WorldWideScience

Sample records for carnegie mellon scientists

  1. Information Technologies at Carnegie Mellon.

    Science.gov (United States)

    Troll, Denise A.

    1992-01-01

    Describes research and development of the Mercury Electronic Library Project, which was developed at Carnegie Mellon University Libraries to design an advanced retrieval system. Topics discussed include system architecture; security; performance, including automated and manual assessments; enhanced retrieval, including available databases;…

  2. An Experiment in Enhancing Catalog Records at Carnegie Mellon University.

    Science.gov (United States)

    Michalak, Thomas J.

    1990-01-01

    Describes an experimental project at Carnegie Mellon University to enhance catalog records in order to improve the quality of the records and access to resources. Criteria for selecting books for enhanced cataloging and implementation of enhancement procedures are discussed. Several sample screen displays are included. (Three references) (MES)

  3. Introducing Carnegie-Mellon University's Robotics Institute (Research in Progress)

    OpenAIRE

    Fox, Mark S.; Bartel, Gene; Moravec, Hans

    1981-01-01

    Carnegie-Mellon University has established a Robotics Institute to bring its expertise in engineering, science, and industrial administration to bear upon the problem of national industrial productivity. The institute has been established to undertake advanced research and development in seeing, thinking robots and intelligent systems, and to facilitate transfer of this technology to industry. The Institute is engaged in broad programs of research in robotics, artificial intelligence, manufac...

  4. Software Engineering Education at Carnegie Mellon University: One University; Programs Taught in Two Places

    Directory of Open Access Journals (Sweden)

    Mel Rosso-Llopart

    2009-10-01

    Full Text Available Teaching Software Engineering to professional master‟s students is a challenging endeavor, and arguably for the past 20 years, Carnegie Mellon University has been quite successful. Although CMU teaches Software Engineering at sites world-wide and uses different pedagogies, the goal of the curriculum -- to produce world-class software engineers -- remains constant. This paper will discuss two of the most mature versions of Carnegie Mellon‟s Software Engineering program -- the main campus program and its "daughter program" at the Silicon Valley Campus. We discuss the programs with respect to the dimensions of curriculum, how students work and learn, how faculty teach, curricular materials, and how students are assessed to provide insight into how Carnegie Mellon continues to keep its programs fresh, to adapt them to local needs, and to meet its goal of excellence after 20 years.

  5. Stability of the Zagreb Carnegie-Mellon-Berkeley model

    CERN Document Server

    Osmanović, H; Švarc, A; Hadžimehmedović, M; Stahov, J

    2011-01-01

    In ref. [1] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions, and that it can reliably predict the pole positions of the fitted partial wave amplitudes.

  6. Carnegie Mellon University Space Architecture

    Science.gov (United States)

    Kennedy, Kriss J.

    2016-01-01

    A traditional architecture studio focusing on a "post-pioneering" settlement (a first step research station with an emphasis on material, resources, closed-loop systems, as well as programmatic network and spatial considerations) for the surface of Mars or for Earth-Mars transit.

  7. Autonomous planetary rover at Carnegie Mellon

    Science.gov (United States)

    Whittaker, William; Kanade, Takeo; Mitchell, Tom

    1990-01-01

    This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.

  8. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  9. Libraries and Andrew Carnegie's Challenge.

    Science.gov (United States)

    Gregorian, Vartan

    This essay by the president of the Carnegie Corporation of New York (reprinted from the 1998 annual report) opens by noting that the year 1999 marks the 100th anniversary of Andrew Carnegie's support for the planning and development of 65 branch libraries of the New York Public Library System, a gift that came to more than $5.2 million. Discussion…

  10. Experimental medium-energy physics at Carnegie-Mellon University, 1968-1983

    International Nuclear Information System (INIS)

    Past, present, and future activities are described. The major portion of the current research effort is directed toward studies on the weak decay of #betta#-hypernuclei, the anti pp → anti #betta##betta# reaction at threshold using LEAR, and mechanisms for pion annihilation in light nuclei. Experimental proposals at user facilities are summarized, publications are listed, and recent preprints are included

  11. A Perspective on Carnegie Corporation's Program, 1983-1997.

    Science.gov (United States)

    Hamburg, David A.

    The Carnegie Corporation's mission is to continue Andrew Carnegie's philanthropic preoccupations with promoting education and world peace. In this essay, retiring Carnegie Corporation President David A. Hamburg provides a detailed accounting of his stewardship of the foundation since 1983, when he set forth new program directions in the context of…

  12. CCRIS: Carnegie Commission Reports Information System.

    Science.gov (United States)

    Lavin, Mary Jo

    The Carnegie Commission Reports Information System (CCRIS) attempts to make the findings of the 22 Commission reports (published by McGraw Hill Book Company) more readily available to the academic community. CCRIS consists of an explanatory text of 16 pages introducing the reader to a set of 1500 edge-notched McBee cards. Each card contains a…

  13. Engaged with Carnegie: Effects of Carnegie Classification Recognition on CUMU Universities

    Science.gov (United States)

    Arfken, Deborah Elwell; Ritz, Susan

    2013-01-01

    This paper provides the results of a survey sent to all thirty-two CUMU institutions that have received the Carnegie recognition and specifically examines a) reasons for applying for the elective classification; b) level of pride instilled in campuses; and c) level of impact on institutional identity and culture, institutional commitment,…

  14. THE LOW-REDSHIFT CARNEGIE SUPERNOVA PROJECT

    Directory of Open Access Journals (Sweden)

    G. Folatelli

    2009-01-01

    Full Text Available We present the low-redshift Carnegie Supernova Project (CSP, an undergoing program to follow up about 250 nearby supernovae (SNe of all types. We brie y describe the observations which yield well-sampled, highly precise optical and near-infrared light curves in a well-understood photometric system, complemented with optical spectroscopy. As one of the main goals of the CSP, we preliminarily present the rst Hubble diagram using a sample of 30 Type-Ia SNe (SNe Ia.

  15. The Doctorate in Chemistry. Carnegie Essays on the Doctorate: Chemistry.

    Science.gov (United States)

    Breslow, Ronald

    The Carnegie Foundation commissioned a collection of essays as part of the Carnegie Initiative on the Doctorate (CID). Essays and essayists represent six disciplines that are part of the CID: chemistry, education, English, history, mathematics, and neuroscience. Intended to engender conversation about the conceptual foundation of doctoral…

  16. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    Science.gov (United States)

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  17. Carnegie Institution Atmospheric-Electricity and Meteorological Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Department of Terrestrial Magnetism at the Carnegie Institute of Science conducted observations of atmospheric electricity and magnetic storms. In addition to...

  18. The Carnegie Astrometric Planet Search Program

    CERN Document Server

    Boss, Alan P; Anglada-Escude, Guillem; Thompson, Ian B; Burley, Gregory; Birk, Christoph; Pravdo, Steven H; Shaklan, Stuart B; Gatewood, George D; Majewski, Steven R; Patterson, Richard J

    2009-01-01

    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10...

  19. 78 FR 44107 - The Bank of New York Mellon Trust Co., N.A., (Owner Trustee), EIF Haypress, LLC; Notice of...

    Science.gov (United States)

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Bank of New York Mellon Trust Co., N.A., (Owner Trustee), EIF Haypress, LLC; Notice of Transfer of Exemption 1. By letter filed July 5, 2013, The Bank of New Mellon Trust...

  20. The Origins of Retirement in Higher Education: The Carnegie Pension System.

    Science.gov (United States)

    Graebner, William

    1979-01-01

    The history of the Carnegie pension system and the contributions of the Carnegie Foundation for the Advancement of Teaching (CFAT) and Henry Pritchett toward its development are discussed. General problems and criticisms of the CFAT and pension plans in academe are examined. (SF)

  1. Carnegie Libraries: The Future Made Bright. Revised. Teaching with Historic Places.

    Science.gov (United States)

    Copp, Roberta

    This lesson describes and discusses the impact on Carnegie Libraries in U.S. history. The lesson plan contains eight sections: (1) "About this Lesson"; (2) "Getting Started: Inquiry Question"; (3) "Setting the Stage: Historical Context"; (4) "Locating the Site: Maps" (Carnegie Libraries in the United States, 1920); (5) "Determining the Facts:…

  2. Case Study IV: Carnegie Foundation for the Advancement of Teaching's Networked Improvement Communities (NICs)

    Science.gov (United States)

    Coburn, Cynthia E.; Penuel, William R.; Geil, Kimberly E.

    2015-01-01

    The Carnegie Foundation for the Advancement of Teaching is a nonprofit, operating foundation with a long tradition of developing and studying ways to improve teaching practice. For the past three years, the Carnegie Foundation has initiated three different Networked Improvement Communities (NICs). The first, Quantway, is addressing the high…

  3. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    2012-01-01

    and industrial intere sts. The paper concludes by stressing the potential danger of policy habitats who have promoted the evolution of robust scientists based on a competitive system where only the fittest survive. Robust scientists, it is argued, have the potential to become a new “invasive species......The concepts of “socially robust knowledge” and “mode 2 knowledge production” (Nowotny 2003, Gibbons et al. 1994) have migrated from STS into research policy practices. Both STSscholars and policy makers have been known to propomote the idea that the way forward for today’s scientist is to jump...... from the ivory tower and learn how to create highflying synergies with citizens, corporations and governments. In STS as well as in Danish research policy it has thus been argued that scientists will gain more support and enjoy greater success in their work by “externalizing” their research...

  4. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    and industrial interests. The paper concludes by stressing the potential danger of policy habitats who have promoted the evolution of robust scientists based on a competitive system where only the fittest survive. Robust scientists, it is argued, have the potential to become a new “invasive species......The concepts of “socially robust knowledge” and “mode 2 knowledge production” (Nowotny 2003, Gibbons et al. 1994) have migrated from STS into research policy practices. Both STS-scholars and policy makers have been known to propomote the idea that the way forward for today’s scientist is to jump...... from the ivory tower and learn how to create high-flying synergies with citizens, corporations and governments. In STS as well as in Danish research policy it has thus been argued that scientists will gain more support and enjoy greater success in their work by “externalizing” their research...

  5. Ranking scientists

    CERN Document Server

    Dorogovtsev, S N

    2015-01-01

    Currently the ranking of scientists is based on the $h$-index, which is widely perceived as an imprecise and simplistic though still useful metric. We find that the $h$-index actually favours modestly performing researchers and propose a simple criterion for proper ranking.

  6. Comparing the Utility of the 2000 and 2005 Carnegie Classification Systems in Research on Students' College Experiences and Outcomes

    Science.gov (United States)

    McCormick, Alexander C.; Pike, Gary R.; Kuh, George D.; Chen, Pu-Shih Daniel

    2009-01-01

    This study compares the explanatory power of the 2000 edition of Carnegie Classification, the 2005 revision of the classification, and selected variables underlying Carnegie's expanded 2005 classification system using data from the National Survey of Student Engagement's spring 2004 administration. Results indicate that the 2000 and 2005…

  7. Terra Cognita: Graduate Students in the Archives. A Retrospective on the CLIR Mellon Fellowships for Dissertation Research in Original Sources. CLIR Publication No. 170

    Science.gov (United States)

    Council on Library and Information Resources, 2016

    2016-01-01

    "Terra Cognita" surveys the current landscape of archival research and the experiences of emerging scholars seeking to navigate it. Drawing on data from the Council on Library and Information Resources' (CLIR's) Mellon Fellowships for Dissertation Research in Original Sources, the report takes an in-depth look at how the conditions and…

  8. 78 FR 44107 - The Bank of New York Mellon Trust Co., N.A. (Owner Trustee) EIF Haypress, Inc.; Notice of...

    Science.gov (United States)

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Bank of New York Mellon Trust Co., N.A. (Owner Trustee) EIF Haypress... Trust Co., N.A. (Owner Trustee) and EIF Haypress, Inc. informed the Commission that the exemption...

  9. Devils in Disguise: The Carnegie Project, the Cherokee Nation, and the 1960s

    Science.gov (United States)

    Cobb, Daniel M.

    2007-01-01

    In this article, the author talks about the experiences of many of the people involved in the Carnegie Project, an effort in the 1960s to establish ties with the "tribal community"--people who spoke Cherokee as their first language and lived in small kin-related settlements spread across five counties in northeastern Oklahoma--and directly involve…

  10. Peace through History? The Carnegie Endowment for International Peace's Inquiry into European Schoolbooks, 1921-1924

    Science.gov (United States)

    Irish, Tomás

    2016-01-01

    In 1924 the Carnegie Endowment for International Peace published a volume investigating the teaching of school history in former belligerent states in Europe. The project sought to reconcile former enemies through mutual understanding and educational exchange and reflected a widely held belief that although the military conflict had finished, its…

  11. Talent Developed: Conversations with Masters of the Arts and Sciences.

    Science.gov (United States)

    Subotnik, Rena F.

    1993-01-01

    This interview with Joseph Bates, a computer scientist at Carnegie Mellon University (Pennsylvania), recounts his development as a highly gifted child who entered Johns Hopkins University (Maryland) after the seventh grade. Doctor Bates describes his family background, his reaction to radical acceleration, his attitudes toward heterogeneous…

  12. Constance Mellon Demonstrated that College Freshmen Are Afraid of Academic Libraries. A review of: Mellon, Constance A. “Library Anxiety: A Grounded Theory and Its Development.” College & Research Libraries 47 (1986: 160-65.

    Directory of Open Access Journals (Sweden)

    Edgar Bailey

    2008-09-01

    Full Text Available Objective – To better understand the feelings of college freshmen engaged in their first research project using an academic library.Design – Interpretive study involving analysis of personal writing describing the students’ research process and their reactions to it.Setting – A medium-sized public university in the southeastern United States.Subjects – Students in freshman English courses.Methods – English instructors assigned students to maintain search journals in which the students recorded a detailed description of their research process and the feelings they experienced while conducting research. In addition, students had to write an end-of- semester, in-class essay in which they discussed their initial reactions to the research project and how their feelings evolved over the semester. The journals and essays were analyzed using the “constant comparative” method developed by Glaser and Strauss to identify “recurrent ‘themes’” (161. Main Results – 75 to 85 per cent of the students reported feelings of “fear or anxiety” when confronted with the research assignment. More specifically, they expressed a sense of being “lost”. This feeling derived from four causes: “(1 the size of the library; (2 a lack of knowledge about where things were located; (3 how to begin, and (4 what to do” (162. Spurred by the question of why students did not seek help from their professors or a librarian, Mellon re-examined the data and uncovered two additional prevalent feelings. Most students tended to believe that their fellow students did not share their lack of library skills. They were ashamed of what they considered their own inadequacy and were, therefore, unwilling to reveal it by asking for assistance (162.Conclusions – The original objective of Mellon’s study was to gain information that would be useful in improving bibliographic instruction in her library. The discovery of the extent of students’ apprehension

  13. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 10 October 1972 to 09 November 1972 (NODC Accession 7300801)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by...

  14. Temperature profiles from expendable bathythermograph (XBT) casts from the USCGC MELLON in the Coastal Waters of Hawaii in support of the Integrated Global Ocean Services System (IGOSS) project from 26 January 1976 to 30 January 1976 (NODC Accession 7600616)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from the USCGC MELLON in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the US Coast Guard...

  15. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station V (OWS-V) in the North Pacific Ocean 22 September 1970 to 03 October 1970 (NODC Accession 7100471)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station V (3400N 16400E) and in transit. Data were collected by...

  16. Temperature profiles from expendable bathythermograph (XBT) casts from the USCGC MELLON in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 12 January 1978 to 19 January 1978 (NODC Accession 7800090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from the USCGC MELLON in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the US Coast Guard...

  17. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station V (OWS-V) in the North Pacific Ocean 28 July 1969 to 13 August 1969 (NODC Accession 6900856)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station V (3400N 16400E) and in transit. Data were collected by...

  18. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 05 April 1974 to 01 May 1974 (NODC Accession 7400741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by...

  19. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station V (OWS-V) in the North Pacific Ocean 24 November 1970 to 19 January 1971 (NODC Accession 7100862)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station V (3400N 16400E) and in transit. Data were collected by...

  20. Oceanographic station data from bottle casts from the MELLON from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 24 July 1972 to 09 August 1972 (NODC Accession 7201441)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station data were collected from the MELLON within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by...

  1. Temperature profiles from mechanical bathythermograph (MBT) casts from the USCGC MELLON in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 29 February 1972 to 28 April 1972 (NODC Accession 7201433)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USCGC MELLON in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the US Coast Guard...

  2. Inspiring Future Scientists

    Science.gov (United States)

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  3. Scientists: Engage the Public!

    Science.gov (United States)

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication.

  4. Team science for science communication

    OpenAIRE

    Wong-Parodi, Gabrielle; Strauss, Benjamin H.

    2014-01-01

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication e...

  5. First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project

    CERN Document Server

    Walker, E S; Campillay, A; Citrenbaum, C; Contreras, C; Ellman, N; Feindt, U; Gonzalez, C; Graham, M L; Hadjiyska, E; Hsiao, E Y; Krisciunas, K; McKinnon, R; Ment, K; Morrell, N; Nugent, P; Phillips, M; Rabinowitz, D; Rostami, S; Seron, J; Stritzinger, M; Sullivan, M; Tucker, B E

    2016-01-01

    The LaSilla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low redshift (z < 0.1) Type Ia supernovae. The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data and presents the light curves for the first 31 Type Ia supernovae obtained in the survey. The SALT 2.4 supernova light curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%.

  6. The Carnegie-Irvine Galaxy Survey. III. The Three-Component Structure of Nearby Elliptical Galaxies

    CERN Document Server

    Huang, Song; Peng, Chien Y; Li, Zhao-Yu; Barth, Aaron J

    2012-01-01

    Motivated by recent developments in our understanding of the formation and evolution of massive galaxies, we explore the detailed photometric structure of a representative sample of 94 bright, nearby elliptical galaxies, using high-quality optical images from the Carnegie-Irvine Galaxy Survey. The sample spans a range of environments and stellar masses, from M* = 10^{10.2} to 10^{12.0} solar mass. We exploit the unique capabilities of two-dimensional image decomposition to explore the possibility that local elliptical galaxies may contain photometrically distinct substructure that can shed light on their evolutionary history. Compared with the traditional one-dimensional approach, these two-dimensional models are capable of consistently recovering the surface brightness distribution and the systematic radial variation of geometric information at the same time. Contrary to conventional perception, we find that the global light distribution of the majority (>75%) of elliptical galaxies is not well described by ...

  7. Scientists and Human Rights

    Science.gov (United States)

    Makdisi, Yousef

    2012-02-01

    The American Physical Society has a long history of involvement in defense of human rights. The Committee on International Freedom of Scientists was formed in the mid seventies as a subcommittee within the Panel On Public Affairs ``to deal with matters of an international nature that endangers the abilities of scientists to function as scientists'' and by 1980 it was established as an independent committee. In this presentation I will describe some aspects of the early history and the impetus that led to such an advocacy, the methods employed then and how they evolved to the present CIFS responsibility ``for monitoring concerns regarding human rights for scientists throughout the world''. I will also describe the current approach and some sample cases the committee has pursued recently, the interaction with other human rights organizations, and touch upon some venues through which the community can engage to help in this noble cause.

  8. How conservation scientists work

    OpenAIRE

    Grace, Marcus; Hare, Tony

    2008-01-01

    Being a conservation scientist is not easy. Some may regard it as a ‘soft’ science, and yet it necessarily draws on many other fields of cutting-edge science, such as genetics, ecology, climatology, and behavioural and reproductive science. But these scientists also find themselves working under a wide range of political, socio-economic, and cultural pressures. They often need to make tough, rapid decisions and therefore tread a difficult path between science and society.

  9. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  10. Reconciling Scientists and Journalists

    Science.gov (United States)

    Rosner, H.

    2006-12-01

    The very nature of scientists' and journalists' jobs can put them at cross-purposes. Scientists work for years on one research project, slowly accumulating data, and are hesitant to draw sweeping conclusions without multiple rounds of hypothesis-testing. Journalists, meanwhile, are often looking for "news"—a discovery that was just made ("scientists have just discovered that...") or that defies conventional wisdom and is therefore about to turn society's thinking on its head. The very criteria that the mediamakers often use to determine newsworthiness can automatically preclude some scientific progress from making the news. There are other built-in problems in the relationship between journalists and scientists, some of which we can try to change and others of which we can learn to work around. Drawing on my personal experience as a journalist who has written for a wide variety of magazines, newspapers, and web sites, this talk will illustrate some of the inherent difficulties and offer some suggestions for how to move beyond them. It will provide a background on the way news decisions are made and how the journalist does her job, with an eye toward finding common ground and demonstrating how scientists can enjoy better relationships with journalists—relationships that can help educate the public on important scientific topics and avoid misrepresentation of scientific knowledge in the media.

  11. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  12. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  13. Soldier and scientist

    Directory of Open Access Journals (Sweden)

    Major Gen. H.H. Stable

    1950-04-01

    Full Text Available Most military libraries contain a number of works regarding the soldier's relationship with his colleagues, such as: “Soldier and Sailor "," Soldier and Airman ", " Soldiers and Statesmen " and so on. It is curious perhaps that no work has so far appeared entitled "Soldier and Scientist ". Yet, from this fact the point emerges that   whereas-in the past, the combination of the soldier and the scientist was uncommon, it is now being appreciated that such is indeed desirable and people are perhaps wishing to improve their knowledge on the subject

  14. From Atmospheric Scientist to Data Scientist

    Science.gov (United States)

    Knuth, S. L.

    2015-12-01

    Most of my career has been spent analyzing data from research projects in the atmospheric sciences. I spent twelve years researching boundary layer interactions in the polar regions, which included five field seasons in the Antarctic. During this time, I got both a M.S. and Ph.D. in atmospheric science. I learned most of my data science and programming skills throughout this time as part of my research projects. When I graduated with my Ph.D., I was looking for a new and fresh opportunity to enhance the skills I already had while learning more advanced technical skills. I found a position at the University of Colorado Boulder as a Data Research Specialist with Research Computing, a group that provides cyber infrastructure services, including high-speed networking, large-scale data storage, and supercomputing, to university students and researchers. My position is the perfect merriment between advanced technical skills and "softer" skills, while at the same time understanding exactly what the busy scientist needs to understand about their data. I have had the opportunity to help shape our university's data education system, a development that is still evolving. This presentation will detail my career story, the lessons I have learned, my daily work in my new position, and some of the exciting opportunities that opened up in my new career.

  15. Doctoral Scientists in Oceanography.

    Science.gov (United States)

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  16. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  17. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  18. Early Primary Invasion Scientists

    Science.gov (United States)

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  19. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  20. Becoming a Spider Scientist

    Science.gov (United States)

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  1. Online Job Tutorials @ the Public Library: Best Practices from Carnegie Library of Pittsburgh's Job & Career Education Center

    OpenAIRE

    Rhea M. Hebert; Wesley Roberts

    2013-01-01

    This article describes the Job & Career Education Center (JCEC) tutorial project completed in September of 2012. The article also addresses the website redesign implemented to highlight the tutorials and improve user engagement with JCEC online resources. Grant monies made it possible for a Digital Outreach Librarian to create a series of tutorials with the purpose of providing job-related assistance beyond the JCEC in the Carnegie Library of Pittsburgh—Main location. Benchmarking, planni...

  2. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    The question of how to measure research quality recently gained prominence in the context of Danish research policy, as part of implementing a new model for the allocating of funds to universities. The measurement device took the form of a bibliometric indicator. Analyzing the making of the indic......The question of how to measure research quality recently gained prominence in the context of Danish research policy, as part of implementing a new model for the allocating of funds to universities. The measurement device took the form of a bibliometric indicator. Analyzing the making...... was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  3. The Great Scientists

    Science.gov (United States)

    Meadows, Jack

    1989-11-01

    This lively history of the development of science and its relationship to society combines vivid biographies of twelve pivotal scientists, commentary on the social and historical events of their time, and over four hundred illustrations, including many in color. The biographies span from classical times to the Atomic Age, covering Aristotle, Galileo, Harvey, Newton, Lavoisier, Humboldt, Faraday, Darwin, Pasteur, Curie, Freud, and Einstein. Through the biographies and a wealth of other material, the volume reveals how social forces have influenced the course of science. Along with the highly informative color illustrations, it contains much archival material never before published, ranging from medieval woodcuts, etchings from Renaissance anatomy texts, and pages from Harvey's journal, to modern false-color x-rays and infrared photographs of solar flares. A beautifully-designed, fact-filled, stimulating work, The Great Scientists will fascinate anyone with an interest in science and how history can influence scientific discovery.

  4. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  5. [The critical scientists' voice].

    Science.gov (United States)

    Lewgoy, F

    2000-01-01

    The intricate debate over genetically modified organisms (GMOs) involves powerful economic interests, as well as ethical, legal, emotional and scientific aspects, some of which are dealt with in this paper.(It is possible to identify two main groups of scientists across the GMOs divide: the triumphalist and the critical group.) Scientists in the triumphalist group state that GMOs and their derivatives are safe for the environment and do not offer health hazards any more than similar, non-genetically modified, products. This view is disputed by the critical scientists, who are prompted by the scarcity of studies on the environmental impacts and toxicity of GMOs, and who point out flaws in tests performed by the same companies which hold the patents. They are also critical of the current state of the process of gene transference, lacking accuracy, a fact which, coupled with the scant knowledge available about 97% of the genome functions, may produce unforseeable effects with risks for the environment and public health yet to be assessed. Examples of such effects are: the transference of alien genes [??] to other species, the emergence of toxins, the creation of new viruses, the impacts on beneficial insects and on biodiversity in general. PMID:16683329

  6. Ernest Rutherford: scientist supreme

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. [Physics Department, University of Canterbury, Christchurch (New Zealand)

    1998-09-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  7. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  8. CHP-II: The Carnegie Hubble Program to Measure Ho to 3% Using Population II

    Science.gov (United States)

    Rich, Jeffrey; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Scowcroft, Victoria; Beaton, Rachael; Kollmeier, Juna A.; Seibert, Mark; Bono, Giuseppe; Clementini, Gisella; Yang, Soung-Chul; Lee, Myung Gyoon; Jang, In Sung

    2015-01-01

    There has been great progress in the measurement of cosmological parameters in recent years, but controversy has arisen over the Planck/WMAP versus the direct measurement of the Hubble constant. The goal of our Carnegie Hubble Program (CHP) is to obtain a direct measure of Ho to 3%. In CHP I, we used Cepheid variables to calibrate the extragalactic distance scale. In the second phase, CHP II, we are establishing a completely independent route to Ho using RR Lyrae variables, the tip of the red giant branch (TRGB) and Type Ia supernovae (SNe Ia). Not only is the RR Lyrae route independent of the Cepheids, but its PL relation has a scatter that is a factor of 2 smaller. Unlike the Cepheids, the RR Lyrae / TRGB distance scale can be applied to both elliptical and spiral galaxies. This is a great systematic advantage, given the small number of galaxies (9 in total) close enough to have measured Cepheid calibrators within the SNIa hosts. By providing a new calibration using a Pop II distance scale, we will immediately double the number of SN Ia distances based on geometry, linking to over 200 SNe in the pure Hubble flow out to z = 0.7. Four calibrators containing both Cepheids and TRGB stars provide an important cross-check on systematics. Initially, the accuracy of our value of Ho will be set by four galactic RR Lyrae calibrators with HST/FGS parallaxes. With Gaia, both the RR Lyrae zero point and TRGB method will be independently calibrated with at least an order of magnitude more calibrators, each having precisions of 1% or better. This will allow the highest accuracy measurement of Ho to date using the "Distance Ladder" method.

  9. Simultaneous Localization and Mapping for Planetary Surface Mobility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  10. Scientists need political literacy

    Science.gov (United States)

    Simarski, Lynn Teo

    Scientists need to sharpen their political literacy to promote public and congressional awareness of science policy issues. This was the message of a panel of politically savvy scientists at a recent workshop at the American Association for the Advancement of Science's annual meeting in Washington, D.C. Researchers can maximize their lobbying efforts by targeting critical points of the legislative and federal funding cycles, the panel said, and by understanding the differences between the science and policy processes.Drastic modifications to the federal budget process this year will influence how much funding flows to research and development. A new feature for FY 1991-1993 is caps on federal expenditure in three areas: defense, foreign aid, and domestic “discretionary” spending. (Most of the agencies that fund geophysics fall into the domestic category.) Money cannot now be transferred from one of these areas to another, said Michael L. Telson, analyst for the House Budget Committee, and loopholes will be “very tough to find.” What is more, non-defense discretionary spending has dropped over a decade from 24% of the budget to the present 15%. Another new requirement is the “pay-as-you-go” system. Under this, a bill that calls for an increase in “entitlement” or other mandatory spending must offset this by higher taxes or by a cut in other spending.

  11. Developmental Potential among Creative Scientists

    Science.gov (United States)

    Culross, Rita R.

    2008-01-01

    The world of creative scientists is dramatically different in the 21st century than it was during previous centuries. Whether biologists, chemists, physicists, engineers, mathematicians, or computer scientists, the livelihood of research scientists is dependent on their abilities of creative expression. The view of a solitary researcher who…

  12. Public Information Personnel and Scientists.

    Science.gov (United States)

    Dunwoody, Sharon L.; Ryan, Michael

    A study examined the attitudes of scientists toward public information personnel and media coverage. Of 456 subjects (half social and behavioral scientists and half biological scientists) chosen randomly from the "American Men and Women of Science" reference books, 287 responded to the seven-page, two-part questionnaire. Part one contained 34…

  13. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  14. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.;

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  15. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  16. Personnel resource distribution for nursing programs in Carnegie-classified Research I and II and Doctoral I institutions.

    Science.gov (United States)

    Gosnell, D J; Biordi, D L

    1999-01-01

    Increasingly, nursing education programs, like other major institutions in the United States, are being charged to "do more with less." How to acquire sufficient human and material resources is a continuing challenge in an era of economic constraint. Benchmark data on the distribution of personnel resources within nursing programs is nearly nonexistent. To assess the personnel resources of nursing programs of major size and stature within the United States, a Personnel Resource Survey was mailed to the universe of all nursing programs located in Carnegie-designated Doctoral I, Research II, and Research I universities and/or colleges in the United States (n = 96). The return rate was 58 per cent, with a useable survey rate of 51 per cent (n = 49). Comparative numbers and ratios of administrators, faculty, students, and various levels and types of support staff by Carnegie-type institutions are presented. Findings indicate that, overall, nursing programs in Research I universities had 1.5 to 2 times as many personnel resources per student than programs in Doctoral I and Research II institutions. Doctoral I and Research II programs closely resembled each other. The details of the data, as well as its standardization into full-time equivalents, are useful to both university and nursing administrators, faculty, and staff in their comparisons and procurement of needed resources.

  17. Data Processing for Scientists.

    Science.gov (United States)

    Heumann, K F

    1956-10-26

    This brief survey of integrated and electronic data processing has touched on such matters as the origin of the concepts, their use in business, machines that are available, indexing problems, and, finally, some scientific uses that surely foreshadow further development. The purpose of this has been to present for the consideration of scientists a point of view and some techniques which have had a phenomenal growth in the business world and to suggest that these are worth consideration in scientific data-handling problems (30). To close, let me quote from William Bamert on the experience of the C. and O. Railroad once more (8, p. 121): "Frankly, we have been asked whether we weren't planning for Utopia-the implication being that everyone except starry-eyed visionaries knows that Utopia is unattainable. Our answer is that of course we are! Has anyone yet discovered a better way to begin program planning of this nature? Our feeling is that compromise comes early enough in the normal order of things."

  18. Administration for Defence Scientists

    Directory of Open Access Journals (Sweden)

    G. E. Gale

    1953-01-01

    Full Text Available All scientific work must be carried out against a background of adequate administrative support if it is to become effective and produce useful results. Administration is not a job for which we, as scientists, are particularly trained; and it is a thing of which we tend to fight shy, partly because, author suppose, most Of peoples are associate the administrator with highly unpleasant matters such as income tax, delays in getting our pay cheques, and so on - For that reason we do not feel, always pay  sufficient attention to administrative affairs ; rather like the ostrich, we try to escape from them by merely ignoring them. But that is a wrong and unfruitful attitude to adopt. All live so much under the activities of the trained administrator that should, if, it  give a great deal of thought to our own administrative problems deliberate and conscious thought to them-and make an honest and heart-searching self analysis regarding our own possible failings.

  19. Do scientists trace hot topics?

    OpenAIRE

    Tian Wei; Menghui Li; Chensheng Wu; Xiao-Yong Yan; Ying Fan; Zengru Di; Jinshan Wu

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries,...

  20. Scientists work on nextgen web

    CERN Multimedia

    Bagla, Pallava

    2007-01-01

    "Scientists at the European Organisation for Nuclear Research or CERN are busy mastering the nextgen web. Very soon, the worldwide we as it is called will peak and scientists are already working on the replacement called GRID computing." (1/2 page)

  1. Seven scientists advise

    International Nuclear Information System (INIS)

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  2. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  3. Exploring the Relationship between Patron Type, Carnegie Classification, and Satisfaction with Library Services: An Analysis of LibQUAL+® Results

    Science.gov (United States)

    Guder, Christopher S.

    2012-01-01

    The purpose of this study was to explore how faculty and students responded to the Information Control section of the LibQUAL+® survey at two libraries with different Carnegie Classifications. As one of the institutions being studied was considering a shift from a research institution to one more focused on teaching and learning, this study used…

  4. I Love My Librarian Award: An Award That Recognizes Great Librarians Also Highlights the Central Role of Libraries in Communities across America. Carnegie Results

    Science.gov (United States)

    Deutsch, Abigail

    2013-01-01

    The Carnegie Corporation of New York/"New York Times" I Love My Librar­ian Award publicizes librarians' abilities to improve their communities, and by highlighting the achievements of the winners, inspire other librarians to boost their own performance. Since the award's creation in 2008, it has helped the public to better understand…

  5. Online Job Tutorials @ the Public Library: Best Practices from Carnegie Library of Pittsburgh's Job & Career Education Center

    Directory of Open Access Journals (Sweden)

    Rhea M. Hebert

    2013-09-01

    Full Text Available This article describes the Job & Career Education Center (JCEC tutorial project completed in September of 2012. The article also addresses the website redesign implemented to highlight the tutorials and improve user engagement with JCEC online resources. Grant monies made it possible for a Digital Outreach Librarian to create a series of tutorials with the purpose of providing job-related assistance beyond the JCEC in the Carnegie Library of Pittsburgh—Main location. Benchmarking, planning, implementation, and assessment are addressed. A set of best practices for all libraries (public, academic, school, special are presented. Best practices are applicable to tutorials created with software other than Camtasia, the software used by the JCEC project.

  6. SCIENCE, SCIENTISTS, AND POLICY ADVOCACY

    Science.gov (United States)

    Effectively resolving the typical ecological policy issue requires providing an array of scientific information to decision-makers. In my experience, the ability of scientists (and scientific information) to inform constructively ecological policy deliberations has been diminishe...

  7. The Local-Cosmopolitan Scientist

    OpenAIRE

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-01-01

    In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutio...

  8. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  9. Do scientists trace hot topics?

    CERN Document Server

    Wei, Tian; Wu, Chensheng; Yan, XiaoYong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  10. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  11. Award Set for Future Scientists

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirteen-year-old Zhou Licheng is a pupil at the Beijing Xicheng Experimental School, and recently won second prize in the "Future Scientist Award" for his invention - a device that prevents smoke from coming down the flue. He won a 10,000-yuan cash prize, and his school was also awarded 40,000 yuan. The "Future Scientist Award" was set up through the joint efforts of the Ministry of Education, the China Association for Science and Technology, and the Hong Kong H. S. Chau Foundation. Its aim is to reward

  12. Science, Scientists, and Public Policy.

    Science.gov (United States)

    Schooler, Dean, Jr.

    The politically relevant behavior of scientists in the formulation of public policy by the United States government from 1945-68 is studied. The following types of policy issues are treated: science, space, weather, weapons, deterrence and defense, health, fiscal and monetary, pollution, conservation, antitrust, transportation safety, trade and…

  13. Issues in Training Family Scientists.

    Science.gov (United States)

    Ganong, Lawrence H.; And Others

    1995-01-01

    Issues related to graduate education in family science, especially at the doctoral level, are explored. Discusses competencies family scientists should have, as well as experiences necessary to help students acquire them. Proposes ideas for a core curriculum, identifies controversies and unresolved issues, and examines training for the future.…

  14. The Gonzo Scientist. Flunking Spore.

    Science.gov (United States)

    Bohannon, John

    2008-10-24

    The blockbuster video game Spore is being marketed as a science-based adventure that brings evolution, cell biology, and even astrophysics to the masses. But after grading the game's science with a team of researchers, the Gonzo Scientist has some bad news. PMID:18948523

  15. The Carnegie Hubble Program: The Leavitt Law at 3.6 and 4.5 micron in the Milky Way

    CERN Document Server

    Monson, Andrew J; Madore, Barry F; Persson, S E; Scowcroft, Victoria; Seibert, Mark; Rigby, Jane R

    2012-01-01

    The Carnegie Hubble Program (CHP) is designed to calibrate the extragalactic distance scale using data from the post-cryogenic era of the Spitzer Space Telescope. The ultimate goal of the CHP is a systematic improvement in the distance scale leading to a determination of the Hubble Constant to within an accuracy of 2%. This paper focuses on the measurement and calibration of the Galactic Cepheid Period-Luminosity (Leavitt) Relation using the warm Spitzer IRAC 1 and 2 bands at 3.6 and 4.5 \\mu m. We present photometric measurements covering the period range 4 - 70 days for 37 Galactic Cepheids. Data at 24 phase points were collected for each star. Three PL relations of the form M=a(Log(P)-1)+b are derived. The method adopted here takes the slope a to be -3.31, as determined from the Spitzer LMC data of Scowcroft et al. (2012). Using the geometric HST guide-star distances to ten Galactic Cepheids we find a calibrated 3.6 micron PL zero-point of -5.80\\pm0.03. Together with our value for the LMC zero-point we dete...

  16. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  17. Tracing scientist's research trends realtimely

    OpenAIRE

    Wang, Xianwen; Wang, Zhi; Xu, Shenmeng

    2012-01-01

    In this research, we propose a method to trace scientists' research trends realtimely. By monitoring the downloads of scientific articles in the journal of Scientometrics for 744 hours, namely one month, we investigate the download statistics. Then we aggregate the keywords in these downloaded research papers, and analyze the trends of article downloading and keyword downloading. Furthermore, taking both the download of keywords and articles into consideration, we design a method to detect th...

  18. Mathematics for engineers and scientists

    CERN Document Server

    Jeffrey, Alan

    2004-01-01

    Although designed as a textbook with problem sets in each chapter and selected answers at the end of the book, Mathematics for Engineers and Scientists, Sixth Edition serves equally well as a supplemental text and for self-study. The author strongly encourages readers to make use of computer algebra software, to experiment with it, and to learn more about mathematical functions and the operations that it can perform.

  19. Science, the Scientists and Values

    Science.gov (United States)

    Leshner, Alan

    2012-02-01

    Although individual scientists engage in research for diverse reasons, society only supports the enterprise because it benefits humankind. We cannot always predict how that will happen, or whether individual projects will have clear and direct benefits, but in the aggregate, there is widespread agreement that we are all better off because of the quality and diversity of the science that is done. However, what scientists do and how it benefits humankind is often unclear to the general public and can at times be misunderstood or misrepresented. Moreover, even when members of the public do understand what science is being done they do not always like what it is showing and feel relatively free to disregard or distort its findings. This happens most often when findings are either politically inconvenient or encroach upon issues of core human values. The origins of the universe can fit into that latter category. This array of factors contributes to the obligation of scientists to reach out to the public and share the results of their work and its implications. It also requires the scientific community to engage in genuine dialogue with the public and find common ground where possible.

  20. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  1. Excel for Scientists and Engineers

    CERN Document Server

    Verschuuren, Dr Gerard

    2005-01-01

    For scientists and engineers tired of trying to learn Excel with examples from accounting, this self-paced tutorial is loaded with informative samples from the world of science and engineering. Techniques covered include creating a multifactorial or polynomial trendline, generating random samples with various characteristics, and tips on when to use PEARSON instead of CORREL. Other science- and engineering-related Excel features such as making columns touch each other for a histogram, unlinking a chart from its data, and pivoting tables to create frequency distributions are also covered.

  2. Scientists Debunk the '5-Second Rule'

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160990.html Scientists Debunk the '5-Second Rule' Germs can transfer ... he said in a Rutgers news release. The scientists dropped foods of different textures, such as watermelon, ...

  3. Students work as scientists for the summer

    DEFF Research Database (Denmark)

    Ryde, Marianne Vang

    2006-01-01

    Each year, Risø offers its PhD students a course to challenge the natural scientists of the future and to provide them with a more balanced view of their own role as scientists in society.......Each year, Risø offers its PhD students a course to challenge the natural scientists of the future and to provide them with a more balanced view of their own role as scientists in society....

  4. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  5. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  6. Scientists Talking to Students through Videos

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2014-01-01

    The benefits of connecting school students with scientists are well documented. This paper reports how New Zealand teachers brought scientists into the classrooms through the use of videos of New Zealand scientists talking about themselves and their research. Two researchers observed lessons in 9 different classrooms in which 23 educational videos…

  7. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  8. Connect the Book: The Tarantula Scientist

    Science.gov (United States)

    Brodie, Carolyn S.

    2005-01-01

    This column describes the book, "The Tarantula Scientist," that features the work of arachnologist Sam Marshall, a scientist who studies spiders and their eight-legged relatives. Marshall is one of only four or five scientists who specializes in the study of tarantulas. The informative text and outstanding photographs follow Sam as he takes a…

  9. Age determination enhanced by embryonic foot bud and foot plate measurements in relation to Carnegie stages, and the influence of maternal cigarette smoking

    DEFF Research Database (Denmark)

    Lutterodt, M C; Rosendahl, M; Yding Andersen, C;

    2009-01-01

    habits, and delivered a urine sample for cotinine analysis. Embryonic age was evaluated by vaginal ultrasound measurements and by post-termination foot length and compared with the Carnegie stages. RESULTS: Foot bud and foot plate were defined and measured as foot length in embryos aged 35-47 days p...... collections correlated well. Foot length was independent of gender, Environmental Tobacco Smoke, maternal smoking and alcohol consumption. CONCLUSION: Foot length correlated linearly to embryonic and foetal age, and was unaffected by gender, ETS, maternal smoking and alcohol consumption....

  10. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  11. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  12. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  13. Special Functions for Applied Scientists

    CERN Document Server

    Mathai, A M

    2008-01-01

    Special Functions for Applied Scientists provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at the PhD level and covers a wide-array of topics and begins by introducing elementary classical special functions. From there, differential equations and some applications into statistical distribution theory are examined. The fractional calculus chapter covers fractional integrals and fractional derivatives as well as their applications to reaction-diffusion problems in physics, input-output analysis, Mittag-Leffler stochastic processes and related topics. The authors then cover q-hypergeometric functions, Ramanujan's work and Lie groups. The latter half of this volume presents applications into stochastic processes, random variables, Mittag-Leffler processes, density estimation, order statistics, and problems in astrophysics. Professor Dr. A.M. Mathai is Emeritus Professor of Mathematics and Statistics, McGill ...

  14. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  15. Wide Field Instrument Adjutant Scientist

    Science.gov (United States)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  16. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  17. Walter sutton: physician, scientist, inventor.

    Science.gov (United States)

    Ramirez, Gregory J; Hulston, Nancy J; Kovac, Anthony L

    2015-01-01

    Walter S. Sutton (1877-1916) was a physician, scientist, and inventor. Most of the work on Sutton has focused on his recognition that chromosomes carry genetic material and are the basis for Mendelian inheritance. Perhaps less well known is his work on rectal administration of ether. After Sutton's work on genetics, he completed his medical degree in 1907 and began a 2-year surgical fellowship at Roosevelt Hospital, New York City, NY, where he was introduced to the technique of rectal administration of ether. Sutton modified the work of others and documented 100 cases that were reported in his 1910 landmark paper "Anaesthesia by Colonic Absorption of Ether". Sutton had several deaths in his study, but he did not blame the rectal method. He felt that his use of rectal anesthesia was safe when administered appropriately and believed that it offered a distinct advantage over traditional pulmonary ether administration. His indications for its use included (1) head and neck surgery; (2) operations when ether absorption must be minimized due to heart, lung, or kidney problems; and (3) preoperative pulmonary complications. His contraindications included (1) cases involving alimentary tract or weakened colon; (2) laparotomies, except when the peritoneal cavity was not opened; (3) incompetent sphincter or anal fistula; (4) orthopnea; and (5) emergency cases. Sutton wrote the chapter on "Rectal Anesthesia" in one of the first comprehensive textbooks in anesthesia, James Tayloe Gwathmey's Anesthesia. Walter Sutton died of a ruptured appendix in 1916 at age 39.

  18. Exploring Scientists' Working Timetable: A Global Survey

    CERN Document Server

    Wang, Xianwen; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides different working cultures, social factors could affect scientists' research activities and working patterns. Nevertheless, a common conclusion is that scientists today are often working overtime. Although scientists may feel engaged and fulfilled about their hard working, working too much still warns us to reconsider the work - life balance.

  19. What Is the (ethical) Role of Scientists?

    Science.gov (United States)

    Oreskes, N.

    2014-12-01

    Many scientists are reluctant to speak out on issues of broad societal importance for fear that doing so crosses into territory that is not the scientists' domain. Others fear that scientists lose credibility when they address ethical and moral issues. A related concern is that discussing social or ethical questions runs the risk of politicizing science. Yet history shows that in the past, scientists often have spoken out on broad issues of societal concern, often (although not always) effectively. This paper explores the conditions under which scientists may be effective spokesmen and women on ethical and moral choices, and suggests some criteria by which scientists might decide when and whether it is appropriate for them to speak out beyond the circles of other technical experts.

  20. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  1. What do Scientists Want : Money or Fame?

    OpenAIRE

    Göktepe-Hultén, Devrim; Mahagaonkar, Prashanth

    2008-01-01

    What makes scientists patent and disclose inventions to employers? Using a new dataset on Max Planck scientists, we explore their motivations to patent and/or disclose inventions. We propose that patenting need not be used for monetary benefits. Scientists value reputation as important use patenting and disclosures as a signal to gain it. We find that it is not monetary benefits that drive patenting and disclosures but expectation of reputation. We also find that experience with the employer ...

  2. Response: Training Doctoral Students to Be Scientists

    Science.gov (United States)

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  3. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  4. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  5. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  6. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  7. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  8. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  9. Predicting scientists' participation in public life.

    Science.gov (United States)

    Besley, John C; Oh, Sang Hwa; Nisbet, Matthew

    2013-11-01

    This research provides secondary data analysis of two large-scale scientist surveys. These include a 2009 survey of American Association for the Advancement of Science (AAAS) members and a 2006 survey of university scientists by the United Kingdom's Royal Society. Multivariate models are applied to better understand the motivations, beliefs, and conditions that promote scientists' involvement in communication with the public and the news media. In terms of demographics, scientists who have reached mid-career status are more likely than their peers to engage in outreach, though even after controlling for career stage, chemists are less likely than other scientists to do so. In terms of perceptions and motivations, a deficit model view that a lack of public knowledge is harmful, a personal commitment to the public good, and feelings of personal efficacy and professional obligation are among the strongest predictors of seeing outreach as important and in participating in engagement activities.

  10. Food scientists, material scientists seek common language to preserve flavor, aroma of food

    OpenAIRE

    Trulove, Susan

    2007-01-01

    Food scientists and material scientists agree that the primary purpose of food packaging is to protect the food. Once that is accomplished, the package has to protect sensory quality. One challenge to meeting the second goal is communication between food scientists and material scientists, according to research by Susan E. Duncan, professor of food science and technology in the College of Agriculture and Life Sciences at Virginia Tech.

  11. Analyzing Prospective Teachers' Images of Scientists Using Positive, Negative and Stereotypical Images of Scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Harrell, Pamela Esprivalo; Wojnowski, David

    2013-01-01

    Background and purpose: This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the…

  12. The Carnegie-Irvine Galaxy Survey. IV. A Method to Determine the Average Mass Ratio of Mergers That Built Massive Elliptical Galaxies

    CERN Document Server

    Huang, Song; Peng, Chien Y; Li, Zhao-Yu; Barth, Aaron J

    2016-01-01

    Many recent observations and numerical simulations suggest that nearby massive, early-type galaxies were formed through a "two-phase" process. In the proposed second phase, the extended stellar envelope was accumulated through many dry mergers. However, details of the past merger history of present-day ellipticals, such as the typical merger mass ratio, are difficult to constrain observationally. Within the context and assumptions of the two-phase formation scenario, we propose a straightforward method, using photometric data alone, to estimate the average mass ratio of mergers that contributed to the build-up of massive elliptical galaxies. We study a sample of nearby massive elliptical galaxies selected from the Carnegie-Irvine Galaxy Survey, using two-dimensional analysis to decompose their light distribution into an inner, denser component plus an extended, outer envelope, each having a different optical color. The combination of these two substructures accurately recovers the negative color gradient exhi...

  13. The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II

    CERN Document Server

    Beaton, Rachael L; Madore, Barry F; Bono, Giuseppe; Carlson, Erika K; Clementini, Gisella; Durbin, Meredith J; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J; Rich, Jeffrey A; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-01-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3 per cent measurement of the Hubble constant using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to the Hubble constant using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble Type, of any inclination, and, utilizing old stars in low density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of the Hubble constant via the distance ladder. Initially, the accuracy of our value of the Hubble constant will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both...

  14. Reinventing Biostatistics Education for Basic Scientists.

    Directory of Open Access Journals (Sweden)

    Tracey L Weissgerber

    2016-04-01

    Full Text Available Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  15. Reinventing Biostatistics Education for Basic Scientists.

    Science.gov (United States)

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  16. Social media for engineers and scientists

    CERN Document Server

    DiPietro, Jon

    2011-01-01

    This book explores the rising phenomena of internet-based social networking and discusses the particular challenges faced by engineers and scientists in adapting to this new, content-centric environment. Social networks are both a blessing and a curse to the engineer and scientist. The blessings are apparent: the abundance of free applications and their increasing mobility and transportability. The curse is that creating interesting and compelling content on these user-driven systems is best served by right-brain skills. But most engineers and scientists are left-brain oriented, have genera

  17. Reinventing Biostatistics Education for Basic Scientists.

    Science.gov (United States)

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  18. Reinventing Biostatistics Education for Basic Scientists

    Science.gov (United States)

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  19. Intelligent Spectrometry for Robotic Explorers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our aim in this project is to apply the state-of-the-art in science autonomy, including the PI's recent work at Carnegie Mellon in areas of automatic spectrometer...

  20. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, AlphaSense, Inc. (AI) and the Carnegie Mellon University (CMU) detail the development of RF front end based on MEMS components for miniaturized...

  1. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  2. Teaching Strategies for Moral Dilemmas: An Application of Kohlberg's Theory of Moral Development to the Social Studies Classroom

    Science.gov (United States)

    Galbraith, Ronald E.; Jones, Thomas M.

    1975-01-01

    An outline of Lawrence Kohlberg's theory of cognitive moral development prefaces an application of the teaching plan developed by the Social Studies Curriculum Center at Carnegie-Mellon University for leading discussions of moral dilemmas. (JH)

  3. Reliable Autonomous Surface Mobility (RASM) in Support of Human Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop rover-autonomy technologies into Reliable Autonomous Surface...

  4. Important developments for the digital library:Data Ocean and Smart Library

    Institute of Scientific and Technical Information of China (English)

    Yun-he PAN

    2010-01-01

    Since its inception at Zhejiang University in 2005, the International Conference on the Universal Digital Library (ICUDL) has been held around the globe in Alexandria, Egypt, Carnegie Mellon Uni-versity, USA, and at Allahabad in India.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... More Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well ... Why does saltwater sting your eyes? Select a video below to get answers to questions like these ...

  6. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  7. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  8. The Scientist as Anti-Hero

    Science.gov (United States)

    Goran, Morris

    1976-01-01

    Suggests a new strategy for the proponents of science to rebut the cultural anti-science wave. This strategy involves publicizing the anti-hero scientist and presents a number of candidates from the past as examples. (GS)

  9. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Vision Research & Ophthalmology (DIVRO) Student Training Programs NEI Home About NEI Health Information News and Events Grants ... Research at NEI Education Programs Training and Jobs Home > NEI for Kids > Ask a Scientist Video Series ...

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and ... and comments to the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this ...

  11. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  12. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see ... eyelids? Why does saltwater sting your eyes? Select a video below to get answers to questions like ...

  13. A Scientist's Guide to Science Denial

    Science.gov (United States)

    Rosenau, J.

    2012-12-01

    Why are so many scientifically uncontroversial topics, from evolution and the age of the earth to climate change and vaccines, so contentious in society? The American public respects science and scientists, yet seems remarkably unaware of - or resistant to accepting - what scientists have learned about the world around us. This resistance holds back science education and undermines public policy discussions. Scientists and science communicators often react to science denial as if it were a question of scientific knowledge, and respond by trying to correct false scientific claims. Many independent lines of evidence show that science denial is not primarily about science. People reject scientific claims which seem to conflict with their personal identity - often because they believe that accepting those claims would threaten some deeply-valued cultural, political, or religious affiliation. Only by identifying, addressing, and defusing the underlying political and cultural concerns can educators, scientists, and science communicators undo the harm done by science denial.

  14. Reinventing Biostatistics Education for Basic Scientists

    OpenAIRE

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Zoran Obradovic; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics tra...

  15. Knowledge transfer activities of scientists in nanotechnology

    OpenAIRE

    Zalewska-Kurek, Kasia; Egedova, Klaudia; Geurts, Peter A.Th.M.; Roosendaal, Hans E.

    2016-01-01

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists: mode1, mode2, and mode3 (the research entrepreneur). The results of an empirical study conducted at a research institute for nanotechnology show that, to increase the likelihood of scientists engaging ...

  16. Scientists' self-presentation on the Internet

    OpenAIRE

    Lovász Bukvová, Helena

    2012-01-01

    The doctoral thesis studied the behaviour of scientists on Internet profiles. The scientific community is founded on communication. The advance of research, the evaluation of research results, the reputation of individual scientists - all rest on constant interaction among the community members. The Internet, as a flexible channel for world-wide communication, has a considerable potential for the scientific community. Besides often discussed consequences for scientific publishing, the Interne...

  17. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  18. Exploring Innovation Ability of Scientist and Applying to Nobelist TD LEE Scientist Cooperation Network

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LIU; Qiang

    2012-01-01

    <正>Our work explores the innovation ability of Nobelist TD Lee and his scientist cooperation network. It is found that not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also TD Lee’s published papers has the multiple peaks with year evolution. The multiple peaks become a significant mark distinguished from other scientists. This

  19. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Jin-Qing Fang; Qiang Liu

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  20. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  1. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  2. A distant light scientists and public policy

    CERN Document Server

    2000-01-01

    A collection of essays by a Nobel Prize Laureate on a wide range of critical issues facing the world, and the role of scientists in solving these problems. Kendall has been closely involved with the Union of Concerned Scientists, a group that began as an informal assocation at MIT in 1969 to protest US involvement in Vietnam and is today an organization with an annual budget exceeding $6 million, with 100,000 supporters worldwide. UCD is today a voice of authority in US government science policy, particularly with regard to environment issues, most recently the worldwide initiatives on global warming. Together, these essays represent both the sucessses and failures of science to impact public policy, the challenges facing scientists, and offers practical guidelines for involvement in science policy. The essays are roughly chronological, organized by subject with introductions, beginning with the controversies on nuclear power safety and Three Mile Island,then followed by sections on national security issues, ...

  3. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  4. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  5. Advice to young behavioral and cognitive scientists.

    Science.gov (United States)

    Weisman, Ronald G

    2008-02-01

    Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.

  6. Publications, peer review, and the young scientist

    Science.gov (United States)

    Kellett, R. L.

    As scientists and communicators, we all make our living through the expression of our ideas and the results of our scientific research. This expression takes many forms, but, most notably, published articles lie at the heart of our endeavors. I would like to present my opinions on some problems that I, as a young scientist, see in our profession.Several years ago, two wonderful letters appeared in Geology discussing the problems of honorary coauthorship [Zen, 1988, Means, 1988]. Honorary coauthorship is a by-product of the system set up to fund scientific research. More generally, the problem is the need to publish a great number of articles in order to survive.

  7. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  8. AGU Hosts Networking Event for Female Scientists

    Science.gov (United States)

    McEntee, Chris

    2013-01-01

    At Fall Meeting this year I had the pleasure of cohosting a new event, a Networking Reception for Early Career Female Scientists and Students, with Jane Lubchenco, under secretary of Commerce for Oceans and Atmosphere and National Oceanic and Atmospheric Administration administrator, and Marcia McNutt, director of the U.S. Geological Survey. AGU recognizes the importance of having a diverse pool of new researchers who can enrich Earth and space sciences with their skills and innovation. That's why one of our four strategic goals is to help build the global talent pool and provide early-career scientists with networking opportunities like this one.

  9. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  10. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  11. The Carnegie Hubble Program: The Leavitt Law at 3.6 \\mu m and 4.5 \\mu m in the Large Magellanic Cloud

    CERN Document Server

    Scowcroft, Victoria; Madore, Barry F; Monson, Andrew J; Persson, S E; Seibert, Mark; Rigby, Jane R; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focusses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero--point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period-luminosity and period-color relations are presented in the 3.6 \\mu m and 4.5\\mu m bands. We demonstrate that the 3.6 \\mu m band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules i...

  12. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  13. Russian scientists decry savage job cuts

    Science.gov (United States)

    Stafford, Ned

    2016-09-01

    More than 100 scientists in Russia have signed an open letter to the country's president, Vladimir Putin, protesting over a lack of funding for research and reforms that they say have left Russian science mired in a chronic state of crisis.

  14. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  15. Scientist Researches Way to Reduce Global Warming

    Science.gov (United States)

    For the last four years, scientists at the USDA, Agricultural Research Service, Northern Plains Agricultural Research Laboratory have been searching for alternative soil and crop management practices to reduce greenhouse gas emissions and increase carbon and nitrogen sequestration. “If we can redu...

  16. Galaxy Zoo: Motivations of Citizen Scientists

    Science.gov (United States)

    Raddick, M. Jordan; Bracey, Georgia; Gay, Pamela L.; Lintott, Chris J.; Cardamone, Carie; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S.; Vandenberg, Jan

    2013-01-01

    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11000 volunteers in Galaxy Zoo, an astronomy citizen…

  17. New Zealand scientists in firing line

    CERN Multimedia

    2003-01-01

    "Kiwi scientists have a great chance to have their work bombarded with protons and to participate in world-class particle physics research, with the signing of a Memorandum of Understanding (MoU) between CERN (the European Organisation for Nuclear Research) and New Zealand" (1/2 page)

  18. What Scientists Who Study Emotion Agree About.

    Science.gov (United States)

    Ekman, Paul

    2016-01-01

    In recent years, the field of emotion has grown enormously-recently, nearly 250 scientists were identified who are studying emotion. In this article, I report a survey of the field, which revealed high agreement about the evidence regarding the nature of emotion, supporting some of both Darwin's and Wundt's 19th century proposals. Topics where disagreements remain were also exposed.

  19. Methods & Strategies: Sculpt-a-Scientist

    Science.gov (United States)

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  20. U.S. Ethnic Scientists and Entrepreneurs

    Science.gov (United States)

    Kerr, William R.

    2007-01-01

    Immigrants are exceptionally important for U.S. technology development, accounting for almost half of the country's Ph.D. workforce in science and engineering. Most notably, the contribution of Chinese and Indian scientists and entrepreneurs in U.S. high-technology sectors increased dramatically in the 1990s. These ethnic scientific communities…

  1. Knowledge transfer activities of scientists in nanotechnology

    NARCIS (Netherlands)

    Zalewska-Kurek, Kasia; Egedova, Klaudia; Geurts, Peter A.Th.M.; Roosendaal, Hans E.

    2016-01-01

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists: mode

  2. An Israeli Scientist's Approach to Human Values

    Science.gov (United States)

    Katzir-Katchalsky, A.

    1972-01-01

    Describes through examples some laboratory research with implications which can be used for asocial ends. Humanitarian values have to be upheld; therefore, scientists and science educators have to modify their techniques and procedures to make their research and programs useful for mankind. (PS)

  3. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  4. Improving the scientist/journalist conversation.

    Science.gov (United States)

    Valenti, J M

    2000-10-01

    How well do scientists communicate to members of the mass media? A communication scholar reviews potential barriers to the essential dialogue necessary between those in the sciences and journalists who report science to the public. Suggestions for improving communication within this relationship, in spite of professional process differences, are offered, emphasizing adherence to shared ethical standards.

  5. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  6. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  7. Engineers, scientists to benefit from CERN agreement

    CERN Multimedia

    2008-01-01

    Prime Minister Lawrence Gonzi will later this week sign a memorandum of understanding with the European Laboratory for Particle Physics in Geneva (CERN), the largest laboratory of its kind in the world, which will create new opportunities for Maltese engineers and scientists.

  8. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  9. Cautiously, Scientists Put Faith in Obama Promise

    Science.gov (United States)

    Field, Kelly

    2009-01-01

    This article reports that academic researchers are optimistic that President Barack Obama's approach to science heralds a new era of support for their work. When Mr. Obama named his top science and technology advisers only weeks after being elected, many scientists celebrated. After eight years of an administration that many academics believed…

  10. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  11. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  12. Scientific Inquiry for Scientists: Professional Development Needs and Resources for Scientists Working With K-12 Education

    Science.gov (United States)

    Laursen, S.; Smith, L.; McLaren, C.; Hyde Edgerly, K.; Buhr, S.

    2004-12-01

    As science educators based in institutional outreach programs, we work with many scientists on education and outreach projects involving teachers, students, and the public. While our scientist colleagues bring varied disciplinary interests, educational expertise, and communication skills to their education work, one strength that all scientists bring to these collaborations is their profound knowledge of the inquiry process. We have begun to develop a program of professional development for scientists that focuses on scientific inquiry in the classroom. Inquiry is the appropriate topic of focus for an initial professional development experience for scientists, because it is a crucial and broadly applicable part of national science education goals, and because all scientists understand it in a deep and personal way. As articulated in the National Science Education Standards, inquiry is both a recommended strategy for learning and teaching scientific concepts, and a content area in its own right, with the aim that students understand the process of science and can conduct scientific investigations. We will describe our multi-faceted program, which includes professional development workshops, development and sharing of resources, and a research-with-evaluation study to examine the readiness, response, and needs of the scientific community for professional development to further its education work. We will discuss ways in which scientists can apply their understanding of inquiry to their education work as well as identify other needs that must also be addressed. While inquiry is not the only thing that "busy scientists need to know," it is a good topic for starting fruitful conversations among scientists, K-12 educators, and those who bridge these communities.

  13. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  14. Getting to Yes: Supporting Scientists in Education and Public Outreach

    Science.gov (United States)

    Buhr, S. M.; Lynds, S. E.; Smith, L. K.

    2011-12-01

    Research scientists are busy people, with many demands on their time and few institutional rewards for engagement in education and public outreach (EPO). However, scientist involvement in education has been called for by funding agencies, education researchers and the scientific organizations. In support of this idea, educators consistently rate interaction with scientists as the most meaningful element of an outreach project. What factors help scientists become engaged in EPO, and why do scientists stay engaged? This presentation describes the research-based motivations and barriers for scientists to be engaged in EPO, presents strategies for overcoming barriers, and describes elements of EPO that encourage and support scientist engagement.

  15. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    Science.gov (United States)

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  16. Kristian Birkeland The First Space Scientist

    CERN Document Server

    Egeland, Alv

    2005-01-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth’s magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell’s newly discovered laws of electricity and magnetism. Birkeland’s ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth’s atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway’s largest industries, stands as a living tribute to his genius. Hoping to demo...

  17. Stress and morale of academic biomedical scientists.

    Science.gov (United States)

    Holleman, Warren L; Cofta-Woerpel, Ludmila M; Gritz, Ellen R

    2015-05-01

    Extensive research has shown high rates of burnout among physicians, including those who work in academic health centers. Little is known, however, about stress, burnout, and morale of academic biomedical scientists. The authors interviewed department chairs at one U.S. institution and were told that morale has plummeted in the past five years. Chairs identified three major sources of stress: fear of not maintaining sufficient funding to keep their positions and sustain a career; frustration over the amount of time spent doing paperwork and administrative duties; and distrust due to an increasingly adversarial relationship with the executive leadership.In this Commentary, the authors explore whether declining morale and concerns about funding, bureaucracy, and faculty-administration conflict are part of a larger national pattern. The authors also suggest ways that the federal government, research sponsors, and academic institutions can address these concerns and thereby reduce stress and burnout, increase productivity, and improve overall morale of academic biomedical scientists.

  18. Conservation beyond science: scientists as storytellers

    Directory of Open Access Journals (Sweden)

    Diogo Veríssimo

    2014-11-01

    Full Text Available As scientists we are often unprepared and unwilling to communicate our passion for what we do to those outside our professional circles. Scientific literature can also be difficult or unattractive to those without a professional interest in research. Storytelling can be a successful approach to enable readers to engage with the challenges faced by scientists. In an effort to convey to the public what it means to be a field biologist, 18 Portuguese biologists came together to write a book titled “BIOgraphies: The lives of those who study life”, in the original Portuguese “BIOgrafias: Vidas de quem estuda a vida”. This book is a collection of 35 field stories that became career landmarks for those who lived them. We discuss the obstacles and opportunities of the publishing process and reflect on the lessons learned for future outreach efforts.

  19. Tradition and Innovation in Scientists' Research Strategies

    CERN Document Server

    Foster, Jacob G; Evans, James A

    2013-01-01

    What factors affect a scientist's choice of research problem? Qualitative research in the history, philosophy, and sociology of science suggests that this choice is shaped by an "essential tension" between the professional demand for productivity and a conflicting drive toward risky innovation. We examine this tension empirically in the context of biomedical chemistry. We use complex networks to represent the evolving state of scientific knowledge, as expressed in publications. We then define research strategies relative to these networks. Scientists can introduce novel chemicals or chemical relationships--or delve deeper into known ones. They can consolidate existing knowledge clusters, or bridge distant ones. Analyzing such choices in aggregate, we find that the distribution of strategies remains remarkably stable, even as chemical knowledge grows dramatically. High-risk strategies, which explore new chemical relationships, are less prevalent in the literature, reflecting a growing focus on established know...

  20. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  1. Only Human: Scientists, Systems, and Suspect Statistics

    Directory of Open Access Journals (Sweden)

    Tom E Hardwicke

    2014-12-01

    Full Text Available It is becoming increasingly clear that science has sailed into troubled waters. Recent revelations about cases of serious research fraud and widespread ‘questionable research practices’ have initiated a period of critical self-reflection in the scientific community and there is growing concern that several common research practices fall far short of the principles of robust scientific inquiry. At a recent symposium, ‘Improving Scientific Practice: Dealing with the Human Factors’ held at The University of Amsterdam, the notion of the objective, infallible, and dispassionate scientist was firmly challenged. The symposium was guided by the acknowledgement that scientists are only human, and thus subject to the desires, needs, biases, and limitations inherent to the human condition. In this article, five post-graduate students from University College London describe the issues addressed at the symposium and evaluate proposed solutions to the scientific integrity crisis.

  2. Nobelist TD Lee Scientist Cooperation Network and Scientist Innovation Ability Model

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LIU; Qiang

    2013-01-01

    We have studied Nobelist TD Lee scientist cooperation network(TDLSCN)and their innovation ability(Fig.1a).It is found that TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation network,but also the number of TD Lee’s published article appears the phenomenon of multiple-peak with year evolution,which becomes Nobelist TD Lee’s

  3. Intelligent Systems for Engineers and Scientists

    CERN Document Server

    Hopgood, Adrian A

    2011-01-01

    The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and

  4. Modelling biological complexity: a physical scientist's perspective

    OpenAIRE

    Coveney, Peter V.; Fowler, Philip W.

    2005-01-01

    We discuss the modern approaches of complexity and self-organization to understanding dynamical systems and how these concepts can inform current interest in systems biology. From the perspective of a physical scientist, it is especially interesting to examine how the differing weights given to philosophies of science in the physical and biological sciences impact the application of the study of complexity. We briefly describe how the dynamics of the heart and circadian rhythms, canonical exa...

  5. Strategic career planning for physician-scientists

    OpenAIRE

    Shimaoka, Motomu

    2015-01-01

    Building a successful professional career in the physician-scientist realm is rewarding but challenging, especially in the dynamic and competitive environment of today’s modern society. This educational review aims to provide readers with five important career development lessons drawn from the business and social science literatures. Lessons 1–3 describe career strategy, with a focus on promoting one’s strengths while minimizing fixing one’s weaknesses (Lesson 1); effective time management i...

  6. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael

    2013-01-01

    This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallogr

  7. Cultural isolation of third-world scientists

    International Nuclear Information System (INIS)

    The isolation of third world scientists from the modes of production and from the culture of their countries seems to be related to the alienation of the urban culture of these countries from their respective rural backgrounds. It is suggested that this alienation may be overcome by directly interfacing modern science and technology to the corresponding elements in their rural culture through the process of education. (author)

  8. How Dare You Scientists Espouse Different Thoughts!

    OpenAIRE

    Cairns, John

    2010-01-01

    On May 7, 2010, a letter signed by 255 members of the US National Academy of Sciences deplored attacks on both science and scientists who researched climate science or related fields. The assaults in the letter rely on two main components. First, statements contradict the preponderance of scientific evidence without a comparable body of evidence to the contrary. Second, as the size of the Intergovernmental Panel on Climate Change (IPCC) reports grows, so does the probability of minor errors. ...

  9. Credentialing Data Scientists: A Domain Repository Perspective

    Science.gov (United States)

    Lehnert, K. A.; Furukawa, H.

    2015-12-01

    A career in data science can have many paths: data curation, data analysis, metadata modeling - all of these in different commercial or scientific applications. Can a certification as 'data scientist' provide the guarantee that an applicant or candidate for a data science position has just the right skills? How valuable is a 'generic' certification as data scientist for an employer looking to fill a data science position? Credentials that are more specific and discipline-oriented may be more valuable to both the employer and the job candidate. One employment sector for data scientists are the data repositories that provide discipline-specific data services for science communities. Data science positions within domain repositories include a wide range of responsibilities in support of the full data life cycle - from data preservation and curation to development of data models, ontologies, and user interfaces, to development of data analysis and visualization tools to community education and outreach, and require a substantial degree of discipline-specific knowledge of scientific data acquisition and analysis workflows, data quality measures, and data cultures. Can there be certification programs for domain-specific data scientists that help build the urgently needed workforce for the repositories? The American Geophysical Union has recently started an initiative to develop a program for data science continuing education and data science professional certification for the Earth and space sciences. An Editorial Board has been charged to identify and develop curricula and content for these programs and to provide input and feedback in the implementation of the program. This presentation will report on the progress of this initiative and evaluate its utility for the needs of domain repositories in the Earth and space sciences.

  10. How political scientists got Trump exactly wrong

    OpenAIRE

    Gruber, Lloyd

    2016-01-01

    One of the major casualties of the 2016 election season has been the reputation of political science, a discipline whose practitioners had largely dismissed Donald Trump’s chances of gaining the Republican nomination. Lloyd Gruber describes just how wrong political scientists were about Trump, and explains why they should have been able to predict his success. Looking ahead to the fall general election, he questions whether voters will want Trump’s trigger-happy fingers on America’s nuclear b...

  11. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  12. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-01

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  13. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  14. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-01

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks. PMID:27276380

  15. The scientist's education and a civic conscience.

    Science.gov (United States)

    Donald, Kelling J; Kovac, Jeffrey

    2013-09-01

    A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed. PMID:23096773

  16. The scientist's education and a civic conscience.

    Science.gov (United States)

    Donald, Kelling J; Kovac, Jeffrey

    2013-09-01

    A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed.

  17. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  18. Working with Scientists Who Interact with Public Audiences

    Science.gov (United States)

    Schatz, D.; Witzel, L.; Gurton, S.; McCann, S. E.

    2015-11-01

    President Obama has called for all STEM-based federal employees to share their expertise and passion with the public. Alan Leshner, Executive Director of AAAS, has advocated the same for all scientists. But what are the best ways to prepare scientists as effective science communicators? How do scientists find resources to become better science communicators? How do scientists connect with other scientists interested in education and outreach? This panel, with representatives from an informal science education institution, a university, and a professional association, offered insights to answer these questions from their experience of working with scientists engaged with public audiences.

  19. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  20. Data sharing by scientists: practices and perceptions.

    Directory of Open Access Journals (Sweden)

    Carol Tenopir

    Full Text Available BACKGROUND: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers--data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. CONCLUSIONS/SIGNIFICANCE: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE will both bring attention and resources to the issue and make it easier for scientists to

  1. Professional conduct of scientists during volcanic crises

    Science.gov (United States)

    ,; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Wimpy

    1999-01-01

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  2. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  3. Team science for science communication

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Strauss, Benjamin H.

    2014-09-01

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  4. Galaxy Zoo: Motivations of Citizen Scientists

    CERN Document Server

    Raddick, M Jordan; Gay, Pamela L; Lintott, Chris J; Cardamone, Carie; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S; Vandenberg, Jan

    2013-01-01

    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11,000 volunteers in Galaxy Zoo, an astronomy citizen science project. Results show that volunteers' primary motivation is a desire to contribute to scientific research. We encourage other citizen science projects to study the motivations of their volunteers, to see whether and how these results may be generalized to inform the field of citizen science.

  5. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  6. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  7. Essential Java for Scientists and Engineers

    CERN Document Server

    Hahn, Brian D; Malan, Katherine M

    2003-01-01

    Essential Java serves as an introduction to the programming language, Java, for scientists and engineers, and can also be used by experienced programmers wishing to learn Java as an additional language. The book focuses on how Java, and object-oriented programming, can be used to solve science and engineering problems. Many examples are included from a number of different scientific and engineering areas, as well as from business and everyday life. Pre-written packages of code are provided to help in such areas as input/output, matrix manipulation and scientific graphing. Java source code and

  8. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  9. Dealing with the Data Scientist Shortage

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Hart; Troy Hiltbrand

    2014-06-01

    Few areas in the economy have generated as much attention as big data and advanced analytics in recent years due to its potential of revolutionizing the way that business function in the coming years. One of the major challenges that organizations face in implementing analytics that have the potential of providing them a competitive advantage in the market is that of finding the elusive data scientist needed to execute on big data strategy. This article addresses what some business are doing to bridge that gap between vision and reality.

  10. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  11. Scientists Explain Catalysis Neutralizing Car's Tail Gas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The neutralization of the car's tail gas is a problem of practical importance in the eyes of both experimental and theoretical physicists. Recently, a group of CAS scientists join hands with the Queen's University of Belfast in the UK to make advances in exploring the process of CO oxidation in a bid to reduce the air pollution caused by the car's exhaust gas. The work has been supported by the "National 973Program" and the CAS Foundation for Overseas Studies. On March 4,its result was published by the Internet edition of the Journal of the American Chemical Society.

  12. Web life: The Evil Mad Scientist Project

    Science.gov (United States)

    2009-04-01

    What is it? Have you ever tried to electrocute a hot dog? Wondered how to make a robot out of a toothbrush, watch battery and phone-pager motor? Seen a cantaloupe melon and thought, "Hmm, I could make this look like the Death Star from the original Star Wars films"? If you have not, but you would like to - preferably as soon as you can find a pager motor - then this is the site for you. The Evil Mad Scientist Project (EMSP) blog is packed full of ideas for unusual, silly and frequently physics-related creations that bring science out of the laboratory and into kitchens, backyards and tool sheds.

  13. Persistent, Global Identity for Scientists via ORCID

    CERN Document Server

    Evrard, August E; Holmquist, Jane; Damon, James; Dietrich, Dianne

    2015-01-01

    Scientists have an inherent interest in claiming their contributions to the scholarly record, but the fragmented state of identity management across the landscape of astronomy, physics, and other fields makes highlighting the contributions of any single individual a formidable and often frustratingly complex task. The problem is exacerbated by the expanding variety of academic research products and the growing footprints of large collaborations and interdisciplinary teams. In this essay, we outline the benefits of a unique scholarly identifier with persistent value on a global scale and we review astronomy and physics engagement with the Open Researcher and Contributor iD (ORCID) service as a solution.

  14. Scientists Zero in On Cause of Rare, Disfiguring Skin Disorder

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161115.html Scientists Zero In on Cause of Rare, Disfiguring Skin ... leaves those affected with red, scaly skin. Now, scientists say they may have pinpointed both the cause ...

  15. SCIENCE, SCIENTISTS, AND POLICY ADVOCACY - MAY 16, 2007

    Science.gov (United States)

    Effectively resolving many current ecological policy issues requires an array of scientific information. Sometimes scientific information is summarized for decision-makers by policy analysts or others, but often it comes directly from scientists. The ability of scientists (and sc...

  16. How scientists develop competence in visual communication

    Science.gov (United States)

    Ostergren, Marilyn

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This examination takes the form of an extensive multi-disciplinary integrative literature review and a series of interviews with graduate-level science students. The results are presented as a conceptual framework that lays out the components of competence in visual communication, including the communicative goals of science visuals, the characteristics of effective visuals, the skills and knowledge needed to create effective visuals and the learning experiences that promote the acquisition of these forms of skill and knowledge. This conceptual framework can be used to inform pedagogy and thus help graduate students achieve a higher level of competency in this area; it can also be used to identify aspects of acquiring competence in visual communication that need further study.

  17. Grzegorz Rozenberg: A Magical Scientist and Brother

    Science.gov (United States)

    Salomaa, Arto

    This is a personal description of Grzegorz Rozenberg. There is something magical in the fact that one man, Grzegorz, has been able to obtain so many and such good results in so numerous and diverse areas of science. This is why I have called him a “magical scientist.” He is also a very interdisciplinary scientist. In some sense this is due to his educational background. His first degree was in electronics engineering, the second a master’s in computer science, and the third a Ph.D. in mathematics. However, in the case of Grzegorz, the main drive for new disciplines comes from his tireless search for new challenges in basic science, rather than following known tracks. Starting with fundamental automata and language theory, he soon extended his realm to biologically motivated developmental languages, and further to concurrency, Petri nets, and graph grammars. During the past decade, his main focus has been on natural computing, a term coined by Grzegorz himself to mean either computing taking place in nature or human-designed computing inspired by nature.

  18. Kristian Birkeland, The First Space Scientist

    Science.gov (United States)

    Egeland, A.; Burke, W. J.

    2005-05-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth's magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell's newly discovered laws of electricity and magnetism. Birkeland's ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth's atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway's largest industries, stands as a living tribute to his genius. Hoping to demonstrate what we now call the solar wind, Birkeland moved to Egypt in 1913. Isolated from his friends by the Great War, Birkeland yearned to celebrate his 50th birthday in Norway. The only safe passage home, via the Far East, brought him to Tokyo where in the late spring of 1917 he passed away. Link: http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10100-22-39144987-0,00.html?changeHeader=true

  19. On the social responsibility of scientists.

    Science.gov (United States)

    Beckwith, J

    2001-01-01

    The author outlines the history of genetics in the United States, looking at all the social and political implications of it, too often underestimated by the geneticists themselves. In contrast to physicists, who were forced to recognize the consequences of their role in the development of the atomic bomb and who openly carried a historical burden from their past, geneticists had no historical memory and were essentially ignorant of their own "atomic" history: the Eugenics movement in the first half of 20th century, which significantly affected social policy in the United State and Europe. Few geneticists, in fact, until recently, were aware of the Eugenics movement itself. It was only with the extreme misuse of genetics by German scientists and the Nazi Government that some English and US geneticists began to speak out more openly. The author sees in this lack of awareness the major responsibility of geneticists for the misrepresentation and misuse of science and also calls for a better interaction between scientists and those who work in other social fields; a communication gap between the two cultures holds dangers for us all. PMID:11758276

  20. Challenges and responsibilities for public sector scientists.

    Science.gov (United States)

    Van Montagu, Marc

    2010-11-30

    Current agriculture faces the challenge of doubling food production to meet the food needs of a population expected to reach 9 billion by mid-century whilst maintaining soil and water quality and conserving biodiversity. These challenges are more overwhelming for the rural poor, who are the custodians of environmental resources and at the same time particularly vulnerable to environmental degradation. Solutions have to come from concerted actions by different segments of society in which public sector science plays a fundamental role. Public sector scientists are at the root of all the present generation of GM crop traits under cultivation and more will come with the new knowledge that is being generated by systems biology. To speed up innovation, molecular biologists must interact with scientists from the different fields as well as with stakeholders outside the academic world in order to create an environment capable of capturing value from public sector knowledge. I highlight here the measures that have to be taken urgently to guarantee that science and technology can tackle the problems of subsistence farmers.

  1. Investigation of the Secondary School Students' Images of Scientists

    Science.gov (United States)

    Akgün, Abuzer

    2016-01-01

    The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…

  2. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist shall perform a laboratory analysis on any product in which he is directly or indirectly...

  3. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  4. Engaging Students and Scientists through ROV Competitions

    Science.gov (United States)

    Zande, J.

    2004-12-01

    The Marine Advanced Technology Education (MATE) Center's network of regional and national remotely operated vehicle (ROV) competitions for students provide a unique and exciting way for the scientific community to get involved in education and outreach and meet broader impact requirements. From Hawaii to New England, MATE's ROV competitions also facilitate collaborations among the scientific community, professional societies, government agencies, business and industry, and public aquaria. Since 2001, the MATE Center and organizations such as the Marine Technology Society (MTS), NOAA's Office of Ocean Exploration, and the Birch Aquarium at Scripps Institution of Oceanography, among others, have challenged 1,000+ students to design and build ROVs for underwater tasks based on science and exploration missions taking place in the real world. From the Monterey Bay Aquarium Research Institute to Woods Hole Oceanographic Institution (WHOI), more than 60 scientists, engineers, and their organizations have supported the students participating in these events and, in doing so, have contributed to E&O and increased the awareness and impact of their work. What does it take to get involved with this E&O effort? That depends on the time, technical expertise, facilities, equipment, building materials, and/or funds that you can afford to contribute. Examples of how scientists and their institutions have and continue to support MATE's ROV competitions include: -Serving as technical advisors, judges, and competition-day technical assistants. -Sharing time and technical expertise as mentors. -Providing access to facilities and equipment. -Donating building materials and supplies. -Hosting the event at your institution. In addition to helping you to become involved in E&O and meet broader impact requirements, benefits to you include: -Exposing yourself to technologies that could support your science. -Getting ideas for creative and inexpensive solutions to challenges that you may face

  5. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  6. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  7. The Maturation of a Scientist: An Autobiography.

    Science.gov (United States)

    Roizman, Bernard

    2015-11-01

    I was shaped by World War II, years of near starvation as a war refugee, postwar chaos, life in several countries, and relative affluence in later life. The truth is that as I was growing up I wanted to be a writer. My aspirations came to an end when, in order to speed up my graduation from college, I took courses in microbiology. It was my second love at first sight-that of my wife preceded it. I view science as an opportunity to discover the designs in the mosaics of life. What initiates my search of discovery is an observation that makes no sense unless there exists a novel design. Once the design is revealed there is little interest in filling all the gaps. I was fortunate to understand that what lasts are not the scientific reports but rather the generations of scientists whose education I may have influenced. PMID:26958904

  8. Scientists assess impact of Indonesia fires

    Science.gov (United States)

    Showstack, Randy

    The fires burning in Indonesia over the past several months are setting aflame the biomass and wildlife habitat of the tropical forests, spreading a dangerously unhealthy haze across the populous country and nearby nations in southeast Asia, causing transportation hazards, and sending plumes of smoke up into the troposphere.Most of the fires have been set—by big landowners, commercial loggers, and small farmers—in attempts to clear and cultivate the land, as people have done in the past. But this year a drought induced by El Niño limited the rainfall that could help extinguish the flames and wash away the smoke and haze. In addition, some scientists say that smoke could even delay the monsoon, which usually arrives in early November.

  9. Strategic career planning for physician-scientists.

    Science.gov (United States)

    Shimaoka, Motomu

    2015-05-01

    Building a successful professional career in the physician-scientist realm is rewarding but challenging, especially in the dynamic and competitive environment of today's modern society. This educational review aims to provide readers with five important career development lessons drawn from the business and social science literatures. Lessons 1-3 describe career strategy, with a focus on promoting one's strengths while minimizing fixing one's weaknesses (Lesson 1); effective time management in the pursuit of long-term goals (Lesson 2); and the intellectual flexibility to abandon/modify previously made decisions while embracing emerging opportunities (Lesson 3). Lesson 4 explains how to maximize the alternative benefits of English-language fluency (i.e., functions such as signaling and cognition-enhancing capabilities). Finally, Lesson 5 discusses how to enjoy happiness and stay motivated in a harsh, zero-sum game society.

  10. Research Education in Training of Scientists

    Directory of Open Access Journals (Sweden)

    Ali Rıza ERDEM

    2012-01-01

    Full Text Available Research refers to the application of scientific analysis method in a systematic and careful way. In this respect, research education aims the acquisition of ‘technical proficiency in research’ along with ‘scientific att itudes and treatments’. As a result, research invariably underlines the knowledge and skill for the introduction of technical proficiency and scientific analysis method in a biçimsel, systematic and elaborate way. As for scientific att itudes and treatments, they are regarded as instinctive thoughts and approaches which ease problem solving, scientific productivity, as well as converting research technical proficiency into practise. In that way, the teaching staff who will undertake the responsibility for training of scientists are supposed to perform eff ectively research education in three major realms: (1 Education, and Training (2 Post- Graduate Th esis Guidance (3 Being a Scientific Jury Member/Journal Refree.

  11. Moments in the Life of a Scientist

    Science.gov (United States)

    Rossi, Bruno

    1990-08-01

    Bruno Rossi has long been an influential figure in diverse areas of physics and in this volume he presents a fascinating account of his life and work as an experimental physicist. He discusses his scientific contributions, from experiments that played a major role in establishing the nature and properties of cosmic rays to those establishing the existence of a solar wind and others that laid the foundations of X-ray astronomy. Rossi provides close insight into his actual experiences as a scientist and the motivations that gave direction to his research, and he recounts the beginning of very significant stages in high energy physics and space research. He writes evocatively of the many places where he worked--of Florence, Arcetri, Padua, and Venice, of the mountains of Colorado and the deserts of New Mexico. His narrative also provides insight into the life of a Jewish family in fascist Italy. The text is accompanied by photographs taken throughout Rossi's career.

  12. Linear functional analysis for scientists and engineers

    CERN Document Server

    Limaye, Balmohan V

    2016-01-01

    This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...

  13. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  14. Cell scientist to watch--Melina Schuh.

    Science.gov (United States)

    Schuh, Melina; Bobrowska, Anna

    2016-01-01

    Melina Schuh received her diploma degree in biochemistry from the University of Bayreuth, Germany, where she completed her Diploma thesis with Stefan Heidmann and Christian Lehner. She went on to do her PhD with Jan Ellenberg at the European Molecular Biology Laboratory in Heidelberg, Germany. In 2009, after a bridging postdoc with Jan, Melina started her own group at the MRC Laboratory of Molecular Biology in Cambridge, UK. Since January 2016, she is a Director at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, and will establish a new department focussing on meiosis. She is an EMBO Young Investigator and a recipient of the 2014 Lister Institute Research Prize, the 2014 Biochemical Society Early Career Award and the 2015 John Kendrew Young Scientist Award. Her lab is studying meiosis in mammalian oocytes, including human oocytes.

  15. Young Engineers and Scientists: A Mentorship Program

    Science.gov (United States)

    Boice, D. C.; Hooper, J.

    1996-09-01

    Southwest Research Institute (SwRI) hosts the Young Engineers and Scientists (YES) mentorship program instituted in 1993 in applied physical sciences, information sciences, and engineering for high school juniors and seniors living in San Antonio. The aim of YES is to increase the number of students, including females and minorities, seeking careers in these fields and to enhance the participants' chances of success in achieving their career goals. The program is divided into two parts: an intensive three-week group training session held at SwRI in the summer where students are paired with SwRI staff members on a one-to-one basis, and individual research projects completed during the academic year in which students earn credit at their high school. Several students have completed or are currently working on projects in astronomy. A brief description of the YES program is given with examples from the summer workshop and independent student projects.

  16. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  17. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  18. Climate Change: On Scientists and Advocacy

    Science.gov (United States)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  19. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  20. Boscovich: scientist and man of letters

    Science.gov (United States)

    Proverbio, E.

    Ruggiero Giuseppe Boscovich (1711-1781) is known as one of the most important scientists of the second half of XVIII century, but he was active also as a man of letters, especially through an abundant production of poems in Latin verse. We try to interpret these two, apparently antinomic, aspects of his character in the framework of the culture of his epoch, in which science and literary productions were not considered as two separate or opposite fields, but only two different aspects of human knowledge. In particular we review the field of his poetic production in which this fundamental unity of knowledge is most evident, namely his poems with didactic-scientific subjects, which are examples of high-level popularization of the latest progresses in science (in particular astronomy and Newtonian physics) by means of elegant Latin verse.

  1. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required. PMID:24785995

  2. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  3. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  4. COGNITION IN ROBOTS AND ROBOT SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Soundrarajan.B

    2012-07-01

    Full Text Available The ability of intuition and self- learning in humans is responsible for developing their intelligence, reasoning and socialising. All this human characteristics can enable the robots to evolve into humans. In this context i explain that robots with developing intelligence can solve the problems of various scientific phenomenon such as black-hole, time travels and even in robotics the problems in sensors and actuators which do not impart human level DOF and movement thus making them do everything we can do. Imagine a robot doing yoga, karate, even a ballet all by itself without the rusty old controls and commands. Researchers have come with all kinds of robots and best of all social robots for social interaction so we have come with all kinds of robots what’s next? Robot scientists and researchers! Why not? It is highly evident that robot can think in new dimensions to solve issues.

  5. Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life

    Science.gov (United States)

    Falloon, Garry; Trewern, Ann

    2013-02-01

    The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.

  6. Communicating Ecology Through Art: What Scientists Think

    Directory of Open Access Journals (Sweden)

    Guy Ballard

    2012-06-01

    Full Text Available Many environmental issues facing society demand considerable public investment to reverse. However, this investment will only arise if the general community is supportive, and community support is only likely if the issues are widely understood. Scientists often find it difficult to communicate with the general public. The role of the visual and performing arts is often overlooked in this regard, yet the arts have long communicated issues, influenced and educated people, and challenged dominant paradigms. To assess the response of professional ecologists to the role of the arts in communicating science, a series of constructed performances and exhibitions was integrated into the program of a national ecological conference over five days. At the conclusion of the conference, responses were sought from the assembled scientists and research students toward using the arts for expanding audiences to ecological science. Over half the delegates said that elements of the arts program provided a conducive atmosphere for receiving information, encouraged them to reflect on alternative ways to communicate science, and persuaded them that the arts have a role in helping people understand complex scientific concepts. A sizeable minority of delegates (24% said they would consider incorporating the arts in their extension or outreach efforts. Incorporating music, theatre, and dance into a scientific conference can have many effects on participants and audiences. The arts can synthesize and convey complex scientific information, promote new ways of looking at issues, touch people's emotions, and create a celebratory atmosphere, as was evident in this case study. In like manner, the visual and performing arts should be harnessed to help extend the increasingly unpalatable and urgent messages of global climate change science to a lay audience worldwide.

  7. An example of woman scientist in France

    Science.gov (United States)

    Cazenave, A.

    2002-12-01

    Although the presence of women in sciences has been increasing in the past few decades in Europe, it remains incredibly low at the top levels. Recent statistics from the European Commission indicate that now women represent 50 per cent of first degree students in many countries. However, the proportion of women at each stage of the scientific career decreases almost linearly, reaching less than 10 per cent at the highest level jobs. From my own experience, I don't think that this results from sexism nor discrimination. Rather, I think that this is a result of complex cultural factors making women subconsciously persuaded that top level jobs are destined to male scientists only. Many women scientists drop the idea of playing a role at high-level research, considering it is a way of exerting power (a matter reserved to men). Others give up the possibility of combining childcare and high level commitments in research. And too many (married women) still find only natural to sacrifice their own scientific ambitions to the benefit of their spouse's career. In this poster, I briefly present my personal experience. I chose to prioritize scientific productivity and expertise versus hierarchical responsibilities. Besides I tried to keep a satisfactory balance between family demand and research involvement. This was indeed facilitated by the French system, which provides substantial support to women's work (nurseries, recreation centers during school holidays, etc.). To my point of view, the most promising way of increasing the number of women at top levels in research is through education and mentality evolution

  8. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms.

  9. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  10. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  11. Communicating uncertainty to agricultural scientists and professionals

    Science.gov (United States)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Gordon, Taylor; Whitmore, Andrew

    2016-04-01

    Models of agricultural systems often aim to predict the impacts of weather and soil nutrients on crop yields and the environment. These models are used to inform scientists, policy makers and farmers on the likely effects of management. For example, a farmer might be interested in the effect of nitrogen fertilizer on his yield, whilst policy makers might be concerned with the possible polluting effects of fertilizer. There are of course uncertainties related to any model predictions and these must be communicated effectively if the end user is to draw proper conclusions and so make sound decisions. We searched the literature and found several methods for expressing the uncertainty in the predictions produced by models. We tested six of these in a formal trial. The methods we considered were: calibrated phrases, such as 'very uncertain' and 'likely', similar to those used by the IPCC; probabilities that the true value of the uncertain quantity lay within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. We held a series of three workshops at which the participants were invited to assess the six different methods of communicating the uncertainty. In total 64 individuals took part in our study. These individuals were either scientists, policy makers or those who worked in the agricultural industry. The test material comprised four sets of results from models. These results were displayed using each of the six methods described above. The participants were asked to evaluate the methods by filling in a questionnaire. The questions were intended to test how straightforward the content was to interpret and whether each method displayed sufficient information. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to

  12. Return mobility of scientists and knowledge circulation : an exploratory approach to scientists attitudes and perspectives

    OpenAIRE

    Fontes, Margarida

    2007-01-01

    The paper addresses the international mobility and return of scientists and its implications for regions/countries with weaker scientific and technological systems. It focuses on the “return dilemma” and, using the Portuguese case as empirical setting, discusses the conditions for return, the “diaspora” alternative and the role of policies in minimising the impacts of mobility flows. Despite the growing importance assumed by scientific mobility, our understanding of mobility flows, in particu...

  13. Scientists present their design for Einstein Telescope

    CERN Multimedia

    ASPERA Press Release

    2011-01-01

    Plans shape up for a revolutionary new observatory that will explore black holes and the Big Bang. This detector will ‘see’ the Universe in gravitational waves.   A new era in astronomy will come a step closer when scientists from across Europe present their design study today for an advanced observatory capable of making precision measurements of gravitational waves – minute ripples in the fabric of spacetime – predicted to emanate from cosmic catastrophes such as merging black holes and collapsing stars and supernovae. It also offers the potential to probe the earliest moments of the Universe just after the Big Bang, which are currently inaccessible. The Einstein Observatory (ET) is a so-called third-generation gravitational-wave (GW) detector, which will be 100 times more sensitive than current instruments. Like the first two generations of GW detectors, it is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the le...

  14. The first scientist Anaximander and his legacy

    CERN Document Server

    Rovelli, Carlo

    2011-01-01

    Carlo Rovelli, a leading theoretical physicist, uses the figure of Anaximander as the starting point for an examination of scientific thinking itself: its limits, its strengths, its benefits to humankind, and its controversial relationship with religion. Anaximander, the sixth-century BC Greek philosopher, is often called the first scientist because he was the first to explain that order in the world was due to natural forces, not supernatural ones. He is the first person known to rnunderstand that the Earth floats in space; to believe that the sun, the moon, and the stars rotate around it--seven centuries before Ptolemy; to argue that all animals came from the sea and evolved; and to posit that universal laws rncontrol all change in the world. Anaximander taught Pythagoras, who would build on Anaximander's scientific theories by applying mathematical laws to natural phenomena. rnrnIn the award-winning Anaximander and the Birth of Scientific Thought, Rovelli restores Anaximander to his place in the history of...

  15. Stephen C. Woods: a precocious scientist.

    Science.gov (United States)

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years. PMID:21232549

  16. Scientists' views about attribution of global warming.

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  17. Stephen C. Woods: a precocious scientist.

    Science.gov (United States)

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years.

  18. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Science.gov (United States)

    Dudo, Anthony; Besley, John C

    2016-01-01

    Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  19. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Science.gov (United States)

    Dudo, Anthony; Besley, John C

    2016-01-01

    Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869

  20. MEASURING SCIENTISTS' PERFORMANCE: A VIEW FROM ORGANISMAL BIOLOGISTS

    OpenAIRE

    Martin Ricker; Hernández, Héctor M.; Douglas C. Daly

    2009-01-01

    Increasingly, academic evaluations quantify performance in science by giving higher rank to scientists (as well as journals and institutions) who publish more articles and have more citations. In Mexico, for example, a centralized federal agency uses such bibliometric statistics for evaluating the performance of all Mexican scientists. In this article we caution against using this form of evaluation as an almost exclusive tool of measuring and comparing scientists´ performance. We argue that ...

  1. Challenges and opportunities for reinvigorating the physician-scientist pipeline

    OpenAIRE

    Daye, Dania; Patel, Chirag B.; Ahn, Jaimo; Nguyen, Freddy T.

    2015-01-01

    Physician-scientists, with in-depth training in both medicine and research, are uniquely poised to address pressing challenges at the forefront of biomedicine. In recent years, a number of organizations have outlined obstacles to maintaining the pipeline of physician-scientists, classifying them as an endangered species. As in-training and early-career physician-scientists across the spectrum of the pipeline, we share here our perspective on the current challenges and available opportunities ...

  2. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  3. The motivations of scientists as drivers of international mobility decisions

    OpenAIRE

    Pellens, Maikel

    2012-01-01

    Recent research has explored the influence of the motivations and preferences of scientists (their ‘taste for science’, or preference for basic research, independence, publishing and peer recognition) on career decisions such as selection in industry versus academia. This paper continues this stream of research by examining the role played by the motivations of academic scientists in the international mobility decision. We hypothesize that the motivations of scientists affect the outcome o...

  4. NUCLEAR ESPIONAGE: Report Details Spying on Touring Scientists.

    Science.gov (United States)

    Malakoff, D

    2000-06-30

    A congressional report released this week details dozens of sometimes clumsy attempts by foreign agents to obtain nuclear secrets from U.S. nuclear scientists traveling abroad, ranging from offering scientists prostitutes to prying off the backs of their laptop computers. The report highlights the need to better prepare traveling researchers to safeguard secrets and resist such temptations, say the two lawmakers who requested the report and officials at the Department of Energy, which employs the scientists. PMID:17769833

  5. Science Enhancements by the MAVEN Participating Scientists

    Science.gov (United States)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.

    2014-01-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  6. Gabriel Richet: the Man and the Scientist.

    Science.gov (United States)

    Ardaillou, Raymond; Ronco, Pierre

    2016-02-01

    Gabriel Richet who died in Paris in October 2014 was the fourth of a brilliant dynasty of professors of medicine including a Nobel prize, his grandfather, Charles Richet. He behaved courageously during the Second World War and participated in the Campaign of France in 1940 and in the combats in the Vosges Mountains in 1945. His family participated in the resistance during the German occupation of France and three of his parents including his father, one of his brothers and one of his cousins were deported in Germany. At the end of the war, he was with Jean Hamburger the founder of French nephrology at Necker Hospital in Paris. He realized the first hemodialyses in France and was involved in the first allogenic transplantation that was not immediately rejected. From 1961 to 1985, he was the head of a school of nephrology at Tenon Hospital and attracted in his department many young collaborators and scientists. He was the first to describe the role of specialized cells of the collecting duct in the control of acid base equilibrium. He was the subject of a national and international recognition. Founding member of the International Society of Nephrology in 1960, he was elected his President from 1981-1984. His fame could be measured by the number of fellows and visiting facultiesfrom countries all over the world. When he retired in 1985, he left an important legacy involving several departments of nephrology directed by his ancient collaborators. After his retirement, he was an active member of the French Academy of Medicine and devoted much of his time to the history of medicine and, particularly, of nephrology. The main qualities of the man were his constant research of new ideas, his eagerness to work and his open mind to understand others.

  7. Gabriel Richet: the Man and the Scientist.

    Science.gov (United States)

    Ardaillou, Raymond; Ronco, Pierre

    2016-02-01

    Gabriel Richet who died in Paris in October 2014 was the fourth of a brilliant dynasty of professors of medicine including a Nobel prize, his grandfather, Charles Richet. He behaved courageously during the Second World War and participated in the Campaign of France in 1940 and in the combats in the Vosges Mountains in 1945. His family participated in the resistance during the German occupation of France and three of his parents including his father, one of his brothers and one of his cousins were deported in Germany. At the end of the war, he was with Jean Hamburger the founder of French nephrology at Necker Hospital in Paris. He realized the first hemodialyses in France and was involved in the first allogenic transplantation that was not immediately rejected. From 1961 to 1985, he was the head of a school of nephrology at Tenon Hospital and attracted in his department many young collaborators and scientists. He was the first to describe the role of specialized cells of the collecting duct in the control of acid base equilibrium. He was the subject of a national and international recognition. Founding member of the International Society of Nephrology in 1960, he was elected his President from 1981-1984. His fame could be measured by the number of fellows and visiting facultiesfrom countries all over the world. When he retired in 1985, he left an important legacy involving several departments of nephrology directed by his ancient collaborators. After his retirement, he was an active member of the French Academy of Medicine and devoted much of his time to the history of medicine and, particularly, of nephrology. The main qualities of the man were his constant research of new ideas, his eagerness to work and his open mind to understand others. PMID:26913875

  8. Science Enhancements by the MAVEN Participating Scientists

    Science.gov (United States)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.

    2015-12-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  9. Scientists Track Collision of Powerful Stellar Winds

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these

  10. American Astronomical Society Honors NRAO Scientist

    Science.gov (United States)

    2005-01-01

    The American Astronomical Society (AAS) has awarded its prestigious George Van Biesbroeck Prize to Dr. Eric Greisen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The society cited Greisen's quarter-century as "principal architect and tireless custodian" of the Astronomical Image Processing System (AIPS), a massive software package used by astronomers around the world, as "an invaluable service to astronomy." Dr. Eric Greisen Dr. Eric Greisen CREDIT: NRAO/AUI/NSF (Click on image for larger version) The Van Biesbroeck Prize "honors a living individual for long-term extraordinary or unselfish service to astronomy, often beyond the requirements of his or her paid position." The AAS, with about 7,000 members, is the major organization of professional astronomers in North America. " The Very Large Array (VLA) is the most productive ground-based telescope in the history of astronomy, and most of the more than 10,000 observing projects on the VLA have depended upon the AIPS software to produce their scientific results," said Dr. James Ulvestad, NRAO's Director of New Mexico Operations. "This same software package also has been the principal tool for scientists using the Very Long Baseline Array and numerous other radio telescopes around the world," Ulvestad added. Greisen, who received a Ph.D in astronomy from the California Institute of Technology, joined the NRAO in 1972. He moved from the observatory's headquarters in Charlottesville, Virginia, to its Array Operations Center in Socorro in 2000. Greisen, who learned of the award in a telephone call from the AAS President, Dr. Robert Kirschner of Harvard University, said, "I'm pleased for the recognition of AIPS and also for the recognition of the contributions of radio astronomy to astronomy as a whole." He added that "it wasn't just me who did AIPS. There were many others." The AIPS software package grew out of the need for an efficient tool for producing images with the VLA, which was being

  11. Scientists' and Teachers' Perspectives about Collaboration

    Science.gov (United States)

    Munson, Bruce H.; Martz, Marti Ann; Shimek, Sarah

    2013-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education is resulting in more opportunities for scientists and teachers to collaborate. The relationships can result in failed collaborations or success. We recently completed a 6-year regional project that used several approaches to develop scientist-teacher relationships.…

  12. Training Physician-Scientists for the 1990s.

    Science.gov (United States)

    Martin, Joseph B.

    1991-01-01

    The article examines trends in the supply of physician-scientists, with emphasis on M.D.-Ph.D. programs to train biomedical researchers. New initiatives, such as the National Institutes of Health Physician-Scientist Training Awards and the Dana Foundation Training Program in the Neurosciences, are described and general recommendations are offered.…

  13. Of Science and Scientists an Anthology of Anecdotes

    Science.gov (United States)

    Kothare, A. N.

    Although a lot is available in the form of biographies and writings of scientists, very little information is found on what made them not only great discoverers but humane too, blessed with humour, humility and humanism. This book helps to convey this very aspect of scientists who while being involved in their unique adventure are like us, the lesser mortals.

  14. International Scientists Programs:A New Gateway to Cooperation

    Institute of Scientific and Technical Information of China (English)

    XIN Ling

    2010-01-01

    @@ The Chinese Academy of Sciences(CAS)launched in 2009 a major effort to promote international cooperation and scientific innovation: the Visiting Professorship Program for Senior International Scientists and the Fellowship Program for Young International Scientists.As part of the Academy's long endeavor to attract foreign researchers,both programs received hundreds of applications from abroad.

  15. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  16. WANG Feiyue honored as distinguished scientist by ACM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof. WANG Feiyue, a renowned scholar in intelligent control from the CAS Institute of Automation, has been selected by the New York-based Association for Computing Machinery (ACM) as a distinguished scientist for his contributions to both the practical and theoretical aspects of computing and information technology. Altogether, 13 scientists received the honor across the world in 2007.

  17. The Rehabilitation Medicine Scientist Training Program: impact and lessons learned.

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2009-03-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining National Institutes of Health funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well-developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program was funded by a K12 grant from the National Center for Medical Rehabilitation Research, as one strategy for increasing the number of research-productive physiatrists. The Rehabilitation Medicine Scientist Training Program's structure was revised in 2001 to improve the level of preparation of incoming trainees and to provide a stronger central mentorship support network. We describe the original and revised structure of the Rehabilitation Medicine Scientist Training Program and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that Rehabilitation Medicine Scientist Training Program trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 yrs of training.

  18. Collaborating with Scientists in Education and Public Engagement

    Science.gov (United States)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  19. Trends in Scholarly Communication Among Biomedical Scientists in Greece

    OpenAIRE

    Βλαχάκη, Ασημίνα; Urquhart, Christine

    2011-01-01

    The aim and objectives are to examine the main changes in scholarly communication among Greek biomedical scientists (2007-2011). The methods include a bibliographic survey (two phases), and a questionnaire survey (three phases). Results indicate that awareness of open access publishing has increased since 2010, but that biomedical scientists in Greece are not very aware of the operations of open access journals.

  20. Hypatia's Sisters: Biographies of Women Scientists - Past and Present.

    Science.gov (United States)

    Schacher, Susan

    This booklet gives two- or three-page biographies of seventeen women scientists. They range in history from Agnodice (physician, 300 B.B.) to Jane Goodall (born 1934). In addition, brief sketches are given of twenty-three other women scientists. This anthology is intended to fill a need for curriculum materials and literature that provide positive…

  1. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  2. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  3. Scientist-Image Stereotypes: The Relationships among Their Indicators

    Science.gov (United States)

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  4. Most Social Scientists Shun Free Use of Supercomputers.

    Science.gov (United States)

    Kiernan, Vincent

    1998-01-01

    Social scientists, who frequently complain that the federal government spends too little on them, are passing up what scholars in the physical and natural sciences see as the government's best give-aways: free access to supercomputers. Some social scientists say the supercomputers are difficult to use; others find desktop computers provide…

  5. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  6. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  7. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  8. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  9. Dante's Volcano

    Science.gov (United States)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  10. Scientist to scientist colloquium steering committee planning session. Summary report of the proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The reason for holding a scientific colloquium of this nature is to bring together the most active scientific researchers for cross-disciplinary exchanges. As one scientist commented, it is a way to compensate for over-specialization. As a scientist/administrator noted, it helps administrators to have access to high-level scientific information in a setting where they can ask stupid questions. At a meeting of between 80 and 100 people small group exchanges are possible, allowing more in-depth discussion. In five days of meetings, there are many opportunities for a great number of these exchanges. The Keystone Process facilitates intermingling across disciplines and encourages debate. Because this meeting is unlike discipline-specific meetings, presenters must write a talk specifically for an interdisciplinary audience, touching on various scientific and social implications of their work. They use this opportunity to practice addressing a broad audience which includes their peers from other /fields, university administrators, industry executives, government officials, and members of the media who will help bring forefront scientific findings to the public. This report discusses purpose, funding, and outcome of the colloquium.

  11. Teaching Scientists to Fish, as Inspired by Jack Dymond

    Science.gov (United States)

    Franks, S. E.

    2004-12-01

    It is almost inconceivable that as Jack Dymond's graduate student for eight years, I never mastered the skill of fly-fishing, a pursuit so near and dear to his heart. In fact, Jack did inspire me, not to tie flies and cast, but eventually to teach fellow scientists to fish. The work I'll present - connecting scientists and educators to achieve societal benefit - is profoundly influenced by Jack's dedication to applying scientific understanding and critical thinking to societal issues. With colleagues in the Centers for Ocean Sciences Education Excellence (COSEE), http://www.cosee.net/, I enable scientists to efficiently make meaningful contributions to educational outreach. A key goal of the multi-Center, national COSEE Network is helping scientists build the skills and acquire the resources needed to share their science with diverse audiences. At Scripps, we are piloting an innovative approach to helping scientists meet funding agencies' broader impact requirements. Key elements of the approach include: 1) services to identify educational outreach options that best fit scientists' research and preferences; 2) assistance establishing partnerships with educational outreach providers who have the skills and resources to develop and implement effective programs and exhibits; and 3) nuts and bolts (line and fly) assistance writing proposal text, drafting budgets, and coordinating with institutional business offices to ensure that the proposed educational outreach effort is compelling and sufficiently funded. Where does the fishing lesson come in? We facilitators of scientist-educator partnerships empower scientists to launch enduring collaborations. Once comfortable working with top-notch educational organizations, scientists can tap these resources, project after project, often with little or no additional involvement on our part. Our initial investment in brokering the relationships is richly rewarded. By helping scientists get started, it's as if we are teaching

  12. The Effect of Informal and Formal Interaction between Scientists and Children at a Science Camp on Their Images of Scientists

    Science.gov (United States)

    Leblebicioglu, Gulsen; Metin, Duygu; Yardimci, Esra; Cetin, Pinar Seda

    2011-01-01

    A number of studies have already investigated children's stereotypical images of scientists as being male, old, bald, wearing eyeglasses, working in laboratories, and so forth. There have also been some interventions to impose more realistic images of scientists. In this study, a science camp was conducted in Turkey with a team of scientists…

  13. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  14. Communicating Ocean Sciences to Informal Audiences: A Scientist-Educator Partnership to Prepare the Next Generation of Scientists

    Science.gov (United States)

    Halversen, Catherine; Tran, Lynn Uyen

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…

  15. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  16. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  17. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  18. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  19. The Value of Participating Scientists on NASA Planetary Missions

    Science.gov (United States)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  20. Publication pressure and scientific misconduct in medical scientists.

    Science.gov (United States)

    Tijdink, Joeri K; Verbeke, Reinout; Smulders, Yvo M

    2014-12-01

    There is increasing evidence that scientific misconduct is more common than previously thought. Strong emphasis on scientific productivity may increase the sense of publication pressure. We administered a nationwide survey to Flemish biomedical scientists on whether they had engaged in scientific misconduct and whether they had experienced publication pressure. A total of 315 scientists participated in the survey; 15% of the respondents admitted they had fabricated, falsified, plagiarized, or manipulated data in the past 3 years. Fraud was more common among younger scientists working in a university hospital. Furthermore, 72% rated publication pressure as "too high." Publication pressure was strongly and significantly associated with a composite scientific misconduct severity score.

  1. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  2. The subjectivity of scientists and the Bayesian statistical approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  3. Publication pressure and scientific misconduct in medical scientists.

    Science.gov (United States)

    Tijdink, Joeri K; Verbeke, Reinout; Smulders, Yvo M

    2014-12-01

    There is increasing evidence that scientific misconduct is more common than previously thought. Strong emphasis on scientific productivity may increase the sense of publication pressure. We administered a nationwide survey to Flemish biomedical scientists on whether they had engaged in scientific misconduct and whether they had experienced publication pressure. A total of 315 scientists participated in the survey; 15% of the respondents admitted they had fabricated, falsified, plagiarized, or manipulated data in the past 3 years. Fraud was more common among younger scientists working in a university hospital. Furthermore, 72% rated publication pressure as "too high." Publication pressure was strongly and significantly associated with a composite scientific misconduct severity score. PMID:25747691

  4. Martin Stutzmann: Editor, Teacher, Scientist and Friend

    Science.gov (United States)

    Cardona, Manuel

    2005-03-01

    On 2 January 1995 Martin Stutzmann became Editor-in-Chief of physica status solidi, replacing Professor E. Gutsche, who had led the journal through the stormy period involving the fall of the Iron Curtain, the unification of Germany and the change in its Eastern part, where physica status solidi was based, from socialism as found in the real world (a German concept) to real world capitalism. In 1995 it was thought that the process had been completed (we should have known better!) and after the retirement of Prof. Gutsche the new owners of physica status solidi (Wiley-VCH) decided that a change in scientific management was desirable to adapt to the new socio-political facts and to insure the scientific continuity of the journal.Martin had moved in 1993 from my department at the Max-Planck-Institute to Munich where he soon displayed a tremendous amount of science man- agement ability during the build-up of the Walter Schottky Institute. The search for a successor as Edi- tor-in-Chief was not easy: the job was not very glamorous after the upheavals which had taken place in the editorial world following the political changes. Somebody in the Editorial Boards must have suggested Martin Stutzmann. I am sure that there was opposition: one usually looks for a well-established person ready to leave his direct involvement in science and take up a new endeavor of a more administrative nature. Nevertheless, the powers that be soon realized that Martin was an excellent, if somewhat unconventional candidate who had enough energy to remain a topnotch scientist and to lead the journal in the difficult times ahead: he was offered the job. In the negotiations that followed, he insisted in getting the administrative structures that would allow him to improve the battered quality of the journal and to continue his scientific productivity. Today we are happy to see that he succeeded in both endeavors. The journal has since grown in size and considerably improved its quality

  5. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian;

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... and values appeared to be embedded within the discussions. The finding from this exercise seems to indicate that even without the involvement of the wider stakeholder community, valuable reflection and worthwhile discourse can be generated from ethical reflection processes involving only scienitific project...

  6. Teaching today's young scientists fuels the science of tomorrow

    CERN Multimedia

    2006-01-01

    "Learning should be a voyage of discovery. Teachers at the Xplora Science Teachers conference shared their novel approaches to motivating students to treat science as an exciting exploration - and become the new generation of scientists Europe needs." (1½ page)

  7. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  8. Scientists' understanding of public communication of science and technology

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjaer, Carsten Rahbæk; Dahlgaard, Jørgen

    This paper reports on a Danish survey of scientists. The objective is to find out, in the context of the new 2003 Act on Universities, which introduces science communication and knowledge exchange as new obligations for the universities, how Danish university-based researchers within the natural......) responsibility for process of science communication. Specifically, they are very interested in appearing in the news media. We found a nuanced view on science in the mass media, which to us indicate that scientists are no longer "media shy", if they ever were. Scientists do seem to recognize the importance......Background Research into the field of science communication has tended to focus on public understanding of science or on the processes of science communication itself, e.g. by looking at science in the media. Few studies have explored how scientists understand science communication. At present...

  9. Can a Diary Encourage Others to be Citizen Scientists?

    Directory of Open Access Journals (Sweden)

    Jerry H. Kavouras

    2015-08-01

    Full Text Available Review of: Diary of a Citizen Scientist Chasing Tiger Beetles and Other New Ways of Engaging the World; Sharman Apt Russell; (2014. Oregon State University Press, Corvallis, OR. 222 pages.

  10. NIH scientists provide new insight into rare kidney cancer

    Science.gov (United States)

    NIH scientists have discovered a unique feature of a rare, hereditary form of kidney cancer that may provide a better understanding of its progression and metastasis, possibly laying the foundation for the development of new targeted therapies.

  11. A Systematic Identification and Analysis of Scientists on Twitter

    CERN Document Server

    Ke, Qing; Sugimoto, Cassidy R

    2016-01-01

    Metrics derived from Twitter and other social media---often referred to as altmetrics---are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. Our work contributes to the literature both methodologically and conceptually---we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use ...

  12. Scientists Rediscover a Rodent Thought to Be Extinct

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A rodent discovered last year in Laos may actually be a survivor of a group believed to have been extinct for 11 million years, an international group of scientists, including a CAS researcher, reported on March 9.

  13. Scientists Zero in On Brain Area Linked to 'Parkinson's Gait'

    Science.gov (United States)

    ... Scientists Zero in on Brain Area Linked to 'Parkinson's Gait' Discovery could lead to new treatments for ... play a role in walking difficulties that afflict Parkinson's disease patients, new research suggests. The prefrontal cortex ...

  14. The social responsibility of scientists: moonshine and morals.

    Science.gov (United States)

    Wolpert, L

    1989-04-01

    Two historical cases are used to explore the nature of the scientist's obligations to society on technological issues. The physicist Leo Szilard is praised as a moral scientist and a moral citizen for contributing to the development of the atomic bomb in the Manhattan Project and then arguing against its testing when the danger that Germany might use the bomb against the United States subsided. On the other hand, the scientists, including physicians, who promoted the views of the eugenics movement in Nazi Germany were immoral in not considering the social implications of their scientific conclusions. Wolpert maintains that, while there are no areas that should not be subject to research, the scientist's obligations are to make the reliability of the research clear and to inform the public about its possible ramifications.

  15. Scientists Explore Possible Way to Stop Zika in Its Tracks

    Science.gov (United States)

    ... 159433.html Scientists Explore Possible Way to Stop Zika in Its Tracks Gene pathway that allows virus ... they've identified a potential way to prevent Zika and similar viruses from spreading in the body. ...

  16. Scientists Map DNA of Zika Virus from Semen

    Science.gov (United States)

    ... news/fullstory_161474.html Scientists Map DNA of Zika Virus From Semen It's another step in trying to ... complete genetic "blueprint" -- genome -- of a sample of Zika virus derived from semen has been obtained by researchers. ...

  17. Scientists face trial over L'Aquila quake

    Science.gov (United States)

    Cartlidge, Edwin

    2010-07-01

    Seven scientists and technicians who were called upon to assess seismic activity ahead of the devastating earthquake that struck L'Aquila in the central Italian region of Abruzzo last year are being investigated for gross negligent manslaughter.

  18. UK's physical scientists are left disappointed by budget choices

    CERN Multimedia

    Massood, E

    1998-01-01

    Britain's physical scientist are concerned that almost 80 per cent of an extra 300 million pounds made available to research councils over the next three years has been reserved for the life sciences (2 pages).

  19. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  20. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  1. Science Educational Outreach Programs That Benefit Students and Scientists.

    Science.gov (United States)

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  2. Science Educational Outreach Programs That Benefit Students and Scientists.

    Science.gov (United States)

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  3. Social responsibility of scientists. Report on working group ten

    International Nuclear Information System (INIS)

    Three topics were discussed: the impact of Science and technology on the fate of mankind, the role of scientists in a nuclear age, and the establishment of an international Ethics Commission. Conclusions and recommendations are given to the Pugwash Conference

  4. Professor Atta invited to attend WSIS as `eminent scientist'

    CERN Multimedia

    2003-01-01

    Ministry of Science and Technology Prof. Atta-ur-Rahman has been nominated as an "eminent scientist" to attend the roundtables during "World Summit on the Information Society (WSIS)" on December 12 (1 paragraph).

  5. Scientists ID Key Fetal Cells Vulnerable to Zika

    Science.gov (United States)

    ... html Scientists ID Key Fetal Cells Vulnerable to Zika Lab study suggests possible mechanism for birth defects ... 29, 2016 (HealthDay News) -- The devastating mosquito-borne Zika virus can infect cells that play a role ...

  6. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  7. Robotic Surveying

    Energy Technology Data Exchange (ETDEWEB)

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  8. Why Scientists Chase Big Problems: Individual Strategy and Social Optimality

    OpenAIRE

    Bergstrom, Carl T.; Foster, Jacob G.; Song, Yangbo

    2016-01-01

    Scientists pursue collective knowledge, but they also seek personal recognition from their peers. When scientists decide whether or not to work on a big new problem, they weigh the potential rewards of a major discovery against the costs of setting aside other projects. These self-interested choices can potentially spread researchers across problems in an efficient manner, but efficiency is not guaranteed. We use simple economic models to understand such decisions and their collective consequ...

  9. Helping early career research scientists ascend the professional ladder.

    Science.gov (United States)

    King, Laina

    2013-08-01

    The Keystone Symposia Early Career Investigator Travel Award initiative is a unique successful research mentoring program tailored for 'end of the pipeline' life and biomedical scientists from academia and industry. Using targeted educational, mentoring, and networking activities, the program benefits early career scientists in solving a specific laboratory-based research question that is limiting their evolving research and could increase their ability to obtain new grants and improve their career progression. PMID:23889774

  10. Promoting Science Software Best Practices: A Scientist's Perspective (Invited)

    Science.gov (United States)

    Blanton, B. O.

    2013-12-01

    Software is at the core of most modern scientific activities, and as societal awareness of, and impacts from, extreme weather, disasters, and climate and global change continue to increase, the roles that scientific software play in analyses and decision-making are brought more to the forefront. Reproducibility of research results (particularly those that enter into the decision-making arena) and open access to the software is essential for scientific and scientists' credibility. This has been highlighted in a recent article by Joppa et al (Troubling Trends in Scientific Software Use, Science Magazine, May 2013) that describes reasons for particular software being chosen by scientists, including that the "developer is well-respected" and on "recommendation from a close colleague". This reliance on recommendation, Joppa et al conclude, is fraught with risks to both sciences and scientists. Scientists must frequently take software for granted, assuming that it performs as expected and advertised and that the software itself has been validated and results verified. This is largely due to the manner in which much software is written and developed; in an ad hoc manner, with an inconsistent funding stream, and with little application of core software engineering best practices. Insufficient documentation, limited test cases, and code unavailability are significant barriers to informed and intelligent science software usage. This situation is exacerbated when the scientist becomes the software developer out of necessity due to resource constraints. Adoption of, and adherence to, best practices in scientific software development will substantially increase intelligent software usage and promote a sustainable evolution of the science as encoded in the software. We describe a typical scientist's perspective on using and developing scientific software in the context of storm surge research and forecasting applications that have real-time objectives and regulatory constraints

  11. Immigration & Ideas: What Did Russian Scientists 'Bring' to the US?

    OpenAIRE

    Ganguli, Ina

    2014-01-01

    This paper examines how high-skilled immigrants contribute to knowledge diffusion using a rich dataset of Russian scientists and US citations to Soviet-era publications. Analysis of a panel of US cities and scientific fields shows that citations to Soviet-era work increased significantly with the arrival of immigrants. A difference-in-differences analysis with matched paper-pairs also shows that after Russian scientists moved to the US, citations to their Soviet-era papers increased relative ...

  12. Encouraging Advances Made by Chinese Scientists in Antarctic Research

    Institute of Scientific and Technical Information of China (English)

    Zhang Qingsong

    2003-01-01

    @@ Chinese scientists began involving in the Antarctic research in 1980. As the first step, some 40 Chinese scientists were sent to Antarctic stations of Australia and other countries during the period from 1980 to 1984. Then,China established two Antarctic stations of its own, and purchased an icebreaker, enabling China to carry on its own independent research program both on land and at sea.

  13. Challenges in Translational Research: The Views of Addiction Scientists

    OpenAIRE

    Ostergren, Jenny E.; Rachel R Hammer; Dingel, Molly J.; Koenig, Barbara A.; McCormick, Jennifer B

    2014-01-01

    OBJECTIVES: To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. METHODS: We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addictio...

  14. Ranking scientists and departments in a consistent manner

    OpenAIRE

    Bouyssou, Denis; Marchant, Thierry

    2011-01-01

    International audience; The standard data that we use when computing bibliometric rankings of scientists are just their publication/citation records, i.e., so many papers with 0 citation, so many with 1 citation, so many with 2 citations, etc. The standard data for bibliometric rankings of departments have the same structure. It is therefore tempting (and many authors gave in to temptation) to use the same method for computing rankings of scientists and rankings of departments. Depending on t...

  15. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  16. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles

    Directory of Open Access Journals (Sweden)

    Hobin Jennifer A

    2012-04-01

    Full Text Available Abstract This report is based on the Federation of American Societies for Experimental Biology’s symposium, “Engaging basic Scientists in Translational Research: Identifying Opportunities, Overcoming Obstacles,” held in Chevy Chase, MD, March 24–25, 2011. Meeting participants examined the benefits of engaging basic scientists in translational research, the challenges to their participation in translational research, and the roles that research institutions, funding organizations, professional societies, and scientific publishers can play to address these challenges.

  17. Regulations for CAS Visiting Professorships for Senior International Scientists

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ 1.General Provisions. Article 1 These regulations are made in accordance with the Chinese Academy of Sciences (CAS) "Package Program for Talent Training & Recruitment" and "Guidelines of the Chinese Academy of Sciences for the Implementation of the Program for Attracting Overseas Scientists and Experts and Cultivating Talent through International Exchange",to guide the implementation of the "CAS Visiting Professorships for Senior International Scientists" (hereinafter referred to as the "Visiting Professorships Program").

  18. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  19. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  20. Training Scientists to be Effective Communicators: AAAS Communicating Science Workshops

    Science.gov (United States)

    Cendes, L.; Lohwater, T.

    2012-12-01

    "Communicating Science: Tools for Scientists and Engineers" is a workshop program developed by AAAS to provide guidance and practice for scientists and engineers in communicating about science with public audiences. The program was launched at the 2008 AAAS Annual Meeting in Boston and has since provided 24 workshops for more than 1,500 scientist and engineer attendees at universities, science society meetings, and government agency labs around the United States. Each interactive workshop targets scientists and engineers specifically and has included content such as message development, defining audience, identifying opportunities for engaging the public, and practice with public presentations and cameras. The workshop format allows for collaborative learning through small-group discussion, resource sharing, and participation in critique of other participants' presentations. Continuous monitoring of the program includes on-site and online surveys and evaluation. On an assessment of workshops from 2008-2010, attendees reported that knowledge gained from the workshop helped in crafting messages about their scientific work for use in communicating with public audiences, and approximately 80 percent of respondents reported participation in communication with a public audience after attending the workshop. Through workshop content and feedback of participating scientists, this presentation will highlight some best practices and resources for scientists who want to take a proactive role in science communication.

  1. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  2. Identity Matching to Scientists: Differences that Make a Difference?

    Science.gov (United States)

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-06-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.

  3. PREFACE: FAIRNESS 2012: FAIR NExt Generation of ScientistS 2012

    Science.gov (United States)

    Arcones, Almudena; Bleicher, Marcus; Fritsch, Miriam; Galatyuk, Tetyana; Nicmorus, Diana; Petersen, Hannah; Ratti, Claudia; Tolos, Laura

    2013-03-01

    FAIRNESS 2012 was the first in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 3-8 September 2012 in Hersonissos, Greece. The workshop covered a wide range of topics, both theoretical developments and current experimental status, that concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference was to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permament position to present their work and to foster active informal discussions and the build-up of networks. Every participant at the meeting, with the exception of the organizers, gave an oral presentation and all sessions were followed by an hour long discussion period. During the talks questions were collected anonymously in a circulating box to stimulate these discussions. Since the physics program of FAIR is very broad, this was reflected in the wide range of topics covered at the conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron Spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics In each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2012 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the

  4. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    Science.gov (United States)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of

  5. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  6. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  7. Fostering science communication via direct outreach by scientists

    Science.gov (United States)

    Viñas, M.; Weiss, P. L.; O'Neil, K.; Richardson, R. M.

    2010-12-01

    While the bread-and-butter of the press operation at the American Geophysical Union remains issuing press releases and organizing press conferences for mainstream media, the implosion of specialized science coverage in print media, TV, and radio, and the heated public debates on science issues require us to find other ways to get science and scientists into the public eye. This means getting volunteers--small armies of scientists interested in and able to communicate with the public. At AGU, we have three programs to foster direct communication between scientists and the public: (1) A suite of blogs launched in Fall 2010, written by external Earth and space science bloggers for an audience of scientists and lay public. We will report on whom the bloggers are, their motivations, who makes up their audiences, what incentives AGU uses to encourage them to participate in this project, blog network traffic, and resources needed to support them. (2) "The Plainspoken Scientist", a science communication-oriented blog for an audience of scientists, was launched in spring 2010 and is a mixture of guest posts and in-house articles. We will report on the response to and effects of the science communication blog, how we obtain and use guest posts from volunteers, and traffic. (3) We began professional development workshops at scientific meetings in spring 2009 to help scientists brush up on how to communicate with the media and the public. We will report on the motivations and interests of the participants in the professional development workshops, impacts, and the lessons we have learned about how to provide useful workshops.

  8. Data scientist: the sexiest job of the 21st century.

    Science.gov (United States)

    Davenport, Thomas H; Patil, D J

    2012-10-01

    Back in the 1990s, computer engineer and Wall Street "quant" were the hot occupations in business. Today data scientists are the hires firms are competing to make. As companies wrestle with unprecedented volumes and types of information, demand for these experts has raced well ahead of supply. Indeed, Greylock Partners, the VC firm that backed Facebook and LinkedIn, is so worried about the shortage of data scientists that it has a recruiting team dedicated to channeling them to the businesses in its portfolio. Data scientists are the key to realizing the opportunities presented by big data. They bring structure to it, find compelling patterns in it, and advise executives on the implications for products, processes, and decisions. They find the story buried in the data and communicate it. And they don't just deliver reports: They get at the questions at the heart of problems and devise creative approaches to them. One data scientist who was studying a fraud problem, for example, realized it was analogous to a type of DNA sequencing problem. Bringing those disparate worlds together, he crafted a solution that dramatically reduced fraud losses. In this article, Harvard Business School's Davenport and Greylock's Patil take a deep dive on what organizations need to know about data scientists: where to look for them, how to attract and develop them, and how to spot a great one. PMID:23074866

  9. Communicating the Needs of Climate Change Policy Makers to Scientists

    Science.gov (United States)

    Brown, Molly E.; Escobar, Vanessa M.; Lovell, Heather

    2012-01-01

    This chapter will describe the challenges that earth scientists face in developing science data products relevant to decision maker and policy needs, and will describe strategies that can improve the two-way communication between the scientist and the policy maker. Climate change policy and decision making happens at a variety of scales - from local government implementing solar homes policies to international negotiations through the United Nations Framework Convention on Climate Change. Scientists can work to provide data at these different scales, but if they are not aware of the needs of decision makers or understand what challenges the policy maker is facing, they are likely to be less successful in influencing policy makers as they wished. This is because the science questions they are addressing may be compelling, but not relevant to the challenges that are at the forefront of policy concerns. In this chapter we examine case studies of science-policy partnerships, and the strategies each partnership uses to engage the scientist at a variety of scales. We examine three case studies: the global Carbon Monitoring System pilot project developed by NASA, a forest biomass mapping effort for Silvacarbon project, and a forest canopy cover project being conducted for forest management in Maryland. In each of these case studies, relationships between scientists and policy makers were critical for ensuring the focus of the science as well as the success of the decision-making.

  10. American and Greek Children's Visual Images of Scientists

    Science.gov (United States)

    Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro

    2016-08-01

    This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91 third-grade American ( N = 46) and Greek ( N = 45) pupils were examined. Data collection was conducted through a drawing task based on Chambers (1983) `Draw-A-Scientist-Test' (DAST) and a picture selection task during which the children selected between 14 pairs of illustrations those that were most probable to represent scientists. Analysis focused on stereotype indicators related with scientists' appearance and work setting. Results showed that the two groups' performance varied significantly across the tasks used to explore their stereotypic perceptions, although the overall stereotypy was not differentiated according to participants' ethnic group. Moreover, boys were found to use more stereotypic indicators than girls, while the picture selection task elicited more stereotypic responses than the drawing task. In general, data collected by the two instruments revealed convergences and divergences concerning the stereotypic indicators preferred. Similarities and differences between national groups point to the influence of a globalized popular culture on the one hand and of the different sociocultural contexts underlying science curricula and their implementation on the other. Implications for science education are discussed.

  11. The Exponential Function, the Human Race, and Scientists

    Science.gov (United States)

    Bartlett, Albert A.

    2004-05-01

    "The greatest shortcoming of the human race is our inability to understand the exponential function." This is the opening line of a talk I have given over 1500 times since 1969. In this context, the exponential function is used to give a quantitative description of steady growth of, for example, a population. As we all know, quantities that grow steadily, at even modest rates, quickly become impossibly large. Yet non-scientists in the business and government communities continue to fight for "sustainable growth" of the U.S. economy and population. What are scientists doing to increase public comprehension of the impossibility of "sustainable growth?" The main role of scientists seems to be to avoid calling attention to the impossibility of continued growth of populations and of rates of consumption of resources and, instead, to focus on minor aspects of the related problems. In so doing, we are complicit in making the problems worse. For scientists, this opening line should be revised to read: "The greatest shortcoming of scientists is our unwillingness to apply our knowledge of the exponential function to the great problems that are facing the human race."

  12. Finding Common Ground Between Earth Scientists and Evangelical Christians

    Science.gov (United States)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  13. Images of Scientists through the Eyes of the Children

    Directory of Open Access Journals (Sweden)

    Sibel Özsoy

    2014-06-01

    Full Text Available The purpose of this study is to determine primary school students’ images of scientists. As research approach, the survey method, which is frequently used to learn about people’s attitudes, beliefs, values, demographics, behavior, opinions, habits, desires, ideas and other types of information, was used. The study was conducted in the spring semester of 2011- 2012 academic year with primary school students enrolling through the first grade to the fifth grade. The data of the study were collected by a Draw-A-Scientist-Test. When scoring a DAST drawing, the raters coded each indicator with either 1 or 0 points depending on the presence or absence of the feature under examination. Drawings revealed that although there are variations from individual to individual, children hold common stereotypical images of scientists. The overwhelming majority of drawings were of male scientists. Children also produced images that represent individuals with messy hair, wearing glasses, wearing a laboratory coat. Also children depicted that scientists usually work in indoors, usually in a laboratory, and perform experiments.

  14. Caring for nanotechnology? Being an integrated social scientist.

    Science.gov (United States)

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration. PMID:26630815

  15. Effective Models for Scientists Engaging in Meaningful Education and Outreach

    Science.gov (United States)

    Noel-Storr, Jacob; InsightSTEM SILC Partnership Team

    2016-10-01

    We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.

  16. RUSSIAN SCIENTISTS IN JAPAN: LIFE AND WORK OF PROMINENT JAPANOLOGISTS

    Directory of Open Access Journals (Sweden)

    Ms. Darya V. Kiba

    2016-06-01

    Full Text Available This article is devoted to the life and work of prominent Japanologists Nikolai Alexandrovich Nevsky, Oleg Pletner, and Orestes Viktorovich Pletner. The author traces the contribution of scientists to the establishment of scientific relations between the USSR and Japan, examines the major life milestones of scientists in Japan. After receiving an excellent education in Russia, researchers lived in Japan for a long time. They were the founders of new scientific trends, and created a scientific heritage that has not been studied. The Pletner brothers, N. A. Nevsky can be brought into line with such scientists as N. I. Conrad, E. D. Polivanov, S. G. Eliseev, O. O. Rosenberg who were "Golden Age" orientalists of Japanese Studies in St. Petersburg. N. A. Nevsky and O. V. Pletner returned to the USSR. The author considers their fate in Soviet Russia and concludes that political history of the Soviet state in the 1930s made it impossible to strengthen and expand Japanologists School.

  17. Why Scientists Chase Big Problems: Individual Strategy and Social Optimality

    CERN Document Server

    Bergstrom, Carl T; Song, Yangbo

    2016-01-01

    Scientists pursue collective knowledge, but they also seek personal recognition from their peers. When scientists decide whether or not to work on a big new problem, they weigh the potential rewards of a major discovery against the costs of setting aside other projects. These self-interested choices can potentially spread researchers across problems in an efficient manner, but efficiency is not guaranteed. We use simple economic models to understand such decisions and their collective consequences. Academic science differs from industrial R&D in that academics often share partial solutions to gain reputation. This convention of Open Science is thought to accelerate collective discovery, but we find that it need not do so. The ability to share partial results influences which scientists work on a particular problem; consequently, Open Science can slow down the solution of a problem if it deters entry by important actors.

  18. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    Science.gov (United States)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  19. Need for Proper Training in Software Engineering for Scientists

    Directory of Open Access Journals (Sweden)

    Michael Kind

    2012-12-01

    Full Text Available Scientists are increasingly investing more time writing software to model the processes under their research, for example, biological structures, simulate the early evolution of the universe or to analyze past climate data. But, according to experienced developers and computer scientists, most of them do not have adequate training to apply software engineering in their developments. A quarter century ago most of the scientists work they did was relatively simple; but when computers and programming tools became more complex reached a steep learning curve, and most of them not get the level of effort or acquired skills needed to keep up. This article analyses this situation and presents some suggestions to solve.

  20. Whatever happened to the 'mad, bad' scientist? Overturning the stereotype.

    Science.gov (United States)

    Haynes, Roslynn D

    2016-01-01

    The cluster of myths relating to the pursuit of knowledge has perpetuated the archetype of the alchemist/scientist as sinister, dangerous, possibly mad and threatening to society's values. Shelley's Frankenstein provided imagery and a vocabulary universally invoked in relation to scientific discoveries and technological innovation. The reasons for the longevity of this seemingly antiquated, semiotic imagery are discussed. In the twenty-first century, this stereotype has been radically revised, even overturned. Scientists are now rarely objects of fear or mockery. Mathematicians, both real-life and fictional, are discussed here as being representative of scientists now depicted empathically. This article examines possible sociological reasons for this reversal; what the revisionist image suggests about society's changed attitudes to science; and what might be the substitute fears and sources of horror. PMID:24916194

  1. Empirical modeling and data analysis for engineers and applied scientists

    CERN Document Server

    Pardo, Scott A

    2016-01-01

    This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creati...

  2. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  3. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research. PMID:25721444

  4. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  5. Special role of scientists as citizens in a nuclear age

    International Nuclear Information System (INIS)

    We are living in an age dominated by science and technology. There are probably at present more scientists alive than all those that passed away through the history of humankind. It is certain that science and technology have the possibility of solving the problems of society. However, these problems have not so far been satisfactorily treated and some scientifically ordered society which might be envisaged should hurt the common humanitarian feeling. These are probably the reasons for which a part of the public opinion has lost its trust in science and many people try to find a relief for their anguish in esoteric religions. It seems therefore necessary for a change of attitude on the part of scientists to restore the positive consideration from the society and to be able to contribute to the future evolution of humankind according to a peaceful and harmonious pattern. This short essay will start describing the historical search for solutions through science, will continue by attempting to define the values which should he added to science in the present time, and will end with possible recommendations for scientists in their connection with society, with particular emphasis on the nuclear issue. All that will be considered here refers mainly to natural sciences. Trying to find which are the attitudes of scientists that could contribute to the benefit of society, one may start with the need of feeling love for the scientific achievements they are able to make. Concerning the specific nuclear issue, both civilian and military applications must be considered. The military applications of nuclear energy should be completely prohibited. Scientists may play a relevant role in the elimination of the nuclear weapon possibility in regions of threshold states or with undeclared arsenals. On the way to nuclear-weapon-free world, it will be crucial to convince all or some of the nuclear powers to dismantle their nuclear arsenals. Scientists may make contribution to the

  6. A scientific approach to writing for engineers and scientists

    CERN Document Server

    Berger, Robert E

    2014-01-01

    This book is a guide to technical writing, presented in a systematic framework that mirrors the logic associated with the scientific process itself. Other English books merely define concepts and provide rules; this one explains the reasoning behind the rules. Other writing books for scientists and engineers focus primarily on how to gather and organize materials; this one focuses primarily on how to compose a readable sentence. The approach should be satisfying not only to scientists and engineers, but also to anyone that once took a grammar course but can't remember the rules - because there was no exposure to underlying principles.

  7. Reflection: The Early Career Surgeon-Scientist's Pathway to Independence.

    Science.gov (United States)

    Smith, Stephanie Shintani

    2016-01-01

    The surgeon-scientist offers a unique perspective as one who can arguably best comprehend clinical needs, identify areas ripe for research, and translate discoveries from bench to bedside. However, the long transition from postdoc to independent investigator can prove to be quite challenging. Surgeons have long been described as having results-oriented personalities, and so the long road to independence can be fraught with frustration at times. It requires humility in seeking scientific direction and mentorship, institutional support, and ultimately extramural funding. This reflection piece examines some hallmark steps along the pathway to independence for one otolaryngology-head and neck surgeon-scientist in her early academic career. PMID:26527611

  8. Media resource service: Getting scientists and the media together

    International Nuclear Information System (INIS)

    The Three Mile Island nuclear plant accident in 1979 led to the establishment of the Media Resource Service (MRS), which puts journalists in touch with scientists by telephone to help the press meet the public's need to understand science and technology. The Chernobyl nuclear power accident in 1986 underscored that need. The MRS is run by the Scientists' Institute for Public Information (SIPI), a non-profit group in the USA. Similar services have since been set up in Canada and the United Kingdom, and interest has been shown in many other countries

  9. Feelings and Ethics Education: The Film 'Dear Scientists'

    Directory of Open Access Journals (Sweden)

    Ioanna Semendeferi

    2014-10-01

    Full Text Available There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, ‘the feelings method,’ for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering an intense mix of music and images, contrasted by calm narration. Dear Scientists has struck a chord across the science, humanities, and arts communities—a promising sign.

  10. Statistics and probability with applications for engineers and scientists

    CERN Document Server

    Gupta, Bhisham C

    2013-01-01

    Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Prob

  11. SETI pioneers scientists talk about their search for extraterrestrial intelligence

    CERN Document Server

    Swift, David W.

    1990-01-01

    Why did some scientists decide to conduct a search for extraterrestrial intelligence (SETI)? What factors in their personal development predisposed them to such a quest? What obstacles did they encounter along the way? David Swift interviewed the first scientists involved in the search & offers a fascinating overview of the emergence of this modern scientific endeavor. He allows some of the most imaginative scientific thinkers of our time to hold forth on their views regarding SETI & extraterrestrial life & on how the field has developed. Readers will react with a range of opinions as broad as those concerning the likelihood of success in SETI itself. ''A goldmine of original information.''

  12. Quantum Physics for Scientists and Technologists Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

    CERN Document Server

    Sanghera, Paul

    2011-01-01

    Presenting quantum physics for the non-physicists, Quantum Physics for Scientists and Technologists is a self-contained, cohesive, concise, yet comprehensive, story of quantum physics from the fields of science and technology, including computer science, biology, chemistry, and nanotechnology. The authors explain the concepts and phenomena in a practical fashion with only a minimum amount of math. Examples from, and references to, computer science, biology, chemistry, and nanotechnology throughout the book make the material accessible to biologists, chemists, computer scientists, and non-techn

  13. Scientists keep a hi-tech eye on the sky

    CERN Multimedia

    2003-01-01

    "Liverpool scientists are developing a technology that will make it easier to spot near-Earth asteroids. Astronomers at John Moores University are working on computer programmes that will speed up the detection of space objects that pose a threat to our planet" (1/2 page).

  14. Announcement of the Diagnostics 2016 Junior Scientists Travel Award.

    Science.gov (United States)

    Editorial Office, Diagnostics

    2016-01-01

    With the goal of recognizing outstanding contributions to the field of medical diagnostics by early-career investigators, including assistant professors, postdoctoral students and PhD students, and assisting them in attending international conferences in 2016, early this year Diagnostics accepted nominations for the Junior Scientists Travel Award 2016.

  15. Constructing Communication: Talking to Scientists About Talking to the Public

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael

    2008-01-01

    Recent work has started to explore "scientific understandings of publics" alongside public understandings of science. This study builds on this work to examine the ways in which public communication is talked about by scientists and engineers. The author identifies a range of ways of talking about...

  16. Scientists, Other Citizens, and the Art of Practical Reasoning

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2012-01-01

    ’ as social groups. A tentative analysis explores the role of scientific expertise in democracies viewed as a practical issue in the classical, Aristotelian sense. It is suggested that the notions of praxis and practical reasoning as phronesis offer a framework that allows citizenship to scientists and might...

  17. Women scientists' scientific and spiritual ways of knowing

    Science.gov (United States)

    Buffington, Angela Cunningham

    While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.

  18. Best practices in bioinformatics training for life scientists

    DEFF Research Database (Denmark)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik;

    2013-01-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to envi...

  19. Oil, Floods, and Fish: The Social Role of Environmental Scientists

    Science.gov (United States)

    Lesen, Amy E.

    2012-01-01

    The environmental and social effects of hurricane-related flooding and the recent oil disaster in southeastern Louisiana, and the current global crisis in world fisheries, are case studies that reveal the need for scientific work that is carried out and disseminated with conscious attention paid to the important relationship between scientists,…

  20. Educating for Citizenship: What Should Political Scientists Be Teaching?

    Science.gov (United States)

    Thompson, Dennis F.; And Others

    1984-01-01

    What political scientists should be teaching undergraduates to prepare them for citizenship is discussed in five articles by Dennis F. Thompson; Nancy C. M. Hartsock; Wilson Carey McWilliams and Marc K. Landy; Harvey C. Mansfield, Jr.; and Mary Cornelia Porter and Corey Venning. (RM)

  1. CAS Scientists Find New Anti-SARS Compounds

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Scientists from the CAS Shanghai Institute of Materia Medica (SIMM) and the National Center for Drug Screening (NCDS) have identified several novel compounds that could be potential weapons to combat the SARS epidemic. This was announced at a news briefing held by the CAS Shanghai Institutes for Biological Sciences on June 19 in Shanghai.

  2. Scientists Discover New Possibilities at Scientific Investigators Retreat | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer; photos by Richard Frederickson, Staff Photographer Scientists who attended the 2015 NCI Intramural Scientific Investigators Retreat on Jan. 13 had a chance to discuss research results with other investigators from across the National Cancer Institute. And this year, they could also explore new possibilities for the future of their research.

  3. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes.

  4. US NSF: scientists discover planetary system similar to our own

    CERN Multimedia

    2003-01-01

    An international team of scientists has discovered a planet and star that may share the same relationship as Jupiter and our Sun, the closest comparison that researchers have found since they began their search for extra-solar planets nearly a decade ago (1 page).

  5. Scientists discover planetary system similar to our own

    CERN Multimedia

    2003-01-01

    'An international team of scientists has discovered a planet and star that may share the same relationship as Jupiter and our Sun, the closest comparison that researchers have found since they began their search for extra-solar planets nearly a decade ago' (1 page).

  6. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    Science.gov (United States)

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  7. Africa Steps up Efforts to Train Top Scientists

    Science.gov (United States)

    Lindow, Megan

    2008-01-01

    This article reports on new programs that focus on training skilled scientists and mathematicians who will help solve Africa's myriad problems. The African Institute for Mathematical Sciences, in Cape Town, South Africa, offers one of the first working examples of a growing effort to develop a cadre of highly trained, practically minded scientists…

  8. University scientists address locust control at conference in Senegal

    OpenAIRE

    Rich, Miriam Sommers

    2005-01-01

    Two Virginia Tech scientists contributed by invitation to an international scientific meeting called by Abdoulaye Wade, president of Senegal, to identify strategies for controlling the ongoing locust outbreak in West Africa. Last year, locusts stripped fields of crops and trees of foliage across several countries, causing severe income and food loss.

  9. Information Seeking Behaviour of Mathematicians: Scientists and Students

    Science.gov (United States)

    Sapa, Remigiusz; Krakowska, Monika; Janiak, Malgorzata

    2014-01-01

    Introduction: The paper presents original research designed to explore and compare selected aspects of the information seeking behaviour of mathematicians (scientists and students) on the Internet. Method: The data were gathered through a questionnaire distributed at the end of 2011 and in January 2012. Twenty-nine professional mathematicians and…

  10. CAS forum for young scientists held in Yunnan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Co-organized by the CAS Graduate University (GUCAS) and the CAS Kunming Branch, 2007 Science 100, a CAS annual forum for outstanding young scientists, was opened on 28 November, 2007 at the CAS Xishuangbanna Tropical Botanical Garden (XTBG), with an attendance of more than 90 experts and scholars from various CAS affiliates.

  11. Report on Climate Change E-mails Exonerates Scientists

    Science.gov (United States)

    Showstack, Randy

    2010-07-01

    A new report commissioned by the University of East Anglia (UEA) has largely exonerated climate scientists from the university's Climatic Research Unit (CRU) who wrote a number of controversial e-mail messages that were made public without authorization in November 2009. Critics have argued that the e-mails indicate that scientists had tampered with scientific data—including data related to land station temperatures and temperature reconstructions from tree ring analysis—subverted the peer review process, misused the Intergovernmental Panel on Climate Change (IPCC) process, and withheld data from critics. At a 7 July news conference to release the “Independent climate change e-mails review,” report chair Muir Russell said, “Climate science is a matter of such global importance that the highest standards of honesty, rigor, and openness are needed in its conduct. On the specific allegations made against the behavior of CRU scientists, we find that their rigor and honesty as scientists are not in doubt.” He continued, “In addition, we do not find that their behavior has prejudiced the balance of advice given to policy makers. In particular, we did not find any evidence of behavior that might undermine the conclusions of the IPCC assessments.” Russell is chair of the Judicial Appointments Board for Scotland and formerly was principal and vice-chancellor of the University of Glasgow, in Scotland.

  12. Caltech computer scientists develop FAST protocol to speed up Internet

    CERN Multimedia

    2003-01-01

    "Caltech computer scientists have developed a new data transfer protocol for the Internet fast enough to download a full-length DVD movie in less than five seconds. The protocol is called FAST, standing for Fast Active queue management Scalable Transmission Control Protocol" (1 page).

  13. First interactive conference of young scientists. Book of abstracts

    International Nuclear Information System (INIS)

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in five sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Ecology and environmental science; (5) Open section for students. Relevant papers were included into the database INIS.

  14. The Manhattan Project and its Effects on American Women Scientists

    Science.gov (United States)

    Fletcher, Samuel

    2008-04-01

    There have been many detailed historical accounts of the Manhattan Project, but few have recognized the technical role women scientists and engineers crucially played in the Project's success. Despite their absence from these prominent accounts, recent studies have revealed that, in fact, women participated in every non-combat operation associated with the Manhattan Project. With such extensive participation of women and such a former lack of historical attention upon them, little analysis has been done on how the Manhattan Project might have influenced the prospectus of women scientists after the war. This talk has two aims: 1) to recount some of the technical and scientific contributions of women to the Manhattan Project, and 2) to examine what effects these contributions had on the women's careers as scientists. In other words, I intend offer a preliminary explanation of the extent to which the Manhattan Project acted both as a boon and as a detriment to American women scientists. And finally, I will address what this historical analysis could imply about the effects of current efforts to recruit women into science.

  15. SCIENTIST OF AMAZING UPRIGHTNESS AND VALUABLE SCIENTIFIC RESULTS

    Directory of Open Access Journals (Sweden)

    T. Furdui

    2010-12-01

    Full Text Available The scientific community marked in December 2010, a special event for local science - 70 years from the date of birth of the great chemist scientist, academician of ASM, doctor habilitate, Professor Constantin Turta, who is considered one of the greatest scholars in inorganic chemistry due to his erudition and fruitful scientific activity.

  16. Puzzle of "lost" reactor neutrinos solved by scientists

    CERN Multimedia

    2002-01-01

    A collaboration of Chinese, Japanese and American scientists have announced that electron antineutrinos from nuclear reactors escape detection by oscillating into another type of neutrino. The experiment confirms solar neutrino oscillation and determines the key parameters of neutrino oscillation (1/2 page).

  17. The UK-Japan Young Scientist Workshop Programme...

    Science.gov (United States)

    Albone, Eric; Okano, Toru

    2012-01-01

    The authors have been running UK-Japan Young Scientist Workshops at universities in Britain and Japan since 2001: for the past three years in England with Cambridge University and, last year, also with Kyoto University and Kyoto University of Education. For many years they have worked jointly with colleagues in a group of Super Science High…

  18. Best practices in bioinformatics training for life scientists

    NARCIS (Netherlands)

    Via, A.; Blicher, T.; Bongcam-Rudloff, E.; Brazas, M.D.; Brooksbank, C.; Budd, A.; Rivas, J. De Las; Dreyer, J.; Fernandes, P.L.; Gelder, C.W. van; Jacob, J.; Jimenez, R.C.; Loveland, J.; Moran, F.; Mulder, N.; Nyronen, T.; Rother, K.; Schneider, M.V.; Attwood, T.K.

    2013-01-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environ

  19. Recent Achievements Scored by CAS Scientists in Life Sciences

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Rice Genome Project for Oryza sativa L. Ssp. Indica After 17-month hard work, the scientists of the CAS Beijing Genomics Institute accomplished the draft sequence of the rice genome for Oryza sativa L. Ssp. Indica in October, 2001, and the data were unconditionally shared by the whole world. About 270,000 people had visited Chinese rice genome website by May 2003.

  20. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... Disorders A - Z News From NINDS NINDS News Articles Grantees in the News 2017 President's Budget Calendar of Events Proceedings Funding Information Research Programs Training & Career Awards Enhancing Diversity Find People About NINDS Scientists adopt new strategy to find Huntington’s disease therapies ...

  1. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  2. Web site lets solar scientists inform and inspire students

    Science.gov (United States)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  3. Statistical regularities in the rank-citation profile of scientists

    CERN Document Server

    Petersen, Alexander M; Succi, Sauro

    2011-01-01

    Recent "science of science" research shows common regularities in the publication patterns of scientific papers across time and discipline. Here we analyze the complete publication careers of 300 scientists and find remarkable regularity in the functional form of the rank-citation profile c_{i}(r) for each scientist i =1...300. We find that the rank-ordered citation distribution c_{i}(r) can be approximated by a discrete generalized beta distribution (DGBD) over the entire range of ranks r, which allows for the characterization and comparison of c_{i}(r) using a common framework. The functional form of the DGBD has two scaling exponents, beta_i and gamma_i, which determine the scaling behavior of c_{i}(r) for both small and large rank r. The crossover between two scaling regimes suggests a complex reinforcement or positive-feedback relation between the impact of a scientist's most famous papers and the impact of his/her other papers. Moreover, since two scientists with equivalent Hirsch h-index values may hav...

  4. Scientists Improve Health & Welfare of Organic Laying Hens

    OpenAIRE

    Hinrichsen, Lena Karina; Sørensen, Jan Tind

    2012-01-01

    The mortality rate among organic laying hens is twice as high as for layers from enriched cages. In an international research collaboration scientists from Aarhus University will be investigating why this is so with the hope of improving the health and welfare of laying hens and this unsatisfactory statistic.

  5. Scientists improve health and welfare of organic laying hens

    OpenAIRE

    Hansen, Janne

    2012-01-01

    The mortality rate among organic laying hens is twice as high as for layers from enriched cages. In an international research collaboration scientists from Aarhus University will be investigating why this is so with the hope of improving the health and welfare of laying hens and this dissatisfactory statistic.

  6. Scientists Mark 10th Anniversary of the Xiangshan Conference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Over 100 distinguished scientists and researchers from home and abroad, including Nobel Prize winners Samuel Chaochung Ting and Robert Huber,gathered on Oct. 20 at the Xiangshan Hotel in the west of Beijing to celebrate the 10th anniversary of the Xiangshan Science Conference.

  7. Transdisciplinary designer-scientist collaboration in child oncology

    NARCIS (Netherlands)

    Verhoeven, Fenne; Brinksma, Aeltsje; Roumen, Matthijs; Lugt, Remko van der

    2015-01-01

    Integrating knowledge and expertise from designers and scientists proposes solutions to complex problems in a flexible and open-minded way. However, little insight is available in how this collaboration works. Therefore, we reflected on a research project aimed at supportive care interventions for c

  8. Pieter Hendrik Nienhuis: aquatic ecologist and environmental scientist

    NARCIS (Netherlands)

    Leuven, R.S.E.W.; van den Heuvel, P.J.; van Katwijk, M.; Herman, P.M.J.; van der Velde, G.; Ragas, A.M.J.

    2006-01-01

    Prof. Dr. Pieter Hendrik (Piet) Nienhuis worked for almost 40 years in all aspects of aquatic ecology and environmental science and retired on 31 October 2003. He can be characterised as a distinguished scientist, shaped in an applied estuarine and aquatic research ambience of the former Delta Insti

  9. West German Biotech Institute Trains Third World Scientists.

    Science.gov (United States)

    O'Sullivan, Dermot A.

    1987-01-01

    Describes a six-week program designed to give scientists from developing countries advanced training in biotechnology methods. Stresses the need to provide the participants with "hands-on" experiences to enhance their ability to contribute to biotechnology programs in their home countries and to train others locally. (TW)

  10. Attitudes and working conditions of ICES advisory scientists

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Wilson, Douglas Clyde

    2009-01-01

    of the advisory system on scientists’ careers and working conditions. The second focuses on scientist’s attitudes towards the precautionary approach that frame much of how fisheries scientists see the meaning of their advisory task. The third section focuses on scientists’ attitudes towards the advisory task...

  11. Scientists and Middle School Students; Learning and Working Together

    Science.gov (United States)

    Haste, T.

    2007-12-01

    Johns Hopkins University's Center for Talented Youth students enrolled in the Dynamic Earth class come from all over the world to study earth systems. Investigating plate action, crustal formation, glaciers, currents, weathering and atmospheric interactions, students develop a strong ability to identify the forces that continually change the landscape and the interconnectedness of the atmosphere, hydrosphere and lithosphere. As part of their regular course work, students work with a variety of cooperating scientists. US Geological Survey staff assists students in examining sand samples and exploring monitoring research on invasive foraminiferas in San Francisco Bay. Gulf of the Farallones National Marine Sanctuary and Mavericks Surf Ventures staff help students explore the off shore submarine formations of a storm swell at Half Moon Bay that develops into a world-class big wave. Students met a big wave surfer who described the ride and shared surf stories. A wave forecaster helped students use modeling software to create real-time forecasts. In the final project students assist faculty of University of Texas at Austin, Institute of Geophysics using cruise reports, project abstracts, and bathymetry images, in evaluating a series of submarine features in the Ross Sea, Antarctica. Students develop proposals and present their ideas in a seminar format, attended by cooperating scientists. Students have an opportunity to work with current scientists and learn how classroom "stuff" is used. One student commented, "I felt like I could talk with them about what they were doing and actually understand what they were talking about." Another stated, "I didn't know you could learn so much from forams. I always thought paleontology was about dinosaurs." As a result of the class, students understand the relevance of their learning, scientists like working with kids, and educators get excited about science. To evaluate program outcomes, the staff holds regular meetings with

  12. Scientists Admitting to Plagiarism: A Meta-analysis of Surveys.

    Science.gov (United States)

    Pupovac, Vanja; Fanelli, Daniele

    2015-10-01

    We conducted a systematic review and meta-analysis of anonymous surveys asking scientists whether they ever committed various forms of plagiarism. From May to December 2011 we searched 35 bibliographic databases, five grey literature databases and hand searched nine journals for potentially relevant studies. We included surveys that asked scientists if, in a given recall period, they had committed or knew of a colleague who committed plagiarism, and from each survey extracted the proportion of those who reported at least one case. Studies that focused on academic (i.e. student) plagiarism were excluded. Literature searches returned 12,460 titles from which 17 relevant survey studies were identified. Meta-analysis of studies reporting committed (N = 7) and witnessed (N = 11) plagiarism yielded a pooled estimate of, respectively, 1.7% (95% CI 1.2-2.4) and 30% (95% CI 17-46). Basic methodological factors, including sample size, year of survey, delivery method and whether survey questions were explicit rather than indirect made a significant difference on survey results. Even after controlling for these methodological factors, between-study differences in admission rates were significantly above those expected by sampling error alone and remained largely unexplained. Despite several limitations of the data and of this meta-analysis, we draw three robust conclusions: (1) The rate at which scientists report knowing a colleague who committed plagiarism is higher than for data fabrication and falsification; (2) The rate at which scientists report knowing a colleague who committed plagiarism is correlated to that of fabrication and falsification; (3) The rate at which scientists admit having committed either form of misconduct (i.e. fabrication, falsification and plagiarism) in surveys has declined over time. PMID:25352123

  13. Education and training of future wetland scientists and managers

    Science.gov (United States)

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  14. Pole to Pole Videoconferences Connect Students and Scientists

    Science.gov (United States)

    Sparrow, E. B.; Lemone, P.; Yule, S.; Boger, R.; Galloni, M.; Kopplin, M. R.

    2008-12-01

    Alaskan and Argentinean students as well as arctic and antarctic scientists participated in two International Polar Year (IPY) Pole to Pole Videoconferences in 2007 and 2008. The videoconferences involved elementary, middle and high school students as well as scientists from Alaska, Argentina, Colorado and Washington DC. Alaska students were located in Fairbanks, Healy, Shageluk and Wasilla while the Argentinean students were located in Ushuaia, Argentina, at the southern tip of South America. The purpose was to ask each other and the scientists about local environmental changes, seasonal indicators, and climate change, and how to study the seasonal indicators to determine whether they are being affected by climate change. The videoconferences were followed by web chats and web forums to allow more students in other countries including those in non-polar regions, to interact with scientists, and help students develop ideas for their research projects. These activities are part of the Seasons and Biomes Project that engages K-12 teachers and students in Earth system science investigations as a way of teaching and learning science. This project also provides professional development workshops to teachers and teacher trainers. Seasons and Biomes is one of the projects in the University of the Arctic IPY Higher Education Outreach Cluster Project that has been approved by the IPY Joint Committee. As well, it is part of the GLOBE program, an international hands-on, inquiry-based Earth and environmental science and education program for primary and secondary students in 110 countries. The videoconferences, web chats and forums generated much interest and enthusiasm among students and scientists, and have provided the impetus for student research project initiations and collaborations between schools.

  15. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    Science.gov (United States)

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  16. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s – 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  17. A Guide for Scientists Interested in Researching Student Outcomes

    Science.gov (United States)

    Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David

    2015-11-01

    Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for

  18. Conflict of Interest in Research--The Clinician Scientist's Perspective.

    Science.gov (United States)

    Kong, Nicole H Y; Chow, Pierce K H

    2013-11-01

    Conflict of interest (COI) in research represents situations that pose risks of undue influence on scientific objectivity and judgment because of secondary interests. This is complex but is inherent to biomedical research. The role of a clinician scientist can be conflicted when scientific objectivity is perceived to compete with scientific success (publications, grants), partiality to patients (clinical trials), obligations to colleagues (allowing poor scholarship to pass), research sponsors (industry), and financial gains (patents, royalties). While there are many ways which COIs can occur in research, COI mitigations remain reliable. Collaborations between investigators and industry are valuable to the development of novel therapies and undue discouragement of these relationships may inadvertently harm the advancement of healthcare. As a result, proper management of COI is fundamental and crucial to the maintenance of long-term, mutually beneficial relationships between industry and academia. The nature of COI in research and methods of mitigation are discussed from the perspective of a clinician scientist. PMID:24356664

  19. Science in the Looking Glass - What Do Scientists Really Know?

    Science.gov (United States)

    Davies, E. Brian

    2007-04-01

    How do scientific conjectures become laws? Why does proof mean different things in different sciences? Do numbers exist, or were they invented? Why do some laws turn out to be wrong? In this wide-ranging book, Brian Davies discusses the basis for scientists' claims to knowledge about the world. He looks at science historically, emphasizing not only the achievements of scientists from Galileo onwards, but also their mistakes. He rejects the claim that all scientific knowledge is provisional, by citing examples from chemistry, biology and geology. A major feature of the book is its defence of the view that mathematics was invented rather than discovered. While experience has shown that disentangling knowledge from opinion and aspiration is a hard task, this book provides a clear guide to the difficulties. Full of illuminating examples and quotations, and with a scope ranging from psychology and evolution to quantum theory and mathematics, this book brings alive issues at the heart of all science.

  20. Workshop discusses problems African scientists have in publishing their research

    Science.gov (United States)

    Jenkins, Gregory S.; Diongue, Aida

    Geoscientists from developing nations often encounter multiple obstacles in disseminating the results of their research to fellow scientists in other countries. Some of these obstacles as they pertain specifically to researchers from West Africa and proposals to overcome them were discussed as a component of a recent three-day workshop. (However, these obstacles can be safely assumed to affect many geoscientists from developing countries, and from countries whose economies are in transition.)The purpose of the workshop, held in Washington, D.C. on July 27-29, was to examine scientific and social issues associated with climate variability and change in West Africa. It was attended by atmospheric scientists, and by some participants in the ocean sciences, from Algeria, Botswana, Cameroon, Niger, Nigeria, Senegal, Zambia, and the United States, representing universities, research laboratories, and meteorological services. The common thread among them was active involvement in weather- and climate-related research in West Africa.

  1. [The clinician-scientist: proposal for a new paradigm].

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical

    2010-10-01

    The decline in the attraction and prestige of the clinician-scientist paradigm is due to the dissonance between clinical work and conducting research in basic science. Medicine entails alleviating distress and prolonging life. Thus, medical research deals directly with the questions: what ails our patients and what shortens their lives? How can it be prevented? How can we alleviate suffering and prolong life? Research designs that fit these questions are: researcher (or patient) initiated randomized controlled trials; systematic reviews and meta-analysis; high-quality observational studies that address risk factors, natural history of disease, side-effects, and efficiency of treatment; research in ethics; and qualitative research. The clinician-scientist should perform medical research. Investing in this paradigm wilt encourage young doctors to conduct research directly oriented to benefit their patients.

  2. Handbook of exponential and related distributions for engineers and scientists

    CERN Document Server

    Pal, Nabendu; Lim, Wooi K

    2005-01-01

    The normal distribution is widely known and used by scientists and engineers. However, there are many cases when the normal distribution is not appropriate, due to the data being skewed. Rather than leaving you to search through journal articles, advanced theoretical monographs, or introductory texts for alternative distributions, the Handbook of Exponential and Related Distributions for Engineers and Scientists provides a concise, carefully selected presentation of the properties and principles of selected distributions that are most useful for application in the sciences and engineering.The book begins with all the basic mathematical and statistical background necessary to select the correct distribution to model real-world data sets. This includes inference, decision theory, and computational aspects including the popular Bootstrap method. The authors then examine four skewed distributions in detail: exponential, gamma, Weibull, and extreme value. For each one, they discuss general properties and applicabi...

  3. The Training and Work of Ph.D. Physical Scientists

    Science.gov (United States)

    Smith, S. J.; Schweitzer, A. E.

    2003-05-01

    Doctoral education has often been viewed as the pinnacle of the formal education system. How useful is doctoral training in one's later career? In an NSF-funded project, we set out to perform a study of the training, careers, and work activities of Ph.D. physical scientists. The study included both in-depth interviews and a survey sent out to a sample of Ph.D. holders 4-8 years after graduation. Come and find out the results of this study: What skills are most Ph.D. physical scientists using? What should graduate programs be teaching? Are Ph.D.'s who are working in their specific field of training happier than their counterparts working different jobs? What skills and preparation lead to future job satisfaction, perhaps the most important indicator of the "success" of graduate education? A preprint and further details can be found at the project web site at: spot.colorado.edu/ phdcarer.

  4. Evaluation of The Primary School Students’ View About Scientists

    Directory of Open Access Journals (Sweden)

    Hasret NUHOĞLU

    2011-08-01

    Full Text Available The aim of this study is to extend DAST scale, developed by Chambers and applied by a lot of researcher in different fields. Another aim is to evaluate primary school students’view about scientists both by drawing and responding open-ended questions. This research has a quantitative design which is not experimental. According to practice this research is a survey model. A survey model was used to collect data. The questionnaire technique was applied to primary school students in order to collect data from sample. The sample of this research is 184 primary school students studying on 4, 5, and 6. grades in Kırşehir. The results of this research show that students drawn the scientist is a man who wears a white coat with glasses and study in a laboratory.

  5. Medical scientists and health news reporting: a case of miscommunication.

    Science.gov (United States)

    Shuchman, M; Wilkes, M S

    1997-06-15

    The public is poorly served by the coverage of medical science in the general press. Scientists and physicians blame the press, claiming that journalists are careless in their reporting, subject to competitive pressures, and ignorant of the scientific process. Journalists accuse the medical community of limiting access to information and erecting barriers to the public dissemination of medical research. In many areas of health news reporting, the underlying problem is an interactive dynamic that involves scientists and journalists. Both parties share the responsibility for accurate communication to the public. This report suggests ways to improve health news reporting, focusing on four problem areas: sensationalism, biases and conflicts of interest, lack of follow-up, and stories that are not covered. PMID:9182476

  6. ICTR-PHE: scientists engage with multidisciplinary research

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In 2016, the next edition of the unique conference that gathers scientists from a variety of fields will focus on many topics particularly dear to the heart of physicists, clinicians, biologists, and computer specialists. The call for abstracts is open until 16 October.   When detector physicists, radiochemists, nuclear-medicine physicians and other physicists, biologists, software developers, accelerator experts and oncologists think outside the box and get involved in multidisciplinary research, they create innovative healthcare. ICTR-PHE is a biennial event, co-organised by CERN, whose main aim is to foster multidisciplinary research by positioning itself at the crossing of physics, medicine and biology. At the ICTR-PHE conference, physicists, engineers, and computer scientists share their knowledge and technologies while doctors and biologists present their needs and vision for the medical tools of the future, thus triggering breakthrough ideas and technological developments in speci...

  7. The cultural divide: exploring communication barriers between scientists and clinicians

    OpenAIRE

    Restifo, Linda L; Phelan, Gerald R.

    2011-01-01

    Summary Despite remarkable advances in basic biomedical science that have led to improved patient care, there is a wide and persistent gap in the abilities of researchers and clinicians to understand and appreciate each other. In this Editorial, the authors, a scientist and a clinician, discuss the rift between practitioners of laboratory research and clinical medicine. Using their first-hand experience and numerous interviews throughout the United States, they explore the causes of this ‘...

  8. Statistical regularities in the rank-citation profile of scientists

    OpenAIRE

    Petersen, Alexander M.; H. Eugene Stanley; Sauro Succi

    2011-01-01

    Recent "science of science" research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate scientific production and impact of individual careers using the rank-citation profile c_{i}(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper r...

  9. Brain network: social media and the cognitive scientist.

    Science.gov (United States)

    Stafford, Tom; Bell, Vaughan

    2012-10-01

    Cognitive scientists are increasingly using online social media, such as blogging and Twitter, to gather information and disseminate opinion, while linking to primary articles and data. Because of this, internet tools are driving a change in the scientific process, where communication is characterised by rapid scientific discussion, wider access to specialist debates, and increased cross-disciplinary interaction. This article serves as an introduction to and overview of this transformation. PMID:22902001

  10. New Scientist: le 50 idee che cambieranno la scienza...

    Directory of Open Access Journals (Sweden)

    Redazione

    2012-07-01

    Full Text Available Quali sono le "idee" destinate a cambiare radicalmente la conoscenza che abbiamo del mondo e le relazioni che intratteniamo con esso? Con l'aiuto di esperti di diverse discipline il New Scientist ha raccolto le 50 che sembrano meglio candidarsi a questa sfida. Dalle scienze della vita all'intelligenza artificiale, dalla genetica alle nanotecnologie, dalla cosmologia alla ricerca sul cervello, dall'ingegneria alla vita artificiale...

  11. Facilitating ethical reflection among scientists using the ethical matrix.

    Science.gov (United States)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian; Millar, Kate; Sandøe, Peter

    2011-09-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own assessment of the process, this independent reflective exercise was deemed to be successful. The discussions demonstrated a high level of complexity and depth, with participants demonstrating a clear perception of uncertainties and the context in which their research operates. Reflection on stakeholder views and values appeared to be embedded within the discussions. The finding from this exercise seems to indicate that even without the involvement of the wider stakeholder community, valuable reflection and worthwhile discourse can be generated from ethical reflection processes involving only scienitific project partners. Hence, the previous assumption that direct stakeholder engagement is necessary for ethical reflection does not appear to hold true in all cases; however, other reasons for involving a broad group of stakeholders relating to governance and social accountability of science remain. PMID:20589537

  12. Interactive conference of young scientists 2011. Book of abstracts

    International Nuclear Information System (INIS)

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in seven sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Organic, bio-organic and pharmaceuticals chemistry, pharmacology; (5) Ecology and environmental science; (6) Biophysics, mathematic modelling, biostatistics; (7) Open section for students. Relevant papers were included into the database INIS.

  13. How can scientists bring research to use: the HENVINET experience

    OpenAIRE

    Bartonova Alena

    2012-01-01

    Abstract Background Health concerns have driven the European environmental policies of the last 25 years, with issues becoming more complex. Addressing these concerns requires an approach that is both interdisciplinary and engages scientists with society. In response to this requirement, the FP6 coordination action “Health and Environment Network” HENVINET was set up to create a permanent inter-disciplinary network of professionals in the field of health and environment tasked to bridge the c...

  14. Building Trust and Commitment in Scientist-Teacher Partnerships

    Science.gov (United States)

    Walker, B. A.; Hall-Wallace, M. K.

    2003-12-01

    Scientific partnerships bring individuals from different cultures together to achieve mutual goals, make decisions, exchange ideas, and contribute resources (Gomez et al., 1990.) These collaborations have the potential to benefit both parties, but forming functional partnerships between two different work-environment cultures is difficult. We were interested in determining what governs their success. CATTS (Collaboration to Advance Teaching Technology and Science) is an NSF GK-12 fellowship program that fosters relationships between graduate and undergraduate CATTS scientists and K-12 teachers. A case-study approach was used to examine the dynamics of partnership development. Specifically, we looked for patterns in the behavior and attitudes of partners to understand why some partnerships are successful and others fail. We used classroom observations, journals, surveys, and interviews with scientists and teachers to establish these patterns. By their nature, the evolution of every scientific partnership is unique, and the outcome is unpredictable. However, the case-study approach allowed us to understand some of the attributes of successful and unsuccessful partnerships. Frequent communication was essential, especially in defining the roles and responsibilities of the teacher and scientist. Setting mutual goals and expectations was necessary, but the flexibility of both partners was also crucial as goals and expectations typically evolved as the partnership progressed. The most successful partners shared classroom and planning responsibilities in ways that utilized the strengths of each partner. This promoted greater exchange of scientific and pedagogical knowledge and experience between the partners and made the scientist and teacher feel as though their respective contributions were important. When both partners felt welcomed, invited, and appreciated, investment in the partnership remained high. Because it takes time and negotiation to build trust and commitment

  15. Social scientists, qualitative data, and agent-based modeling

    OpenAIRE

    Seidl, Roman

    2014-01-01

    Empirical data obtained with social science methods can be useful for informing agent-based models, for instance, to fix the profile of heterogeneous agents or to specify behavioral rules. For the latter in particular, qualitative methods that investigate the details of individual decision processes are an option. In this paper, I highlight the challenges for social scientists who investigate social/psychological phenomena but at the same time have to consider the properties of agent-based si...

  16. The informed Practitioner: Communication between social scientists and practitioners

    OpenAIRE

    Hessler, Gudrun; Unzicker, Kai

    2006-01-01

    This paper examines interaction processes and knowledge exchange between social scientists and practitioners. We conducted semi-structured interviews with practitioners working in specified fields of practice who have been involved in sociological research projects - as subjects of investigation or as experts. These research projects focused on social integration and disintegration in different sectors of German society. The interviewed practitioners were working in sectors under scrutiny by ...

  17. A Statistical Significance Simulation Study for the General Scientist

    OpenAIRE

    Levman, Jacob

    2011-01-01

    When a scientist performs an experiment they normally acquire a set of measurements and are expected to demonstrate that their results are "statistically significant" thus confirming whatever hypothesis they are testing. The main method for establishing statistical significance involves demonstrating that there is a low probability that the observed experimental results were the product of random chance. This is typically defined as p < 0.05, which indicates there is less than a 5% chance tha...

  18. Interactive conference of young scientists 2012. Book of abstracts

    International Nuclear Information System (INIS)

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) Utilization of instrumental methods in the analysis of biologically important substances; (4) Organic, bioorganic, pharmaceutical chemistry, pharmacology and toxicology. (5) Ecology and environmental science; (6) Biophysics, mathematical modeling, biostatistics; (7) Open section for students; Relevant papers were included into the database INIS.

  19. A Comprehensive Career-Success Model for Physician-Scientists

    OpenAIRE

    Rubio, Doris M.; Primack, Brian A.; Switzer, Galen E.; Bryce, Cindy L.; Seltzer, Deborah L.; Kapoor, Wishwa N.

    2011-01-01

    With today’s focus on the translation of basic science discoveries into clinical practice, the demand for physician-scientists is growing. Yet, physicians have always found it challenging to juggle the demands of clinical care with the time required to perform research. The Research on Careers Workgroup of the Institute for Clinical Research Education at the University of Pittsburgh developed a comprehensive model for career success that would address, and allow for the evaluation of, the per...

  20. Top scientists join Stephen Hawking at Perimeter Institute

    Science.gov (United States)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  1. Elementary School Children Contribute to Environmental Research as Citizen Scientists

    OpenAIRE

    Miczajka, Victoria L.; Alexandra-Maria Klein; Gesine Pufal

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to ...

  2. Interactive conference of young scientists 2010. Book of abstracts

    International Nuclear Information System (INIS)

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) Utilization of instrumental methods in the analysis of biologically important substances; (4) Organic, bioorganic, pharmaceutical chemistry, pharmacology and toxicology. (5) Ecology and environmental science; (6) Open section for students; Relevant papers were included into the database INIS.

  3. The Role of University Scientist Mobility for Industrial Innovation

    OpenAIRE

    Ejsing, Ann-Kathrine; Kaiser, Ulrich; Kongsted, Hans Christian; Laursen, Keld

    2013-01-01

    Scientific knowledge is an important ingredient in the innovation process. Drawing on the knowledge-based view of the firm and the literature on the relationship between science and technology, this paper scrutinizes the importance of university scientists' mobility for firms' innovative activities. Combining patent data and matched employer-employee data for Danish firms, we can track the labor mobility of R&D workers from 1999 to 2004. We find that new joiners contribute more than long-term...

  4. European Scientists prepare to test the limits of Physics

    CERN Multimedia

    2007-01-01

    "European Scientists are gearing up for a series of experiments that will probe deeper into the nature of matter than ever before. At the end of August the Scientific Information Port (PIC), a centre for technology based at the Universitat Autonoma de Barcelona (UAB) began work on the first stage of the European project Large Hadron Collider (LHC). The aim of the project is to study the origins of mater by reproducing conditions similar to those produced during the Big Bang." (1 page)

  5. How scientists use social media to communicate their research

    OpenAIRE

    Van Eperen Laura; Marincola Francesco M

    2011-01-01

    Abstract Millions of people all over the world are constantly sharing an extremely wide range of fascinating, quirky, funny, irrelevant and important content all at once. Even scientists are no strangers to this trend. Social media has enabled them to communicate their research quickly and efficiently throughout each corner of the world. But which social media platforms are they using to communicate this research and how are they using them? One thing is clear: the range of social media platf...

  6. Interactive conference of young scientists 2010. Posters and presentations

    International Nuclear Information System (INIS)

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) Utilization of instrumental methods in the analysis of biologically important substances; (4) Ecology and environmental science; (5) Open section for students; (6) Organic, bioorganic, pharmaceutical chemistry, pharmacology and toxicology. Relevant posters and presentations were included into the database INIS.

  7. Feelings and Ethics Education: The Film Dear Scientists

    OpenAIRE

    Ioanna Semendeferi

    2014-01-01

    There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, ‘the feelings method,’ for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering ...

  8. Communications Between Crews on Mars and Scientists on Earth

    Science.gov (United States)

    Dickerson, Patricia W.; Budden, Nancy Ann; McKay, David S.; Spudis, Paul D.; Frassanito, Jack; Keaton, Paul

    1998-01-01

    For the purpose of the following discussion, we assume that of the six crew members sent to Mars, at least three will be scientists. We further assume that geological and biological investigations will proceed together (although investigative techniques may vary), both for vestiges of ancient life, and for evidence of living organisms. Finally, unexpected discoveries may cause sudden changes in exploration strategies, and mission planning should be flexible enough to accommodate such shifts.

  9. Pluralist Democracy or Scientistic Monocracy? Debating Ritual Slaughter

    OpenAIRE

    Valenta, Markha

    2012-01-01

    markdownabstract__Abstract__ Many participants in the recent fierce debate on ritual slaughter in the Netherlands have understood this to be a conflict between religious and secular values, pitting religious freedom against animal welfare. The great variety in viewpoints among all groups involved, however – political parties, religious communities, scientists, the meat industry and engaged citizens – makes it impossible to describe any one standpoint as either religious or secular per se. Rat...

  10. China honors outstanding scientists and research achievements for 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On February 14, 2012, an annual ceremony was convened at the Great Hall of the People to honor China's distinguished scientists and outstandingscience and technology achievements. Physicist XIE Jialin (P. 136) and architect WU Liangyong (P.140). both members of CAS, received the StateSupreme S&T Award t'rom Chinese President HU Jintao. Among award- winning projects which were chaired by CAS researchers, 13 won the State

  11. Conservative Protestantism and skepticism of scientists studying climate change

    OpenAIRE

    Evans, JH; J. Feng

    2013-01-01

    Politicians who proclaim both their skepticism about global warming and their conservative religious credentials leave the impression that conservative Protestants may be more skeptical about scientists' claims regarding global warming than others. The history of the relationship between conservative Protestantism and science on issues such as evolution also suggests that there may be increased skepticism. Analyzing the 2006 and 2010 General Social Survey, we find no evidence that conservativ...

  12. Training in Soft and Essential Skills for Young Atmospheric Scientists

    Science.gov (United States)

    Schuepbach, E.

    2006-05-01

    ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). The Task Training and Education (TE) in ACCENT brings attention to the wide scientific issues tackled in the Network via education and training. It provides individuals and/or teams from institutions of higher education and research with a diversity of skills and competencies. These include soft and essential skills, focusing on communication, leadership and interdisciplinary co-operation. The educational and training programme, and associated training tools offered by the Task TE in ACCENT aim at specific target groups such as young scientists (from Master level up to 3 years after completion of a Ph.D.). Three major training events for young scientists are scheduled in ACCENT: an event on air quality in the Mediterranean in Thessaloniki (Greece) in October 2006, an event on regional climate change in Eastern Europe in Riga (Latvia) in June 2007, and the ACCENT YOUTH SUMMIT in summer 2008. Here, the concepts underlying the training of the next generation of atmospheric scientists in soft and essential skills are presented, and applications of some of the training tools are demonstrated. network.org/training-and-education

  13. Challenges in Food Scientist Training in a global setting

    Directory of Open Access Journals (Sweden)

    Andreas Höhl

    2012-10-01

    Full Text Available Normal 0 21 false false false EN-GB X-NONE X-NONE Education and training were an integral part of the MoniQA Network of Excellence. Embedded in the "Spreading of excellence programme", Work Package 9 (Joint education programmes and training tools was responsible for establishing a joint training programme for food safety and quality within and beyond the network. So-called `MoniQA Food Scientist Training' (MoniQA FST was offered to provide technical knowledge on different levels and research management skills as well. Training needs for different regions as well as for different target groups (scientists, industry personnel, authorities had to be considered as well as developing strong collaboration links between network partners and related projects. Beside face-to-face workshops e-learning modules have been developed and web seminars were organized. In order to achieve high quality training, a quality assurance concept has been implemented. It turned out that these types of training are of high value in terms of bringing together scientists from different regions and cultures of the globe, involving highly qualified trainers as basis for a sustainable network in the future.

  14. Incorporating Genetics into Your Studies: A Guide for Social Scientists

    Directory of Open Access Journals (Sweden)

    Danielle eDick

    2011-05-01

    Full Text Available AbstractThere has been a surge of interest in recent years in incorporating genetic components into on-going longitudinal, developmental studies and related psychological studies. While this represents an exciting new direction in developmental science, much of the research on genetic topics in developmental science does not reflect the most current practice in genetics. This is likely due, in part, to the rapidly changing landscape of the field of genetics, and the difficulty this presents for developmental scientists who are trying to learn this new area. In this review, we present an overview of the paradigm shifts that have occurred in genetics and we introduce the reader to basic genetic methodologies. We present our view of the current stage of research ongoing at the intersection of genetics and social science, and we provide recommendations for how we could do better. We also address a number of issues that social scientists face as they integrate genetics into their projects, including choice of a study design (candidate gene versus genome-wide association versus sequencing, different methods of DNA collection, and special considerations involved in the analysis of genotypic data. Through this review, we hope to equip social scientists with a deeper understanding of the many considerations that go into genetics research, in an effort to foster more meaningful cross-disciplinary initiatives.

  15. Dual use and the ethical responsibility of scientists.

    Science.gov (United States)

    Ehni, Hans-Jörg

    2008-01-01

    The main normative problem in the context of dual use is to determine the ethical responsibility of scientists especially in the case of unintended, harmful, and criminal dual use of new technological applications of scientific results. This article starts from an analysis of the concepts of responsibility and complicity, examining alternative options regarding the responsibility of scientists. Within the context of the basic conflict between the freedom of science and the duty to avoid causing harm, two positions are discussed: moral skepticism and the ethics of responsibility by Hans Jonas. According to these reflections, four duties are suggested and evaluated: stopping research, systematically carrying out research for dual-use applications, informing public authorities, and not publishing results. In the conclusion it is argued that these duties should be considered as imperfect duties in a Kantian sense and that the individual scientist should be discharged as much as possible from obligations which follow from them by the scientific community and institutions created for this purpose. PMID:18512027

  16. Best practices in bioinformatics training for life scientists.

    Science.gov (United States)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-09-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists. PMID:23803301

  17. Best practices in bioinformatics training for life scientists.

    Science.gov (United States)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-09-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  18. The Canadian clinician-scientist training program must be reinstated.

    Science.gov (United States)

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-12-01

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research. PMID:26529253

  19. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra

    2013-06-25

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  20. [Alexander Borodin--physician, chemist, scientist, teacher and composer].

    Science.gov (United States)

    Vik, T

    1998-12-10

    Concert programmes and CD covers suggest that the Russian composer Alexander Borodin (1833-87) was also a great scientist. In this article we examine this proposition. Borodin was born in St. Petersburg as the illegitimate son of a Russian nobleman. As a boy his talents ranged from music to chemistry and languages. Borodin studied medicine at the Medico-Surgical Academy in St. Petersburg from 1850 to 1855 and defended his doctoral thesis on the similarity between arsenic and phosphoric acid in 1858. He did not, however, feel comfortable in his role as a doctor, and soon started to work as a chemist. In 1864 he was appointed professor of chemistry at the Medico-Surgical Academy. In 1861, Borodin attended the first international congress of chemistry in Karlsruhe, and he was among the founders of the Russian Chemical Society in 1868. He published 42 articles and was a friend of Dmitri Mendeleev, the scientist who described the periodic system. In 1872, Borodin started the first medical courses for women in Russia. It seems warranted to conclude that Alexander Borodin was indeed a great scientist and university teacher, though his immortality was earned by his leisure time activities. PMID:9914755

  1. An Introduction to Navier'Stokes Equation and Oceanography

    CERN Document Server

    Tartar, Luc

    2006-01-01

    Corresponds to a graduate course in mathematics, taught at Carnegie Mellon University in the spring of 1999. This course aims to show that the creation of scientific knowledge is an international enterprise, and who contributed to it, from where, and when.

  2. Factors Related to the Adoption of IT Emerging Technologies by Research and Non-Research Based Higher Education Institutions

    Science.gov (United States)

    Then, Keri Ann; Amaria, Pesi

    2013-01-01

    This study examined the adoption of information technology (IT) emerging technology by higher education institutions with a focus on non-research and research based institutions categorized by Carnegie Mellon classifications that are members of EDUCAUSE, a higher education non-profit organization, whose mission is the use of IT in higher…

  3. Polling for an Educated Citizenry

    Science.gov (United States)

    Cavalier, Robert; Bridges, Michael

    2007-01-01

    When a student at Carnegie Mellon University became concerned about perceived grading bias in 2005, he proposed an amendment to the university's student-rights policy. Drawn from David Horowitz's "academic bill of rights," the proposal included assertion of a student's right to have his or her "work evaluated based on the stated course and program…

  4. Building a More Respectful Workplace Environment

    Science.gov (United States)

    Placone, Ronald; Komisin, Lola

    2003-01-01

    Research has shown that the level of respect in the workplace directly correlates with the contentment, production and loyalty of employees. If you were asked to help foster a more respectful environment, where would you begin? What initiatives would you introduce? Carnegie Mellon University has crafted a model for fostering respect at the…

  5. The Design of the Mercury Electronic Library.

    Science.gov (United States)

    Arms, William Y; And Others

    1992-01-01

    Describes the Mercury Electronic Library, a project at Carnegie Mellon University that involved development of software for an electronic library, implementation of the software by the university libraries, and stimulation of the market for electronic publishing. The library information system interface and databases and the computing system…

  6. Library Signage: Applications for the Apple Macintosh and MacPaint.

    Science.gov (United States)

    Diskin, Jill A.; FitzGerald, Patricia

    1984-01-01

    Describes specific applications of the Macintosh computer at Carnegie-Mellon University Libraries, where MacPaint was used as a flexible, easy to use, and powerful tool to produce informational, instructional, and promotional signage. Profiles of system hardware and software, an evaluation of the computer program MacPaint, and MacPaint signage…

  7. Manufacturing Careers, Skilled Workers and the Economy

    Science.gov (United States)

    Martino, Lisa

    2011-01-01

    In order to jumpstart the economy, "Made in the U.S.A." needs to be synonymous with in-demand, high-quality products sold throughout the world. Recognizing the importance of the manufacturing industry and its connection to a healthy economy, President Obama addressed Carnegie Mellon University and launched the Advanced Manufacturing Partnership…

  8. Strategic Long Range Planning for Universities. AIR Forum 1980 Paper.

    Science.gov (United States)

    Baker, Michael E.

    The use of strategic long-range planning at Carnegie-Mellon University (CMU) is discussed. A structure for strategic planning analysis that integrates existing techniques is presented, and examples of planning activities at CMU are included. The key concept in strategic planning is competitive advantage: if a university has a competitive…

  9. Introducing Green Chemistry in Teaching and Research.

    Science.gov (United States)

    Collins, Terrence J.

    1995-01-01

    Describes key elements for the research and teaching components of green chemistry, an environmentally friendly approach to chemistry. Presents an outline of an introductory course to green chemistry and other efforts at Carnegie Mellon University to incorporate the environment in a fertile manner into teaching. (JRH)

  10. The Heinz Electronic Library Interactive On-line System (HELIOS): An Update.

    Science.gov (United States)

    Galloway, Edward A.; Michalek, Gabrielle V.

    1998-01-01

    Describes a project at Carnegie Mellon University libraries to convert the congressional papers of the late Senator John Heinz to digital format and to create an online system to search and retrieve these papers. Highlights include scanning, optical character recognition, and a search engine utilizing natural language processing. (Author/LRW)

  11. How Forcefully Should Universities Enforce Copyright Law on Audio Files?

    Science.gov (United States)

    McCollum, Kelly

    1999-01-01

    The Recording Industry Association of America is aggressively pursuing copyright violations on campuses concerning MP3 music recordings being exchanged on computer networks. Carnegie Mellon University (Pennsylvania), to avoid litigation, has been searching public folders of students' computers to find illegally copied MP3s. Controversy over…

  12. new scientist - singing in the name of climate change

    Science.gov (United States)

    Peragine, Marcel

    2015-04-01

    Basically what I am concerned with as composer, musician, film maker etc. is communicating in any way with the resources available the significance behind human civilization's impact on climate change. I accomplish this with the other components of my band, and the song that follows entitled New Scientist is an attempt to do this using the platform of the popular 3 minute rock song format. This Scientific Symposium is important no doubt, being a wonderful way of bringing creativity into science by inviting artists to participate. However time is running out and getting the message out on the scale necessary to start reversing the damage caused by modern man can only effectively be done with mass communication tools, hence broadcast and social media. The lyrics for New Scientist and other compositions we have in our repertoire try to provoke awareness by being set in the future, talking to the egocentric nature of mankind and to the small percentage of those who have the will and insight to attempt the almost supernatural feat of saving some semblance of human habitat either on Earth, or finding a new one elsewhere in the Universe. It is a bit satirical but oddly enough with world governments firmly in the hands of big business be it dirty oil or the factory farming of animals etc.,radical scientific solutions for the Earth seem to be mankind's only hope. It's great that NASA is finally making an attempt to reactivate manned space flights to Mars and deep space. In fact, nobody has ever taken seriously the impact of this research and technology on fighting climate change on Earth. To give an example, the hydrogen fuel cell is a technology not in use in everyday life in the modern world due to the lack of government special interests and subsidies. The good news however is that many of the scientific breakthroughs pioneered by NASA and its contractors have made available the ecologically friendly tools necessary to reverse climate change if only they would be made

  13. Interaction of Students and Scientists in the Chesapeake Bay Watershed Education and Training and Emerging Scientist Programs

    Science.gov (United States)

    Bieri, J.; Sprague, S.; Bloch, N.; Laubhan, S.

    2006-05-01

    NOAA's Chesapeake Bay Office (NCBO) is actively engaged in K-12 science education within the Chesapeake Bay watershed. Through the Bay Watershed Education and Training Program (B-WET) and the Emerging Scientist Project, we are furthering the Chesapeake Bay Program (CBP) goal of providing a meaningful watershed experience for every student prior to their graduation from high school. These projects seek to provide field experiences for students coupled with both pre-experience and post-experience integration in the classroom. In many cases, NCBO funded projects partner school educators with the scientific community. Partnering scientists assist teachers with resources in the field, classroom and on-line. In many cases, students are actively engaged in data collection (fish or invertebrate species data, water quality parameters, other physical site specific data) that can be incorporated into the partnering scientists existing data bases. Scientists are able to increase their database while at the same time provide teachers and students with a meaningful field experience that exposes students to authentic research and field sampling. This type of field experience lends itself nicely to applicable follow-up activites and analysis back in the classroom. Students may take this "real data" and use for discussion of application of management decisions and/or actually implement changes within their community (i.e. restoration projects). This presentation will highlight several B- WET projects as well as the ESP that have succeeded in engaging a K-12 audience in authentic science. Scientific partners include the Smithsonian Environmental Research Consortium (SERC), the University of Maryland (UMD) and the Virginia Institute of Marine Science (VIMS).

  14. Teenagers as scientist - Learning by doing or doing without learning?

    Science.gov (United States)

    Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike

    2010-05-01

    Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that

  15. Nature of Science Contextualized: Studying Nature of Science with Scientists

    Science.gov (United States)

    Tala, Suvi; Vesterinen, Veli-Matti

    2015-05-01

    Understanding nature of science (NOS) is widely considered an important educational objective and views of NOS are closely linked to science teaching and learning. Thus there is a lively discussion about what understanding NOS means and how it is reached. As a result of analyses in educational, philosophical, sociological and historical research, a worldwide consensus about the content of NOS teaching is said to be reached. This consensus content is listed as a general statement of science, which students are supposed to understand during their education. Unfortunately, decades of research has demonstrated that teachers and students alike do not possess an appropriate understanding of NOS, at least as far as it is defined at the general level. One reason for such failure might be that formal statements about the NOS and scientific knowledge can really be understood after having been contextualized in the actual cases. Typically NOS is studied as contextualized in the reconstructed historical case stories. When the objective is to educate scientifically and technologically literate citizens, as well as scientists of the near future, studying NOS in the contexts of contemporary science is encouraged. Such contextualizations call for revision of the characterization of NOS and the goals of teaching about NOS. As a consequence, this article gives two examples for studying NOS in the contexts of scientific practices with practicing scientists: an interview study with nanomodellers considering NOS in the context of their actual practices and a course on nature of scientific modelling for science teachers employing the same interview method as a studying method. Such scrutinization opens rarely discussed areas and viewpoints to NOS as well as aspects that practising scientists consider as important.

  16. Attitudes of agricultural scientists in Indonesia towards genetically modified foods.

    Science.gov (United States)

    Februhartanty, Judhiastuty; Widyastuti, Tri Nisa; Iswarawanti, Dwi Nastiti

    2007-01-01

    Conflicting arguments and partial truths on genetically modified (GM) foods have left confusion. Although studies of consumer acceptance of GM foods are numerous, the study of scientists is limited. Therefore, the main objective of this study was to assess the attitudes of scientists towards GM foods. The study was a cross sectional study. A total of 400 scientists (involved in at least one of teaching, research and consultancy) in the Bogor Agricultural Institute, Indonesia were selected randomly from its faculties of agriculture, veterinary, fishery, animal husbandry, forestry, agricultural technology, mathematics and science, and the post graduate department. Data collection was done by face-to-face interview using a structured questionnaire and self-administered questionnaire. The result showed that the majority (72.8%) of the respondents were favorably disposed towards GM foods, 14.8% were neutral, and only 12.5% were against them. The majority (78.3%) stated that they would try GM food if offered. Most (71%) reported that they were aware of the term "GM foods". Only half of the respondents felt that they had a basic understanding about GM foods. However, based on a knowledge test, 69.8% had a good knowledge score. Nearly 50% indicated that they were more exposed to news which supported GM foods. Over 90% said that there should be some form of labeling to distinguish food containing GM ingredients from non-GM foods. Attitudes were significantly associated with willingness to try GM foods if offered, restrictions on GM foods, and exposure to media reports about the pros and cons of GM foods.

  17. AAS Oral History Project – Seeking Planetary Scientist

    Science.gov (United States)

    Buxner, Sanlyn; Holbrook, Jarita

    2016-10-01

    Now in its fourth year, the AAS Oral History Project has interviewed over 100 space scientists from all over the world. Led by the AAS Historical Astronomy Division (HAD) and partially funded by the American Institute of Physics Niels Bohr Library and ongoing support from the AAS, volunteers have collected oral histories from space scientists at professional meetings starting in 2015, including AAS, DPS, and the IAU general assembly. Each interview lasts one and a half to two hours and focuses on interviewees' personal and professional lives. Questions include those about one's family, childhood, strong influences on one's scientific career, career path, successes and challenges, perspectives on how astronomy is changing as a field, and advice to the next generation. Each interview is audio recorded and transcribed, the content of which is checked with each interviewee. Once complete, interview transcripts are posted online as part of a larger oral history library at https://www.aip.org/history-programs/niels-bohr-library/oral-histories. We will present preliminary analysis of those interviewed including characterizing career status, age range, nationality, and primary field. Additionally, we will discuss trends beginning to emerge in analysis of participants' responses about data driven science and advice to the next generation. Future analysis will reveal a rich story of space scientists and will help the community address issues of diversity, controversies, and the changing landscape of science. We are actively recruiting individuals to be interviewed at this meeting from all stages of career from undergraduate students to retired and emeritus astronomers. We are especially interested in interviewing 40+E members of DPS. Contact Sanlyn Buxner to schedule an interview or to find out more information about the project (buxner@psi.edu). Contact Jarita Holbrook if you would like to become an interviewer for the project (astroholbrook@gmail.com).

  18. Attitudes of agricultural scientists in Indonesia towards genetically modified foods.

    Science.gov (United States)

    Februhartanty, Judhiastuty; Widyastuti, Tri Nisa; Iswarawanti, Dwi Nastiti

    2007-01-01

    Conflicting arguments and partial truths on genetically modified (GM) foods have left confusion. Although studies of consumer acceptance of GM foods are numerous, the study of scientists is limited. Therefore, the main objective of this study was to assess the attitudes of scientists towards GM foods. The study was a cross sectional study. A total of 400 scientists (involved in at least one of teaching, research and consultancy) in the Bogor Agricultural Institute, Indonesia were selected randomly from its faculties of agriculture, veterinary, fishery, animal husbandry, forestry, agricultural technology, mathematics and science, and the post graduate department. Data collection was done by face-to-face interview using a structured questionnaire and self-administered questionnaire. The result showed that the majority (72.8%) of the respondents were favorably disposed towards GM foods, 14.8% were neutral, and only 12.5% were against them. The majority (78.3%) stated that they would try GM food if offered. Most (71%) reported that they were aware of the term "GM foods". Only half of the respondents felt that they had a basic understanding about GM foods. However, based on a knowledge test, 69.8% had a good knowledge score. Nearly 50% indicated that they were more exposed to news which supported GM foods. Over 90% said that there should be some form of labeling to distinguish food containing GM ingredients from non-GM foods. Attitudes were significantly associated with willingness to try GM foods if offered, restrictions on GM foods, and exposure to media reports about the pros and cons of GM foods. PMID:17468097

  19. New Gas Gun Helping Scientists Better Understand Plutonium Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-09-20

    One of the most daunting scientific and engineering challenges today is ensuring the safety and reliability of the nation's nuclear arsenal. To effectively meet that challenge, scientists need better data showing how plutonium, a key component of nuclear warheads, behaves under extreme pressures and temperatures. On July 8, 2003, Lawrence Livermore researchers performed the inaugural experiment of a 30-meter-long, two-stage gas gun designed to obtain those data. The results from a continuing stream of successful experiments on the gas gun are strengthening scientists' ability to ensure that the nation's nuclear stockpile is safe and reliable. The JASPER (Joint Actinide Shock Physics Experimental Research) Facility at the Department of Energy's (DOE's) Nevada Test Site (NTS) is home to the two-stage gas gun. In the gun's first test, an unqualified success, Livermore scientists fired a projectile weighing 28.6 grams and traveling about 5.21 kilometers per second when it impacted an extremely small (about 30-gram) plutonium target. This experiment marked the culmination of years of effort in facility construction, gun installation, system integration, design reviews, and federal authorizations required to bring the experimental facility online. Ongoing experiments have drawn enthusiastic praise from throughout DOE, the National Nuclear Security Administration (NNSA), and the scientific community. NNSA Administrator Linton Brooks said, ''Our national laboratories now have at their disposal a valuable asset that enhances our due diligence to certify the nuclear weapons stockpile in the absence of underground nuclear weapons testing.''

  20. How the great scientists reasoned the scientific method in action

    CERN Document Server

    Tibbetts, Gary G

    2012-01-01

    The scientific method is one of the most basic and essential concepts across the sciences, ensuring that investigations are carried out with precision and thoroughness. The scientific method is typically taught as a step-by-step approach, but real examples from history are not always given. This book teaches the basic modes of scientific thought, not by philosophical generalizations, but by illustrating in detail how great scientists from across the sciences solved problems using scientific reason. Examples include Christopher Columbus, Joseph Priestly, Antoine Lavoisier, Michael Faraday, W