WorldWideScience

Sample records for carnotite

  1. Extraction of uranium from carnotite/tyuyamunite

    International Nuclear Information System (INIS)

    Li Shengnian; Fang Xuxia

    1998-01-01

    According to the characters of a carnotite/tyuyamunite and chemical properties of vanadate, the technological process, heap leaching-ion exchange-precipitation, is adopted for extracting uranium. It has been proved through laboratory test and industrial trial production that process is simple and convenient in method, advanced in technology, simple in equipment, and the product quality conforms to the criterion. The technological process is applied to small-sized hydrometallurgy plant at mine

  2. Chemical ore genesis models for the precipitation of carnotite in calcrete

    International Nuclear Information System (INIS)

    Mann, A.W.

    1974-10-01

    An investigation was carried out on the chemical mechanism responsible for the precipitation of carnotite in calcrete. The correct interpretation of uranium and vanadium movement in groundwater may only be possible after a careful and detailed evaluation of the occurrence (or non-occurrence) of many other uranium-vanadium complex salts, particularly those of calcium. It is concluded that a redox controlled mechanism for the precipitation of carnotite from groundwaters seem most likely. (R.L.)

  3. Correlation and origin of carnotite occurrences in the southern Nevada region

    International Nuclear Information System (INIS)

    Johnson, C.L.

    1982-01-01

    Carnotite [K 2 (UO 2 ) 2 (VO 4 ) 2 .3H 2 O] is recognized at seven localities in the southern Nevada region. These general areas of occurrence are the Jean-Sloan Calcrete, Hidden Valley Calcrete, Hualapai Limestone, Boulder City ''fossil water table'', Horse Spring Formation type locality, Mormon Mesa Caliche, and exposures of the Willow Tank thrust fault. The carnotite occurrences pre-date the 3.80 MY (million years before present) basalt at Sandy Pint, post-date an 8.66 MY tuff that underlies the Hualapai Limestone, and are approximately coeval with the 5.84 MY Fortification Basalt. Analysis of the Th/U ratios from 2045 dry stream sediment samples collected during the National Uranium Resource Evaluation (NURE) Program indicates uranium depletion in Precambrian terrain of the region and enrichment in areas where carnotite is observed. Anomalous vanadium in dry stream sediment samples is associated with intermediate and mafic Cenozoic volcanic rocks of pre-Colorado River age, and to a lesser extent with uratic Precambrian rocks. Correlation of the Jean-Sloan Calcrete, Hidden Valley Calcrete, Mormon Mesa Caliche, Hualapai Limestone, and Boulder City ''fossil water table'' is proposed based on elevation, relief, and inferred common age and origin. Carnotite studies have provided recognition criteria for facies of a regional geomorphic surface that formed in association with sluggish shallow groundwater flow in axial drainage systems in the Late Miocene. Carnotite and gypsum were deposited in disrupted by normal faulting and climatic conditions become increasingly arid 5-6 MY ago. Major geologic events that approximately coincide with the formation of the carnotite occurrences include the Messinian Crisis, opening of the Gulf of California, and uplift of the Sierra Nevada

  4. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  5. Use of mineral/solution equilibrium calculations to assess the potential for carnotite precipitation from groundwater in the Texas Panhandle, USA

    Science.gov (United States)

    Ranalli, Anthony J.; Yager, Douglas B.

    2016-01-01

    This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and  mHCO3− + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed

  6. Hydrology of uranium deposits in calcretes of western Australia

    International Nuclear Information System (INIS)

    Gaskin, A.J.; Butt, C.R.M.; Deutscher, R.L.; Horwitz, R.C.; Mann, A.W.

    1981-01-01

    Carnotite is the principal uranium mineral occurring in the calcreted trunk valleys of the ancient drainage system which extends over 400,000 sq km of south-western Australia. The calcretes, accumulations of calcium and magnesium carbonates up to 100 km long, 5 km wide, and 20 m thick, are discontinuous in character but act as aquifers for groundwaters of relatively low salinity that flow sluggishly to playa lakes. Catchment basins draining large areas of Precambrian granitic rocks can yield up to 200 parts per billion of uranium in the oxidizing environment of the water at shallow depth near the base of the calcretes. Where the product of the concentrations of active ion species of uranium, vanadium, and potassium exceeds the solubility product of carnotite, this mineral precipitates in fissures or between the carbonate and clay particles. Vanadium appears to be generally deficient in the upper levels of the aquifers; however, where it has been supplied at the required concentration from deeper reduced waters, forced up, for example, by a bar of resistant bedrock, carnotite mineralization has occurred. The incongruent dissolution of carnotite liberates vanadium preferentially. Some carnotite deposits currently are being leached and redeposited downstream. Where calcrete channels reach salt lakes, great increases in the activity of calcium and potassium promote further carnotite deposition by the decomplexing of uranyl carbonate complexes carried down the aquifers. Many areas of carnotite mineralization are now known. The largest, at Yeelirre, contains 46,000 MT of U 3 O 8 at an average grade of 0.15%. Extraction from the ore is hampered by the carbonate content and the presence of illite-montmorillonite clay phases, but alkaline leach techniques are practicable. An appreciable proportion of the carnotite, in an extremely fine-grained form, can be associated with the clay fraction

  7. Uranium occurence in nature: Geophysical prospecting, and its occurence in Syria

    International Nuclear Information System (INIS)

    Al-Haj Rasheed, Zaki

    1985-01-01

    A general idea about naturaly occured uranium minerals such as uranite, pechblende, carnotite, coffinit, and bronnerit is given. At the same time, different geophysical methods and detecting devices applied for uranium exploration have been demonstrated. Investigations and studies carried out in Syria point to a uranium content of 100 ppm in the exploited Syrian phosphorite. 1 fig., 1 tab

  8. Energy transfer processes in Ca.sub.3./sub.Tb.sub.2-x./sub.Eu.sub.x./sub.Si.sub.3./sub.O.sub.12./sub. (x = 0–2)

    Czech Academy of Sciences Publication Activity Database

    Carrasco, I.; Bartosiewicz, Karol; Nikl, Martin; Piccinelli, F.; Bettinelli, M.

    2015-01-01

    Roč. 48, Oct (2015), s. 252-257 ISSN 0925-3467 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : phosphors * silico-carnotite * luminescence * energy transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.183, year: 2015

  9. Ojo et al

    African Journals Online (AJOL)

    BIG TIMMY

    extraction of VO and UO from sulphuric acid liquors of carnotite ore dated back to decades ago. (Rigg and Garner, 1967). The selective extraction of V(V) from associated metal ions from hydrochloric and hydrobromic acid solutions has been effected with tris (2- ethylhexyl) phosphate (TEHP) dissolved in toluene, and the ...

  10. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  11. Denver radium site's - Case history

    International Nuclear Information System (INIS)

    Topolski, T.T.

    1985-01-01

    In developing this case history of the Denver radium sites, an attempt is made to establish the Colorado carnotite connection from the point of discovery to early development and its eventual role in the inception of the National Radium Institute and Denver's radium legacy. Early exploitive mining activities and the exportation of the highest grades of uranium ore to Europe greatly disturbed key officials at the U.S. Bureau of Mines. With its proximity to known carnotite deposits and industrial capacity, Denver's destiny as one of America's early radium production centers became a reality by 1914. With African pitchblend discoveries, Belgium competition spelled the beginning of the end of Denver's romance with radium by 1920. The sites where Denver made or used its radium were lost in obscurity for 60 years and rediscovered in 1979. Thirty one sites and a characterization of their radioactive impact are now a part of the Superfund National Priorities listing for eventual cleanup

  12. Uranium occurences in calcrete and associated sediments in Western Australia

    International Nuclear Information System (INIS)

    Butt, C.R.M.; Horwitz, R.C.; Mann, A.W.

    1977-10-01

    The report is a compilation of data pertaining to the occurence and distribution of uranium mineralization in calcretes and associated sediments in Western Australia and contains brief descriptions of many of the calcrete-uranium occurences, including some of the most minor. Virtually all calcretes in the region are liable to contain traces of uranium mineralization, visible as coatings of carnotite. The locations of the uranium occurences are shown on a map which features the distribution of calcrete

  13. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  14. Possible variations on the calcrete-gypcrete uranium model

    International Nuclear Information System (INIS)

    Carlisle, D.

    1980-01-01

    Genetic models and favorability criteria for calcrete and gypcrete uranium deposits based upon Yeelirrie and other occurrences in Western Australia and upon Langer Henirich and others in Namibia-South West Africa are summarized. Viable analogues of these world-class deposits have not yet been found in USA even though several of the favorable conditions occur in the southwest. A principal deterrent to economic concentration has been tectonic instability. But even in the most favorable areas it is not clear that climates have ever been sufficiently similar to that of the valley-calcrete region of Western Australia. Extensive, thick valley (nonpedogenic) calcretes such as those which host the carnotite in Australia and in Namibia have not been documented here. Nevertheless, submarginal occurrances of carnotite have been found in southwestern United States in small bodies of nonpedogenic and mixed pedogenic-nonpedogenic calcrete. Much of the study is based upon occurrences of carnotite-bearing calcrete and calcrete-gypcrete in the Republic of South Africa. Several of these are described briefly. Some reference is also made to new occurrences and to new data on previously described occurrences on the Namib Desert. Possible variations on the Western Australian and Namibia-South West Africa models which are considered are capillary rise of U in solution, addition of new uraniferous sediment over a calcrete, lateral access of U into a pedogenic calcrete, reworking of U from a weekly mineralized pedogenic calcrete or gypcrete into a new or reconstituted calcrete, or into an unrelated environment for fixation of U

  15. Possible variations on the calcrete-gypcrete uranium model

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, D.

    1980-01-01

    Genetic models and favorability criteria for calcrete and gypcrete uranium deposits based upon Yeelirrie and other occurrences in Western Australia and upon Langer Henirich and others in Namibia-South West Africa are summarized. Viable analogues of these world-class deposits have not yet been found in USA even though several of the favorable conditions occur in the southwest. A principal deterrent to economic concentration has been tectonic instability. But even in the most favorable areas it is not clear that climates have ever been sufficiently similar to that of the valley-calcrete region of Western Australia. Extensive, thick valley (nonpedogenic) calcretes such as those which host the carnotite in Australia and in Namibia have not been documented here. Nevertheless, submarginal occurrances of carnotite have been found in southwestern United States in small bodies of nonpedogenic and mixed pedogenic-nonpedogenic calcrete. Much of the study is based upon occurrences of carnotite-bearing calcrete and calcrete-gypcrete in the Republic of South Africa. Several of these are described briefly. Some reference is also made to new occurrences and to new data on previously described occurrences on the Namib Desert. Possible variations on the Western Australian and Namibia-South West Africa models which are considered are capillary rise of U in solution, addition of new uraniferous sediment over a calcrete, lateral access of U into a pedogenic calcrete, reworking of U from a weekly mineralized pedogenic calcrete or gypcrete into a new or reconstituted calcrete, or into an unrelated environment for fixation of U.

  16. Lake Way uranium deposit, Wiluna, Western Australia

    International Nuclear Information System (INIS)

    French, R.R.; Allen, J.H.

    1984-01-01

    The Lake Way uranium deposit, 16 km southeast of Wiluna, is in an area of granites with around 12 ppm uranium, and greenstones, near the edge of the playa Lake Way which is the drainage base for a large ancient drainage system. The deposit is carnotite in calcrete and is below or near the water table in areas of high salinity. The deposit has over 5000 tonnes U 3 O 8 , averages 1,55 m thick and is at depth of 0-10 meters. The deposit was discovered by an airborne radiometric survey. (author)

  17. Mineralogy and geochemistry of vanadium in the Colorado Plateau

    Science.gov (United States)

    Weeks, A.D.

    1961-01-01

    The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.

  18. Uraniferous surficial deposits in Southern Africa

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Wagener, G.F.

    1986-01-01

    Surficial uranium deposits are located in the north-western Cape Province of South Africa, in the Namib Desert east of Walvis Bay in South West Africa/Namibia and in the Serule Block of Botswana. They have been classified into the valley-fill, lacustrine, and pedogenic types. Carnotite is the main uranium-bearing mineral in the larger surficial deposits, with other minerals such as soddyite and phosphuranylite occurring locally. Uraninite or urano-organic complexes occur in the reducing environments of the diatomaceous earth, peat-rich deposits. Economically, the valley-fill type is the most important, with the largest deposits occurring in South West Africa/Namibia. In South West Africa/Namibia the valley-fill surficial uranium deposits occur in the Tumas and Langer Heinrich formations of the Teriary to Recent Namib Group. The Tubas, Langer Heinrich, and Welwitchia deposits are discussed: in them, carnotite occurs in calcareous and gypsiferous fluvial gravels. The pedogenic deposit at Mile 72 occurs in weathered granite and overlying gypcrete and has little economic potential. The economic potential of the surficial deposits in the north-western Cape Province is very limited in comparison with their South West African/Namibian counterparts, but the most important deposits are the lacustrine type, in particular those containing peat and diatomaceous earth. The mechanisms for the precipitation and preservation of the uranium are discussed

  19. Distribution of calcretes and gypcretes in southwestern United States and their uranium favorability, based on a study of deposits in Western Australia and South West Africa (Namibia)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, D.; Merifield, P.M.; Orme, A.R.; Kohl, M.S.; Kolker, O.; Lunt, O.R.

    1978-01-06

    Calcrete, dolocrete, and gypcrete carnotite are abundant in western Australia and Namib Desert, although only a few are of ore grade. The geology of these deposits are described. A genetic classification of calcretes emphasizing uranium favorability was developed, based on the distinction between pedogenic and nonpedogenic processes. Similarities between western Australia and South West Africa give support for the conclusions that lateral transport of U in groundwater is essential to ore deposition and that bedrock barriers or constrictions which narrow the channel of subsurface flow or force the water close to the land surface, greatly favor the formation of uraniferous calcretes. Criteria for uranium favorability deduced from the Australian and South West African studies were applied in a preliminary way to the southern Basin and Range Province of U.S. The procedure is to search for areas in which nonpedogenic calcrete or gypcrete may have developed. A caliche distribution map was compiled from soil survey and field data. Many areas were visited and some of the more interesting are described briefly, including parts of Clark County, Nevada, with occurrences of carnotite in calcrete. (DLC)

  20. Distribution of calcretes and gypcretes in southwestern United States and their uranium favorability, based on a study of deposits in Western Australia and South West Africa (Namibia)

    International Nuclear Information System (INIS)

    Carlisle, D.; Merifield, P.M.; Orme, A.R.; Kohl, M.S.; Kolker, O.; Lunt, O.R.

    1978-01-01

    Calcrete, dolocrete, and gypcrete carnotite are abundant in western Australia and Namib Desert, although only a few are of ore grade. The geology of these deposits are described. A genetic classification of calcretes emphasizing uranium favorability was developed, based on the distinction between pedogenic and nonpedogenic processes. Similarities between western Australia and South West Africa give support for the conclusions that lateral transport of U in groundwater is essential to ore deposition and that bedrock barriers or constrictions which narrow the channel of subsurface flow or force the water close to the land surface, greatly favor the formation of uraniferous calcretes. Criteria for uranium favorability deduced from the Australian and South West African studies were applied in a preliminary way to the southern Basin and Range Province of U.S. The procedure is to search for areas in which nonpedogenic calcrete or gypcrete may have developed. A caliche distribution map was compiled from soil survey and field data. Many areas were visited and some of the more interesting are described briefly, including parts of Clark County, Nevada, with occurrences of carnotite in calcrete

  1. Recovery of uranium low grade ores by froth flotation: study of the texture and synergetic effects of flotation reagents

    International Nuclear Information System (INIS)

    Duverger, Agathe

    2013-01-01

    Due to the energy growing demand, uranium low grade ores may be those exploited in the future. Uranium ores conventional treatment does not often use mineral processing such as concentration methods for reducing leaching reagent consumption. The aim of this work is to develop an upgrading process to improve the operating process (alkaline heap leaching) taking into account the mineralogical and textural variability of the ore. The Trekkopje deposit is composed of calcrete and a gypscrete. The uranium bearing mineral is carnotite (K 2 (UO 2 ) 2 [VO 4 ] 2 .3H 2 O). The gangue minerals are composed by silicates, such as quartz, feldspars, micas and Ca-minerals, calcite and gypsum (XRD and ICP-MS analysis). A SEM image processing was used to study the textural properties and the exposed free surface of mineral inclusions in clay clusters. In calcrete milled to -200 μm, 50 % of all carnotite is associated with clay clusters, which are composed by 98 % of palygorskite, 2 % of illite, montmorillonite, and interbedded clays (XRD and microprobe analysis). The carnotite grain size is 95 % less than 70 μm. Calcite is the main inclusion in clay clusters. Indeed, the calcite inclusions average rate in the clay clusters is 12 % and 5 % for carnotite inclusion. And the free exposed surface percentage of these minerals in clay clusters is 3 % and 6 %, thus indicating that the inclusions should not affect the behavior of mixed clay particles. However, ore flotation essays did not verify this hypothesis. Three minerals separation have been proposed based on the mineral ability to consume leaching reagents: separating Ca-minerals from silicates, palygorskite from gangue minerals and carnotite from gangue minerals. A study of silicates and Ca-minerals electrokinetic properties (electrophoresis) was carried out to select the collectors and the optimum pH range for selective flotation. Basic pH near neutral was proved to be optimal for the separation of gangue minerals with cationic

  2. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  3. Role of pH changes in primary uraninite mineralization

    International Nuclear Information System (INIS)

    Shmariovich, Ye.M.; Zhil'tsova, I.G.; Pakul'nis, G.V.; Shugina, G.A.

    1982-01-01

    Uranyl minerals form a distinct series based on their solubilities in environments of different pH, beginning with the molybdenates, and proceeding through the arsenates, phosphates, vanadates, and silicates of the soddyite groups. Unlike exogenetic-epigenetic uranium deposits with pitchblende, infiltrational deposits with uranyl mineralization are primarily the result of changes in the pH of the environment. The model presented gives the precipitation of uranyl vanadates at an acidic geochemical barrier, and it can be used to explain the genesis of carnotite deposits in calcretes. A geochemically opposite model for the formation of uranyl minerals as the result of the neutralization of interstitial waters that have been strongly acidified (to pH 2) in conjunction with the oxidation of sulfide-bearing rocks must be adopted to explain the distribution and conditions of the formation of the uraninite deposits in black shales

  4. Uranium traps in the phosphate bearing sudr chalk, in northeastern sinai, Egypt

    International Nuclear Information System (INIS)

    Hussein, H.A.; El-Aassy, I.E.; Mahdy, M.A.; Dabbour, G.A.; Mansour, M.Gh.; Morsy, A.M.

    1998-01-01

    The maastrichtian sudr formation in northeastern sinai is composed of three members, the lower chalk, the middle phosphate and chart-bearing and the upper chalk members. Lemon yellow secondary uranium mineralization, distributed in the lower chalk member and in some phosphate beds from the middle phosphate member are observed. The XRD analyses of some samples from the uranium bearing chalk and the phosphate beds showed the presence of the secondary uranium minerals carnotite, bergenite and upalite. The mode of uranium occurrences could be interpreted as a result of the phosphatic beds decomposition and their subjection to later diagenetic processes. Uranium leaching circulation from phosphate rocks led to the liberation of uranium from the phosphates, and vanadium from the bituminous material and clay minerals. These migrated and were deposited locally and within the underlying chalk beds which acted as a lithologic trap

  5. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north

  6. Design and construction of a system to determine Radon-222 through alpha spectroscopy

    International Nuclear Information System (INIS)

    Bonifacio M, J.

    1991-01-01

    The purpose of this work consists in the design a radon-222 gas measurement system utilizing a surface barrier detector with the objective to obtain a more accurate measurement for this isotope through an alpha particle spectrum and so to address as to avoid the activity influence of the descendants of short half-life, which are too beta particles emitters, already other methods it must be correction series to obtain the real value of radon activity. Here are presented the general properties properties of radon, the experimental part description indicating the design to measure the radon-222 gas and its parts, as well as too the standard separation of radium-226 starting from carnotite mineral. Finally, it is presented the results obtained with a discussion about it. (Author) results obtained with a discussion about it. (Author)

  7. Design and construction of a system to determine Radon-222 through alpha spectroscopy; Diseno y construccion de un sistema para determinar Radon-222 mediante espectroscopia alfa

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J. [Universidad Autonoma del Estado de Mexico. Facultad de Quimica. Toluca (Mexico)

    1991-12-31

    The purpose of this work consists in the design a radon-222 gas measurement system utilizing a surface barrier detector with the objective to obtain a more accurate measurement for this isotope through an alpha particle spectrum and so to address as to avoid the activity influence of the descendants of short half-life, which are too beta particles emitters, already other methods it must be correction series to obtain the real value of radon activity. Here are presented the general properties properties of radon, the experimental part description indicating the design to measure the radon-222 gas and its parts, as well as too the standard separation of radium-226 starting from carnotite mineral. Finally, it is presented the results obtained with a discussion about it. (Author) results obtained with a discussion about it. (Author)

  8. Inhalation of uranium ores

    International Nuclear Information System (INIS)

    Stuart, B.O.; Jackson, P.O.

    1975-01-01

    In previous studies the biological dispositions of individual long-lived alpha members of the uranium chain ( 238 U, 234 U and 230 Th) were determined during and following repeated inhalation exposures of rats to pitchblende (26 percent U 3 O 8 ) ore. Although finely dispersed ore in secular equilibrium was inhaled, 230 Th/ 234 U radioactivity ratios in the lungs rose from 1.0 to 2.5 during 8 weeks of exposures and increased to 9.2 by four months after cessation of exposures. Marked non-equilibrium levels were also found in the tracheobronchial lymph nodes, kidneys, liver, and femur. Daily exposures of beagle dogs to high levels of this ore for 8 days resulted in lung 230 Th/ 234 U ratios of >2.0. Daily exposures of dogs to lower levels (0.1 mg/1) for 6 months, with sacrifice 15 months later, resulted in lung and thoracic lymph node 230 Th/ 234 U ratios ranging from 3.6 to 9 and nearly 7, respectively. The lungs of hamsters exposed to carnotite (4 percent U 3 O 8 ) ore in current lifespan studies show 230 Th/ 234 U ratios as high as 2.0 during daily inhalation of this ore in secular equilibrium. Beagle dogs sacrificed after several years of daily inhalations of the same carnotite ore plus radon daughters also showed marked non-equilibrium ratios of 230 Th/ 234 U, ranging from 5.6 to 7.4 in lungs and 6.2 to 9.1 in thoracic lymph nodes. This pattern of higher retention of 230 Th than 234 U in lungs, thoracic lymph nodes, and other tissues is thus consistent for two types of uranium ore among several species and suggests a reevaluation of maximum permissible air concentrations of ore, currently based only on uranium content

  9. Formerly utilized MED/AEC Sites Remedial Action Program. Radiological survey of the former VITRO Rare Metals Plant, Canonsburg, Pennsylvania. Final report. [Plant to extract radium and uranium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    This 18-acre site was used from 1911 to 1922 to extract radium from carnotite ore, from 1930 to 1942 to extract radium and uranium salts from onsite residues and carnotite ore, and from 1942 to 1957 to recover uranium from various ores and scrap materials. The radiological survey was conducted in two phases, Phase I included measurement of radon and radon daughter concentrations in onsite buildings; concentrations measured in this part of the survey were all above guideline levels. Phase II consisted of measurement of surface contamination levels on the site, external gamma radiation levels at 1 m above surfaces on and near the site, radionuclide concentrations in surface and subsurface soil and water on and near the site, and radon concentrations in air at offsite locations. The results of the second phase of the survey indicate that large quantities of the radioactive wastes generated during radium and uranium recovery operations still remain on the site. Radium-bearing wastes are present in soil beneath or adjacent to each of the buildings on the site and in the top few feet of soil over almost the entire site, with some areas being contaminated to a depth of 16 ft or more. Alpha contamination levels, beta--gamma dose rates, and external gamma radiation levels in some areas of the buildings and outdoors on the site are above current federal guidelines concerning the release of property for unrestricted use. Concentrations of /sup 226/Ra in water in holes drilled on the site are above the maximum permissible concentration (MPC/sub w/). Also, measurements made offsite show that contamination from the site has spread to nearby offsite locations, and that there is significant atmospheric transport of /sup 222/Rn from the site.

  10. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  11. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  12. Histopathologic, morphometric, and physiologic investigation of lungs of dogs exposed to uranium-ore dust

    Energy Technology Data Exchange (ETDEWEB)

    Cross, F.T.; Filipy, R.E.; Loscutoff, S.M.; Mihalko, P.J.; Palmer, R.F.; Busch, R.H.

    1981-01-01

    The most consistent pulmonary-function change attributed to carnotite uranium-ore-dust exposure (at 15 mg/m/sup 3/, for 4 h/day, 5 days/week) is an increased slope of the single-breath N/sub 2/ washout curve, suggesting an uneven distribution of ventilation. This change was observed in dogs exposed for less than 1 year and continued through 4 years of exposure. Measurements of pulmonary resistance, after 27, 40 and 47 months exposure, showed slight age-related changes and increasing differences between control and exposed animals with duration of exposure. These two changes are suggestive of a bronchitic response, similar to the industrial bronchitis of mine workers. The most notable pulmonary lesions observed in dogs exposed for up to 4 years are: vesicular emphysema, peribronchiolitis and focal pneumoconiosis. Lesions of the major airways and upper respiratory tract, when present, were minimal in severity. Pulmonary vesicular emphysema was present in all but one of the examined dogs. The emphysema was dose-related, in that it was present only to a slight degree in dogs exposed for less than 3 years and, thereafter, increased in severity. Morphometric measurement data confirmed the value of the histopathologic grading system for the degree of emphysema. These data correlated best with the dynamic pulmonary compliance measurements.

  13. Geochemistry of uranium in ground waters of the Conlara river Valley, San Luis and Cordoba provinces (Argentina)

    International Nuclear Information System (INIS)

    Nicolli, H.B.; Gamba, M.A.

    1979-01-01

    Geochemical characteristics of ground waters related with lixiviation, transport and precipitation of uranium in the Conlara river valley (provinces of San Luis and Cordoba (Argentina)) are studied. Anions and cations' distributions, together with hardness, specific conductivity, pH, Eh, and uranium and vanadium contents, have been studied. Those parameters characterize four hidrogeochemical facies along an E-W profile: a calcic strong bicarbonate facies, an alkaline-calcic bicarbonate facies, an alkaline sulfate facies, and a strong alkaline sulfate facies. An ''Interphase zone'' (transition from bicarbonate water to sulfate water), where changes in composition may define a geochemical environment capable of UO2 precipitation, has been determined. The chemical-Thermodynamic studies give a dominance of UDC and UTC complexs ions (even in sulfate waters), so they represent the 99% of present ions. Besides, the calculated values required for equilibrium with uraninite or carnotite resulted much greater than those obtained in the performed experiments. It means that the precipitation of those minerals requires either the presence of greate amounts of uranium or vanadium, or a reducing environment with Eh values smaller than the observed ones. Finally, the steps to be taken in future investigations are suggested in view to a drilling plan where: 1) Priority to the ''Interphase zone'' areas is given. 2) The deepest aquifers in Tertiary sediments of the basin have to be reached in order to get the convenient environmental conditions (i.e. smallest Eh values) for uranium or uranium-vanadium precipitation. (author) [es

  14. A brief history of the American radium industry and its ties to the scientific community of its early twentieth century

    Science.gov (United States)

    Landa, E.R.

    1993-01-01

    Federally funded remedial action projects are presently underway in New Jersey and Colorado at sites containing 226Ra and other radionuclides from radium-uranium ore extraction plants that operated during the early twentieth century. They are but the latest chapter in the story of an American industry that emerged and perished in the span of three decades. Major extraction plants were established in or near Denver (CO), Pittsburgh (PA), and New York City (NY) to process radium from ore that came largely from the carnotite deposits of western Colorado and eastern Utah. The staffs of these plants included some of the finest chemists and physicists in the nation, and the highly-refined radium products found a variety of uses in medicine and industry. The discovery of high-grade pitchblende ores in the Belgian Congo and the subsequent opening of an extraction plant near Antwerp, Belgium, in 1992, however, created an economic climate that put an end to the American radium industry. The geologic, chemical, and engineering information gathered during this era formed the basis of the uranium industry of the later part of the century, while the tailings and residues came to be viewed as environmental problems during the same period.

  15. Design and construction of a system to analyze Radon 222 by means of alpha spectroscopy

    International Nuclear Information System (INIS)

    Martinez, J.B.

    1991-01-01

    Design and construction of a system to measure gaseous Radon 222 which arise from a source of Radium 226 electrodeposited in a stainless disc is described. Such a system allows to differentiate the energies of radium where they come from, as well as energies of daughter products. In this way it is possible to have a more precise measure of the alpha activity of this isotope. The system was constructed in a stainless steel hermetic container made of the camera, a cape and a valve, the used sample was a standards of Radium 226 attained from carnotite ore. The Radon 222 alpha particles, as well as the alpha particles of its decay products namely Polonium 210. Polonium 218 and Polonium 214 were identified by a surface barrier detector. The results in this manner obtained shows clearly well definite peaks of Radon 222 and also peaks of the Radon 222 daughter products with energies of 5.43, 5.31, 6.0 and 7.69 Mev respectively. The system allows to separate and to indentify the energies of Radon and its daughter products coming directly from a standard solid sample of Radium 226 (Author)

  16. Genesis of Uranium in the younger granites of gabal abu hawis area, central eastern desert of Egypt

    International Nuclear Information System (INIS)

    Ahmed, F.Y.; Moharem, A.F.

    2003-01-01

    The younger granites cropping out in gabal abu hawis area are considered as uraniferous (fertile) granites (the fertile is mainly is mainly attributed to presence of radioactive zircon). Abu hawis granitic pluton is dissected by joints faults of different trends forming two mineralized shear zones in the northern peripheries and southern border. The younger granites hosting uranium mineralizations along the two mineralized shear zones. The uranium minerals include uranophane and carnotite. The altered granites have much lower Th/U ratios (0.03-0.10) than those of the fresh granites (1.69-2.05), indicating strong mobilization of uranium in this pluton by super-heated solutions that resulted from supergence meteoric water as well as U-addition by hypogene fluids. These solutions could pass through the structural network of fractures, joints and fault planes and have leached some of labile uranium from the surrounding rocks and/or the younger granites themselves. Then, changing in the physicochemical conditions of these solutions caused uranium precipitation as uranium minerals filling the cracks in the rock and/or adsorbed on the surface of clay minerals and iron oxides in the two shear zones

  17. Separation of Actinium 227 from the uranium minerals

    International Nuclear Information System (INIS)

    Martinez-Tarango, S.

    1991-01-01

    The purpose of this work was to separate Actinium 227, whose content is 18%, from the mineral carnotite found in Gomez Chihuahua mountain range in Mexico. The mineral before processing is is pre-concentrated and passed, first through anionic exchange resins, later the eluate obtained is passed through cationic resins. The resins were 20-50 MESH QOWEX and 100-200 MESH 50 X 8-20 in some cased 200-400 MESH AG 50W-X8, 1X8 in other cases. The eluates from the ionic exchange were electrodeposited on stainless steel polished disc cathode and platinum electrode as anode; under a current ODF 10mA for 2.5 to 5 hours and of 100mA for .5 of an hour. it was possible to identify the Actinium 227 by means of its descendents, TH-227 and RA-223, through alpha spectroscopy. Due to the radiochemical purity which the electro deposits were obtained the Actinium 227 was low and was not quantitatively determined. A large majority of the members of the natural radioactive series 3 were identified and even alpha energies reported in the literature with very low percentages of non-identified emissions were observed. We conclude that a more precise study is needed concerning ionic exchange and electrodeposit to obtain an Actinium 227 of radiochemical purity. (Author)

  18. Evaluation of Uranium depositional system in sedimentary rocks of Sibolga formation, Tapanuli Tengah

    International Nuclear Information System (INIS)

    I Gde Sukadana; Heri Syaeful

    2016-01-01

    Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment. (author)

  19. Surficial uranium deposits: summary and conclusions

    International Nuclear Information System (INIS)

    Otton, J.K.

    1984-01-01

    Uranium occurs in a variety of surficial environments in calcretes, gypcretes, silcretes, dolocretes and in organic sediments. Groundwater moving on low gradients generates these formations and, under favourable circumstances, uranium deposits. A variety of geomorphic settings can be involved. Most surficial deposits are formed in desert, temperate wetland, tropical, or transitional environments. The largest deposits known are in sedimentary environments in arid lands. The deposits form largely by the interaction of ground or surface waters on the geomorphic surface in favourable geologic terrains and climates. The deposits are commonly in the condition of being formed or reconstituted, or being destroyed. Carnotite is common in desert deposits while in wetland deposits no uranium minerals may be seen. Radioactive disequilibrium is common, particularly in wetland deposits. Granites and related rocks are major source rocks and most large deposits are in regions with enriched uranium contents, i.e. significantly greater than 5 ppm uranium. Uranium dissolution and transport is usually under oxidizing conditions. Transport in desert conditions is usually as a bicarbonate. A variety of fixation mechanisms operate to extract the uranium and form the deposits. Physical barriers to groundwater flow may initiate ore deposition. Mining costs are likely to be low because of the near surface occurrence, but there may be processing difficulties as clay may be present and the saline or carbonate content may be high. (author)

  20. Surficial uranium occurrences in relation to climate and physical setting

    International Nuclear Information System (INIS)

    Carlisle, D.

    1984-01-01

    Important surficial chemogenic uranium deposits develop within 1) calcretes, 2) simple evaporative environments and 3) bogs or similar organic environments (''young'' uranium). Calcrete occurrences are the largest, most novel and most dependent upon extreme aridity and geomorphic stability. Economic calcrete deposits are nonpedogenic, resulting from near-surface groundwater transport and lateral concentration of uranium, vanadium, potassium, calcium, and magnesium rather than from ordinary soil-forming processes. Their genesis is essentially observable in Western Australia where carnotite-bearing nonpedogenic calcrete is currently forming under a unique aridic soil moisture regime and where major deposits have formed under similar climates during the last few thousand years. Rainfall is less than 250mm annually, only 1/12 to 1/20 of potential evaporation and concentrated almost entirely in episodic late summer storms. Outside this region, under less arid conditions, only pedogenic calcretes form and they do not contain economic uranium. In southern Africa, calcrete and gypcrete uranium deposits, although Late Tertiary to Quaternary in age, are also nonpedogenic and appear to have formed under similar climatic constraints with local variations in geomorphology and calcrete morphology. (author)

  1. A brief history of the American radium industry and its ties to the scientific community of its early Twentieth Century

    International Nuclear Information System (INIS)

    Landa, E.R.

    1993-01-01

    Federally funded remedial action projects are presently underway in New Jersey and Colorado at sites containing 226 Ra and other radionuclides from radium-uranium ore extraction plants that operated during the early twentieth century. They are but the latest chapter in the story of an American industry that emerged and perished in the span of three decades. Major extraction plants were established in or near Denver (CO), Pittsburgh (PA), and New York City (NY) to process radium from ore that came largely from the carnotite deposits of western Colorado and eastern Utah. The staffs of these plants included some of the finest chemists and physicists in the nation, and the highly-refined radium products found a variety of uses in medicine and industry. The discovery of high-grade pitchblende ores in the Belgian Congo and the subsequent opening of an extraction plant near Antwerp, Belgium, in 1992, however, created an economic climate that put an end to the American radium industry. The geologic, chemical, and engineering information gathered during this era formed the basis of the uranium industry of the later part of the century, while the tailings and residues came to be viewed as environmental problems during the same period

  2. Geology and ore deposits of the Klondike Ridge area, Colorado

    Science.gov (United States)

    Vogel, John David

    1960-01-01

    The region described in this report is in the northeastern part of the Colorado Plateau and is transitional between two major structural elements. The western part is typical of the salt anticline region of the Plateau, but the eastern part has features which reflect movements in the nearby San Juan Mountains. There are five major structural elements in the report area: the Gypsum Valley anticline, Dry Creek Basin, the Horse Park fault block, Disappointment Valley, and the Dolores anticline. Three periods of major uplift are recognized In the southeastern end of the Gypsum Valley anticline. Each was followed by collapse of the overlying strata. Erosion after the first two periods removed nearly all topographic relief over the anticline; erosion after the last uplift has not yet had a profound effect on the topography except where evaporite beds are exposed at the surface. The first and greatest period of salt flow and anticlinal uplift began in the late Pennsylvanian and continued intermittently and on an ever decreasing scale into the Early Cretaceous. Most movement was in the Permian and Triassic periods. The second period of uplift and collapse was essentially contemporaneous with widespread tectonic activity on. the northwestern side of the San Juan Mountains and may have Occurred in the Oligocene and Miocene epochs. Granogabbro sills and dikes were intruded during the middle or upper Tertiary in Disappointment Valley and adjoining parts of the Gypsum Valley and Dolores anticlines. The third and mildest period of uplift occurred in the Pleistocene and was essentially contemporaneous with the post-Hinsdale uplift of the San Juan Mountains. This uplift began near the end of the earliest, or Cerro, stage of glaciation. Uranium-vanadium, manganese, and copper ore as well as gravel have been mined in the Klondike district. All deposits are small, and few have yielded more than 100 tons of ore. Most of the latter are carnotite deposits. Carnotite occurs in the lower

  3. Present investigations of radioactive raw materials by the Geological Survey and a recommended program for future work

    Science.gov (United States)

    Butler, A.P.; Stead, F.W.

    1947-01-01

    The Geological Survey's program of investigation of radioactive raw materials is presented herewith under present investigations, plans for future investigations, plan of operation, and cost of operation. This report was prepared at the request of the Atomic Energy Commission. Present investigations are summarized to show the scope of the present Trace Elements program, grouping individual projects into related types of investigations. Plans for future investigations on an expanded scale are outlined. These should provide sufficient data and knowledge of the occurrence and availability of uranium, thorium, and related elements, to permit a more complete evaluation of domestic resources. Reconnaissance projects are designed to discover possible new sources of uranium and thorium and to select areas and materials warranting further investigation. Typical projects leading to the estimation of reserves are the investigation of the carnotite ores of the Colorado Plateau by geologic mapping, exploratory drilling, and related research, and investigation of asphaltic sandstone in Emery County, Utah. Extensive research will be undertaken to establish the principles governing the geological and geochemical relations of uranium, thorium, and associated elements as an essential guide in appraising domestic resources. Particular emphasis will be placed on phosphatic rocks and black shales which offer ultimate resources of uranium far greater than carnotite ores. All the foregoing investigations will be accompanied by chemical, gephysical, and mineralogical research and analytical work. Under plan of operation is discussed the organization of the Trace Elements Unit, space requirements for laboratory and office, the scheduling of investigations, and other related problems. The proposed scheduling of work calls for approximately 109, 173, and 203 man years in fiscal years 1948, 1949, and 1950 respectively. Definite plans have been formulated only for the next three fiscal years

  4. Uranium minerals and radioactive equilibrium in the Jordan phosphate deposit of Ruseifa

    International Nuclear Information System (INIS)

    Zereini, F.; Urban, H.

    1989-01-01

    In the open pit of Ruseifa (Jordan) a marine sedimentary succession is mined, which belongs to the Maastrichian stage (Upper Cretacious). This up to 28 m thick succession is composed of an alternated stratification of phosphorites, limestones, clay marls and cherts with gradations between these main rock types. As all these rocks contain apatite in varying amounts the whole succession is designed by the term 'phoshate layer'. In the 'phosphate layer' 4 workable phosphorite bearing beds with thicknesses between 1.15 and 3.45 m are present, giving an eminent economical importance to the deposit. Especially the stratigraphically youngest, the fourth phosphorite bed, shows remarkably increased gamma-activities. In the phoshorite the average uranium content amounts up to 110 ppm U. The mineral apatite has been identified to be the main carrier of the uranium. In veins and fissures yellow secondary uranium minerals occur, which have been determined as carnotite and metatuyamunite. The discovery, that uranium is in a state of preponderant radioactive equilibrium with its daughter products, is important for the genesis of the uranium enrichments as well as for practical means of mining. The detected radioactive disequilibria are restricted to the formation of secondary uranium minerals on fissures and joints demonstrating distinct migration of uranium and its daughter product in the last 800 000 years (quaternary until recent weathering). These young geochemical weathering processes did not essentially change the syngenetic distribution of uranium in the phosphorite. With the determined mean uranium content of 110 ppm the whole uranium reserves of Ruseifa evaluates approximately 8580 t of uranium metal out of total phosphate reserves of 78 mio. t. (orig.) [de

  5. The geology and geochemistry of some epigenetic uranium deposits near the Swakop River, South West Africa

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.

    1983-10-01

    This study comprises a geological and geochemical investigation of the uranium deposits in the region near the Swakop River which extends from the Langer Heinrich Mountain in the east to the end of the Tumas River in the west. The general geology of the basement rocks in the Langer Heinrich region only is discussed. The general geology of the younger duricrust formations is discussed. Analytical methods were developed for the separation of thorium, protactinium and uranium from geological materials using various chromatographic procedures. Alpha spectrometry, neutron activation analysis and delayed neutron counting were the main techniques used. The occurrence of uranium in the region of study follows a unique geochemical cycle, and the geochemistry at each stage in the cycle was examined. The first stage in the uranium-geochemical cycle was the basement rocks. The second stage in the geochemical cycle of uranium was the subsurface water. The third stage in the geochemical cycle of uranium concerns its occurrence in the duricrust deposits. Isotopic disequilibrium measurements showed that uranium is still migrating, and that the age of the carnotite precipitation is 30 000 years, based on the open-system model of uranium migration. In the final stage of the geochemical cycle, the geochemistry of uranium in seawater and the diatomaceous muds is discussed. A classification system for the uranium deposits near the Swakop River, based on genetic relationships, is proposed and described in terms of the geochemical cycle of uranium, the mode of transport and mode of deposition. The relationships between the duricrust uranium deposits and the other uranium deposits of South Africa are compared

  6. Depletion of energy or depletion of knowledge alternative use of energy resources

    International Nuclear Information System (INIS)

    Arslan, M.

    2011-01-01

    This research paper is about the depletion of Energy resources being a huge problem facing the world at this time. As available energy sources are coming to a shortage and measures are be taken in order to conserve the irreplaceable energy resources that leads to sustainability and fair use of energy sources for future generations. Alternative energy sources are being sought; however no other energy source is able to provide even a fraction of energy as that of fossil fuels. Use of the alternative energy resources like wind corridors (Sindh and Baluchistan), fair use of Hydro energy (past monsoon flooding can produce enough energy that may available for next century). Uranium Resources which are enough for centuries energy production in Pakistan (Dhok Pathan Formation) lying in Siwalick series from Pliocene to Pleistocene. Among all of these, my focus is about energy from mineral fuels like Uranium from Sandstone hosted deposits in Pakistan (Siwalik Series in Pakistan). A number of uranium bearing mineralized horizons are present in the upper part of the Dhok Pathan Formation. These horizons have secondary uranium mineral carnotite and other ores. Uranium mineralization is widely distributed throughout the Siwaliks The purpose of this paper was to introduce the use of alternative energy sources in Pakistan which are present in enough amounts by nature. Pakistan is blessed with wealth of natural resources. Unfortunately, Pakistan is totally depending on non renewable energy resource. There are three main types of fossil fuels: coal, oil and natural gas. After food, fossil fuel is humanity's most important source of energy. Pakistan is among the most gas dependent economies of the world. Use of fossil fuel for energy will not only increase the demand of more fossils but it has also extreme effects on climate as well as direct and indirect effects to humans. These entire remedial thinking can only be possible if you try to use alternative energy resources rather than

  7. New Au-U deposit type in the weathering crust in tectonicmetasomatite zones of Pre-Cambrian shields

    International Nuclear Information System (INIS)

    Tarkhanov, A.

    2014-01-01

    Au-U mineralization is widely distributed in the tectonic-metasomatite zones of Pre-Cambrian shields (Aldan Shield, Ukraine Shield and others). The industrial ores are located only in several areas at depths of more than 150-300 m. Uranium mineralization is represented by uranotitnates and the gold mineralization by auriferous pyrite. The zone of weathering is present to the depth of 100-150 m. The feldspars are replaced by the clay minerals, carbonates are dissovled, sulfides are oxidized and the secondary minerals of uranium replace uranotitanates.The golden mineralization in the envelope of weathering is represented by the fine-grained native gold. The particle size is 40-50 nm. Uranium mineralization is in the form of relict brannerite, tuyamunite, torbernite, carnotite. The gold content is 1-2 g/t, and uranium content 0.01- 0.05% U. Ore bodies of gold and uranium are located inside the tectonic-metasomatite zones. The zones of maximum concentration of these metals may not coincide. The gold ore bodies have the length of hundreds meters and a thickness of 1-5 m. The vertical extent of the secondary Au-U mineralization is 100-150 m. 20 laboratory samples of ore from the weathered zone were tested by the method of heap leaching. The first stage is the uranium leach by diluted sulfuric acid. The second stage is the cyanation of gold and silver. The experimental data indicates leach rate of uranium 75%, gold 80-97%, silver 50-60%. Gold resources in the continous zone is estimated to be 80 t. Gold resources of the several other zones inside the area of 100 km 2 are estimated as 220 t. The heap leach process can be used for profitable development of the low-grade deposits. This method helps to increase the resources of gold and uranium. (author)

  8. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Propp, C.J.

    1980-01-01

    Modern methods of uranium solution mining are typically accompanied by gains and losses of mass through reagent consumption by rock-forming minerals, with subsequent formation of clay minerals, gypsum, carbonates, and iron oxyhydroxides. A systematic approach to alleviate such problems involves the application of leach solutions that are in equilibrium with the host-rock minerals but in disequilibrium with the ore-forming minerals. This partial equilibrium can be approximated by solution-composition adjustments within the systems K 2 O-Al 2 O 3 SiO 2 -H 2 O and Na 2 O 3 -Al 2 O 3 SiO 2 -H 2 O. Uranium ore containing 0.15 percent U 3 O 8 from the Gulf Mineral Resources Corporation's Mariano Lake mine, the Smith Lake district of the Grants mineral belt, was collected for investigation. Presented are a theoretical evaluation of leachate data and an experimental treatment of the ore, which contained mainly K-feldspar, plagioclase feldspar, and quartz (with lesser amounts of micas, clay minerals, and organic carbonaceous material). Small-scale (less than or equal to 1 kg) column-leaching experiments were conducted to model the results of conventional leaching operations and to provide leachate solutions that could be compared with solutions calculated to be in equilibrium with the matrix minerals. Leach solutions employed include: 1) sulfuric acid, 2) sodium bicarbonate, and 3) sulfuric acid with 1.0 molal potassium chloride. The uranium concentrations in the sodium-bicarbonate leach solution and the acid-leach solution were about a gram per liter at the termination of the tests. However, the permeability of the ore in the acid leach was greatly reduced, owing to the formation of clay minerals. Uranium solubility in the leach column stabilized with the potassium-chloride solution was calculated from leachate compositions to be limited by the solubility of carnotite

  9. Radioactive source materials in Los Estados Unidos de Venezuela

    Science.gov (United States)

    Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte

    1953-01-01

    high-grade hydrothermal pitchblende deposits; and highly possible for small, medium- to high-grade despots of carnotite-or copper-uranium bearing sandstone. Recommendations for the Venezuelan uranium program include 1) the systematic collection of a mass general radiometric data by examining sample collections, expanding the gamma-ray program, encouraging the use of Geiger counter by field geologists, and by enlisting the aid of the general public; 2) , the examination of specific areas or localities, chosen on the basis of geologic favorability from the results of the amassing of data, or obtained by hints and rumors; 3), the organization of a unit within the Direccion Tecnica de Geologica to direct, collection, and collate metric data. It is emphasized that to be most fruitful the program requires the application of sounds and imaginative geologic theory.

  10. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N. [Pacific Northwest National Laboratory, Richland, WA, USA; Gallagher, Neal B. [Eigenvector Research, Inc., Manson, WA, USA; Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, WA, USA; Szecsody, James E. [Pacific Northwest National Laboratory, Richland, WA, USA; Tonkyn, Russell G. [Pacific Northwest National Laboratory, Richland, WA, USA; Su, Yin-Fong [Pacific Northwest National Laboratory, Richland, WA, USA; Sweet, Lucas E. [Pacific Northwest National Laboratory, Richland, WA, USA; Lewallen, Tricia A. [Pacific Northwest National Laboratory, Richland, WA, USA; Johnson, Timothy J. [Pacific Northwest National Laboratory, Richland, WA, USA

    2017-10-24

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species, including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the

  11. Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming

    Science.gov (United States)

    Bergendahl, M.H.; Davis, R.E.; Izett, G.A.

    1961-01-01

    thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no

  12. IAEA sends out samples of uranium ore

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Governments and organizations interested in developing uranium resources will be assisted by a new service, now being inaugurated by the Agency's laboratories, for the distribution of reference samples of uranium ores. This is an addition to the service which began at Seibersdorf in January 1962 for the distribution of calibrated radionuclides, and which has met with a steadily increasing demand. * Uranium deposits consisting of ores with a uranium content in the range 0.5 - 0.05 per cent occur in a number of countries, including developing countries and can present considerable analytical difficulties. In 1962 the Agency asked Member States whether they would be interested in receiving reference samples of uranium ores to assist them in checking their methods of chemical analysis. The response encouraged the Agency to proceed. There is a multiplicity of types of uranium ores and, initially, three of the most commonly occurring have been selected - torbernite, uraninite and carnotite. Member States have provided the laboratory with supplies of these three types of ore. In order to determine the uranium content, samples are sent to leading laboratories throughout the world, so as to arrive at the most accurate values possible. This work has proved to be useful to the laboratories themselves ; in searching for reasons for discrepancies between the different collaborating laboratories, they enlarge their own knowledge and improve their methods. The reference samples are sent out in the form of fine powder, and are available to atomic energy commissions, research laboratories or mining companies. The requesting laboratory, having worked out the analytical process best suited to its needs, is then able to check its results by analysing an IAEA reference sample of known uranium content. By the end of 1966, reference samples will be available of the three ores mentioned, and later also of pure uranium oxide and of uranium oxide containing trace impurities, the