pigments widely distributed in nature. Biotech approach has been proved to be effective in successfully engineering of carotenoid content in food crops with better health and visual appearance....

  12. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  13. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.

    Science.gov (United States)

    Engelmann, Nancy J; Campbell, Jessica K; Rogers, Randy B; Rupassara, S Indumathie; Garlick, Peter J; Lila, Mary Ann; Erdman, John W

    2010-09-22

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-labeling. Different Solanum lycopersicum allelic variants for high lycopene and varying herbicide treatments were compared for carotenoid accumulation in callus and suspension culture, and cell suspension cultures of the hp-1 line were chosen for isotopic labeling. When grown with [U]-13C-glucose and treated with CPTA, hp-1 suspensions yielded highly enriched 13C-lycopene with 45% of lycopene in the M+40 form and 88% in the M+35 to M+40 isotopomer range. To the authors' knowledge this is the first report of highly enriched 13C-carotenoid production from in vitro plant cell culture.

  14. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Photoprotection by dietary carotenoids: concept, mechanisms, evidence and future development.

    Science.gov (United States)

    Stahl, Wilhelm; Sies, Helmut

    2012-02-01

    Carotenoids are micronutrients present mainly in fruits and vegetables, and they are ingested from these sources with the diet. They exhibit specific antioxidant activity but also influence signaling and gene expression at the cellular level. β-Carotene and lycopene, the colorants of carrots and tomatoes, respectively, are among the most prominent members of this group of lipids, and they are usually the dominating carotenoids in human blood and tissues. Both compounds modulate skin properties when ingested as supplements or as dietary products. There is evidence that they protect the skin against sunburn (solar erythema) by increasing the basal defense against UV light-mediated damage. Their photoprotective efficacy, however, is not comparable to the use of a sunscreen. In vitro data show that also other carotenoids are efficient photoprotectors. Among them are lutein and structurally unusual phenolic polyenes like 3,3'-dihydroxyisorenieratene. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adaptability and stability of carotenoids in maize cultivars

    Directory of Open Access Journals (Sweden)

    Sara de Almeida Rios

    2009-01-01

    Full Text Available The purpose of this study was to investigate the adaptability and stability of carotenoids in maize cultivars inthe 2004/2005 growing season. Total carotenoids (TC, total carotenoids with provitamin A activity (Pro VA (μg g-1 andgrain yield (kg ha-1 were quantified in 10 cultivars at five locations. The chemical analyses were conducted in a laboratoryof the EMBRAPA/CNPMS, in Sete Lagoas, Minas Gerais. The methodologies of Eberhart and Russell (1966, Lin and Binns(1988 and Rocha et al. (2005 were used to analyze adaptability and stability. In general, the linear regression modelproposed by Eberhart and Russell (1966 failed to fit the Pro VA contents in the evaluated cultivars satisfactorily. However,with regard to the TC levels, all different analysis methodologies of adaptability and stability rated hybrid BRS 2020 as anideal genotype with general adaptability.

  17. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of Extraction Methods for the Analysis of Carotenoids for Different Vegetable Matrix

    Directory of Open Access Journals (Sweden)

    Stancuta Scrob

    2013-11-01

    Full Text Available In this study, different solvents were used to achieve the maximum extractibility of total carotenoids. The extracted total carotenoids were estimated using UV- visible spectrophotometer. Carotenoids from vegetable matrix can be used as a food colorant, food additive, cosmetics, antioxidants and nutraceuticals.

  19. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    NARCIS (Netherlands)

    Casagrande, Stefania; Dijkstra, Cor; Tagliavini, James; Goerlich, Vivian C.; Groothuis, Ton G. G.

    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion

  20. Absorption of beta-carotene and other carotenoids in humans and animal models : a review

    NARCIS (Netherlands)

    Vliet, T. van

    1996-01-01

    Objective: To review available information on absorption and further metabolism of different carotenoids in man and to discuss animal models and approaches in the study of carotenoid absorption and metabolism in man. Conclusions: Humans appear to absorb various carotenoids in a relatively

  1. The contribution of various foods to intake of vitamin A and carotenoids in the Netherlands

    NARCIS (Netherlands)

    Goldbohm, R.A.; Brants, H.A.M.; Hulshof, K.F.A.M.; Brandt, P.A. van den

    1998-01-01

    This study presents data on dietary intake of specific carotenoids in the Netherlands, based on a recently developed food composition database for carotenoids. Regularly eaten vegetables, the main dietary source of carotenoids, were sampled comprehensively and analysed with modern analytic methods.

  2. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans

    DEFF Research Database (Denmark)

    Maiani, Giuseppe; Castón, María Jesús Periago; Catasta, Giovina

    2009-01-01

    Carotenoids are one of the major food micronutrients in human diets and the overall objective of this review is to re-examine the role of carotenoids in human nutrition. We have emphasized the attention on the following carotenoids present in food and human tissues: -carotene, -cryptoxanthin, -ca...

  3. Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca)

    NARCIS (Netherlands)

    Eeva, T.; Ruuskanen, S.; Salminen, J.P.; Belskii, E.; Jarvinen, A.; Kerimov, A.; Korpimäki, E.; Krams, I.; Moreno, J.; Morosinotto, C.; Mänd, R.; Orell, M.; Qvarnström, A.; Siitari, H.; Slater, F.M.; Tilgar, V.; Visser, M.E.; Winkel, W.; Zang, H.; Laaksonen, T.

    2011-01-01

    Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal

  4. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  5. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V

    2006-01-01

    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  6. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  7. Lutein and preterm infants with decreased concentrations of brain carotenoids.

    Science.gov (United States)

    Vishwanathan, Rohini; Kuchan, Matthew J; Sen, Sarbattama; Johnson, Elizabeth J

    2014-11-01

    Lutein and zeaxanthin are dietary carotenoids that may influence visual and cognitive development. The objective of this study was to provide the first data on distribution of carotenoids in the infant brain and compare concentrations in preterm and term infants. Voluntarily donated brain tissues from 30 infants who died during the first 1.5 years of life were obtained from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Brain and Tissue Bank. Tissues (hippocampus and prefrontal, frontal, auditory, and occipital cortices) were extracted using standard lipid extraction procedures and analyzed using reverse-phase high-pressure liquid chromatography. Lutein, zeaxanthin, cryptoxanthin, and β-carotene were the major carotenoids found in the infant brain tissues. Lutein was the predominant carotenoid accounting for 59% of total carotenoids. Preterm infants (n = 8) had significantly lower concentrations of lutein, zeaxanthin, and cryptoxanthin in their brain compared with term infants (n = 22) despite similarity in postmenstrual age. Among formula-fed infants, preterm infants (n = 3) had lower concentrations of lutein and zeaxanthin compared with term infants (n = 5). Brain lutein concentrations were not different between breast milk-fed (n = 3) and formula-fed (n = 5) term decedents. In contrast, term decedents with measurable brain cryptoxanthin, a carotenoid that is inherently low in formula, had higher brain lutein, suggesting that the type of feeding is an important determinant of brain lutein concentrations. These data reveal preferential accumulation and maintenance of lutein in the infant brain despite underrepresentation in the typical infant diet. Further investigation on the impact of lutein on neural development in preterm infants is warranted.

  8. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  9. Stability of carotenoids toward UV-irradiation in hexane solution

    Directory of Open Access Journals (Sweden)

    DRAGAN CVETKOVIC

    2008-01-01

    Full Text Available The stabilities of four selected carotenoids dissolved in hexane, two carotenes and two xanthophylls, toward UV-irradiation of three different ranges (UV-A, UV-B and UV-C were studied in this work. The carotenoids underwent bleaching via a probable free radical mediated mechanism following first-order kinetics. The bleaching rates were highly dependent on the input of the involved photons and, although not consistently, on the chemical structures of the investigated compounds. For the two xanthophylls, a possible role of oxygen associated with their bleaching cannot be neglected.

  10. Implementation of a combinatorial cleavage and deprotection scheme

    DEFF Research Database (Denmark)

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  11. Metabolism and Potential Health Effects of Carotenoids Following Digestion of Green Leafy Vegetables

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard

    effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. In vitro-in vivo study: Mincing resulted in a factor two difference in in vitro accessibility of carotenoids when comparing whole leaf...... variable positive effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. Similarly, fat addition influenced β-car liberation positively; however, the effect was eliminated on the level...

  12. Intermolecular cleavage by UmuD-like mutagenesis proteins

    Science.gov (United States)

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  13. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  14. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  15. Changes in membrane lipids and carotenoids during light ...

    Indian Academy of Sciences (India)

    2012-07-24

    Jul 24, 2012 ... increased their content, the changes of PG(18:3/16:0) and MGDG(18:3/16:0) being primarily significant. Major lipid changes were also ... reported to increase with exposure to high light in Cyano- bacteria (Masamoto and .... Absorption spectrum of the other carotenoid (unkn1) has absorption maxima at 448/.

  16. Teor de carotenoides em polpas de acerola congeladas

    Directory of Open Access Journals (Sweden)

    Marisa Lorena Santos Silva

    2013-04-01

    Full Text Available A acerola é uma espécie frutífera muito aceita pelos consumidores, que vem se destacando no Brasil e no mundo, principalmente por ser uma das principais fontes naturais de vitamina C e carotenoides, sendo amplamente industrializada na forma de polpa congelada.  Destacam-se como antioxidantes, elevando esse fruto ao campo dos alimentos funcionais, pois conferi benefícios na redução do risco de algumas doenças crônicas não transmissíveis como o câncer. Desta forma, o objetivo desse estudo foi avaliar o teor de carotenoides em polpas de acerolas congeladas comercializadas em Picos-PI. Foram analisadas 5 amostras coletadas aleatoriamente no comércio varejista, a fim de realizar as análises. As polpas de acerolas analisadas apresentaram variação nos teores de β-caroteno de 23,49 a 37,04 mg/100ml e licopeno de 0,00 a 2,70 mg/100ml. Com a determinação dos carotenoides pode-se observar que as variações decorem de fatores que vão desde a área de cultivo da acerola até o armazenamento da polpa, embora as polpas tenham apresentado uma concentração relativamente boa de carotenoides

  17. Carotenoid actions and their relation to health and disease.

    Science.gov (United States)

    Krinsky, Norman I; Johnson, Elizabeth J

    2005-12-01

    Based on extensive epidemiological observation, fruits and vegetables that are a rich source of carotenoids are thought to provide health benefits by decreasing the risk of various diseases, particularly certain cancers and eye diseases. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Additionally, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.

  18. Vitamins, carotenoids, dietary fiber, and the risk of gastric carcinoma

    NARCIS (Netherlands)

    Botterweck, A.A.M.; Brandt, P.A. van den; Goldbohm, R.A.

    2000-01-01

    BACKGROUND. Numerous components of fruit and vegetables are considered to decrease the risk of gastric carcinoma. In the current prospective study, the authors examined the association between the intake of vitamins, carotenoids, and dietary fiber and vitamin supplement use and the incidence rate of

  19. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  20. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  1. New opportunities for developing tomato varieties with enhanced carotenoid content

    Directory of Open Access Journals (Sweden)

    Miguel Leiva-Brondo

    Full Text Available ABSTRACT The development of varieties with a high content of antioxidant compounds, such as carotenoids, has become a major focus in the marketing of tomato. Several mutants have been used in the development of high pigment varieties, but the significant influence of the environment on carotenoid content and the presence of negative side effects in vegetative growth and yield have limited the success of these variants. Consequently, the identification of alternative sources of variation in the quest for high carotenoid content is ongoing. In this study, 12 accessions of Solanum lycopersicum (including the former var cerasiforme and S. pimpinelifolium have been evaluated in three different environments: open field and glasshouse cultivation at two sites. Three accessions (BGV6195 of S. pimpinellifolium, LA1423 of the former var cerasiforme and LA3633 a possible hybrid between S. pimpinellifolium and S. lycopersicum showed outstanding and stable lycopene content, that doubled in all three environments the content of the positive control LA3538, with the high pigment-1 mutation (hp1. In addition, accession CATIE14812 would also be interesting as regards improvement of β-carotene content. These materials offer new opportunities in the development of tomato varieties with enriched and reliable carotenoid content and the close taxonomic relationship of these accessions with cultivated tomato will facilitate their use in breeding programs.

  2. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Frank, H.A.

    2010-01-01

    Roč. 43, č. 8 (2010), s. 1125-1134 ISSN 0001-4842 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * energy transfer * photosynthesis * light-harvesting Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  3. Dark excited states of carotenoids: Consensus and controversy

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Sundström, V.

    2009-01-01

    Roč. 477, 1-3 (2009), s. 1-11 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009

  4. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  5. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    Czech Academy of Sciences Publication Activity Database

    Tóth, T. N.; Chukhutsina, V.; Knoppová, Jana; Komenda, Josef; Kis, M.; Lenart, Z.; Garab, G.; Kovács, L.; Gombos, Z.; van Amerongen, H.

    2015-01-01

    Roč. 1847, č. 10 (2015), s. 1153-1165 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Carotenoid deficiency * Cyanobacterial photosynthesis * Phycobilisome Subject RIV: CE - Biochemistry Impact factor: 4.864, year: 2015

  6. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  7. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    Czech Academy of Sciences Publication Activity Database

    Christensson, N.; Polívka, Tomáš; Yartsev, A.; Pullerits, T.

    2009-01-01

    Roč. 79, č. 24 (2009), s. 1-14 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z50510513 Keywords : electron correlations * energy gap * excited states * carotenoids Subject RIV: BO - Biophysics Impact factor: 3.475, year: 2009

  8. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Shuchi Smita, Ravi Rajwanshi, Sangram Keshari Lenka, Amit Katiyar, Viswanathan Chinnusamy and. Kailash Chander Bansal. J. Genet. 92, 363–368. Table 1.

  9. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  10. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  11. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  12. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid ...

  13. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2014-03-01

    Full Text Available Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction.

  14. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Science.gov (United States)

    Maoka, Takashi; Kuwahara, Takashi; Narita, Masanao

    2014-01-01

    Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction. PMID:24633249

  15. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  16. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    International Nuclear Information System (INIS)

    Kispert, Lowell D.; Focsan, A. Ligia; Konovalova, Tatyana A.; Lawrence, Jesse; Bowman, Michael K.; Dixon, David A.; Molnar, Peter; Deli, Jozsef

    2007-01-01

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car ·+ ) but also neutral radicals ((number s ign)Car · ) by proton loss from the methyl groups at positions 5 or 5(prime), and possibly 9 or 9(prime) and 13 or 13(prime). Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car # center d ot# + which agree with the ENDOR for carotenoid π-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity (Lycopene (III) versus 8(prime)-apo-β-caroten-8(prime)-al (IV)); hydrogen bonding (Lutein (V) versus III); host (silica-alumina versus MCM-41 molecular sieve); and substituted metal in MCM-41. Loss of H + from the 5(5(prime)), 9(9(prime)) or 13(13(prime)) methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1 Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I # center d ot# + ...Chl # center d ot# - ), lower in

  17. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.

    Science.gov (United States)

    Lin, Susan M; Nieves-Puigdoller, Katherine; Brown, Alexandria C; McGraw, Kevin J; Clotfelter, Ethan D

    2010-01-01

    Many animals use carotenoid pigments derived from their diet for coloration and immunity. The carotenoid trade-off hypothesis predicts that, under conditions of carotenoid scarcity, individuals may be forced to allocate limited carotenoids to either coloration or immunity. In polychromatic species, the pattern of allocation may differ among individuals. We tested the carotenoid trade-off hypothesis in the Midas cichlid, Amphilophus citrinellus, a species with two ontogenetic color morphs, barred and gold, the latter of which is the result of carotenoid expression. We performed a diet-supplementation experiment in which cichlids of both color morphs were assigned to one of two diet treatments that differed only in carotenoid content (beta-carotene, lutein, and zeaxanthin). We measured integument color using spectrometry, quantified carotenoid concentrations in tissue and plasma, and assessed innate immunity using lysozyme activity and alternative complement pathway assays. In both color morphs, dietary carotenoid supplementation elevated plasma carotenoid circulation but failed to affect skin coloration. Consistent with observable differences in integument coloration, we found that gold fish sequestered more carotenoids in skin tissue than barred fish, but barred fish had higher concentrations of carotenoids in plasma than gold fish. Neither measure of innate immunity differed between gold and barred fish, or as a function of dietary carotenoid supplementation. Lysozyme activity, but not complement activity, was strongly affected by body condition. Our data show that a diet low in carotenoids is sufficient to maintain both coloration and innate immunity in Midas cichlids. Our data also suggest that the developmental transition from the barred to gold morph is not accompanied by a decrease in innate immunity in this species.

  18. Evaluation of carotenoid contents in irradiated buriti (Mauritia flexuosa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jaqueline M. da; Coelho, Maysa J.; Lima, Keila S.C.; Lima, Antonio L.S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear]. E-mail: maysa@ime.eb.br; Godoy, Ronoel L.O.; Pacheco, Sidney [EMBRAPA Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil)]. E-mail: ronoel@ctaa.embrapa.br; Ferreira, Rubemar S. [Centro Regional de Ciencias Nucleares do Centro-Oeste CRCN-CO/CNEN, Abadia de Goias, GO (Brazil); E-mail: rferreira@cnen.gov.br

    2007-07-01

    Buriti (Mauritia flexuosa L.), a typical Brazilian fruit, can be found at north, northeast and center-west regions in Brazil. It has a high nutritional value and is considered an excellent source of vitamin A precursors, called carotenoids, showing a majority of {beta}-carotene. It can be used in many regional dishes. In this study, Buriti in natura was treated with gamma irradiation, deriving from a cavity type research irradiator which has a Cs-137 radiation source, with the doses of 0.5 and 1.0 kGy. The objective is to evaluate the irradiation effects on nutritional quality maintenance and conservation of Buriti, focusing in optimizer the processing conditions and increase consumption as a way to fight vitamin A deficiency. Clinical, biological and dietetic studies have indicated that the lack of vitamin A is the main cause of night blindness and xerophthalmia. The use of food irradiation is growing and represents an economic benefit to the agriculture through the reduction of post harvesting losses. The irradiated fruits and the control group were evaluated through the total carotenoids analysis, by spectrophotometry, and the carotenoids (a and b-carotene and luteine) determined by High Performance Liquid Chromatography (HPLC). ANOVA was used to treat the results. The results show that buriti is an excellent source of total carotenoids, with a concentration of 44500 {mu}g/100 g in the pulp (70% of {beta}-carotene). The reduction of carotenoids contents due to the irradiation process does not compromise its nutritional quality that is still very above of recommendations, being the dose of 0.5 kGy more appropriate. (author)

  19. Evaluation of carotenoid contents in irradiated buriti (Mauritia flexuosa L.)

    International Nuclear Information System (INIS)

    Silva, Jaqueline M. da; Coelho, Maysa J.; Lima, Keila S.C.; Lima, Antonio L.S.; Ferreira, Rubemar S.

    2007-01-01

    Buriti (Mauritia flexuosa L.), a typical Brazilian fruit, can be found at north, northeast and center-west regions in Brazil. It has a high nutritional value and is considered an excellent source of vitamin A precursors, called carotenoids, showing a majority of β-carotene. It can be used in many regional dishes. In this study, Buriti in natura was treated with gamma irradiation, deriving from a cavity type research irradiator which has a Cs-137 radiation source, with the doses of 0.5 and 1.0 kGy. The objective is to evaluate the irradiation effects on nutritional quality maintenance and conservation of Buriti, focusing in optimizer the processing conditions and increase consumption as a way to fight vitamin A deficiency. Clinical, biological and dietetic studies have indicated that the lack of vitamin A is the main cause of night blindness and xerophthalmia. The use of food irradiation is growing and represents an economic benefit to the agriculture through the reduction of post harvesting losses. The irradiated fruits and the control group were evaluated through the total carotenoids analysis, by spectrophotometry, and the carotenoids (a and b-carotene and luteine) determined by High Performance Liquid Chromatography (HPLC). ANOVA was used to treat the results. The results show that buriti is an excellent source of total carotenoids, with a concentration of 44500 μg/100 g in the pulp (70% of β-carotene). The reduction of carotenoids contents due to the irradiation process does not compromise its nutritional quality that is still very above of recommendations, being the dose of 0.5 kGy more appropriate. (author)

  20. Pripper: prediction of caspase cleavage sites from whole proteomes

    Directory of Open Access Journals (Sweden)

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  1. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  2. Identification of a carotenoid oxygenase synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution.

    Science.gov (United States)

    Mijts, Benjamin N; Lee, Pyung Cheon; Schmidt-Dannert, Claudia

    2005-04-01

    A carotenoid desaturase homolog from Staphylococcus aureus (CrtOx) was identified. When expressed in engineered E. coli cells synthesizing linear C(30) carotenoids, polar carotenoid products were generated, identified as aldehyde and carboxylic acid C(30) carotenoid derivatives. The major product in this engineered pathway is the fully desaturated C(30) dialdehyde carotenoid 4,4'-diapolycopen-4,4'-dial. Very low carotenoid yields were observed when CrtOx was complemented with the C(40) carotenoid lycopene pathway. But extension of an in vitro evolved pathway of the fully desaturated 2,4,2',4'-tetradehydrolycopene produced the structurally novel fully desaturated C(40) dialdehyde carotenoid 2,4,2',4'-tetradehydrolycopendial. Directed evolution of CrtOx by error-prone PCR resulted in a number of variants with higher activity on C(40) carotenoid substrates and improved product profiles. These findings may provide new biosynthetic routes to highly polar carotenoids with unique spectral properties desirable for a number of industrial and pharmaceutical applications.

  3. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Cothran, Rickey D; Gervasi, Stephanie S; Murray, Cindy; French, Beverly J; Bradley, Paul W; Urbina, Jenny; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.

  4. Secondary isotope effects on alpha-cleavage reactions

    International Nuclear Information System (INIS)

    Ingemann, S.; Hammerum, S.

    1980-01-01

    Kinetic deuterium isotope effects on mass spectral reactions have in several instances been utilized to provide structural information and to answer mechanistic questions. Typically, the influence of the deuterium label on the rate of one of a number of competing reactions has been studied. Secondary isotope effects have usually been assumed to be relatively insignificant in comparison with the observed kinetic effects, even though various workers have shown that secondary isotope effects may indeed exert a considerable influence on the rates of competing simple cleavages. Recent studies have provided quantitative data to show that the mere presence of deuterium atoms up to six bonds away may influence the rate of a simple cleavage reaction. In relation to an investigation of rearrangements accompanying simple cleavage reactions, a semi-quantitative measure was needed of the variation of the secondary isotope effect with the number of bonds between the deuterium label and the point of rupture. The influence has therefore been examined of the presence of remote deuterium atoms on a typical simple cleavage reaction, the α-cleavage of aliphatic amines. As a model compound, N-methyldipentylamine was chosen, systematically labelled with deuterium. (author)

  5. A noninvasive assessment of skin carotenoid status through reflection spectroscopy is a feasible and reliable measure of dietary carotenoid consumption in a diverse community sample

    Science.gov (United States)

    Background: Skin carotenoid status, as assessed by reflection spectroscopy (RS), is a promising means of approximating fruit and vegetable consumption. This study’s purpose was to assess the feasibility, reliability, and validity of RS to assess skin carotenoids in a racially diverse community sampl...

  6. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans

    DEFF Research Database (Denmark)

    Søltoft, Malene; Bysted, Anette; Madsen, K. H.

    2011-01-01

    BACKGROUND: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased...... health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from...... crops from these agricultural systems. RESULTS: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly...

  7. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  8. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  9. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  10. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  11. Resonant imaging of carotenoid pigments in the human retina

    Science.gov (United States)

    Gellermann, Werner; Emakov, Igor V.; McClane, Robert W.

    2002-06-01

    We have generated high spatial resolution images showing the distribution of carotenoid macular pigments in the human retina using Raman spectroscopy. A low level of macular pigments is associated with an increased risk of developing age-related macular degeneration, a leading cause of irreversible blindness. Using excised human eyecups and resonant excitation of the pigment molecules with narrow bandwidth blue light from a mercury arc lamp, we record Raman images originating from the carbon-carbon double bond stretch vibrations of lutein and zeaxanthin, the carotenoids comprising human macular pigments. Our Raman images reveal significant differences among subjects, both in regard to absolute levels as well as spatial distribution within the macula. Since the light levels used to obtain these images are well below established safety limits, this technique holds promise for developing a rapid screening diagnostic in large populations at risk for vision loss from age-related macular degeneration.

  12. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...

  13. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  14. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects.

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.

  15. Carotenoid status among preschool children with vitamin A deficiency in the Republic of the Marshall Islands.

    Science.gov (United States)

    Gamble, Mary V; Palafox, Neal A; Dancheck, Barbara; Ricks, Michelle O; Briand, Kennar; Semba, Richard D

    2004-01-01

    Although carotenoids are known to be important dietary sources of vitamin A, there have been few epidemiological studies that have characterized the serum concentrations of major dietary carotenoids among preschool children with vitamin A deficiency. We conducted a population-based, cross-sectional study of serum pro-vitamin A carotenoids (alpha -carotene, beta-carotene, beta-cryptoxanthin), non-provitamin A carotenoids (lutein/zeaxanthin, and lycopene), and retinol among 278 children, aged 1-5 y, in the Republic of the Marshall Islands. Vitamin A deficiency was defined as serum retinol Marshall Islands have extremely low serum concentrations of provitamin A carotenoids and interventions are needed to improve the dietary intake of provitamin A carotenoids among Marshallese children.

  16. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Patzelt, A; Darvin, M; Sterry, W; Fluhr, J W; Caspers, P J; Van der Pol, A; Zastrow, L

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC

  17. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    Science.gov (United States)

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  19. Loss of triglycerides and carotenoids in human milk after processing.

    Science.gov (United States)

    Tacken, K J M; Vogelsang, A; van Lingen, R A; Slootstra, J; Dikkeschei, B D; van Zoeren-Grobben, D

    2009-11-01

    Human milk (HM) is considered to be the best nutrition for preterm infants. However, storage, heating or tube feeding can cause a decline in essential nutrients, which can lead to the loss of antioxidant vitamins, resulting in an increased risk for oxygen radical diseases. Recently we found that carotenoids, present in human milk, can play a role in the antioxidant protection of preterm infants. In this study we evaluated the effect of processing HM and infant formula on the triglycerides and carotenoid concentrations. The triglyceride, alpha- and beta-carotene, lutein and lycopene concentrations of 30 samples of mature HM of mothers who delivered a term infant and 10 samples of infant formula were measured after refrigeration, freezing, microwave heating and tube feeding with and without exposure to normal light and phototherapy, imitating the clinical feeding routine in the NICU. After tube feeding triglyceride, lutein and beta-carotene concentrations decreased with 33%, 35% and 26% respectively. The decrease in triglycerides in HM accounts for 16% of the total caloric intake of neonates. Triglyceride and carotenoid concentrations in HM remained stable after refrigeration, freezing or low temperature microwave heating, except for lutein which decreased after refrigeration and freezing. In infant formula no differences were found. Mature human milk can be stored safely in a freezer and heated in a microwave oven without loss of fat or carotenoids. The clinically important loss of fat during tube feeding is probably the most important contributing factor to the decrease in lutein and beta-carotene in tube feeding, with only a small role for peroxidation during light-exposure.

  20. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  1. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    Science.gov (United States)

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  2. Impact of canning and storage on apricot carotenoids and polyphenols.

    Science.gov (United States)

    Le Bourvellec, Carine; Gouble, Barbara; Bureau, Sylvie; Reling, Patrice; Bott, Romain; Ribas-Agusti, Albert; Audergon, Jean-Marc; Renard, Catherine M G C

    2018-02-01

    Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-β-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in carotenoids during processing and storage of pumpkin puree.

    Science.gov (United States)

    Provesi, João Gustavo; Dias, Carolinne Odebrecht; Amante, Edna Regina

    2011-09-01

    Changes in the contents of carotenoids and their true retentions (% TR) during the production of puree of Cucurbita moschata 'Menina Brasileira' and of Cucurbita maxima 'Exposição' pumpkins and the stability of such compounds during 180days of storage were monitored by liquid chromatography coupled with a photodiode array detector. Cooking caused higher losses than commercial sterilisation. High losses of xanthophylls such as lutein and violaxanthin were noted during processing and storage of pumpkin puree. Such losses show the low stability of these compounds. The major carotenoids, pro-vitamin A carotenes, namely, α-carotene and all-trans-β-carotene for C. moschata 'Menina Brasileira' and all-trans-β-carotene for C. maxima 'Exposição' obtained high retentions (>75%) after processing. A slight degree of isomerisation of β-carotene was noted in the puree samples, but with low concentrations of cis-isomers. Storage for 180days did not significantly affect (P⩽0.05) the concentrations of these carotenoids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  5. Carotenoid production and phenotypic variation in Azospirillum brasilense.

    Science.gov (United States)

    Brenholtz, Gal Reem; Tamir-Ariel, Dafna; Okon, Yaacov; Burdman, Saul

    2017-06-01

    We assessed the occurrence of phenotypic variation in Azospirillum brasilense strains Sp7, Cd, Sp245, Az39 and phv2 during growth in rich media, screening for variants altered in colony pigmentation or extracellular polysaccharide (EPS) production. Previous studies showed that EPS-overproducing variants of Sp7 appear frequently following starvation or growth in minimal medium. In contrast, no such variants were detected during growth in rich media in the tested strains except for few variants of phv2. Regarding alteration in colony pigmentation (from pink to white in strain Cd and from white to pink in the others), strain Sp7 showed a relatively high frequency of variation (0.009-0.026%). Strain Cd showed a lower frequency of alteration in pigmentation (0-0.008%), and this type of variation was not detected in the other strains. In A. brasilense, carotenoid synthesis is controlled by two RpoE sigma factors and their cognate ChrR anti-sigma factors, the latter acting as negative regulators of carotenoid synthesis. Here, all tested (n = 28) pink variants of Sp7 carried mutations in one of the anti-sigma factor genes, chrR1. Our findings indicate that, in A. brasilense, phenotypic variation is strain- and environment-dependent and support the central role of ChrR1 in regulation of carotenoid production. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene12

    OpenAIRE

    Engelmann, Nancy J.; Clinton, Steven K.; Erdman, John W.

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are...

  7. Use of Several waste substrates for carotenoid-rich yeast biomass production

    International Nuclear Information System (INIS)

    Marova, I.; Carnecka, M.; Halienova, A.; Dvorakova, T.; Haronikova, A.

    2009-01-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, control ed physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. (Author)

  8. Investigations of carotenoids in fungi. III. Fructifications of some species from the genus Suillus

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-11-01

    Full Text Available Using column and thin-layer chromatography the occurrence of carotenoids and their content was determined in fructifications of 5 species from the genus Suillus. 21 carotenoids were found, among them 3 which had not hitherto been detected in fungi (auroxanthin, 3,4-dihydroxy-α-carotene and myxoxantophyll. Moreover quantitative and qualitative differences were found in the content of carotenoids in fructifications of Boletus luteus which may be of importance in their taxonomy.

  9. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Science.gov (United States)

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  10. Carotenoids of Red, Brown, and Black Specimens of Plectropomus leopardus, the Coral Trout (Suziara in Japanese).

    Science.gov (United States)

    Maoka, Takashi; Sato, Wataru; Nagai, Hidetada; Takahashi, Toshiyuki

    2017-06-01

    This study investigated the carotenoids occurring in the integument of Plectropomus leopardus, the coral trout. For a red specimen, the major carotenoids included astaxanthin diester and monoester, as well as α-cryptoxanthin ester, tunaxanthin diester, adonixanthin diester, adonirubin ester, and adonirubin; for brown and black specimens, tunaxanthin diester was the main carotenoid. 1 H-NMR and MS spectral analyses showed that docosahexaenoic acid was the sole fatty acid esterified with xanthophylls in the coral trout.

  11. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria.

    Science.gov (United States)

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2009-08-27

    We applied two-photon fluorescence excitation spectroscopy to LH2 complex from purple bacteria Allochromatium minutissimum and Rhodobacter sphaeroides . Bacteriochlorophyll fluorescence was measured under two-photon excitation of the samples within the 1200-1500 nm region. Spectra were obtained for both carotenoid-containing and -depleted complexes of each bacterium to allow their direct comparison. The depletion of carotenoids did not alter the two-photon excitation spectra of either bacteria. The spectra featured a wide excitation band around 1350 nm (2x675 nm, 14,800 cm(-1)) which strongly resembled two-photon fluorescence excitation spectra of similar complexes published by other authors. We consider obtained experimental data to be evidence of direct two-photon excitation of bacteriochlorophyll excitonic states in this spectral region.

  12. Investigations on carotenoids in lichens. XXXII. Carotenoids occurring in the thalli of lichens from Kenya (Equatorial Africa

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-01-01

    Full Text Available The presence of cartenoids in nineteen species of lichens from Kenya (Equatorial Africa was studied by column and thinlayer chromatography. This investigations revealed the presence of the following carotenoids: neurosporene, α-carotene, β-carotene, rubixanthin, α-cryptoxanthin, β-cryptoxanthin, zeaxanthin, lutein, 3'-epilutein, torularhodin, diatoxanthin, neoxanthin, echinenone, 3'-hydroxyechinenone, canthaxanthin, α-doradexanthin, astaxanthin, β-carotene epoxide, antheraxanthin, lutein epoxide, violaxanthin, mutatoxanthin, flavoxanthin, capsochrome, β-apo-8'-carotenal, β-apo-10'-carotenal and apo-12'-violaxanthal. Five of these, torularhodin, 3'-hydroxyechinenone, capsochrome, β-apo-8'-carotenal and β-apo-10'-carotenal, are reported for the first time from lichens. The total carotenoid content of the material ranged from 15.88 (Pyxine cocoes to 135.44 µg g-1 dry weight (Telaschistes chrysophthalmus.

  13. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.

  14. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    Science.gov (United States)

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  17. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  18. [Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs].

    Science.gov (United States)

    Konovalova, A M; Shylin, S O; Rokytko, P V

    2006-01-01

    An effective method was developed for complete removal of pigments from the cells and solvent mixture for further separation of pigments using thin layer chromatography on silica gel. Carotenoid samples that have been obtained in this way are of good purity for further investigations. Carotenoid pigments of pink-pigmented facultative methylotrophic bacteria Methylobacterium have been characterized. These carotenoids are represented mainly by xanthophylls, particularly hydroxycarotenoids. Strains M. fujisawaense B-3365 and M. mesophilicum B-3352 also have nonpolar carotenes in a small amount. Physico-chemical properties of carotenoids have been studied.

  19. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    Science.gov (United States)

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  20. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was ass...

  1. DNA Cleavage Activity of Diazonium Salts: Chemical Nucleases

    OpenAIRE

    KIZIL, Murat

    2014-01-01

    4-Fenoldiazonium tetrafluoroborate and 4-benzoicaciddiazonium tetrafluoroborate was prepared and was shown to be an effective DNA cleavage agent in the presence of the 1-electron donor copper(II) chloride. Its mechanism involves the generation of the aryl radical cleaving DNA by hydrogen atom abstraction from deoxyribose sugar.

  2. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  3. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  4. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin mo...

  5. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  6. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U...

  7. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  8. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    Full Text Available O canistel (P. campechiana é uma fruta nativa da América Central e México, ainda pouco conhecida no Brasil. Apresenta uma polpa amarelo-alaranjada, rica em carotenoides, que tem despertado interesse como potencial de vitamina A. O objetivo deste trabalho foi determinar o teor de carotenoides e o valor provitamina A na polpa de canistel, assim como os teores de umidade e lipídeos na polpa e na semente. Os carotenoides foram separados por cromatografia em coluna aberta. O conteúdo de carotenoides totais foi de 226 ± 4 μg/g. Violaxantina e neoxantina foram os carotenóides predominantes, somando 196 ± 5 μg/g. seguidos por zetacaroteno, betacaroteno 5,6-epóxido, betacaroteno e fitoflueno. A semente foi a parte do fruto que apresentou maior teor de lipídeos totais, com 4,6 ± 0,2 %, e a polpa, 0,61 ± 0,03 %. Os resultados indicam que o canistel apresenta teores de carotenóides totais muito elevados e pode ser considerado uma boa fonte de provitamina A (59 ± 6 RAE/100g, se comparado com outras frutas normalmente consumidas. No entanto, os principais carotenoides encontrados em sua polpa são destituídos de atividade provitamina A.Canistel (Pouteria campechiana is a native fruit from Central America and Mexico. This fruit still not known in Brazil, presents an orange-yellow pulp rich in carotenoids, which has attracted interest as a potential source of vitamin A. The purpose of this study was to determine the carotenoids content and pro-vitamin A values in the pulp of canistel, as well as the percentage of moisture and lipids in the pulp and seeds. Carotenoids were separated by open column chromatography. The content of total carotenoids was 226 ± 4 μg/g. Violaxantin and neoxantin were the predominant carotenoids with 196 ± 5 μg/g followed by zeta-carotene, beta-carotene 5,6-epoxide, beta-carotene and phytofluene. The seeds presented higher levels of total lipids with 4.6 ± 0.2 %, while pulp had 0.61 ± 0.03 % of total lipid. These

  9. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  10. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Science.gov (United States)

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  11. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    Directory of Open Access Journals (Sweden)

    Leenawaty Limantara3

    2012-12-01

    Full Text Available Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarezii, Sargassum sp, and Caulerpa sp. Carotenoids from algae has been proven as a powerful antioxidant and may prevent some degenerative diseases, cardiovascular, and cancer. Carotenoid also has been applied as a natural dye and dietary supplements. Biotechnology has been developed to increase the production of carotenoids from micro- and macroalgae. The large-scale cultivation of microalgae, either in open or closed system are shown to increase carotenoid production. During cultivation, some stress conditions can be specifically manipulated to optimize carotenoid production from microalgae.

  12. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Directory of Open Access Journals (Sweden)

    Marcello Maggio

    2015-08-01

    Full Text Available Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2 in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000 by High-Performance Liquid Chromatography. Estradiol and testosterone (T levels were assessed by Radioimmunometry (RIA and testosterone-to-estradiol ratio (T/E2, as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1 and further adjusted for other confounders including Body Mass Index (BMI BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2 were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02 and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007 were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01. After adjustment for other confounders (Model 2, the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01, β-carotene (β ± SE = −0.29

  13. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women.

    Science.gov (United States)

    Maggio, Marcello; de Vita, Francesca; Lauretani, Fulvio; Bandinelli, Stefania; Semba, Richard D; Bartali, Benedetta; Cherubini, Antonio; Cappola, Anne R; Ceda, Gian Paolo; Ferrucci, Luigi

    2015-08-05

    In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2) in a cohort of late post-menopausal women. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998-2000) by High-Performance Liquid Chromatography. Estradiol and testosterone (T) levels were assessed by Radioimmunometry (RIA) and testosterone-to-estradiol ratio (T/E2), as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1) and further adjusted for other confounders including Body Mass Index (BMI) BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2) were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. After adjustment for age, α-carotene (β ± SE = -0.01 ± 0.004, p = 0.02) and β-carotene (β ± SE = -0.07 ± 0.02, p = 0.0007) were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01). After adjustment for other confounders (Model 2), the inverse relationship between α-carotene (β ± SE = -1.59 ± 0.61, p = 0.01), β-carotene (β ± SE = -0.29 ± 0.08, p = 0.0009), and E2 persisted whereas the

  14. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.

    Science.gov (United States)

    de Faria, A F; de Rosso, V V; Mercadante, A Z

    2009-06-01

    Carotenoids are pigments responsible for the yellow-reddish color of many foods and are related to important functions and physiological actions, preventing several chronic-degenerative diseases. The objective of this study was to confirm the carotenoid composition of jackfruit by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). The main carotenoids were all-trans-lutein (24-44%), all-trans-beta-carotene (24-30%), all-trans-neoxanthin (4-19%), 9-cis-neoxanthin (4-9%) and 9-cis-violaxanthin (4-10%). Either qualitative or quantitative differences, mainly related to the lutein proportion, were found among three batches of jackfruit. Since the fruits from batch A showed significantly lower contents for almost all carotenoids, it also had the lowest total carotenoid content (34.1 microg/100 g) and provitamin A value, whereas the total carotenoid ranged from 129.0 to 150.3 microg/100 g in the other batches. The provitamin A values from batches B and C were 3.3 and 4.3 microg RAE/100 g, respectively. The carotenoid composition of jackfruit was successfully determined, where 14 of the 18 identified carotenoids were reported for first time. Differences among batches may be due to genetic and/or agricultural factors.

  15. More than meets the eye: from carotenoid biosynthesis to new insights into apocarotenoid signaling

    Science.gov (United States)

    Carotenoids are a class of isoprenoid compounds synthesized almost exclusively in plants and are involved in a myriad of roles including the provision of flower and fruit pigmentation for the attraction of pollinators and seed dispersing organisms. While carotenoids are essential throughout plant de...

  16. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    NARCIS (Netherlands)

    Dias, M.G.; Oliveira, L.; Camoes, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M.

    2010-01-01

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids a-carotene, ß-carotene, ß-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the

  17. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    Science.gov (United States)

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  18. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  19. Longitudinal Survey of Carotenoids in Human Milk from Urban Cohorts in China, Mexico, and the USA.

    Directory of Open Access Journals (Sweden)

    Tristan E Lipkie

    Full Text Available Emerging evidence indicates that carotenoids may have particular roles in infant nutrition and development, yet data on the profile and bioavailability of carotenoids from human milk remain sparse. Milk was longitudinally collected at 2, 4, 13, and 26 weeks postpartum from twenty mothers each in China, Mexico, and the USA in the Global Exploration of Human Milk Study (n = 60 donors, n = 240 samples. Maternal and neonatal plasma was analyzed for carotenoids from the USA cohort at 4 weeks postpartum. Carotenoids were analyzed by HPLC and total lipids by Creamatocrit. Across all countries and lactation stages, the top four carotenoids were lutein (median 114.4 nmol/L, β-carotene (49.4 nmol/L, β-cryptoxanthin (33.8 nmol/L, and lycopene (33.7 nmol/L. Non-provitamin A carotenoids (nmol/L and total lipids (g/L decreased (p0.05 with lactation stage. Total carotenoid content and lutein content were greatest from China, yet lycopene was lowest from China (p0.3. This enhanced understanding of neonatal exposure to carotenoids during development may help guide dietary recommendations and design of human milk mimetics.

  20. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development.

    Science.gov (United States)

    Rühl, R

    2013-01-01

    Carotenoids are important derivatives of the human diet and occur in high concentrations in the human organism. Various carotenoids are also present in human breast milk and are transferred to breast-fed children. The alternative to breastfeeding is supplementation with an infant milk formula, but these formulas contain only a limited variety of carotenoids. Our question is: 'What is the function of various carotenoids in human nutrition with a special emphasis on child development and the development of atopy?' In this review, the mechanisms of action of the most important non-pro-vitamin A and pro-vitamin A carotenoids: α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene and retinoids are discussed. In summary, the combination of carotenoids, especially lycopene, seems to be of great importance, and exclusive usage of β-carotene in infant formula may yield in an increased atopy prevalence mediated in various target organs like the skin, lungs and immune competent cells. We conclude that the determination of novel bioactive metabolites of various carotenoids, at various stages in different organs during atopy development, might be the key to understanding the potential importance of carotenoids on atopy development. Copyright © 2013 S. Karger AG, Basel.

  1. Longitudinal Survey of Carotenoids in Human Milk from Urban Cohorts in China, Mexico, and the USA.

    Science.gov (United States)

    Lipkie, Tristan E; Morrow, Ardythe L; Jouni, Zeina E; McMahon, Robert J; Ferruzzi, Mario G

    2015-01-01

    Emerging evidence indicates that carotenoids may have particular roles in infant nutrition and development, yet data on the profile and bioavailability of carotenoids from human milk remain sparse. Milk was longitudinally collected at 2, 4, 13, and 26 weeks postpartum from twenty mothers each in China, Mexico, and the USA in the Global Exploration of Human Milk Study (n = 60 donors, n = 240 samples). Maternal and neonatal plasma was analyzed for carotenoids from the USA cohort at 4 weeks postpartum. Carotenoids were analyzed by HPLC and total lipids by Creamatocrit. Across all countries and lactation stages, the top four carotenoids were lutein (median 114.4 nmol/L), β-carotene (49.4 nmol/L), β-cryptoxanthin (33.8 nmol/L), and lycopene (33.7 nmol/L). Non-provitamin A carotenoids (nmol/L) and total lipids (g/L) decreased (p0.05) with lactation stage. Total carotenoid content and lutein content were greatest from China, yet lycopene was lowest from China (pLutein, β-cryptoxanthin, and β-carotene, and lycopene concentrations in milk were significantly correlated to maternal plasma and neonatal plasma concentrations (pmilk and neonatal plasma (p>0.3). This enhanced understanding of neonatal exposure to carotenoids during development may help guide dietary recommendations and design of human milk mimetics.

  2. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    Science.gov (United States)

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  3. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake

    Directory of Open Access Journals (Sweden)

    Davood Naziri

    2014-03-01

    Full Text Available Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v. The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC in the presence of antimony pentachloride (SbCl5. The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR. Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786. Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies.

  4. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  5. Plasma carotenoid concentrations in relation to acute respiratory infections in elderly people

    NARCIS (Netherlands)

    Graat, J.M.; Kok, F.J.; Schouten, E.G.

    2004-01-01

    A high plasma carotenoid concentration could improve the immune response and result in decreased risk of infectious diseases. However, data on the relationship of plasma carotenoid concentration with acute respiratory infections, which occur frequently in elderly people, are scarce. We investigated,

  6. Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes).

    Science.gov (United States)

    Yang, Tao; Sun, Junde; Lian, Tiantian; Wang, Wenzhao; Dong, Cai-Hong

    2014-01-01

    Natural carotenoids have attracted great attention for their important beneficial effects on human health and food coloring function. Cordyceps militaris, a well-known edible and medicinal fungus, is a potential source of natural carotenoids. The present study aimed to optimize the process parameters for carotenoid extraction from this mushroom. The effects of different methods of breaking the fungal cell wall and organic solvents were studied by the one-factor-at-a-time method. Subsequently, the process parameters including the duration of the extraction time, the number of extractions, and the solvent to solid ratio were optimized by using the Box-Behnken design. The optimal extraction conditions included using an acid-heating method to break the cell wall and later extracting three times, each for a 1 h duration, with a 4:1 mixture of acetone: petroleum ether and a solvent: solid ratio of 24:1. The carotenoid content varied from 2122.50 to 3847.50 µg/g dry weights in different commercially obtained fruit bodies of C. militaris. The results demonstrated that the C. militaris contained more carotenoid content in its fruit bodies than other known mushrooms. Stability monitoring by HPLC demonstrated that the carotenoids could be stored at 4°C for 40 d. It is suggested that the carotenoid content should be considered as the quality standard of commercial products of this valued mushroom. These findings will facilitate the exploration of carotenoids from C. militaris.

  7. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  8. CAROTENOID RETENTION IN MINIMALLY PROCESSED BIOFORTIFIED GREEN CORN STORED UNDER RETAIL MARKETING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Natália Alves Barbosa

    2015-08-01

    Full Text Available Storing processed food products can cause alterations in their chemical compositions. Thus, the objective of this study was to evaluate carotenoid retention in the kernels of minimally processed normal and vitamin A precursor (proVA-biofortified green corn ears that were packaged in polystyrene trays covered with commercial film or in multilayered polynylon packaging material and were stored. Throughout the storage period, the carotenoids were extracted from the corn kernels using organic solvents and were quantified using HPLC. A completely factorial design including three factors (cultivar, packaging and storage period was applied for analysis. The green kernels of maize cultivars BRS1030 and BRS4104 exhibited similar carotenoid profiles, with zeaxanthin being the main carotenoid. Higher concentrations of the carotenoids lutein, β-cryptoxanthin, and β-carotene, the total carotenoids and the total vitamin A precursor carotenoids were detected in the green kernels of the biofortified BRS4104 maize. The packaging method did not affect carotenoid retention in the kernels of minimally processed green corn ears during the storage period.

  9. Amount and qualities of carotenoids in fillets of fish species fed with ...

    African Journals Online (AJOL)

    Using column (CC), thin- layer (TLC) and high- performance liquid chromatography (HPLC), carotenoid content was examined in the fillets (muscles with skin) of 16 fish species from the fisheries of West African Coast. 15 carotenoids, including 6 ketocarotenoids (4'- hydroxyechinenone, canthaxanthin, phoenicopterone, ...

  10. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.

    Science.gov (United States)

    Luisa Bonet, M; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2015-04-15

    A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  12. Macular pigment carotenoids in the retina and occipital cortex are related in humans

    Science.gov (United States)

    Objectives: Lutein and zeaxanthin are dietary carotenoids that preferentially accumulate in the macular region of the retina. Together with mesozeaxanthin, a conversion product of lutein in the macula, they form the macular pigment. Lutein is also the predominant carotenoid in human brain tissue and...

  13. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  14. Carotenoid profiling of leaves of selected eggplant accessions subjected to drought stress

    Science.gov (United States)

    This study focused on the quantification of carotenoids of the leaves of African eggplants commonly consumed as leafy and fruit vegetables. The results gave comparative profiles of carotenoids at different growth and developmental stages and under drought stress. Stress was achieved by limiting irri...

  15. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  17. What does carotenoid-dependent coloration tell? : Plasma carotenoid level signals immunocompetence and oxidative stress state in birds - A meta-analysis

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Cohen, Alan A.; Verhulst, Simon

    2012-01-01

    Mechanisms maintaining honesty of sexual signals are far from resolved, limiting our understanding of sexual selection and potential important parts of physiology. Carotenoid pigmented visual signals are among the most extensively studied sexual displays, but evidence regarding hypotheses on how

  18. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  19. Food carotenoids: analysis, composition and alterations during storage and processing of foods.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    2003-01-01

    Substantial progress has been achieved in recent years in refining the analytical methods and evaluating the accuracy of carotenoid data. Although carotenoid analysis is inherently difficult and continues to be error prone, more complete and reliable data are now available. Rather than expressing the analytical results as retinol equivalents, there is a tendency to present the concentrations of individual carotenoids, particularly beta-carotene, beta-cryptoxanthin, alpha-carotene, lycopene, lutein and zeaxanthin, carotenoids found in the human plasma and considered to be important to human health in terms of the provitamin A activity and/or reduction of the risk for developing degenerative diseases. With the considerable effort directed to carotenoid analysis, many food sources have now been analyzed in different countries. The carotenoid composition of foods vary qualitatively and quantitatively. Even in a given food, compositional variability occurs because of factors such as stage of maturity, variety or cultivar, climate or season, part of the plant consumed, production practices, post-harvest handling, processing and storage of food. During processing, isomerization of trans-carotenoids, the usual configuration in nature, to the cis-forms occurs, with consequent alteration of the carotenoids' bioavailability and biological activity. Isomerization is promoted by light, heat and acids. The principal cause of carotenoid loss during processing and storage of food is enzymatic or non-enzymatic oxidation of the highly unsaturated carotenoid molecules. The occurrence and extent of oxidation depends on the presence of oxygen, metals, enzymes, unsaturated lipids, prooxidants, antioxidants; exposure to light; type and physical state of the carotenoids present; severity and duration of processing; packaging material; storage conditions. Thus, retention of carotenoids has been the major concern in the preparation, processing and storage of foods. However, in recent years

  20. The effect of cellular carotenoid levels in micrococcus luteus on resistance to gamma radiation

    International Nuclear Information System (INIS)

    Al-Wandawi, K. H.

    2000-01-01

    In the present study, a biological system was developed to link the cellular carotenoid levels to Gamma radiation resistance in bacteria for the frst time. thus, in a non-photosynrhetic bacterium, in Micrococcus Luteus an inverse relationship was found between the increase in diphenylamine (DPA) concentration (5.25 μg/ml culture) and the polar cellular carotenoid pigments (C-45 and C-50 carotenoids and their glucosides). It was also found that irradiation of cells with different carotenoid concentrations with doses of γ-radiation in the range of (0.2500 gray) under oxic, air and hypoxic conditions showed that carotenoid pigments offer no significant protection as they usually do in case of visible light. (author).15 refs., 5 figs., 3 tabs

  1. Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development.

    Science.gov (United States)

    Obrero, Ángeles; González-Verdejo, Clara I; Die, Jose V; Gómez, Pedro; Del Río-Celestino, Mercedes; Román, Belén

    2013-07-03

    The control of gene expression is a crucial regulatory mechanism in carotenoid accumulation of fruits and flowers. We investigated the role of transcriptional regulation of nine genes involved in the carotenoid biosynthesis pathway in three varieties of Cucurbita pepo with evident differences in fruit color. The transcriptional levels of the key genes involved in the carotenoid biosynthesis were higher in flower-, leaf-, and fruit skin tissues than flesh tissues. This correlated with higher concentration of carotenoid content in these tissues. The differential expression among the colored and white cultivars detected for some genes, such as LCYe, in combination with other regulatory mechanisms, could explain the large differences found in terms of carotenoid content among the three varieties. These results are a first step to elucidate carotenogenesis in C. pepo and demonstrate that, in general, regulation of the pathway genes is a critical factor that determines the accumulation of these compounds.

  2. SOLANUM LYCOPERSICUM QUANTITATIVE THING LAYER CHROMATOGRAPHY FOR EVALUATION OF CAROTENOID COMPOSITION OF TOMATOES SOLANUM LYCOPERSICUM

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2017-01-01

    Full Text Available Qualitative and quantitative evaluation of tomatoes carote-noid composition is considered to be the basis of tomato selection. Among known methods of identification and carotenoid content determination thing layer chromatography (TLC is characterized by inexpensive, quick and availab-le method of analysis. Comparison of individual tomato carotenoid content data obtained using wellknown empirical formulas and based of TLC separation on chromatoraphic paper was achieved. Empirical formulas for the determination of lycopene and beta-carotene concentrations were shown to give high variations in beta-carotene content and decreased values of total carotenoids concentration values. Developed conditions of chromatographic separation and identification of selected carotenoids are based on different polarity of individual pigments and specific absorption spectra of the latter. Method of thin layer chromatography may serve as a quick and effective method for quality evaluation of tomato fruit of different color and determination of beta-carotene, ζ-carotene, neurosporene, lycopene and lutein content.

  3. Influence of sample processing on the analysis of carotenoids in maize.

    Science.gov (United States)

    Rivera, Sol; Canela, Ramon

    2012-09-21

    We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.

  4. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review.

    Science.gov (United States)

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-05-30

    Carotenoids are a diverse group of tetraterpenoid pigments that play indispensable roles in plants and animals. The biosynthesis of carotenoids in plants is strictly regulated at the transcriptional and post-transcriptional levels in accordance with inherited genetic signals and developmental requirements and in response to external environmental stimulants. The alteration in the biosynthesis of carotenoids under the influence of external environmental stimulants, such as high light, drought, salinity, and chilling stresses, has been shown to significantly influence the nutritional value of crop plants. In addition to these stimulants, several pre- and postharvesting cultivation practices significantly influence carotenoid compositions and contents. Thus, this review discusses how various environmental stimulants and pre- and postharvesting factors can be positively modulated for the enhanced biosynthesis and accumulation of carotenoids in the edible parts of crop plants, such as the leaves, roots, tubers, flowers, fruit, and seeds. In addition, future research directions in this context are identified.

  5. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

    Science.gov (United States)

    Hernández-Ortega, Marcela; Ortiz-Moreno, Alicia; Hernández-Navarro, María Dolores; Chamorro-Cevallos, Germán; Dorantes-Alvarez, Lidia; Necoechea-Mondragón, Hugo

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH+ cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief. PMID:23091348

  6. Carotenoids from Capsicum annuum fruits: Influence of spectral quality of radiation

    International Nuclear Information System (INIS)

    Lopez, M.; Candela, M.E.; Sabater, F.

    1986-01-01

    Capsicum annuum L. cv. Ramillete fruits grown in the field were covered 60 d after flowering with “white”, yellow, red and blue cellophane filters. Two other sets were left in full sunlight and under cover, respectively. After 30 d of treatment, during the ripening period, the contents of individual carotenoids were analyzed. The red radiation was the most effective to increase the carotenoid biosynthesis, but the green and blue radiations inhibited their production. Either class of filters inhibited the formation of capsanthin, the most important carotenoid in the production of red colour of the maturation, but capsorubin, the other carotenoid responsible for the maturation colour, was more enhanced in the shade and under red radiation. Neither type of radiation was so efficient in increasing the total carotenoids content as the full sun radiation

  7. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  8. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids.

    Science.gov (United States)

    Carrillo, Celia; Buvé, Carolien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc

    2017-07-15

    Although natural structural barriers are factors limiting nutrient bioaccessibility, their specific role in anthocyanin bioaccessibility is still unknown. To better understand how natural barriers govern bioactive compound bioaccessibility, an experimental approach comparing anthocyanins and carotenoids was designed, using a single plant matrix. Initial results revealed increased anthocyanin bioaccessibility in masticated black carrot. To explain this observation, samples with increasing levels of bioencapsulation (free-compound, homogenized-puree, puree) were examined. While carotenoid bioaccessibility was inversely proportional to the level of bioencapsulation, barrier disruption did not increase anthocyanin bioaccessibility. This means that mechanical processing is of particular importance in the case of carotenoid bioaccessibility. While micelle incorporation is the limiting factor for carotenoid bioaccessibility, anthocyanin degradation under alkaline conditions in the gastrointestinal tract dominates. In the absence of structural barriers, anthocyanin bioaccessibility is greater than that of carotenoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review.

    Science.gov (United States)

    Roohbakhsh, Ali; Karimi, Gholamreza; Iranshahi, Mehrdad

    2017-07-01

    Carotenoids are a large class of natural antioxidants that occur in many vegetables, foods and other natural sources. To date, a large number of biological properties have been reported from carotenoids, particularly protective effects against diabetes mellitus (DM), cancer, and neurodegenerative, metabolic and cardiovascular diseases. However, recent studies including clinical evidences, have shown that carotenoids play a role in the treatment of diabetes via enhancing insulin sensitivity. They are also able to protect the body from long-term consequences of diabetes including infectious diseases, nephropathy, neuronal and eye abnormalities. In this review, we try to discuss the mechanisms behind the biological effects of carotenoids for the prevention and treatment of DM and its complications. The authors believe that carotenoids will have a prominent place in the treatment of DM and its complications in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  11. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  12. Polycystin-1 Cleavage and the Regulation of Transcriptional Pathways

    Science.gov (United States)

    Merrick, David; Bertuccio, Claudia A.; Chapin, Hannah C.; Lal, Mark; Chauvet, Veronique; Caplan, Michael J.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end stage renal disease, affecting ~1 in 1,000 people. The disease is characterized by the development of numerous large fluid filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments that manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein. PMID:23824180

  13. Relationship between synthesis and cleavage of poliovirus-specific proteins.

    OpenAIRE

    Thomas, A A; Voorma, H O; Boeye, A

    1983-01-01

    Poliovirus proteinase was studied in vitro in lysates from poliovirus-infected HeLa cells. Preincubation of these lysates caused (i) a reduction in poliovirus proteinase activity and (ii) a partial dependence on exogenous mRNA for optimal translation. Proteins translated from endogenous poliovirus RNA in preincubated extracts from virus-infected HeLa cells are poorly cleaved. This cleavage deficiency is alleviated by adding fresh poliovirus RNA to the translation system, thus, allowing re-ini...

  14. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  15. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  16. Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors

    Science.gov (United States)

    Fernández-Marín, Beatriz; Míguez, Fátima; Méndez-Fernández, Leire; Agut, Agustí; Becerril, José M.; García-Plazaola, José I.; Kranner, Ilse; Colville, Louise

    2017-01-01

    Carotenoids distribution and function in seeds have been very scarcely studied, notwithstanding their pivotal roles in plants that include photosynthesis and phytohormone synthesis, pigmentation, membrane stabilization and antioxidant activity. Their relationship with tocochromanols, whose critical role in maintaining seed viability has already been evidenced, and with chlorophylls, whose retention in mature seed is thought to have negative effects on storability, remain also unexplored. Here, we aimed at elucidating seed carotenoids relationship with tocochromanols and chlorophylls with regard to phylogenetic and ecological traits and at understanding their changes during germination. The composition and distribution of carotenoids were investigated in seeds of a wide range of wild species across the Fabaceae (the second-most economically important family after the Poaceae). Photosynthetic pigments and tocochromanols were analyzed by HPLC in mature dry seeds of 50 species representative of 5 subfamilies within the Fabaceae (including taxa that represent all continents, biomes and life forms within the family) and at key timepoints during seedling establishment in three species representative of distinct clades. Total-carotenoids content positively correlated with tocopherols in the basal subfamilies Detarioideae, Cercidoideae, and Dialioideae, and with chlorophylls in the Papilionoideae. Papilionoideae lacked tocotrienols and had the highest total-carotenoids, chlorophyll and γ-tocopherol contents. Interestingly, lutein epoxide was present in 72% of the species including several herbs from different subfamilies. Overall, species original from temperate biomes presented higher carotenoids and lower tocochromanols levels than those from tropical biomes. Also shrub species showed higher carotenoids content than herbs and trees. During germination, total content of photosynthetic pigments increased in parallel to changes in relative abundance of carotenoids

  17. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8′-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of CapryolTM90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  18. Carotenoid supplementation positively affects the expression of a non-visual sexual signal.

    Directory of Open Access Journals (Sweden)

    Alain J-M Van Hout

    Full Text Available Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris. After only 3-7 days, we found a significant (body-mass independent positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T, we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual signalling need not be dependent on their function as pigments.

  19. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  20. Cleavage mechanoluminescence in elemental and III-V semiconductors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Patel, R.P.; Gour, Anubha S.; Chandra, V.K.; Gupta, R.K.

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I m at the time t m corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity I m corresponding to the peak of the ML intensity versus time curve and for the total ML intensity I T . It is shown that both I m and I T should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/t m

  1. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  2. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon; Jamil, Muhammad; Wang, Jian You; Al-Babili, Salim; Mahfouz, Magdy M.

    2018-01-01

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a dwarf phenotype, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. Taken together, our results show the power of CRISPR/Cas9 for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.

  3. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon

    2018-01-28

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a dwarf phenotype, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. Taken together, our results show the power of CRISPR/Cas9 for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.

  4. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice

    Science.gov (United States)

    Scope: Beta-carotene-15,15'-oxygenase (BCO1) and beta-carotene-9',10'-oxygenase (BCO2) metabolize lycopene to biologically active metabolites, which can ameliorate nonalcoholic fatty liver disease (NAFLD). We investigated the effects of tomato powder (TP), a whole food containing substantial lycopen...

  5. Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27

    International Nuclear Information System (INIS)

    Hoshino, T.; Yoshino, Y.; Guevarra, E.D.; Ishida, S.; Hiruta, T.; Fujii, R.; Nakahara, T.

    1994-01-01

    Twenty-two carotenoid underproducing and thirteen overproducing mutants were obtained from Thermus thermophilus HB27. The strain HB27 was found to produce at least seven colored carotenoids, believed to be identical to those produced by Thermus aquaticus YT1. Based on the results of the genetic analyses performed on twelve carotenoid underproducing mutants, they were classified into three groups; groups 1, 2 and 3. No colored carotenoid was extracted from the cells of mutants belonging to groups 2 and 3, although the accumulation of phytoene, a colorless carotenoid, was observed in group 2 strains. Group 1 was subdivided into groups 1-a and 1-b, where 1-a stains produced neither colored carotenoids nor phytoene and 1-b strains produced two polar colored carotenoids. All of the overproducing mutants produced about twelve times as much seven colored carotenoid mixtures as the parental strain. The mutation loci among all the overproducing mutants were very close to one another, possibly in the same gene. Carotenoid overproducing mutants showed an extensive resistance to UV-irradiation and showed poorer growth at higher temperatures. Carotenoid underproducing mutants were slightly more UV-sensitive but they grew almost normally at higher temperatures. These results suggest that carotenoids are secondary metabolites which are not essential for growth of T. thermophilus

  6. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    Science.gov (United States)

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-07

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy.

  7. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage.

    Science.gov (United States)

    Moreno, Jose Antonio; Díaz-Gómez, Joana; Nogareda, Carmina; Angulo, Eduardo; Sandmann, Gerhard; Portero-Otin, Manuel; Serrano, José C E; Twyman, Richard M; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-10-14

    Carotenoids are important dietary nutrients with health-promoting effects. The biofortification of staple foods with carotenoids provides an efficient delivery strategy but little is known about the fate and distribution of carotenoids supplied in this manner. The chicken provides a good model of human carotenoid metabolism so we supplemented the diets of laying hens using two biofortified maize varieties with distinct carotenoid profiles and compared the fate of the different carotenoids in terms of distribution in the feed, the hen's livers and the eggs. We found that after a period of depletion, pro-vitamin A (PVA) carotenoids were preferentially diverted to the liver and relatively depleted in the eggs, whereas other carotenoids were transported to the eggs even when the liver remained depleted. When retinol was included in the diet, it accumulated more in the eggs than the livers, whereas PVA carotenoids showed the opposite profile. Our data suggest that a transport nexus from the intestinal lumen to the eggs introduces bottlenecks that cause chemically-distinct classes of carotenoids to be partitioned in different ways. This nexus model will allow us to optimize animal feed and human diets to ensure that the health benefits of carotenoids are delivered in the most effective manner.

  8. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    Science.gov (United States)

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries

    Directory of Open Access Journals (Sweden)

    Ramaraj Sathasivam

    2018-01-01

    Full Text Available Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health.

  10. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction

    Directory of Open Access Journals (Sweden)

    Tina Kyndt

    2017-06-01

    Full Text Available In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN Meloidogyne graminicola and the monocot model plant rice (Oryza sativa. Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA. When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.

  11. Inter-population variation of carotenoids in Galápagos land iguanas (Conolophus subcristatus).

    Science.gov (United States)

    Costantini, David; Dell'omo, Giacomo; Casagrande, Stefania; Fabiani, Anna; Carosi, Monica; Bertacche, Vittorio; Marquez, Cruz; Snell, Howard; Snell, Heidi; Tapia, Washington; Gentile, Gabriele

    2005-10-01

    Carotenoids have received much attention from biologists because of their ecological and evolutionary implications in vertebrate biology. We sampled Galápagos land iguanas (Conolophus subcristatus) to investigate the types and levels of blood carotenoids and the possible factors affecting inter-population variation. Blood samples were collected from populations from three islands within the species natural range (Santa Cruz, Isabela, and Fernandina) and one translocated population (Venecia). Lutein and zeaxanthin were the predominant carotenoids found in the serum. In addition, two metabolically modified carotenoids (anhydrolutein and 3'-dehydrolutein) were also identified. Differences in the carotenoid types were not related to sex or locality. Instead, carotenoid concentration varied across the localities, it was higher in females, and it was positively correlated to an index of body condition. Our results suggest a possible sex-related physiological role of xanthophylls in land iguanas. The variation in the overall carotenoid concentration between populations seems to be related to the differences in local abundance and type of food within and between islands.

  12. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.

    Science.gov (United States)

    Azevedo-Meleiro, Cristiane H; Rodriguez-Amaya, Delia B

    2007-05-16

    Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposição' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.

  13. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  14. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women.

    Science.gov (United States)

    Zhao, Xianfeng; Aldini, Giancarlo; Johnson, Elizabeth J; Rasmussen, Helen; Kraemer, Klaus; Woolf, Herb; Musaeus, Nina; Krinsky, Norman I; Russell, Robert M; Yeum, Kyung-Jin

    2006-01-01

    Oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging such as cancer and cardiovascular disease. Carotenoids could be a part of a protective strategy to minimize oxidative damage in vulnerable populations, such as the elderly. Our aim was to determine the protective effect of carotenoids against DNA damage. A randomized, double-blind, placebo-controlled intervention study was conducted. Thirty-seven healthy, nonsmoking postmenopausal women aged 50-70 y were randomly assigned to 1 of 5 groups and were instructed to consume a daily dose of mixed carotenoids (beta-carotene, lutein, and lycopene; 4 mg each), 12 mg of a single carotenoid (beta-carotene, lutein, or lycopene), or placebo for 56 d. Plasma carotenoid concentrations were analyzed by using HPLC, and lymphocyte DNA damage was measured by using a single-cell gel electrophoresis (comet) assay. At day 57, all carotenoid-supplemented groups showed significantly lower endogenous DNA damage than at baseline (P lutein, beta-carotene, and lycopene), an intake that can be achieved by diet, or a larger dose (12 mg) of individual carotenoids exerts protection against DNA damage.

  15. Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis.

    Science.gov (United States)

    Yang, Zhifang; Zhang, Zhumin; Penniston, Kristina L; Binkley, Neil; Tanumihardjo, Sherry A

    2008-05-01

    Antioxidant defenses may be compromised in osteoporotic women. Little is known about fruit and vegetable or carotenoid consumption among postmenopausal women. The primary carotenoids in human serum are alpha- and beta-carotene, lycopene, beta-cryptoxanthin, lutein, and zeaxanthin. This study investigated the interrelationships among serum carotenoid concentrations, fruit and vegetable intake, and osteoporosis in postmenopausal women (n = 59, 62.7 +/- 8.8 y). Bone density was assessed by dual energy x-ray absorptiometry and osteoporosis diagnosis was based upon T-scores. Serum samples (n = 53) and three-day diet records (n = 49) were analyzed. Logistic regression analyzed differences between carotenoids after adjusting for serum retinol; supplement usage; milk, yogurt, fruit, and vegetable intake; and body mass index (BMI). Pearson statistics correlated carotenoids with specific fruit or vegetable intake. Serum lycopene concentrations were lower in the osteoporosis group than controls (p = 0.03). Beta-cryptoxanthin intake was higher in the osteoporosis group (p = 0.0046). Total fruit and vegetable intakes were correlated with serum lycopene and beta-cryptoxanthin (p = 0.03, 0.006, respectively). Serum alpha-carotene concentration was associated with carrot intake, and zeaxanthin and beta-cryptoxanthin with lettuce intake. Carotenoids that may have beneficial skeletal effects are lower in women with osteoporosis. Research is needed to identify potential protective mechanisms or utilization of carotenoids during osteoporosis.

  16. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives.

    Science.gov (United States)

    Del Campo, José A; García-González, Mercedes; Guerrero, Miguel G

    2007-04-01

    Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on beta-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

  17. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  18. Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men.

    Directory of Open Access Journals (Sweden)

    Jouni Karppi

    Full Text Available BACKGROUND: Several previous epidemiologic studies have shown that high blood levels of carotenoids may be protective against early atherosclerosis, but results have been inconsistent. We assessed the association between atherosclerotic progression, measured by intima-media thickness of the common carotid artery wall, and serum levels of carotenoids. METHODS: We studied the effect of carotenoids on progression of early atherosclerosis in a population-based study. The association between concentrations of serum carotenoids, and intima-media thickness of the common carotid artery wall was explored in 840 middle-aged men (aged 46-65 years from Eastern Finland. Ultrasonography of the common carotid arteries were performed at baseline and 7-year follow-up. Serum levels of carotenoids were analyzed at baseline. Changes in mean and maximum intima media thickness of carotid artery wall were related to baseline serum carotenoid levels in covariance analyses adjusted for covariates. RESULTS: In a covariance analysis with adjustment for age, ultrasound sonographer, maximum intima media thickness, examination year, body mass index, systolic blood pressure, smoking, physical activity, serum LDL cholesterol, family history of coronary heart disease, antihypertensive medication and serum high sensitivity C-reactive protein, 7-year change in maximum intima media thickness was inversely associated with lycopene (p = 0.005, α-carotene (p = 0.002 and β-carotene (p = 0.019, respectively. CONCLUSIONS: The present study shows that high serum concentrations of carotenoids may be protective against early atherosclerosis.

  19. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2017-09-01

    Full Text Available The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia, that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis, neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  20. Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method

    Directory of Open Access Journals (Sweden)

    Irini F. Strati

    2012-12-01

    Full Text Available Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose egg yolks through the use of a modified gradient elution HPLC method with a C30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis-isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All-trans lycopene predominated in tomato waste, followed by all-trans-β-carotene, 13-cis-lutein and all-trans lutein, while minor amounts of 9-cis-lutein, 13-cis-β-carotene and 9-cis-β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all-trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all-trans lutein and all-trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all-trans-lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis-isomers, originating from a wide range of matrices.

  1. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    Directory of Open Access Journals (Sweden)

    Emmanuelle Reboul

    2013-09-01

    Full Text Available Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet, and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others. Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability.

  2. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  3. Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models123

    Science.gov (United States)

    Rubin, Lewis P; Ross, A Catharine; Stephensen, Charles B; Bohn, Torsten; Tanumihardjo, Sherry A

    2017-01-01

    The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body’s response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review. PMID:28298266

  4. Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models.

    Science.gov (United States)

    Rubin, Lewis P; Ross, A Catharine; Stephensen, Charles B; Bohn, Torsten; Tanumihardjo, Sherry A

    2017-03-01

    The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body's response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review. © 2017 American Society for Nutrition.

  5. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    Science.gov (United States)

    Bhagavathy, S; Sumathi, P

    2012-01-01

    Objective To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein, β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (Pcarotenoids when compared with the positive controls (Pcarotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects. PMID:23569879

  6. Consuming High-Carotenoid Fruit and Vegetables Influences Skin Yellowness and Plasma Carotenoids in Young Women: A Single-Blind Randomized Crossover Trial.

    Science.gov (United States)

    Pezdirc, Kristine; Hutchesson, Melinda J; Williams, Rebecca L; Rollo, Megan E; Burrows, Tracy L; Wood, Lisa G; Oldmeadow, Christopher; Collins, Clare E

    2016-08-01

    Consumption of dietary carotenoids from fruits and vegetables (F/V) leads to accumulations in human skin, altering skin yellowness. The influence of the quantity of F/V consumed on skin yellowness and plasma carotenoid concentrations has not been examined previously. To compare the influence of consuming high-carotenoid-containing F/V (HCFV) (176,425 μg beta carotene/wk) vs low-carotenoid F/V (LCFV) (2,073 μg beta carotene/wk) on skin yellowness and plasma carotenoid concentrations, over 4 weeks. A single-blind randomized controlled crossover trial from October 2013 to March 2014. Thirty women were randomized to receive 7 daily servings of HCFV or LCFV for 4 weeks. Following a 2-week washout period they followed the alternate intervention. Skin color (Commission Internationale de l'Eclairage L*a*b* color space, where L* represents skin lightness and positive values of a* and b* represent degrees of redness and yellowness, respectively) was assessed by reflectance spectroscopy in both sun-exposed and nonexposed skin areas. Fasting plasma carotenoids were determined by high-performance liquid chromatography, before and after each intervention period. Linear mixed models were used to determine the HCFV and LCFV response on skin color and plasma carotenoids, adjusting for intervention order, time, and interaction between baseline differences and time. There were no significant differences in mean daily fruit (P=0.42) and vegetable (P=0.17) intakes between HCFV and LCFV groups. Dietary alpha carotene, beta carotene, lutein, and beta cryptoxanthin intakes were significantly different between the two groups (Pcarotenoid concentrations were significantly higher following HCFV than LCFV over 4 weeks. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  8. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    Science.gov (United States)

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  9. Raman spectroscopy application in frozen carrot cooked in different ways and the relationship with carotenoids.

    Science.gov (United States)

    Camorani, Paolo; Chiavaro, Emma; Cristofolini, Luigi; Paciulli, Maria; Zaupa, Maria; Visconti, Attilio; Fogliano, Vincenzo; Pellegrini, Nicoletta

    2015-08-30

    Raman spectroscopy, in its confocal micro-Raman variation, has been recently proposed as a spatially resolved method to identify carotenoids in various food matrices, being faster, non-destructive, and avoiding sample extraction, but no data are present in the literature concerning its application to the evaluation of carotenoid pattern changes after thermal treatment of carrots. The effect of three cooking methods (i.e. boiling, steaming and microwaving) was evaluated on frozen carrot, comparing changes on carotenoid profiles measured by means of Raman spectroscopy with their high-performance liquid chromatographic determination and colour. A more pronounced detrimental effect on carotenoids was detected in steamed carrots, in accordance with colour data. Conversely, boiling and, to a lesser extent, microwaving caused an increase in carotenoid concentration. Cooking procedures affected the Raman spectral features of carotenoids, causing a shift of vibration frequencies towards a higher energy, increase in the spectral baseline and peak intensities as well as a broadening of their width, probably in relation to the thermal degradation of longer carotenoids (i.e. the all-trans form) and the isomerization process. In particular, steamed samples showed a significantly higher increase of centre frequency, in accordance with a more pronounced isomerization and changes in colour parameters. This work showed that the evolution of Raman spectral parameters could provide information on carotenoid bioaccessibility for carrots cooked using various methods. This paves the way for a future use of this technique to monitor and optimize cooking processes aimed at maximizing carotenoid bioaccessibility and bioavailability. © 2014 Society of Chemical Industry.

  10. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids.

    Science.gov (United States)

    Diprat, Andressa Bacalau; Menegol, Tania; Boelter, Juliana Ferreira; Zmozinski, Ariane; Rodrigues Vale, Maria Goreti; Rodrigues, Eliseu; Rech, Rosane

    2017-08-01

    Microalgae have been used as food supplements owing to their high protein, polyunsaturated fatty acid and carotenoid contents. As different carotenoids have distinct properties and the carotenoid composition of microalgae has been poorly explored in the literature, this study determined the complete carotenoid composition of two microalgae species, Heterochlorella luteoviridis and Dunaliella tertiolecta, using high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry (HPLC-DAD/MS 2 ). Additionally, the proximate composition and major minerals were evaluated. The carotenoid composition of the two microalgae was similar, with 13 carotenoids being found in H. luteoviridis and 12 in D. tertiolecta. The major carotenoids were all-trans-lutein (1.18 mg g -1 in H. luteoviridis and 1.59 mg g -1 in D. tertiolecta), all-trans-violaxanthin (0.52 mg g -1 in H. luteoviridis and 0.45 mg g -1 in D. tertiolecta) and all-trans-β-carotene (0.50 mg g -1 in H. luteoviridis and 0.62 mg g -1 in D. tertiolecta). All-trans-lutein was the predominant carotenoid in both microalgae, representing around 40% (mass fraction) of the total carotenoids. The lutein content found in these microalgae was significantly higher (2-40 times) than that in other important food sources of lutein (e.g. parsley, carrot, red pepper and broccoli). The microalgae H. luteoviridis and D. tertiolecta are excellent sources of lutein that could be commercially exploited by the food and pharmaceutical industries. Moreover, it was confirmed that both microalgae are good sources of protein, lipids and calcium. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  12. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes.

    Science.gov (United States)

    Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi

    2018-04-04

    In the present perspective, different approaches to the carotenoids analysis will be discussed providing a brief overview of the most advanced both monodimensional and bidimensional liquid chromatographic methodologies applied to the carotenoids analysis, followed by a discussion on the recents advanced supercritical fluid chromatography × liquid chromatography bidimensional approach with photodiode-array and mass spectrometry detection. Moreover a discussion on the online supercritical fluid extraction-supercritical fluid chromatography with tandem mass spectrometry detection applied to the determination of carotenoids and apocarotenoids will also be provided.

  13. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  14. Carotenoid content of husk tomato under the influence of growth regulators and gamma rays

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1990-01-01

    The present studies were conducted to study the effect of growth regulators and gamma rays on carotenoid content in husk tomato (Physalis peruviana L. and P. angulata L.). Results indicated that carotenoid content (in fruits) increased in all the treatments (except 200 and 500 ppm coumarin in case of P. peruviana and 100, 200 and 500 ppm coumarin in case of P. angulata). It is concluded that low doses of gamma rays may show stimulatory effect on carotenoid content in fruits of husk tomato. (author). 10 refs., 1 tab

  15. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  16. Carotenoids in the cells of the alga Trentepohlia gobii Meyer

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-01-01

    Full Text Available Column-, and thin-layer chromatography revealed the presence of the following carotenoids in the cells of the species Trentepohlia gobii Meyer from cobbles in the river Urmi in the Badzhal mountains of Khabarovsk Territory in the Far East: ß, ß-carotene, ß, ε-carotene, ß, ß-carotene-2-ol, ß, ε-carotene-2-ol, ß, ß-carotene-2, 2'-diol, 5,6-epoxy-5,6-dihydro-ß, ß-carotene-2-ol, 5,6-epoxy-5,6-dihydro-ß, ε-carotene-2-ol and 5,6,5',6'-diepoxy-5,6,5',6'-tetrahydro-ß, ß-carotene-2,2'-diol.

  17. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-04-01

    Full Text Available Nowadays the global tendency towards physical activity reduction and an augmented dietary intake of fats, sugars and calories is leading to a growing propagation of overweight, obesity and lifestyle-related diseases, such diabetes, hypertension, dyslipidemia and metabolic syndrome. In particular, obesity, characterized as a state of low-level inflammation, is a powerful determinant both in the development of insulin resistance and in the progression to type 2 diabetes. A few molecular targets offer hope for anti-obesity therapeutics. One of the keys to success could be the induction of uncoupling protein 1 (UCP1 in abdominal white adipose tissue (WAT and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity effects of fucoxanthin, a characteristic carotenoid, exactly belonging to xanthophylls, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups. Fucoxanthin, which can be isolated from edible brown seaweeds, recently displayed its many physiological functions and biological properties. We reviewed recent studies and this article aims to explain essential background of fucoxanthin, focusing on its promising potential anti-obesity effects. In this respect, fucoxanthin can be developed into promising marine drugs and nutritional products, in order to become a helpful functional food.

  18. Anti-obesity activity of the marine carotenoid fucoxanthin.

    Science.gov (United States)

    Gammone, Maria Alessandra; D'Orazio, Nicolantonio

    2015-04-13

    Nowadays the global tendency towards physical activity reduction and an augmented dietary intake of fats, sugars and calories is leading to a growing propagation of overweight, obesity and lifestyle-related diseases, such diabetes, hypertension, dyslipidemia and metabolic syndrome. In particular, obesity, characterized as a state of low-level inflammation, is a powerful determinant both in the development of insulin resistance and in the progression to type 2 diabetes. A few molecular targets offer hope for anti-obesity therapeutics. One of the keys to success could be the induction of uncoupling protein 1 (UCP1) in abdominal white adipose tissue (WAT) and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity effects of fucoxanthin, a characteristic carotenoid, exactly belonging to xanthophylls, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups. Fucoxanthin, which can be isolated from edible brown seaweeds, recently displayed its many physiological functions and biological properties. We reviewed recent studies and this article aims to explain essential background of fucoxanthin, focusing on its promising potential anti-obesity effects. In this respect, fucoxanthin can be developed into promising marine drugs and nutritional products, in order to become a helpful functional food.

  19. The power of pigments, calibrating chemoclines with chlorophylls and carotenoids.

    Science.gov (United States)

    Junium, C. K.; Uveges, B. T.

    2017-12-01

    Phototrophic organisms produce a diversity of pigments that serve a broad range of specific biochemical functions. Pigments are either directly associated with the photosynthetic apparatus, the most notable being chlorophyll a, or are accessory pigments such as the carotenoid lutein. Their functions can also be categorized into roles that are related to light harvesting (e.g. fucoxanthin) or for photoprotection (e.g. scytonemin). The abundances of these two classes of pigments from environmental samples can provide specific information about photointensity and how it relates to environmental changes. For example, a deepening of the chemo/nutricline can result in the increased production of light gathering relative to photoprotective pigments. Here we apply a relatively simple approach that utilizes the abundance of photosynthetic relative to photoprotective pigments to help constrain changes in the water column position of the chemocline. To test the efficacy of this approach we have utilized the sedimentary record of the anoxic Lake Kivu in the East African Rift. Recent Lake Kivu sediments are punctuated by a series of sapropels that may be associated with overturn of the lake, and release of carbon dioxide and sulfide during potential limnic eruptions. Carbon and nitrogen isotopes decrease significantly at the onset of sapropel deposition and suggest that 13C-depleted dissolved inorganic carbon was upwelled into surface waters and was accompanied by high concentrations of ammonium, that allowed for 15N-depletion during incomplete nitrogen utilization. The pigment record, specifically the ratio of the photoprotective carotenoids lutein and zeaxanthin to chlorophyll a increases significantly at the onset of sapropel deposition. This suggests that the chemocline shallowed, displacing phototrophic communities toward the surface of the lake where light intensities required production of photoprotective pigments. This approach can easily be applied to a wide variety of

  20. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  2. Active site mutations change the cleavage specificity of neprilysin.

    Directory of Open Access Journals (Sweden)

    Travis Sexton

    Full Text Available Neprilysin (NEP, a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe(563 and Ser(546. Among the mutants studied in detail we observed changes in their activity towards leucine(5-enkephalin, insulin B chain, and amyloid β(1-40. For example, NEP(F563I displayed an increase in preference towards cleaving leucine(5-enkephalin relative to insulin B chain, while mutant NEP(S546E was less discriminating than neprilysin. Mutants NEP(F563L and NEP(S546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß(1-40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.

  3. Serum carotenoids, alpha-tocopherol, and lung function among Dutch elderly

    NARCIS (Netherlands)

    Grievink, L.; Waart, de F.G.; Schouten, E.G.; Kok, F.J.

    2000-01-01

    Antioxidant vitamins (provitamins) may protect against loss of lung function over time. We studied the association between serum carotenoids (-carotene, -carotene, lycopene, -cryptoxanthin, zeaxanthin, and lutein), -tocopherol, and lung function among noninstitutionalized Dutch elderly age 65 to 85

  4. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-08-01

    Full Text Available Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  5. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2013-01-01

    Full Text Available Important component of the tomato are carotenoid dyes, especially lycopene. The importance of lycopene in the diet of people in recent years has grown mainly for its pharmacological effects due to its ability to reduce the risk of carcinoma diseases and prevention of cardiovascular diseases. The aim of this work was to analyze the content of total carotenoids and lycopene in 8 varieties of tomato and to monitor dynamic changes after their different treatments (heating, drying. The experiment included following tomato varieties: Bambino F1, Darina F1, Diana F1, Denár, Milica F1, Orange F1, Paulína F1, Šejk F1.We found that processing of tomato fruits into juices and dried slices positively affected the presence of carotenoids and lycopene. Processing leads to an increase in the content of carotenoids that can be attributed to better availability of these components in the human body.

  6. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Science.gov (United States)

    Cvetkovic, Dragan; Markovic, Dejan

    2008-01-01

    Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  7. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    International Nuclear Information System (INIS)

    Cvetkovic, Dragan; Markovic, Dejan

    2008-01-01

    Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation

  8. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, Dragan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia); Markovic, Dejan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia)], E-mail: markovic57@info-net.co.yu

    2008-01-15

    Antioxidant action of four selected carotenoids (two carotenes, {beta}-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  9. Screening for Total Carotenoids and β-Carotene in Some Widely ...

    African Journals Online (AJOL)

    machinery and protect them against photo-damage. (Alexander, 1999). Carotenoids are notable for their wide distribution, structural diversity, and of various ... Squash (Curcurbita moschata), Spinach (Amaranthus gangeticus), Tomatoe (Lycopersicon esculentum) and. Waterleaf (Talinum triangulare) were purchased from.

  10. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: A Raman spectroscopic study

    Science.gov (United States)

    Jehlička, J.; Edwards, H. G. M.; Oren, A.

    2013-04-01

    Laboratory cultures of a number of red extremely halophilic Archaea (Halobacterium salinarum strains NRC-1 and R1, Halorubrum sodomense, Haloarcula valismortis) and of Salinibacter ruber, a red extremely halophilic member of the Bacteria, have been investigated by Raman spectroscopy using 514.5 nm excitation to characterize their carotenoids. The 50-carbon carotenoid α-bacterioruberin was detected as the major carotenoid in all archaeal strains. Raman spectroscopy also detected bacterioruberin as the main pigment in a red pellet of cells collected from a saltern crystallizer pond. Salinibacter contains the C40-carotenoid acyl glycoside salinixanthin (all-E, 2'S)-2'-hydroxy-1'-[6-O-(methyltetradecanoyl)-β-D-glycopyranosyloxy]-3',4'-didehydro-1',2'-dihydro-β,ψ-carotene-4-one), for which the Raman bands assignments of are given here for the first time.

  11. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC).

    Science.gov (United States)

    Cerón-García, M C; González-López, C V; Camacho-Rodríguez, J; López-Rosales, L; García-Camacho, F; Molina-Grima, E

    2018-08-15

    Microalgae are an interesting source of natural pigments that have valuable applications. However, further research is necessary to develop processes that allow us to achieve high levels of carotenoid recovery while avoiding degradation. This work presents a comprehensive study on the recovery of carotenoids from several microalgae genera, optimizing carotenoid extraction using alkaline saponification at various temperatures and KOH concentrations. Results show that I. galbana requires a temperature of 60 °C and saponification, P. reticulatum requires 40 °C and 10% KOH, T. suecica and H. pluvialis require 25 °C and 40% KOH while C. sp. and S. almeriensis require 80 °C and 40% KOH. The influence of the solvent on carotenoid recovery was also studied. In general terms, an ethanol:hexane:water (77:17:6 v/v/v) mixture results in good yields. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited informationabout nutritional content. The purpose of this research was determine the composition offatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp..The composition of fatty acid was measured by gas chromatography (GC, while amino acids,total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography(HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fattyacid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggscontained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.Keywords: Amino acids, carotenoid total, fatty acid, flying fish egg, α-tocopherol

  13. Callus culture development of two varieties of Tagetes erecta and carotenoid production

    Directory of Open Access Journals (Sweden)

    Israel Benítez-García

    2014-05-01

    Conclusions: WF callus appeared to be a suitable candidate as a source of different carotenoids, and tested varieties could represent an alternative for further studies about in vitro pigment production.

  14. PLASMA AND LUNG MACROPHAGE CAROTENOID RESPONSIVENESS TO SUPPLEMENTATION AND OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    OBJECTIVE:: To examine the effect of ozone exposure and vegetable juice supplementation on plasma and lung macrophage concentrations of carotenoids. DESIGN:: A randomized trial. SETTING:: Subjects were exposed to ambient air prior to antioxidant supplementation and to ozone after...

  15. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care

    Directory of Open Access Journals (Sweden)

    Marco Matteo Ciccone

    2013-01-01

    Full Text Available Cardiovascular disease related to atherosclerosis represents nowadays the largest cause of morbidity and mortality in developed countries. Due to inflammatory nature of atherosclerosis, several studies had been conducted in order to search for substances with anti-inflammatory activity on arterial walls, able to exert beneficial roles on health. Researches investigated the role of dietary carotenoids supplementation on cardiovascular disease, due to their free radicals scavenger properties and their skills in improving low-density lipoprotein cholesterol resistance to oxidation. Nevertheless, literature data are conflicting: although some studies found a positive relationship between carotenoids supplementation and cardiovascular risk reduction, others did not find any positive effects or even prooxidant actions. This paper aimed at defining the role of carotenoids supplementation on cardiovascular risk profile by reviewing literature data, paying attention to those carotenoids more present in our diet (β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein, zeaxanthin, and astaxanthin.

  16. Is there a role for antioxidant carotenoids in limiting self-harming immune response in invertebrates?

    Science.gov (United States)

    Cornet, Stéphane; Biard, Clotilde; Moret, Yannick

    2007-06-22

    Innate immunity relies on effectors, which produce cytotoxic molecules that have not only the advantage of killing pathogens but also the disadvantage of harming host tissues and organs. Although the role of dietary antioxidants in invertebrate immunity is still unknown, it has been shown in vertebrates that carotenoids scavenge cytotoxic radicals generated during the immune response. Carotenoids may consequently decrease the self-harming cost of immunity. A positive relationship between the levels of innate immune defence and circulating carotenoid might therefore be expected. Consistent with this hypothesis, we show that the maintenance and use of the prophenoloxidase system strongly correlate with carotenoid concentration in haemolymph within and among natural populations of the crustacean Gammarus pulex.

  17. Astaxanthin protecting membrane integrity against photosensitized oxidation through synergism with other carotenoids

    DEFF Research Database (Denmark)

    Du, Hui-Hui; Liang, Ran; Han, Rui-Min

    2015-01-01

    using optical microscopy and digital image heterogeneity analysis. The lowest initial rate of GUV budding after the lag phase was seen for GUVs with astaxanthin as the least reducing carotenoid, while the lowest final level of entropy appeared for those with lycopene or β-carotene as a more reducing...... carotenoid. The combination of astaxanthin and lycopene gave optimal protection against budding with respect to both a longer lag phase and lower final level of entropy by combining good electron acceptance and good electron donation. Quenching of singlet oxygen by carotenoids close to chlorophyll...... a in the membrane interior in parallel with scavenging of superoxide radicals by astaxanthin anchored in the surface may explain the synergism between carotenoids involving both type I and type II photosensitization by chlorophyll a....

  18. X-ray Crystal Structure and Time-resolved Spectroscopy of the Blue Carotenoid Violerythrin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Frank, H.A.; Enriquez, M.M.; Niedzwiedzki, D.M.; Liaaen-Jensen, S.; Hemming, J.; Helliwell, J.R.; Helliwell, M.

    2010-01-01

    Roč. 114, č. 26 (2010), s. 8760-8769 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.603, year: 2010

  19. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases.

    Science.gov (United States)

    Raposo, Maria Filomena de Jesus; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2015-08-14

    Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  20. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    Science.gov (United States)

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables12

    Science.gov (United States)

    Kim, Jung Eun; Gordon, Susannah L; Ferruzzi, Mario G; Campbell, Wayne W

    2015-01-01

    Background: Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. Objective: We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. Design: Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. Results: The total mean (±SE) carotenoid AUC0–10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4a compared with 44.8 ± 9.2b compared with 14.9 ± 5.2b nmol/L · 10 h, respectively (values without a common superscript letter differ); P eggs, including α-carotene, β-carotene, and lycopene, increased 3–8-fold (P eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313. PMID:26016861

  2. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health.

    Science.gov (United States)

    Khachik, Frederick; Carvalho, Lorena; Bernstein, Paul S; Muir, Garth J; Zhao, Da-You; Katz, Nikita B

    2002-11-01

    Recent epidemiological studies have suggested that the consumption of tomatoes and tomato-based food products reduce the risk of prostate cancer in humans. This protective effect has been attributed to carotenoids, which are one of the major classes of phytochemicals in this fruit. The most abundant carotenoid in tomato is lycopene, followed by phytoene, phytofluene, zeta-carotene, gamma-carotene, beta-carotene, neurosporene, and lutein. The distribution of lycopene and related carotenoids in tomatoes and tomato-based food products has been determined by extraction and high-performance liquid chromatography-UV/Visible photodiode array detection. Detailed qualitative and quantitative analysis of human serum, milk, and organs, particularly prostate, have revealed the presence of all the aforementioned carotenoids in biologically significant concentrations. Two oxidative metabolites of lycopene, 2,6-cyclolycopene-1,5-diols A and B, which are only present in tomatoes in extremely low concentrations, have been isolated and identified in human serum, milk, organs (liver, lung, breast, liver, prostate, colon) and skin. Carotenoids may also play an important role in the prevention of age-related macular degeneration, cataracts, and other blinding disorders. Among 25 dietary carotenoids and nine metabolites routinely found in human serum, mainly (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, lycopene, and their metabolites were detected in ocular tissues. In this review we identified and quantified the complete spectrum of carotenoids from pooled human retinal pigment epithelium, ciliary body, iris, lens, and in the uveal tract and in other tissues of the human eye to gain a better insight into the metabolic pathways of ocular carotenoids. Although (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, and their metabolites constitute the major carotenoids in human ocular tissues, lycopene and a wide range of dietary carotenoids have been detected in high concentrations in ciliary body and

  3. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables.

    Science.gov (United States)

    Kim, Jung Eun; Gordon, Susannah L; Ferruzzi, Mario G; Campbell, Wayne W

    2015-07-01

    Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. The total mean (±SE) carotenoid AUC0-10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4(a) compared with 44.8 ± 9.2(b) compared with 14.9 ± 5.2(b) nmol/L · 10 h, respectively (values without a common superscript letter differ); P eggs, including α-carotene, β-carotene, and lycopene, increased 3-8-fold (P cooked whole eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313. © 2015 American Society for Nutrition.

  4. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  5. Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan

    OpenAIRE

    Fuh-Juin Kao; Yu-Shan Chiu; Wen-Dee Chiang

    2014-01-01

    Carotenoid-rich green leafy vegetables including cilantro, Thai basil leaves, sweet potato leaves, and choy sum were selected to evaluate the effects of water cooking or boiling on their total carotenoid content (TCC), total phenolic content (TPC), and total antioxidant capacity (TAC). The percentage inhibition of peroxidation (%IP), Trolox equivalent antioxidant capacity (TEAC), and metal-chelating effect were used to evaluate TAC. The results indicated that TCC reached the maximum after boi...

  6. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  7. The carotenoid content in certain plants from Abisko National Park (Swedish Lapland

    Directory of Open Access Journals (Sweden)

    B. Czeczuga

    2015-01-01

    Full Text Available By means of columnar and thin-layer chromatography, the presence of carotenoids in Lichens (2 species, Sphagnaceae (l species, Lycopodiaceae (l species and in 23 species of the higher plants from Abisko National Park (Swedish Lapland was studied. 34 carotenoids were identified and total content ranged from 0.05 mg/g to 0.85 mg/g dry mass.

  8. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  9. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo condi...

  10. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    International Nuclear Information System (INIS)

    Saito, Takeshi; Fujii, Noriko

    2014-01-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid–benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10 −3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10 −5 and 5.0×10 −6 M β-carotene, and 5.0×10 −7 and 5.0×10 −8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage. - Highlights: • Gamma radiation dose-dependently increases degradation levels of α-linolenic acid. • Gamma radiation dose-dependently increases peroxidation levels of α-linolenic acid. • An optimum concentration of carotenoids inhibits degradation of α-linolenic acid. • Relatively low concentrations of carotenoids promote degradation of α-linolenic acid. • Carotenoids do not affect the peroxidation level of α-linolenic acid

  11. Medically important carotenoids from Momordica charantia and their gene expressions in different organs.

    Science.gov (United States)

    Cuong, Do Manh; Arasu, Mariadhas Valan; Jeon, Jin; Park, Yun Ji; Kwon, Soon-Jae; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2017-12-01

    Carotenoids, found in the fruit and different organs of bitter melon ( Momordica charantia ), have attracted great attention for their potential health benefits in treating several major chronic diseases. Therefore, study related to the identification and quantification of the medically important carotenoid metabolites is highly important for the treatment of various disorderes. The present study involved in the identification and quantification of the various carotenoids present in the different organs of M. charantia and the identification of the genes responsible for the accumulation of the carotenoids with respect to the transcriptome levels were investigated. In this study, using the transcriptome database of bitter melon, a partial-length cDNA clone encoding geranylgeranyl pyrophosphate synthase ( McGGPPS2 ), and several full-length cDNA clones encoding geranylgeranyl pyrophosphate synthase ( McGGPPS1 ), zeta-carotene desaturase ( McZDS ), lycopene beta-cyclase ( McLCYB ), lycopene epsilon cyclases ( McLCYE1 and McLCYE2 ), beta-carotene hydroxylase ( McCHXB ), and zeaxanthin epoxidase ( McZEP ) were identified in bitter melon . The expression levels of the mRNAs encoding these eight putative biosynthetic enzymes, as well as the accumulation of lycopene, α-carotene, lutein, 13Z-β-carotene, E-β-carotene, 9Z-β-carotene, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin were investigated in different organs from M. charantia as well as in the four different stages of its fruit maturation. Transcripts were found to be constitutively expressed at high levels in the leaves where carotenoids were also found at the highest levels . Collectively, these results indicate that the putative McGGPPS2, McZDS, McLCYB, McLCYE1, McLCYE2, and McCHXB enzymes might be key factors in controlling carotenoid content in bitter melon . In conclusion, the over expression of the carotenoid biosynthetic genes from M. charantia crops to increase the yield of these

  12. Plasma carotenoids and risk of breast cancer over 20 y of follow-up123

    Science.gov (United States)

    Liao, Xiaomei; Rosner, Bernard; Tamimi, Rulla M; Tworoger, Shelley S; Hankinson, Susan E

    2015-01-01

    Background: Increasing evidence suggests that carotenoids, which are micronutrients in fruit and vegetables, reduce breast cancer risk. Whether carotenoids are important early or late in carcinogenesis is unclear, and limited analyses have been conducted by breast tumor subtypes. Objectives: We sought to examine issues of the timing of carotenoid exposure as well as associations by breast tumor subtypes. Design: We conducted a nested case-control study of plasma carotenoids measured by using reverse-phase high-performance liquid chromatography and breast cancer risk in the Nurses’ Health Study. In 1989–1990, 32,826 women donated blood samples; in 2000–2002, 18,743 of these women contributed a second blood sample. Between the first blood collection and June 2010, 2188 breast cancer cases were diagnosed (579 cases were diagnosed after the second collection) and matched with control subjects. RRs and 95% CIs were calculated by using conditional logistic regression adjusted for several breast cancer risk factors. Results: Higher concentrations of α-carotene, β-carotene, lycopene, and total carotenoids were associated with 18–28% statistically significantly lower risks of breast cancer (e.g., β-carotene top compared with bottom quintile RR: 0.72; 95% CI: 0.59, 0.88; P-trend carotenoids measured ≥10 y before diagnosis (top compared with bottom quintile RR: 0.69; 95% CI: 0.50, 0.95; P-trend = 0.01) as well as those Carotenoid concentrations were strongly inversely associated with breast cancer recurrence and death (e.g., β-carotene top compared with bottom quintile RR: 0.32; 95% CI: 0.21, 0.51; P-trend carotenoids were at reduced breast cancer risk particularly for more aggressive and ultimately fatal disease. PMID:25877493

  13. Plasma carotenoids and risk of breast cancer over 20 y of follow-up.

    Science.gov (United States)

    Eliassen, A Heather; Liao, Xiaomei; Rosner, Bernard; Tamimi, Rulla M; Tworoger, Shelley S; Hankinson, Susan E

    2015-06-01

    Increasing evidence suggests that carotenoids, which are micronutrients in fruit and vegetables, reduce breast cancer risk. Whether carotenoids are important early or late in carcinogenesis is unclear, and limited analyses have been conducted by breast tumor subtypes. We sought to examine issues of the timing of carotenoid exposure as well as associations by breast tumor subtypes. We conducted a nested case-control study of plasma carotenoids measured by using reverse-phase high-performance liquid chromatography and breast cancer risk in the Nurses' Health Study. In 1989-1990, 32,826 women donated blood samples; in 2000-2002, 18,743 of these women contributed a second blood sample. Between the first blood collection and June 2010, 2188 breast cancer cases were diagnosed (579 cases were diagnosed after the second collection) and matched with control subjects. RRs and 95% CIs were calculated by using conditional logistic regression adjusted for several breast cancer risk factors. Higher concentrations of α-carotene, β-carotene, lycopene, and total carotenoids were associated with 18-28% statistically significantly lower risks of breast cancer (e.g., β-carotene top compared with bottom quintile RR: 0.72; 95% CI: 0.59, 0.88; P-trend carotenoids measured ≥10 y before diagnosis (top compared with bottom quintile RR: 0.69; 95% CI: 0.50, 0.95; P-trend = 0.01) as well as those Carotenoid concentrations were strongly inversely associated with breast cancer recurrence and death (e.g., β-carotene top compared with bottom quintile RR: 0.32; 95% CI: 0.21, 0.51; P-trend carotenoids were at reduced breast cancer risk particularly for more aggressive and ultimately fatal disease. © 2015 American Society for Nutrition.

  14. Carotenoids and risk of fracture: a meta-analysis of observational studies.

    Science.gov (United States)

    Xu, Jiuhong; Song, Chunli; Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-10

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.

  15. Genotoxicity, mutagenicity and cytotoxicity of carotenoids extracted from ionic liquid in multiples organs of Wistar rats.

    Science.gov (United States)

    Larangeira, Paula Martins; de Rosso, Veridiana Vera; da Silva, Victor Hugo Pereira; de Moura, Carolina Foot Gomes; Ribeiro, Daniel Araki

    2016-11-01

    The ionic liquid or melted salt 1-Butyl-3-methylimidazolium is an alternative process to extract natural pigments, such as carotenoids. Lycopene represents 80-90% of total of carotenoids presents in tomatoes and it has been widely studied due its potent antioxidant action. The aim of this study was to evaluate genotoxicity, mutagenicity and cytotoxicity of carotenoids extracted from ionic liquid using experimental model in vivo. For this purpose, a total of 20 male Wistar rats were distributed into four groups (n=5), as follows: control group; received a corresponding amount of corn oil for 7days by intragastric gavage (i.g.), ionic liquid group, received 10mgkg -1 body weight for 7days by gavage; 10mg carotenoids group, received 10mgkg -1 bw dissolved in corn oil for 7days by gavage and 500mg carotenoids group, received 500mgkg -1 bw dissolved in corn oil for 7days by gavage. Rat liver treated with ionic liquid exhibited moderate histopathological changes randomly distributed in the parenchyma, such as cytoplasmic eosinophilia, apoptotic bodies, inflammatory infiltrate and focal necrosis. DNA damage was found in peripheral blood and liver cells of rats treated with ionic liquid or carotenoids at 500mg. An increase of micronucleated cells and 8-OhDG immunopositive cells were also detected in rats treated with carotenoids at 500mg. In summary, our results demonstrate that recommended dose for human daily intake of carotenoids extracted by ionic liquid did not induce genotoxicity, mutagenicity and cytotoxicity in multiple organs of rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    Science.gov (United States)

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Carotenoid composition and vitamin A value of a squash and a pumpkin from northeastern Brazil.

    Science.gov (United States)

    Arima, H K; Rodríguez-Amaya, D B

    1990-06-01

    The carotenoid composition of a squash and a pumpkin from Northeastern Brazil was determined. Nineteen carotenoids were detected in Cucurbita moschata variety "Baianinha"; beta-carotene was the principal carotenoid, contributing about 74% of an average total carotenoid content of 317.8 micrograms/g. In C. maxima variety "Jerimum Caboclo", 11 carotenoids were found with lutein, and beta-carotene as the major pigments accounting for about 60% and 27%, respectively, of an average total carotenoid content of 78.4 micrograms/g. The abundance of beta-carotene in the C. moschata variety "Baianinha" makes this squash one of the richest sources of provitamin A. The average vitamin A value was 43,175 IU (International Units) per 100 g or 4,317 RE (retinol equivalents) per 100 g. Its vitamin A values is more than 11 times that of C. maxima variety "Jerimum Caboclo" and five times that of C. moschata cultivar "Menina Verde", the squash found previously to be highest in provitamin A among the Cucurbita vegetables most commercialized in São Paulo (Southeastern Brazil).

  18. Effect of maternal Chlorella supplementation on carotenoid concentration in breast milk at early lactation.

    Science.gov (United States)

    Nagayama, Junya; Noda, Kiyoshi; Uchikawa, Takuya; Maruyama, Isao; Shimomura, Hiroshi; Miyahara, Michiyoshi

    2014-08-01

    Breast milk carotenoids provide neonates with a source of vitamin A and potentially, oxidative stress protection and other health benefits. Chlorella, which has high levels of carotenoids such as lutein, zeaxanthin and β-carotene, is an effective dietary source of carotenoids for humans. In this study, the effect of maternal supplementation with Chlorella on carotenoid levels in breast milk at early lactation was investigated. Ten healthy, pregnant women received 6 g of Chlorella daily from gestational week 16-20 until the day of delivery (Chlorella group); ten others did not (control group). Among the carotenoids detected in breast milk, lutein, zeaxanthin and β-carotene concentrations in the Chlorella group were 2.6-fold (p = 0.001), 2.7-fold (p = 0.001) and 1.7-fold (p = 0.049) higher, respectively, than those in the control group. Our study shows that Chlorella intake during pregnancy is effective in improving the carotenoid status of breast milk at early lactation.

  19. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  20. Plasma carotenoids are associated with socioeconomic status in an urban Indigenous population: an observational study

    Directory of Open Access Journals (Sweden)

    Maple-Brown Louise

    2011-02-01

    Full Text Available Abstract Background Indigenous Australians experience poorer health than other Australians. Poor diet may contribute to this, and be related to their generally lower socioeconomic status (SES. Even within Indigenous populations, SES may be important. Our aim was to identify factors associated with plasma carotenoids as a marker of fruit and vegetable intake among urban dwelling Indigenous Australians, with a particular focus on SES. Methods Cross sectional study in urban dwelling Indigenous Australians participating in the DRUID (Darwin Region Urban Indigenous Diabetes Study. An SES score, based on education, employment, household size, home ownership and income was computed and plasma carotenoids measured by high performance liquid chromatography in 897 men and women aged 15 - 81 years (mean 36, standard deviation 15. Linear regression analysis was used to determine the relationship between SES and plasma carotenoids, adjusting for demographic, health and lifestyle variables, including frequency of intakes of food groups (fruit, vegetables, takeaway foods, snacks and fruit/vegetable juice. Results SES was positively associated with plasma concentrations of lutein/zeaxanthin (p trend Conclusions Even within urban Indigenous Australians, higher SES was associated with higher concentrations of plasma carotenoids. Low plasma carotenoids have been linked with poor health outcomes; increasing accessibility of fruit and vegetables, as well as reducing smoking rates could increase concentrations and otherwise improve health, but our results suggest there may be additional factors contributing to lower carotenoid concentrations in Indigenous Australians.

  1. Positive carotenoid balance correlates with greater reproductive performance in a wild bird.

    Directory of Open Access Journals (Sweden)

    Rebecca J Safran

    Full Text Available BACKGROUND: Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual's ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. METHODOLOGY/PRINCIPAL FINDINGS: In a field study of North American barn swallows (Hirundo rustica erythrogaster, we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1 timing of breeding and (2 sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. CONCLUSIONS/SIGNIFICANCE: While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet, or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression.

  2. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis.

    Science.gov (United States)

    Lyu, Yi; Wu, Lei; Wang, Fang; Shen, Xinchun; Lin, Dingbo

    2018-04-01

    Dysbiosis, a broad spectrum of imbalance of the gut microbiota, may progress to microbiota dysfunction. Dysbiosis is linked to some human diseases, such as inflammation-related disorders and metabolic syndromes. However, the underlying mechanisms of the pathogenesis of dysbiosis remain elusive. Recent findings suggest that the microbiome and gut immune responses, like immunoglobulin A production, play critical roles in the gut homeostasis and function, and the progression of dysbiosis. In the past two decades, much progress has been made in better understanding of production of immunoglobulin A and its association with commensal microbiota. The present minireview summarizes the recent findings in the gut microbiota dysbiosis and dysfunction of immunoglobulin A induced by the imbalance of pathogenic bacteria and commensal microbiota. We also propose the potentials of dietary carotenoids, such as β-carotene and astaxanthin, in the improvement of the gut immune system maturation and immunoglobulin A production, and the consequent promotion of the gut health. Impact statement The concept of carotenoid metabolism in the gut health has not been well established in the literature. Here, we review and discuss the roles of retinoic acid and carotenoids, including pro-vitamin A carotenoids and xanthophylls in the maturation of the gut immune system and IgA production. This is the first review article about the carotenoid supplements and the metabolites in the regulation of the gut microbiome. We hope this review would provide a new direction for the management of the gut microbiota dysbiosis by application of bioactive carotenoids and the metabolites.

  3. Novel procedure for the extraction and concentration of carotenoid-containing chromoplasts from selected plant systems.

    Science.gov (United States)

    Fish, Wayne W

    2007-02-21

    Natural sources of carotenoids for nutraceutical use are desired by the food industry as a result of the increased production of convenience and other highly processed foods. As new physiological roles are discovered for some of the minor carotenoids that are found in only small amounts in present sources, the need for discovery of new sources will amplify. Thus, a method is needed that will effectively and gently concentrate carotenoids from potential new sources for subsequent identification and analysis. A procedure is presented by which carotenoid-containing tissue chromoplasts can be extracted and subsequently concentrated by precipitation, all in an aqueous milieu. The chromoplasts are extracted and solubilized with 0.3% sodium dodecyl sulfate (SDS) in water. The addition of a nominally equal volume of acetonitrile to the chromoplasts in SDS immediately precipitates the chromoplasts out of solution with generally >90% recovery. Carotenoids contained in the concentrated, still-intact chromoplasts can then be solubilized by organic solvent extraction for subsequent analysis. This methodology offers a means to effectively and gently concentrate carotenoids from fruit tissues where yields are often low (e.g., yellow watermelon).

  4. Fasting plasma carotenoids concentrations in Crohn's and pancreatic cancer patients compared to control subjects.

    Science.gov (United States)

    Drai, J; Borel, P; Faure, H; Galabert, C; Le Moël, G; Laromiguière, M; Fayol, V

    2009-03-01

    Carotenoids are colored molecules that are widespread in the plant kingdom, but animals cannot synthesize them. Carotenes are long, apolar molecules which require fully functioning digestive processes to be absorbed properly. Hence they could be interesting markers of intestinal absorption and digestion. Indeed, only few tests are available to assess these processes and only the D-xylose tolerance test is routinely used. However D-xylose is a sugar that tests only the absorption of water-soluble compounds and it only tests duodenal absorption. In this study, we have evaluated carotenoids as markers of digestion and absorption. We compared fasting plasma carotenoids concentrations in 21 control subjects, 20 patients with Crohn's disease, and 18 patients with pancreatic cancer. Crohn's disease alters intestinal absorption while pancreatic cancer decreases pancreatic enzyme secretion thus impairing digestion. Results show that all carotenoids are significantly lower in Crohn's and cancer patients as compared to control subjects and the multifactorial analysis shows that this decrease is mostly independent of dietary intake. Interestingly, maldigestion as seen in pancreatic cancer more strongly influences plasma lutein and lycopene concentrations while malabsorption in Crohn's disease acts on other carotenoids. Thus carotenoids could be interesting alternatives for testing and following patients that are suspected of having malabsorption or maldigestion syndromes.

  5. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Joanna Fiedor

    2014-01-01

    Full Text Available Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties.

  6. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  7. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  8. Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2012-03-01

    Full Text Available Pereskia aculeata Mill. (Ora-pro-nóbis is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector, total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.

  9. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Science.gov (United States)

    Fiedor, Joanna; Burda, Květoslava

    2014-01-01

    Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective) effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties. PMID:24473231

  10. Detection of carotenoids present in blood of various animal species using Raman spectroscopy

    Science.gov (United States)

    Liaqat, Maryam; Younus, Ayesha; Saleem, Muhammad; Rashid, Imaad; Yaseen, Maria; Jabeen, Saher

    Raman spectroscopy is simple stable powerful diagnostic tool for body fluids, tissues and other biomolecules. Human blood possesses different kind of carotenoids that play a key role for protecting the cells from damaging by different viral and bacterial diseases. Carotenoids are antioxidative components which are capable to overcome the attack of different free radicals and reactive oxygen species. Carotenoids are not prepared by human body, therefore it is recommended to eat carotenoids enrich vegetable foods. No standard data is available on the concentration of useful carotenoids component in non-vegetable consumed items. In present research work, Raman spectroscopy is used to compare various blood components like plasma, serum, carotenoids present in blood of different animal species like goat, sheep, cow and buffalo consumed by human. Especially beta carotene is investigated. The Raman shift ranges from 600-1700 cm-1 for samples. Different characteristic peaks of the blood components are found which are not characterized before in animal samples. Doctrate Student in Photonics Deparatment of Electrical Engineering.

  11. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    Science.gov (United States)

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  13. Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    de Lima Petito, Nicolly; da Silva Dias, Daiana; Costa, Valéria Gonçalves; Falcão, Deborah Quintanilha; de Lima Araujo, Kátia Gome

    2016-10-01

    Red bell pepper carotenoids were complexed with 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) in different mass ratios (1:4, 1:6, 1:8 and 1:10) through ultrasonic homogenization in order to increase carotenoid solubility and their use as natural pigment in food. Inclusion complexes, red bell pepper extract and physical mixtures were analyzed by DSC, FT-IR, (1)H NMR and DLS. Solubility assay was performed to identify the effect of complexation on the solubility of carotenoids. From characterization assays, results showed that inclusion process occurred for all tested ratios. Results for water solubility assays demonstrated clear differences between solubility index of inclusion complexes (8.06±2.59-16.55±4.40mg/mL) and physical mixtures (3.53±1.44-7.3±1.88mg/mL), while carotenoid extract was no water soluble, as expected. These results indicated that molecular inclusion of carotenoids in 2-HPβCD was efficient to enhance their solubility in water, enabling application of red bell pepper carotenoid as natural pigment and/or bioactive substances in food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Carotenoid coloration is related to fat digestion efficiency in a wild bird

    Science.gov (United States)

    Madonia, Christina; Hutton, Pierce; Giraudeau, Mathieu; Sepp, Tuul

    2017-12-01

    Some of the most spectacular visual signals found in the animal kingdom are based on dietarily derived carotenoid pigments (which cannot be produced de novo), with a general assumption that carotenoids are limited resources for wild organisms, causing trade-offs in allocation of carotenoids to different physiological functions and ornamentation. This resource trade-off view has been recently questioned, since the efficiency of carotenoid processing may relax the trade-off between allocation toward condition or ornamentation. This hypothesis has so far received little exploratory support, since studies of digestive efficiency of wild animals are limited due to methodological difficulties. Recently, a method for quantifying the percentage of fat in fecal samples to measure digestive efficiency has been developed in birds. Here, we use this method to test if the intensity of the carotenoid-based coloration predicts digestive efficiency in a wild bird, the house finch ( Haemorhous mexicanus). The redness of carotenoid feather coloration (hue) positively predicted digestion efficiency, with redder birds being more efficient at absorbing fats from seeds. We show for the first time in a wild species that digestive efficiency predicts ornamental coloration. Though not conclusive due to the correlative nature of our study, these results strongly suggest that fat extraction might be a crucial but overlooked process behind many ornamental traits.

  15. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  16. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS.

    Science.gov (United States)

    Zhong, Lijie; Gustavsson, Karl-Erik; Oredsson, Stina; Głąb, Bartosz; Yilmaz, Jenny Lindberg; Olsson, Marie E

    2016-11-01

    Rose hip fruit, which contains high concentration of carotenoids is commonly used for different food products in Europe and it is considered to have medical properties. In this study, a simple, rapid and efficient HPLC-DAD-APCI(+)-MS method was developed and applied to identify and quantify the carotenoids in rose hip fruit of four rose species, including both unsaponified and saponified extract. In the unsaponified extract 23 carotenoid esters were detected, in which either rubixanthin ester or violaxanthin ester was the dominant component of the ester composition. In the saponified extract 21 carotenoids, including 11 xanthophylls and 10 carotenes were detected. This is the first time the total carotenoid composition, including the carotenoid esters in rose hip fruit were identified and quantified. This work reveals the potential of rose hip fruit to be utilized as a healthy dietary material and give chemical information for the possible future development in the pharmacology field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    Science.gov (United States)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  18. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95.

    Science.gov (United States)

    Chen, Shu-Jun; Wang, Qi; Han, Jian-Rong

    2010-08-01

    Oxidative stress and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. When the fungus was grown at high oxidative stress, its sclerotial biomass and carotenoid content in sclerotia increased significantly with respect to low oxidative stress (P < 0.01). High oxidative stress also caused a statistically significant increase in carotenoid yield as compared with low oxidative stress (P < 0.01). Both the sclerotial biomass and the amount of carotenoid accumulated in sclerotia of strain PT95 were strongly dependent on the grain medium used. Among the grain media tested under high oxidative stress, buckwheat medium gave the highest content of carotenoid in sclerotia (828 microg/g dry sclerotia), millet medium gave respectively the highest sclerotial biomass (12.69 g/100 g grain) and carotenoid yield (10.152 mg/100 g grain). Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  19. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model.

    Science.gov (United States)

    Nimalaratne, Chamila; Savard, Patricia; Gauthier, Sylvie F; Schieber, Andreas; Wu, Jianping

    2015-03-25

    Among dietary carotenoids, lutein and zeaxanthin are known to protect against age-related macular degeneration, a leading cause of irreversible vision loss in the elderly. Egg yolk is rich in lutein and zeaxanthin, however, the effect of cooking and gastrointestinal digestion on yolk carotenoids is poorly understood. An in vitro dynamic gastrointestinal model (TIM-1) was used to investigate the digestive stability and bioaccessibility of carotenoids from boiled, fried, and scrambled eggs. Bioaccessibility but not digestive stability was significantly affected by the method of cooking. The main egg carotenoids, all-E-lutein and all-E-zeaxanthin, were stable during the digestion with average recoveries of 90 and 88%, respectively. No trans-cis isomerization of carotenoids was observed during digestion. Both all-E-lutein and all-E-zeaxanthin from scrambled eggs showed significantly lower bioaccessibility compared to boiled eggs. The results indicate that the bioaccessibility of egg carotenoids can be affected by different food preparation methods.

  20. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability-a review.

    Science.gov (United States)

    Arimboor, Ranjith; Natarajan, Ramesh Babu; Menon, K Ramakrishna; Chandrasekhar, Lekshmi P; Moorkoth, Vidya

    2015-03-01

    Carotenoids are increasingly drawing the attention of researchers as a major natural food color due to their inherent nutritional characteristics and the implicated possible role in prevention and protection against degenerative diseases. In this report, we review the role of red pepper as a source for natural carotenoids. The composition of the carotenoids in red pepper and the application of different methodologies for their analysis were discussed in this report. The stability of red pepper carotenoids during post-harvest processing and storage is also reviewed. This review highlights the potential of red pepper carotenoids as a source of natural food colors and also discusses the need for a standardized approach for the analysis and reporting of composition of carotenoids in plant products and designing model systems for stability studies.

  1. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products.

    Science.gov (United States)

    Rodrigues, Daniele B; Chitchumroonchokchai, Chureeporn; Mariutti, Lilian R B; Mercadante, Adriana Z; Failla, Mark L

    2017-12-27

    In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.

  2. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    Science.gov (United States)

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  3. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    OpenAIRE

    Leenawaty Limantara3); Budhi Prasetyo1); AB. Susanto2); Helly de Fretes1)*

    2012-01-01

    Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarez...

  4. Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits

    Science.gov (United States)

    Alonso-Alvarez, Carlos; Galván, Ismael

    2011-01-01

    Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa). In this bird, individuals exposed to an exogenous source of free radicals (diquat) during their development produced larger eumelanin-based (black) plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings), and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol). Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone) also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib) were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of multiple

  5. An investigation of influence of solvent on the degradation kinetics of carotenoids in oil extracts of Calendula officinalis

    OpenAIRE

    DEJAN BEZBRADICA; JELA MILIC-ASKRABIC; SLOBODAN D. PETROVIC; SLAVICA SILER-MARINKOVIC

    2005-01-01

    The stability of carotenoids was studied in marigold oil extracts prepared with following solvents: Myritol 312®, paraffin oil, almond oil, olive oil, sunflower oil, grape seed oil, and soybean oil. The concentration of the carotenoids was determined by spectroscopic measurement at 450 nm. Degradation rate showed a first order dependence on the concentration of carotenoids with a faster first stage (which lasted 3550 days, depending on the solvent) and a slower second stage. The highest degra...

  6. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits.

    Directory of Open Access Journals (Sweden)

    Carlos Alonso-Alvarez

    2011-04-01

    Full Text Available Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa. In this bird, individuals exposed to an exogenous source of free radicals (diquat during their development produced larger eumelanin-based (black plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings, and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol. Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of

  7. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Science.gov (United States)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  8. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  9. Modelling of ductile and cleavage fracture by local approach

    International Nuclear Information System (INIS)

    Samal, M.K.; Dutta, B.K.; Kushwaha, H.S.

    2000-08-01

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  10. Micromechanisms and toughness for cleavage fracture of steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Majumdar, B.S.

    1987-01-01

    A complete understanding of the fracture mechanisms of steel in the ductile/brittle transition region requires analysis not only of crack initiation, but also of crack propagation. This paper reviews micrographic and fractographic experiments that give insight into both phenomena, and suggests a frame-work through which both may be related. Unstable cleavage crack initiation can occur after some blunting of the original fatigue precrack or after some stable crack growth. In either event, instability appears to be triggered by the fracture of a brittle micro-constituent ahead of the precrack. The large scatter in reported K IC values within the transition region reflects the size distribution and relative scarcity of these 'trigger' particles. While a large number of models have attempted to correlate toughness in the ductile/brittle transition regime to events occurring ahead of the crack tip, surprisingly little attention has been paid to events occurring behind the crack front. Fractographic evidence as well as metallographic sectioning of arrested cracks show that the mechanism of rapid crack propagation by cleavage is affected strongly by partial crack-plane deflection which leaves unbroken ligaments in its wake. The tearing of these ligaments by dimple-rupture is the dominant energy-absorbing mechanism. Etch-pit experiments using an Fe-Si alloy show that the crack-tip stress intensity based on plastic zone size is extremely low. It is suggested that the mechanism of crack arrest should be modeled using a sharp crack which is restrained by a distribution of discrete pinching forces along its faces. The same model is applied to crack initiation. (orig.)

  11. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  12. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis).

    Science.gov (United States)

    Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu

    2013-05-01

    Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.

  13. Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus).

    Science.gov (United States)

    Weiss, S L; Foerster, K; Hudon, J

    2012-02-01

    Indicator models of sexual selection suggest that signal honesty is maintained via costs of ornament expression. Carotenoid-based visual signals are a well-studied example, as carotenoids may be environmentally limited and impact signaler health. However, not all bright yellow, orange and red ornaments found in vertebrates are carotenoid-based; pteridine pigments may also produce these colors. We examine the contribution of carotenoid and pteridine pigments to the orange reproductive color of female striped plateau lizards (Sceloporus virgatus). This color ornament reliably indicates female mate quality, yet costs maintaining signal honesty are currently unknown. Dietary carotenoid manipulations did not affect orange color, and orange skin differed from surrounding white skin in drosopterin, not carotenoid, content. Further, orange color positively correlated with drosopterin, not carotenoid, concentration. Drosopterin-based female ornaments avoid the direct trade-offs of using carotenoids for ornament production vs egg production, thus may relax counter-selection against color ornament exaggeration in females. Direct experimentation is needed to determine the actual costs of pteridine-based ornaments. Like carotenoids, pteridines influence important biological processes, including immune and antioxidant function; predation and social costs may also be relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Serum carotenoids and macular pigment optical density in patients with intestinal resections and healthy subjects: an exploratory study

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard; Prahm, August P; Falk, Mads Krüger

    2018-01-01

    Reduced absorption capacity in patients with intestinal resections (IR) could result in malabsorption of fat-soluble components like carotenoids, which are of clinical interest in relation to visual health. In this case cohort, we investigated the association between IR and serum lutein, zeaxanthin......·0001) in the group with IR. Serum lutein, zeaxanthin, β-carotene and macular pigment optical density were >15 % lower in the patient group compared with healthy controls (P carotenoids. Results suggest...... that for a test of macular carotenoid supplementation, subjects with a potentially clinically significant carotenoid deficit could be recruited among patients with IR....

  15. Carotenoids from Mangifera Pajang and Their Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    K. Nagendra Prasad

    2010-09-01

    Full Text Available This study provides new data on the various carotenoids found in bambangan (Mangifera pajang Kosterm. peel and pulp extracts, such as all-trans-α- and β-carotene, cis-β-carotene, 9-cis-β-carotene, and cryptoxanthin. Chemical and biological antioxidant assays were determined to evaluate the antioxidant capacity of bambangan peel and pulp extracts. Bambangan pulp had higher α- and β-carotene contents (7.96 ± 1.53 and 20.04 ± 1.01 mg/100 g than its peel (4.2 ± 0.14 and 13.09 ± 0.28 mg/100 g; the cryptoxanthin contents of bambangan peel and pulp were 0.60 and 1.18 mg/100 g, respectively. The antioxidant activity results determined by chemical assay using the 2,2-diphenyl-2-picrylhydrazyl (DPPH method showed that bambangan peel extract had higher DPPH radical scavenging activity than its pulp. In the biological assays bambangan peel and pulp had protective effects against hemoglobin and LDL oxidation at an extract concentration of 1 ppm. Bambangan peel is a therefore a potential source of natural antioxidants and could be utilized as a functional ingredient.

  16. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  17. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    International Nuclear Information System (INIS)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-01-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, γ-carotene; and one yellow mutant, β-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange-yellow, respectively. The white mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants

  18. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Role of carotenoid β-cryptoxanthin in bone homeostasis

    Directory of Open Access Journals (Sweden)

    Yamaguchi Masayoshi

    2012-04-01

    Full Text Available Abstract Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin, β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC., has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.

  20. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  1. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  2. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... hydrolyze ATP at all, but fulfills RecA functions such as cleavage of Lambda repressor and strand .... DNA binding properties of RecA and may result in an in- .... AMP-PNP there is no cleavage of Lambda repressor (Figure.

  3. Carotenoids in the Gulf of Gdansk sediments- useful markers of environmental conditions in the past

    Science.gov (United States)

    Krajewska, Magdalena; Szymczak-Żyła, Małgorzata; Kowalewska, Grażyna

    2017-04-01

    Carotenoids are a large group of natural compounds widespread in the aquatic environment. Most of carotenoids in sediments originate from phytoplankton, macroalgae, vascular plants and bacteria. Carotenoids undergo different reactions in water column and after deposition in sediments. Concentration and relative composition of pigments in sediments depend on such factors like primary production, phytoplankton taxonomy, sedimentation and accumulation rate, hydrological and post-depositional conditions. Because some pigments are unstable and can be degraded both by abiotic and biotic factors - in the presence of light, oxygen, herbivores or microorganisms activity, they provide information about conditions in water column and in sediments. They differ in stability and, due to that, carotenoids in marine sediments are indicators, not only of organic matter sources but also of pre- and post-depositional conditions. This work presents a concentration and distribution of selected carotenoids in recent (6 cores 0-20 cm) and deep (1 core, up to 400 cm) sediments of the Gulf of Gdansk- a highly eutrophic area of high primary production and high sedimentation rate. The sediments were collected during two cruises and analysed in framework of CLISED ('Climate Change Impact on Ecosystem Health- Marine Sediment Indicators') Polish- Norwegian research Project, grant no. 196128. Just after collection, the samples were frozen and kept in such a state until analysis in land laboratory. There, after extraction, carotenoids were analysed using high performance liquid chromatography (HPLC-DAD). Sediment age has been defined using C-14 dating. Sediments contained parent carotenoids, markers of the main phytoplankton groups occurring in the Baltic, e.g. diatoms, green algae and cyanobacteria. B-carotene in sediments is a better, averaged, marker of primary production than chlorophyll- a and similarly stable one as sum of chloropigments-a. Presentation will focus on cyanobacteria and their

  4. Circulating Carotenoids and Risk of Breast Cancer: Pooled Analysis of Eight Prospective Studies

    Science.gov (United States)

    2012-01-01

    Background Carotenoids, micronutrients in fruits and vegetables, may reduce breast cancer risk. Most, but not all, past studies of circulating carotenoids and breast cancer have found an inverse association with at least one carotenoid, although the specific carotenoid has varied across studies. Methods We conducted a pooled analysis of eight cohort studies comprising more than 80% of the world’s published prospective data on plasma or serum carotenoids and breast cancer, including 3055 case subjects and 3956 matched control subjects. To account for laboratory differences and examine population differences across studies, we recalibrated participant carotenoid levels to a common standard by reassaying 20 plasma or serum samples from each cohort together at the same laboratory. Using conditional logistic regression, adjusting for several breast cancer risk factors, we calculated relative risks (RRs) and 95% confidence intervals (CIs) using quintiles defined among the control subjects from all studies. All P values are two-sided. Results Statistically significant inverse associations with breast cancer were observed for α-carotene (top vs bottom quintile RR = 0.87, 95% CI = 0.71 to 1.05, Ptrend = .04), β-carotene (RR = 0.83, 95% CI = 0.70 to 0.98, Ptrend = .02), lutein+zeaxanthin (RR = 0.84, 95% CI = 0.70 to 1.01, Ptrend = .05), lycopene (RR = 0.78, 95% CI = 0.62 to 0.99, Ptrend = .02), and total carotenoids (RR = 0.81, 95% CI = 0.68 to 0.96, Ptrend = .01). β-Cryptoxanthin was not statistically significantly associated with risk. Tests for heterogeneity across studies were not statistically significant. For several carotenoids, associations appeared stronger for estrogen receptor negative (ER−) than for ER+ tumors (eg, β-carotene: ER−: top vs bottom quintile RR = 0.52, 95% CI = 0.36 to 0.77, Ptrend = .001; ER+: RR = 0.83, 95% CI = 0.66 to 1.04, Ptrend = .06; Pheterogeneity = .01). Conclusions This comprehensive prospective analysis suggests women with

  5. Characterization of SNARE Cleavage Products Generated by Formulated Botulinum Neurotoxin Type-A Drug Products

    Directory of Open Access Journals (Sweden)

    Jack Xie

    2010-08-01

    Full Text Available The study evaluated substrate cleavage product(s generated by three botulinum neurotoxin serotype A (BoNT/A medicinal drug products utilizing a novel and highly specific, light-chain activity, high-performance liquid chromatography (LCA-HPLC method. Samples were reacted with a commercially available BoNT/A fluorescent substrate derived from the SNAP-25 sequence. Reaction products were separated by reversed-phase HPLC. The method detected an atypical cleavage pattern by one of the formulated drug products. IncobotulinumtoxinA produced two cleavage fragments rather than the single fragment typically generated by BoNT/A. Identification confirmed the secondary cleavage at a position corresponding to SNAP-25 Arg198–Ala199 (normal BoNT/A cleavage is Gln197–Arg198. Arg198–Ala199 is also the cleavage site for trypsin and serotype C toxin. Normal cleavage was observed for all other BoNT/A drug product samples, as well as 900-kD and 150-kD bulk toxin BoNT/A. The reason for this unexpected secondary cleavage pattern by one formulated BoNT/A drug product is unknown. Possible explanations include a contaminating protease and/or damage to the 150-kD type-A toxin causing nonspecific substrate recognition and subsequent cleavage uncharacteristic of type-A toxin. The BoNT/A drug products were also analyzed via the LCA-HPLC assay using a commercial BoNT/C fluorescent substrate derived from the syntaxin sequence. Cleavage of the serotype C substrate by incobotulinumtoxinA was also confirmed whilst neither of the other drug products cleaved the syntaxin substrate.

  6. Serum carotenoid, retinol and tocopherol concentrations and risk of cervical cancer among Chinese women.

    Science.gov (United States)

    Zhang, Yuan-Yuan; Lu, Ling; Abliz, Guzalnur; Mijit, Fatima

    2015-01-01

    Despite many epidemiological studies on the effects of dietary antioxidant micronutrients on risk of cervical cancer, the findings remain uncertain and little evidence is available for serum nutrient markers. The present study aimed to examine the relationship between serum carotenoid, retinol and tocopherol concentrations and risk of cervical cancer among Chinese women. We conducted a hospital-based case- control study in which 358 adults (158 incident cases and 200 controls) were recruited from Xinjiang, China. Serum levels of carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin), retinol, and tocopherols (α-tocopherol and γ-tocopherol) were assessed by reverse-phase high-performance liquid chromatography. We found inverse associations between serum carotenoid (α-carotene, β-carotene, and lutein/zeaxanthin) and tocopherol (α-tocopherol) concentrations and the risk of cervical cancer after adjusting for potential confounders, but a null association for retinol. The ORs for 1-SD increase were 0.71 (95% CI: 0.56- 0.92; p=0.003) for total carotenoids and 0.75 (95% CI: 0.60-0.94; p=0.008) for total tocopherols. These results show that higher serum concentrations of some carotenoids and tocopherols are associated with a lower risk of cervical cancer among Chinese women.

  7. Carotenoid deposition in plant and animal foods and its impact on bioavailability.

    Science.gov (United States)

    Schweiggert, R M; Carle, R

    2017-06-13

    Over the past decades, an enormous body of literature dealing with the natural deposition of carotenoids in plant- and animal-based foods has accumulated. Prominent examples are the large solid-crystalline aggregates in carrots and tomatoes or the lipid-dissolved forms in dairy products and egg yolk. Latest research has identified lipid-dissolved forms in a rare number of plant foods, such as tangerine tomatoes and peach palm fruit (Bactris gasipaes Kunth). In addition, liquid-crystalline forms were assumed in so-called tubular chromoplasts of numerous fruits, e.g., in papaya, mango, and bell pepper. The bioavailability of carotenoids from fresh and processed foods strongly depends on their genuine deposition form, since their effective absorption to the human organism requires their liberation from the food matrix and subsequent solubilization into mixed micelles in the small intestine. Consequently, a broad overview about the natural array of carotenoid deposition forms should be helpful to better understand and modulate their bioavailability from foods. Furthermore, naturally highly bioavailable forms may provide biomimetic models for the improved formulation of carotenoids in food supplements. Therefore, this review paper presents scientific evidence from human intervention studies associating carotenoid deposition forms with their bioavailability, thus suggesting novel technological and dietary strategies for their enhanced absorption.

  8. Evolution of female carotenoid coloration by sexual constraint in Carduelis finches

    Directory of Open Access Journals (Sweden)

    Cardoso Gonçalo C

    2010-03-01

    Full Text Available Abstract Background Females often express the same ornaments as males to a similar or lesser degree. Female ornaments can be adaptive, but little is known regarding their origins and mode of evolution. Current utility does not imply evolutionary causation, and therefore it is possible that female ornamentation evolved due to selection on females, as a correlated response to selection on males (sexual constraint, or a combination of both. We tested these ideas simulating simple models for the evolution of male and female correlated traits, and compared their predictions against the coloration of finches in the genus Carduelis. Results For carotenoid-based ornamental coloration, a model of sexual constraint on females fits the Carduelis data well. The two alternative models (sexual constraint on males, and mutual constraint were rejected as causing the similarities in carotenoid coloration between males and females. For melanin coloration, the correlation between the sexes was weaker, indicating that males and females evolved independently to a greater extent. Conclusions This indicates that sexual constraint on females was an important mechanism for the evolution of ornamental carotenoid coloration in females, but less so for melanin coloration. This does not mean that female carotenoid coloration is non-adaptive or maladaptive, because sexual dichromatism could evolve if it were maladaptive. It suggests, however, that most evolution of female carotenoid coloration was male-driven and, when adaptive, may not be an adaptation stricto sensu.

  9. Effect of low doses of irradiation on the carotenoids in head to eat carrots

    International Nuclear Information System (INIS)

    Lima, K.S.C.; Lima, A.L.S.; Freitas, L.C.; Della-Modesta, R.C.; Godoy, R.L.O.

    2004-01-01

    This study aims was to evaluate the effect of low doses of g radiation on the total carotenoids, α and β-carotene content in minimally processed carrots, during the shelflife. Carrots are the mains vegetable source of carotenoids provitamin A (α and β-carotene). According to the Family Budget Survey (FBS) carried out in the Brazilian Southeast, within the roots and tubers group, carrots are widely consumed. The carotenoid stability varies largely during the stages of processing and storage, depending upon structure, temperature, oxygen availability, light exposure, humidity content, water activity and acid, metal anti-oxidant and pro-oxidant presence. The minimally processed carrots in this experiment were manually peeled, rinsed, cutted into diskis, packaged under 5% O 2 / 10% CO 2 and 21% O 2 (sintetic air), g ionizing radiation treatments was carried out with a 137 Cs source, of 0,25, 0,50, 0,75 and 1,0kGy doses, and shelf-stored at 5°C for 24 days. Total carotenoids quantification was by 449nm spectrophotometer. Determination of a and β-carotenes was made by High Performance Liquid Chromatography (HPLC). The different treatments and control group were, too, evaluated by analysing of colour and volatiles, by gas chromatography/mass spectroscopy with solid phase microextration (CG-MS/SPME), for study the significant carotenoids losses during the process [pt

  10. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification.

    Science.gov (United States)

    Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M

    2010-05-21

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.

  12. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].

    Science.gov (United States)

    Han, J; Xu, J

    1999-04-01

    A preliminary study on solid-state fermentation (SSF) with Penicillium sp PT95 for carotenoid production was performed. The results showed that the production of carotenoid in sclerotia of PT95 was more efficient in corn meal medium than in either wheat bran medium or cottonseed hull medium. Addition of nitrogen and carbon sources as well as vegetable oil to media was required for increasing the dry weight of sclerotia and carotenoid yield. Among several tested compounds for nitrogen and carbon sources, sodium nitrate and maltose were the best. Through orthogonal experiments, the optimum culture medium was obtained by supplement of NaNO3 3g, maltose 10 g, soybean oil 2.5 g to per liter of salt solution. Under the optimum culture conditions, the sclerotia dry weight increased from 5.36 g to 9.70 g per 100 g dry substrate, the carotenoid yield from 2149 micrograms to 5260 micrograms per 100 g dry substrate, the proportion of beta-carotene in carotenoids from 61.4% to 71.3%.

  13. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.

    Science.gov (United States)

    Cutzu, Raffaela; Coi, Annalisa; Rosso, Fulvia; Bardi, Laura; Ciani, Maurizio; Budroni, Marilena; Zara, Giacomo; Zara, Severino; Mannazzu, Ilaria

    2013-06-01

    In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.

  14. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2017-02-01

    Full Text Available Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  15. Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties.

    Science.gov (United States)

    Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B

    2018-04-01

    Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.

  16. SPECTROPHOTOMETRIC DETERMINATION OF CHLOROPHYLLS AND CAROTENOIDS. AN EFFECT OF SONICATION AND SAMPLE PROCESSING

    Directory of Open Access Journals (Sweden)

    Jana Braniša

    2014-02-01

    Full Text Available Chlorophylls and carotenoids are abundant pigments in plants, algae and cyanobacteria. In this study we verified the applicability of two previously developed UV-vis spectrophotometric methods for simultaneous quantitative determination of chlorophylls (a, b and carotenoids (lycopene, β-carotene or total carotenoids. The pigments were extracted from the strawberries, apricots and raspberries in both the acetone-water and acetone-hexane mixtures. Based on the statistical evaluation of the results the combination of mechanical disruption and sonication of fruit samples seems to be a suitable way to improve the pigment extraction efficiency from fruits in both types of solvents. In the case of apricot and raspberry fruit extracts the amount of chlorophylls and carotenoids calculated from the proposed equations was comparable to those published by other authors. However, the spectrophotometric determination of β-carotene content in strawberry acetone-hexane extract appeared to be problematic mainly due to the fact that carotenoids exhibited overlapping chlorophyll absorption bands. Overlap of bands leads to the negative values calculated from the proposed equation for the β-carotene content. The results indicate the limitations in use of the proposed set of equations for plant samples with comparable amounts of studied pigments.

  17. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels

    Science.gov (United States)

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D.; O’Connell, Mary A.

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, ‘Fogo’, carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, ‘Orange Grande’ and ‘Oriole’, both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum. PMID:21948863

  18. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Elena Mellado-Ortega

    2017-12-01

    Full Text Available The present study aimed to evaluate the effects of long-term storage on the carotenoid pigments present in whole-grain flours prepared from durum wheat and tritordeum. As expected, higher storage temperatures showed a catabolic effect, which was very marked for free carotenoid pigments. Surprisingly, for both cereal genotypes, the thermal conditions favoured the synthesis of lutein esters, leading to an enhanced stability, slower degradation, and, subsequently, a greater carotenoid retention. The putative involvement of lipase enzymes in lutein esterification in flours is discussed, particularly regarding the preferential esterification of the hydroxyl group with linoleic acid at the 3′ in the ε-ring of the lutein molecule. The negative effects of processing on carotenoid retention were less pronounced in durum wheat flours, which could be due to an increased esterifying activity (the de novo formation of diesterified xanthophylls was observed. Moreover, clear differences were observed for tritordeum depending on whether the lutein was in a free or esterified state. For instance, lutein-3′-O-monolinoleate showed a three-fold lower degradation rate than free lutein at 37 °C. In view of our results, we advise that the biofortification research aimed at increasing the carotenoid contents in cereals should be based on the selection of varieties with an enhanced content of esterified xanthophylls.

  19. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content.

    Directory of Open Access Journals (Sweden)

    Maria Sulli

    Full Text Available After wheat and rice, potato is the third most important staple food worldwide. A collection of ten tetraploid (Solanum tuberosum and diploid (S. phureja and S. chacoense genotypes with contrasting carotenoid content was subjected to molecular characterization with respect to candidate carotenoid loci and metabolic profiling using LC-HRMS. Irrespective of ploidy and taxonomy, tubers of these genotypes fell into three groups: yellow-fleshed, characterized by high levels of epoxy-xanthophylls and xanthophyll esters and by the presence of at least one copy of a dominant allele of the β-Carotene Hydroxylase 2 (CHY2 gene; white-fleshed, characterized by low carotenoid levels and by the presence of recessive chy2 alleles; and orange-fleshed, characterized by high levels of zeaxanthin but low levels of xanthophyll esters, and homozygosity for a Zeaxanthin Epoxidase (ZEP recessive allele. Novel CHY2 and ZEP alleles were identified in the collection. Multivariate analysis identified several groups of co-regulated non-polar compounds, and resulted in the grouping of the genotypes according to flesh color, suggesting that extensive cross-talk exists between the carotenoid pathway and other metabolite pathways in tubers. Postharvest traits like tuber dormancy and weight loss during storage showed little correlation with tuber carotenoid content, with the exception of zeaxanthin and its esters. Other tuber metabolites, such as glucose, monogalactosyldiacyglycerol (a glycolipid, or suberin precursors, showed instead significant correlations with both traits.

  20. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content

    Science.gov (United States)

    Sulli, Maria; Mandolino, Giuseppe; Sturaro, Monica; Onofri, Chiara; Diretto, Gianfranco; Parisi, Bruno

    2017-01-01

    After wheat and rice, potato is the third most important staple food worldwide. A collection of ten tetraploid (Solanum tuberosum) and diploid (S. phureja and S. chacoense) genotypes with contrasting carotenoid content was subjected to molecular characterization with respect to candidate carotenoid loci and metabolic profiling using LC-HRMS. Irrespective of ploidy and taxonomy, tubers of these genotypes fell into three groups: yellow-fleshed, characterized by high levels of epoxy-xanthophylls and xanthophyll esters and by the presence of at least one copy of a dominant allele of the β-Carotene Hydroxylase 2 (CHY2) gene; white-fleshed, characterized by low carotenoid levels and by the presence of recessive chy2 alleles; and orange-fleshed, characterized by high levels of zeaxanthin but low levels of xanthophyll esters, and homozygosity for a Zeaxanthin Epoxidase (ZEP) recessive allele. Novel CHY2 and ZEP alleles were identified in the collection. Multivariate analysis identified several groups of co-regulated non-polar compounds, and resulted in the grouping of the genotypes according to flesh color, suggesting that extensive cross-talk exists between the carotenoid pathway and other metabolite pathways in tubers. Postharvest traits like tuber dormancy and weight loss during storage showed little correlation with tuber carotenoid content, with the exception of zeaxanthin and its esters. Other tuber metabolites, such as glucose, monogalactosyldiacyglycerol (a glycolipid), or suberin precursors, showed instead significant correlations with both traits. PMID:28898255

  1. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.

    Science.gov (United States)

    Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann

    2016-05-15

    A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  3. Effects of in vivo irradiation on plasma levels of carotenoids and vitamin A

    International Nuclear Information System (INIS)

    White, W.S.; Roe, D.A.

    1986-01-01

    The aims of this investigation were to determine whether ultraviolet irradiation induces alterations in plasma carotenoid and vitamin A levels in human subjects. Twelve Caucasian women participated in an 8-week crossover trial. UV exposures were given to the anterior and posterior sides of the body on 11 days of a 2-week period. Mean cumulative UVA (320-400 nm) doses of 17.9 +/- 2.6 J/cm 2 and 24.1 +/- 1.5 J/cm 2 were delivered to the anterior and posterior sides, respectively. UVB (280-320 nm) doses were equivalent to 10% of the UVA doses given. Intake of carotenoids and preformed vitamin A was held constant. Plasma samples were collected weekly for spectrophotometric analysis of total carotenoids and vitamin A. A significant reduction (p < 0.003) in plasma carotenoid levels was observed following repeated irradiation. Although a significant treatment response could not be demonstrated for plasma vitamin A (p=0.11), a significant test for carryover (p < 0.02) suggested a delayed or continuing increase in plasma levels following irradiation. It is concluded that UV irradiation can reduce plasma carotenoid levels in vivo and may also affect plasma vitamin A levels in an adaptive response

  4. Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices.

    Science.gov (United States)

    Mapelli-Brahm, Paula; Corte-Real, Joana; Meléndez-Martínez, Antonio J; Bohn, Torsten

    2017-08-15

    Phytoene and phytofluene are major abundant dietary carotenoids largely ignored in the context of agro-food and health. The bioaccessibility of phytoene and phytofluene in tomato, carrot, blood orange (sanguinello cultivar), and apricot juices was analysed following simulated gastro-intestinal digestion with coffee cream as a lipid source, and compared with that of other main carotenoids from these matrices. The bioaccessibility of phytoene and phytofluene, and also total carotenoid bioaccessibility, followed the order: sanguinello>apricot>tomato>carrot. Phytoene was consistently the carotenoid with the highest bioaccessibility, up to 97%, generally followed by phytofluene. The higher bioaccessibility of these carotenoids could mainly be due to their marked difference in chemical structure and matrix distribution. For most juices, cis-isomers presented a higher bioaccessibility than their all-trans counterparts (P<0.05). The dietary source that provided highest amounts of potentially absorbable phytoene/phytofluene was by far tomato juice (5mg/250mL juice). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  6. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27

    KAUST Repository

    Bruno, Mark

    2016-03-05

    Main conclusion: The β-carotene isomerase OsDWARF27 is stereo- and double bond-specific. It converts bicyclic carotenoids with at least one unsubstituted β-ionone ring. OsDWARF27 may contribute to the formation of α-carotene-based strigolactone-like compounds.Strigolactones (SLs) are synthesized from all-trans-β-carotene via a pathway involving the β-carotene isomerase DWARF27, the carotenoid cleavage dioxygenases 7 and 8 (CCD7, CCD8), and cytochrome P450 enzymes from the 711 clade (MAX1 in Arabidopsis). The rice enzyme DWARF27 was shown to catalyze the reversible isomerization of all-trans- into 9-cis-β-carotene in vitro. β-carotene occurs in different cis-isomeric forms, and plants accumulate other carotenoids, which may be substrates of DWARF27. Here, we investigated the stereo and substrate specificity of the rice enzyme DWARF27 in carotenoid-accumulating E. coli strains and in in vitro assays performed with heterologously expressed and purified enzyme. Our results suggest that OsDWARF27 is strictly double bond-specific, solely targeting the C9–C10 double bond. OsDWARF27 did not introduce a 9-cis-double bond in 13-cis- or 15-cis-β-carotene. Substrates isomerized by OsDWARF27 are bicyclic carotenoids, including β-, α-carotene and β,β-cryptoxanthin, that contain at least one unsubstituted β-ionone ring. Accordingly, OsDWARF27 did not produce the abscisic acid precursors 9-cis-violaxanthin or -neoxanthin from the corresponding all-trans-isomers, excluding a direct role in the formation of this carotenoid derived hormone. The conversion of all-trans-α-carotene yielded two different isomers, including 9′-cis-α-carotene that might be the precursor of strigolactones with an ε-ionone ring, such as the recently identified heliolactone. © 2016 Springer-Verlag Berlin Heidelberg

  7. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  8. Evaluation of the Relationship between the Incubation Time and Carotenoid Production in Rhodotorula Slooffiae and R. Mucilaginosa Isolated from Leather Tanning Wastewater

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadat Naghavi

    2013-10-01

    It seemed that the maximum rate of total carotenoid was not directly associated with the maximum amount of cell biomass and the type of carotenoid and their relative amount may vary depending on genus of yeast.

  9. Carotenoid Intakes, Assessed by food frequency questionnaires are associated with serum carotenoid concentrations in the Jackson Heart Study: Validation of the Jackson Heart Study Delta NIRI Adult Food Frequency Questionnaire

    Science.gov (United States)

    Objectives: Intake and status of carotenoids have been associated with chronic disease. The objectives of this study were to examine the association between carotenoid intakes as measured by two regional food-frequency questionnaires (FFQs) and their corresponding measures in serum, and to report ...

  10. Carotenoids and retinoids in Finnish foods: dairy products and eggs.

    Science.gov (United States)

    Ollilainen, V; Heinonen, M; Linkola, E; Varo, P; Koivistoinen, P

    1989-09-01

    As part of an overall composition study of Finnish foods, the carotenoid and retinoid content of 20 dairy product samples and eggs were determined by HPLC. The total beta-carotene (all-trans beta-carotene plus 15-cis beta-carotene) was quantitated for dairy products. For egg and egg yolk, lutein content was also determined. Only traces of lycopene, cryptoxanthin, and alpha-carotene were present. All-trans retinol and 13-cis retinol were the major retinoids in dairy products. Small amounts of 9-cis, 11-cis, and 9,11-cis retinols were found. High values of both retinol and beta-carotene were found in full fat cheeses and whipping cream: from 179.0 (cheese, Edam-type) to 318.7 micrograms/100 g (whipping cream) and from 86.7 (cheese, Edam-type) to 186.5 micrograms/100 g (whipping cream) for all-trans retinol and total beta-carotene, respectively. The retinol content averaged 16.3, 32.6, and 52.2 and that of beta-carotene 9.6, 16.7, and 3.0 micrograms/100 g in milk (1.9% fat), milk (3.9% fat), and human milk, respectively. The major pigment in eggs and egg yolk was lutein, 619.5 micrograms/100 g in eggs and 1575.8 micrograms/100 g in egg yolk. According to this study, at the present level of consumption in Finland, milk, milk products (excluding butter), and eggs result in a daily intake of about 350 retinol equivalents, and consequently, are a major source of vitamin A.

  11. Cleavage of olefinic double bonds by mediated anodic oxidation

    International Nuclear Information System (INIS)

    Baeumer, U.-St.; Schaefer, H.J.

    2003-01-01

    Seven alkenes, e.g. 1-decene, methyl oleate, cyclododecene, norbornene, are cleaved by indirect anodic oxidation with IO 4 - /RuCl 3 as mediator to carboxylic acids. The best performance was achieved with two alternative ex cell-methods. Periodate is regenerated from iodate in a divided cell at a PbO 2 /Ti-anode. In the chemical reactor alkene and the produced carboxylic acid are immobilized in a chromatography column on Chromosorb W and oxidized with IO 4 - /RuO 4 in CH 3 CN/water. In the alternative version the alkene is oxidized in an emulsion generated by sonication and the organic phase is retained in the reactor by a separator. Acids and diacids are obtained in 61-91% chemical yield and good current yields. The amount of consumed periodate can be reduced to less than 5% of the amount needed for the chemical oxidation. The mediated anodic cleavage of alkenes is altogether an interesting alternative to ozonolysis

  12. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    Science.gov (United States)

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  13. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  14. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  15. Plasma levels of six carotenoids in nine European countries : report from the European Prospective Investigation into Cancer and Nutrition (EPIC)

    NARCIS (Netherlands)

    Al-Delaimy, WK; van Kappel, AL; Ferrari, P; Slimani, N; Steghens, JP; Bingham, S; Johansson, [No Value; Wallstrom, P; Overvad, K; Tjonneland, A; Key, TJ; Welch, AA; Bueno-de-Mesquita, HB; Peeters, PHM; Boeing, H; Linseisen, J; Clavel-Chapelon, F; Guibout, C; Navarro, C; Quiros, [No Value; Palli, D; Celentano, E; Trichopoulou, A; Benetou, [No Value; Kaaks, R; Riboli, E

    Background: In addition to their possible direct biological effects, plasma carotenoids can be used as biochemical markers of fruit and vegetable consumption for identifying diet-disease associations in epidemiological studies. Few studies have compared levels of these carotenoids between countries

  16. Comparing the photophysics of the two forms of the Orange Carotenoid Protein using 2D electronic spectroscopy

    Directory of Open Access Journals (Sweden)

    Mathies R.A.

    2013-03-01

    Full Text Available Broadband two-dimensional electronic spectroscopy is applied to investigate the photophysics of the photoactive orange carotenoid protein, which is involved in nonphotochemical quenching in cyanobacteria. Differences in dynamics between the light and dark forms arise from the different structure of the carotenoid in the protein pocket, with consequences for the biological role of the two forms.

  17. Optimized, fast through-put UHPLC-DAD based method for carotenoid quantification in spinach, serum, chylomicrons and faeces

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard; Madsen, Pia Lisbeth; Dragsted, Lars Ove

    2017-01-01

    An improved UHPLC-DAD based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons and faeces. Separation was achieved with gradient elution within 12.5 min for 6 dietary carotenoids and the internal standard, echinenone. The proposed me...

  18. Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation

    Directory of Open Access Journals (Sweden)

    Wenshuang LI,Shengnan ZHAI,Hui JIN,Weie WEN,Jindong LIU,Xianchun XIA,Zhonghu HE

    2016-06-01

    Full Text Available Carotenoid content of wheat is an important criterion for prediction of the commercial and nutritional value of products made from bread wheat (Triticum aestivum cultivars. The objective of this study was to determine the major components of carotenoids in Chinese wheat using ultra performance liquid chromatography (UPLC including lutein, zeaxanthin, α-carotene and β-carotene. Grain carotenoid content was investigated in 217 cultivars from three major Chinese wheat regions and from seven other countries grown in two environments. Genotype contributed to the majority of variation in carotenoid components. Lutein, zeaxanthin and β-carotene concentrations varied from 18.3 to 100.1, 4.9 to 12.0 and 0.9 to 48.7 μg per 100 g in wheat flour with an average of 40.2, 7.2 and 18.2 μg per 100 g, respectively. Lutein (61.3% was the main carotenoid component, followed by β-carotene (27.7% and zeaxanthin (11.0%. No α-carotene was detected. Total carotenoids, lutein, zeaxanthin and β-carotene were all higher in cultivars with the 1BL.1RS translocation compared to those without the translocation. This is the first report on assay of lutein, zeaxanthin and β-carotene concentrations for a large number of wheat cultivars. These data will be useful for genetic improvement of wheat carotenoid content and for understanding of the carotenoid biosynthetic pathway in wheat.

  19. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′)-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2′)-hydroxylated carotenoids). PMID:21673887

  20. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Directory of Open Access Journals (Sweden)

    Norihiko Misawa

    2011-05-01

    Full Text Available Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′-ketolase (4(4′-oxygenase; CrtW and hydroxylated by carotenoid β-ring 3(3′-hydroxylase (CrtZ. In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′-hydroxylase (CrtG. This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s-2(2′-hydroxylated carotenoids.