WorldWideScience

Sample records for carlo verification system

  1. Development and verification of Monte Carlo burnup calculation system

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yoshioka, Kenichi; Mitsuhashi, Ishi; Sakurada, Koichi; Sakurai, Shungo

    2003-01-01

    Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)

  2. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo

  3. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y [Tokai University School of Medicine, Isehara, Kanagawa (Japan)

    2015-06-15

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.

  4. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    International Nuclear Information System (INIS)

    Fujita, Y

    2015-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057

  5. SU-F-T-575: Verification of a Monte-Carlo Small Field SRS/SBRT Dose Calculation System

    International Nuclear Information System (INIS)

    Sudhyadhom, A; McGuinness, C; Descovich, M

    2016-01-01

    Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert. Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm 2 area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.

  6. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  7. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  8. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    Science.gov (United States)

    Kostyuchenko, V. I.; Makarova, A. S.; Ryazantsev, O. B.; Samarin, S. I.; Uglov, A. S.

    2014-06-01

    A great breakthrough in proton therapy has happened in the new century: several tens of dedicated centers are now operated throughout the world and their number increases every year. An important component of proton therapy is a treatment planning system. To make calculations faster, these systems usually use analytical methods whose reliability and accuracy do not allow the advantages of this method of treatment to implement to the full extent. Predictions by the Monte Carlo (MC) method are a "gold" standard for the verification of calculations with these systems. At the Institute of Experimental and Theoretical Physics (ITEP) which is one of the eldest proton therapy centers in the world, an MC code is an integral part of their treatment planning system. This code which is called IThMC was developed by scientists from RFNC-VNIITF (Snezhinsk) under ISTC Project 3563.

  9. Monte Carlo simulations to replace film dosimetry in IMRT verification

    International Nuclear Information System (INIS)

    Goetzfried, Thomas; Trautwein, Marius; Koelbi, Oliver; Bogner, Ludwig; Rickhey, Mark

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3 mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. (orig.)

  10. Verification Account Management System (VAMS)

    Data.gov (United States)

    Social Security Administration — The Verification Account Management System (VAMS) is the centralized location for maintaining SSA's verification and data exchange accounts. VAMS account management...

  11. Verification of Monte Carlo transport codes by activation experiments

    OpenAIRE

    Chetvertkova, Vera

    2013-01-01

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is...

  12. Monte Carlo investigation of collapsed versus rotated IMRT plan verification.

    Science.gov (United States)

    Conneely, Elaine; Alexander, Andrew; Ruo, Russell; Chung, Eunah; Seuntjens, Jan; Foley, Mark J

    2014-05-08

    IMRT QA requires, among other tests, a time-consuming process of measuring the absorbed dose, at least to a point, in a high-dose, low-dose-gradient region. Some clinics use a technique of measuring this dose with all beams delivered at a single gantry angle (collapsed delivery), as opposed to the beams delivered at the planned gantry angle (rotated delivery). We examined, established, and optimized Monte Carlo simulations of the dosimetry for IMRT verification of treatment plans for these two different delivery modes (collapsed versus rotated). The results of the simulations were compared to the treatment planning system dose calculations for the two delivery modes, as well as to measurements taken. This was done in order to investigate the validity of the use of a collapsed delivery technique for IMRT QA. The BEAMnrc, DOSXYZnrc, and egs_chamber codes were utilized for the Monte Carlo simulations along with the MMCTP system. A number of different plan complexity metrics were also used in the analysis of the dose distributions in a bid to qualify why verification in a collapsed delivery may or may not be optimal for IMRT QA. Following the Alfonso et al. formalism, the kfclin,frefQclin,Q correction factor was calculated to correct the deviation of small fields from the reference conditions used for beam calibration. We report on the results obtained for a cohort of 20 patients. The plan complexity was investigated for each plan using the complexity metrics of homogeneity index, conformity index, modulation complexity score, and the fraction of beams from a particular plan that intersect the chamber when performing the QA. Rotated QA gives more consistent results than the collapsed QA technique. The kfclin,frefQclin,Qfactor deviates less from 1 for rotated QA than for collapsed QA. If the homogeneity index is less than 0.05 then the kfclin,frefQclin,Q factor does not deviate from unity by more than 1%. A value this low for the homogeneity index can only be obtained

  13. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    International Nuclear Information System (INIS)

    Conti, E.; Marconi, S.; Christiansen, J.; Placidi, P.; Hemperek, T.

    2016-01-01

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified

  14. Monte Carlo calculations supporting patient plan verification in proton therapy

    Directory of Open Access Journals (Sweden)

    Thiago Viana Miranda Lima

    2016-03-01

    Full Text Available Patient’s treatment plan verification covers substantial amount of the quality assurance (QA resources, this is especially true for Intensity Modulated Proton Therapy (IMPT. The use of Monte Carlo (MC simulations in supporting QA has been widely discussed and several methods have been proposed. In this paper we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO. We reanalysed the previously published data (Molinelli et al. 2013, where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modelling (Treatment Planning Systems (TPS vs MC, limitations on dose delivery system or detectors mispositioning was originally explored but other factors such as the geometric description of the detectors were not ruled out. For the purpose of this work we compared ionisation-chambers measurements with different MC simulations results. It was also studied some physical effects introduced by this new approach for example inter detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01 to most of the MC simulations used at CNAO (only inferior to the shift approach used. No real improvement were observed in reducing the current delta-ray threshold used (100 keV and no significant interference between ion chambers in the phantom were detected (p-value 0.81. In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases position uncertainty represents the dominant uncertainty. The inter chamber disturbance was not detected for the therapeutic protons energies and the results from the current delta threshold are

  15. Distorted Fingerprint Verification System

    Directory of Open Access Journals (Sweden)

    Divya KARTHIKAESHWARAN

    2011-01-01

    Full Text Available Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.

  16. Verification of Monte Carlo transport codes by activation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera

    2012-12-18

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

  17. Monte Carlo simulation and experimental verification of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Griffin, J.; Deloar, H. M.

    2007-01-01

    Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.

  18. Experimental inventory verification system

    International Nuclear Information System (INIS)

    Steverson, C.A.; Angerman, M.I.

    1991-01-01

    As Low As Reasonably Achievable (ALARA) goals and Department of Energy (DOE) inventory requirements are frequently in conflict at facilities across the DOE complex. The authors wish, on one hand, to verify the presence of correct amounts of nuclear materials that are in storage or in process; yet on the other hand, we wish to achieve ALARA goals by keeping individual and collective exposures as low as social, technical, economic, practical, and public policy considerations permit. The Experimental Inventory Verification System (EIVSystem) is a computer-based, camera-driven system that utilizes image processing technology to detect change in vault areas. Currently in the test and evaluation phase at Idaho National Engineering Laboratory, this system guards personnel. The EIVSystem continually monitors the vault, providing proof of changed status for objects sorted within the vault. This paper reports that these data could provide the basis for reducing inventory requirements when no change has occurred, thus helping implement ALARA policy; the data will also help describe there target area of an inventory when change has been shown to occur

  19. Standard Verification System (SVS)

    Data.gov (United States)

    Social Security Administration — SVS is a mainframe program that accesses the NUMIDENT to perform SSN verifications. This program is called by SSA Internal applications to verify SSNs. There is also...

  20. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    International Nuclear Information System (INIS)

    Kostyuchenko, V.I.; Makarova, A.S.; Ryazantsev, O.B.; Samarin, S.I.; Uglov, A.S.

    2013-01-01

    Proton interaction with an exposed object material needs to be modeled with account for three basic processes: electromagnetic stopping of protons in matter, multiple coulomb scattering and nuclear interactions. Just the last type of processes is the topic of this paper. Monte Carlo codes are often used to simulate high-energy particle interaction with matter. However, nuclear interaction models implemented in these codes are rather extensive and their use in treatment planning systems requires huge computational resources. We have selected the IThMC code for its ability to reproduce experiments which measure the distribution of the projected ranges of nuclear secondary particles generated by proton beams in a multi-layer Faraday cup. The multi-layer Faraday cup detectors measure charge rather than dose and allow distinguishing between electromagnetic and nuclear interactions. The event generator used in the IThMC code is faster, but less accurate than any other used in testing. Our model of nuclear reactions demonstrates quite good agreement with experiment in the context of their effect on the Bragg peak in therapeutic applications

  1. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system

    International Nuclear Information System (INIS)

    Tansho, Ryohei; Takada, Yoshihisa; Mizutani, Shohei; Kohno, Ryosuke; Hotta, Kenji; Akimoto, Tetsuo; Hara, Yousuke

    2013-01-01

    A beam delivery system using a single-radius-beam-wobbling method has been used to form a conformal irradiation field for proton radiotherapy in Japan. A proton beam broadened by the beam-wobbling system provides a non-Gaussian distribution of projection angle different in two mutually orthogonal planes with a common beam central axis, at a certain position. However, the conventional initial beam model for dose calculations has been using an approximation of symmetric Gaussian angular distribution with the same variance in both planes (called here a Gaussian model with symmetric variance (GMSV)), instead of the accurate one. We have developed a more accurate initial beam model defined as a non-Gaussian model with asymmetric variance (NonGMAV), and applied it to dose calculations using the simplified Monte Carlo (SMC) method. The initial beam model takes into account the different distances of two beam-wobbling magnets from the iso-center and also the different amplitudes of kick angle given by each magnet. We have confirmed that the calculation using the SMC with NonGMAV reproduced the measured dose distribution formed in air by a mono-energetic proton beam passing through a square aperture collimator better than with the GMSV and with a Gaussian model with asymmetric variance (GMAV) in which different variances of angular distributions are used in the two mutually orthogonal planes. Measured dose distributions in a homogeneous phantom formed by a modulated proton beam passing through a range shifter and an L-shaped range compensator, were consistent with calculations using the SMC with GMAV and NonGMAV, but in disagreement with calculations using the SMC with GMSV. Measured lateral penumbrae in a lateral direction were reproduced better by calculations using the SMC with NonGMAV than by those with GMAV, when an aperture collimator with a smaller opening was used. We found that such a difference can be attributed to the non-Gaussian angular distribution of the

  2. Formal Verification of Continuous Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer

    2012-01-01

    and the verification procedures should be algorithmically synthesizable. Autonomous control plays an important role in many safety-critical systems. This implies that a malfunction in the control system can have catastrophic consequences, e.g., in space applications where a design flaw can result in large economic...... losses. Furthermore, a malfunction in the control system of a surgical robot may cause death of patients. The previous examples involve complex systems that are required to operate according to complex specifications. The systems cannot be formally verified by modern verification techniques, due...

  3. Biometric Technologies and Verification Systems

    CERN Document Server

    Vacca, John R

    2007-01-01

    Biometric Technologies and Verification Systems is organized into nine parts composed of 30 chapters, including an extensive glossary of biometric terms and acronyms. It discusses the current state-of-the-art in biometric verification/authentication, identification and system design principles. It also provides a step-by-step discussion of how biometrics works; how biometric data in human beings can be collected and analyzed in a number of ways; how biometrics are currently being used as a method of personal identification in which people are recognized by their own unique corporal or behavior

  4. Enumeration Verification System (EVS)

    Data.gov (United States)

    Social Security Administration — EVS is a batch application that processes for federal, state, local and foreign government agencies, private companies and internal SSA customers and systems. Each...

  5. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  6. Central Verification System

    Data.gov (United States)

    US Agency for International Development — CVS is a system managed by OPM that is designed to be the primary tool for verifying whether or not there is an existing investigation on a person seeking security...

  7. Application of a Monte Carlo linac model in routine verifications of dose calculations

    International Nuclear Information System (INIS)

    Linares Rosales, H. M.; Alfonso Laguardia, R.; Lara Mas, E.; Popescu, T.

    2015-01-01

    The analysis of some parameters of interest in Radiotherapy Medical Physics based on an experimentally validated Monte Carlo model of an Elekta Precise lineal accelerator, was performed for 6 and 15 Mv photon beams. The simulations were performed using the EGSnrc code. As reference for simulations, the optimal beam parameters values (energy and FWHM) previously obtained were used. Deposited dose calculations in water phantoms were done, on typical complex geometries commonly are used in acceptance and quality control tests, such as irregular and asymmetric fields. Parameters such as MLC scatter, maximum opening or closing position, and the separation between them were analyzed from calculations in water. Similarly simulations were performed on phantoms obtained from CT studies of real patients, making comparisons of the dose distribution calculated with EGSnrc and the dose distribution obtained from the computerized treatment planning systems (TPS) used in routine clinical plans. All the results showed a great agreement with measurements, finding all of them within tolerance limits. These results allowed the possibility of using the developed model as a robust verification tool for validating calculations in very complex situation, where the accuracy of the available TPS could be questionable. (Author)

  8. Validation of Embedded System Verification Models

    NARCIS (Netherlands)

    Marincic, J.; Mader, Angelika H.; Wieringa, Roelf J.

    The result of a model-based requirements verification shows that the model of a system satisfies (or not) formalised system requirements. The verification result is correct only if the model represents the system adequately. No matter what modelling technique we use, what precedes the model

  9. Cognitive Bias in Systems Verification

    Science.gov (United States)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  10. A virtual linear accelerator for verification of treatment planning systems

    International Nuclear Information System (INIS)

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  11. Verification and Performance Analysis for Embedded Systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2009-01-01

    This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems.......This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems....

  12. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....

  13. On Verification Modelling of Embedded Systems

    NARCIS (Netherlands)

    Brinksma, Hendrik; Mader, Angelika H.

    Computer-aided verification of embedded systems hinges on the availability of good verification models of the systems at hand. Such models must be much simpler than full design models or specifications to be of practical value, because of the unavoidable combinatorial complexities in the

  14. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  15. Generation and Verification of ENDF/B-VII.0 Cross section Libraries for Monte Carlo Calculations

    International Nuclear Information System (INIS)

    Park, Ho Jin; Kwak, Min Su; Joo, Han Gyu; Kim, Chang Hyo

    2007-01-01

    For Monte Carlo neutronics calculations, a continuous energy nuclear data library is needed. It can be generated from various evaluated nuclear data files such as ENDF/B using the ACER routine of the NJOY.code after a series of prior processing involving various other NJOY routines. Recently, a utility code, which generates the NJOY input decks in an automated mode, named ANJOYMC became available. The use of this code greatly reduces the user's effort and the possibility of input errors. In December 2006, the initial version of the ENDF/BVII nuclear data library was released. It was reported that the new data files have much better data which reduces the errors noted in the previous versions. Thus it is worthwhile to examine the performance of the new data files particularly using an independent Monte Carlo code, MCCARD and the ANJOYMC utility code. The verification of the newly generated library can be readily performed by analyzing numerous standard criticality benchmark problems

  16. Verification of the VEF photon beam model for dose calculations by the voxel-Monte-Carlo-algorithm

    International Nuclear Information System (INIS)

    Kriesen, S.; Fippel, M.

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tuebingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning. (orig.)

  17. [Verification of the VEF photon beam model for dose calculations by the Voxel-Monte-Carlo-Algorithm].

    Science.gov (United States)

    Kriesen, Stephan; Fippel, Matthias

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tübingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning.

  18. HDM/PASCAL Verification System User's Manual

    Science.gov (United States)

    Hare, D.

    1983-01-01

    The HDM/Pascal verification system is a tool for proving the correctness of programs written in PASCAL and specified in the Hierarchical Development Methodology (HDM). This document assumes an understanding of PASCAL, HDM, program verification, and the STP system. The steps toward verification which this tool provides are parsing programs and specifications, checking the static semantics, and generating verification conditions. Some support functions are provided such as maintaining a data base, status management, and editing. The system runs under the TOPS-20 and TENEX operating systems and is written in INTERLISP. However, no knowledge is assumed of these operating systems or of INTERLISP. The system requires three executable files, HDMVCG, PARSE, and STP. Optionally, the editor EMACS should be on the system in order for the editor to work. The file HDMVCG is invoked to run the system. The files PARSE and STP are used as lower forks to perform the functions of parsing and proving.

  19. Formal verification of algorithms for critical systems

    Science.gov (United States)

    Rushby, John M.; Von Henke, Friedrich

    1993-01-01

    We describe our experience with formal, machine-checked verification of algorithms for critical applications, concentrating on a Byzantine fault-tolerant algorithm for synchronizing the clocks in the replicated computers of a digital flight control system. First, we explain the problems encountered in unsynchronized systems and the necessity, and criticality, of fault-tolerant synchronization. We give an overview of one such algorithm, and of the arguments for its correctness. Next, we describe a verification of the algorithm that we performed using our EHDM system for formal specification and verification. We indicate the errors we found in the published analysis of the algorithm, and other benefits that we derived from the verification. Based on our experience, we derive some key requirements for a formal specification and verification system adequate to the task of verifying algorithms of the type considered. Finally, we summarize our conclusions regarding the benefits of formal verification in this domain, and the capabilities required of verification systems in order to realize those benefits.

  20. Verification and Validation in Systems Engineering

    CERN Document Server

    Debbabi, Mourad; Jarraya, Yosr; Soeanu, Andrei; Alawneh, Luay

    2010-01-01

    "Verification and validation" represents an important process used for the quality assessment of engineered systems and their compliance with the requirements established at the beginning of or during the development cycle. Debbabi and his coauthors investigate methodologies and techniques that can be employed for the automatic verification and validation of systems engineering design models expressed in standardized modeling languages. Their presentation includes a bird's eye view of the most prominent modeling languages for software and systems engineering, namely the Unified Model

  1. 3D VMAT Verification Based on Monte Carlo Log File Simulation with Experimental Feedback from Film Dosimetry.

    Science.gov (United States)

    Barbeiro, A R; Ureba, A; Baeza, J A; Linares, R; Perucha, M; Jiménez-Ortega, E; Velázquez, S; Mateos, J C; Leal, A

    2016-01-01

    A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre

  2. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  3. Quantum Monte Carlo approaches for correlated systems

    CERN Document Server

    Becca, Federico

    2017-01-01

    Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...

  4. EDITORIAL: International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification

    Science.gov (United States)

    Verhaegen, Frank; Seuntjens, Jan

    2008-03-01

    Monte Carlo particle transport techniques offer exciting tools for radiotherapy research, where they play an increasingly important role. Topics of research related to clinical applications range from treatment planning, motion and registration studies, brachytherapy, verification imaging and dosimetry. The International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification took place in a hotel in Montreal in French Canada, from 29 May-1 June 2007, and was the third workshop to be held on a related topic, which now seems to have become a tri-annual event. About one hundred workers from many different countries participated in the four-day meeting. Seventeen experts in the field were invited to review topics and present their latest work. About half of the audience was made up by young graduate students. In a very full program, 57 papers were presented and 10 posters were on display during most of the meeting. On the evening of the third day a boat trip around the island of Montreal allowed participants to enjoy the city views, and to sample the local cuisine. The topics covered at the workshop included the latest developments in the most popular Monte Carlo transport algorithms, fast Monte Carlo, statistical issues, source modeling, MC treatment planning, modeling of imaging devices for treatment verification, registration and deformation of images and a sizeable number of contributions on brachytherapy. In this volume you will find 27 short papers resulting from the workshop on a variety of topics, some of them on very new stuff such as graphics processing units for fast computing, PET modeling, dual-energy CT, calculations in dynamic phantoms, tomotherapy devices, . . . . We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Association Québécoise des Physicien(ne)s Médicaux Clinique, the Institute of Physics, and Medical

  5. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  6. RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Ceberg, Sofie; Gagne, Isabel; Gustafsson, Helen

    2010-01-01

    The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc™) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements...

  7. Programmable electronic system design & verification utilizing DFM

    NARCIS (Netherlands)

    Houtermans, M.J.M.; Apostolakis, G.E.; Brombacher, A.C.; Karydas, D.M.

    2000-01-01

    The objective of this paper is to demonstrate the use of the Dynamic Flowgraph Methodology (DIM) during the design and verification of programmable electronic safety-related systems. The safety system consists of hardware as well as software. This paper explains and demonstrates the use of DIM to

  8. Comparing formal verification approaches of interlocking systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Nguyen, Hoang Nga; Roggenbach, Markus

    2016-01-01

    these approaches. As a first step towards this, in this paper we suggest a way to compare different formal approaches for verifying designs of route-based interlocking systems and we demonstrate it on modelling and verification approaches developed within the research groups at DTU/Bremen and at Surrey......The verification of railway interlocking systems is a challenging task, and therefore several research groups have suggested to improve this task by using formal methods, but they use different modelling and verification approaches. To advance this research, there is a need to compare....../Swansea. The focus is on designs that are specified by so-called control tables. The paper can serve as a starting point for further comparative studies. The DTU/Bremen research has been funded by the RobustRailS project granted by Innovation Fund Denmark. The Surrey/Swansea research has been funded by the Safe...

  9. Formal Verification of Circuits and Systems

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The problem of validation and verification of correctness of present day hardware and soft- ware systems has become extemely complex due to the enormous growth in the size of the designs. Today typically 50% to 70% of the design cycle time is spent in verifying correct- ness. While simulation remains a predominant form ...

  10. Model Checking - Automated Verification of Computational Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Model Checking - Automated Verification of Computational Systems. Madhavan Mukund. General Article Volume 14 Issue 7 July 2009 pp 667-681. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Formal Verification of Quasi-Synchronous Systems

    Science.gov (United States)

    2015-07-01

    pg. 215-226, Springer-Verlag: London, UK, 2001. [4] Nicolas Halbwachs and Louis Mandel, Simulation and Verification of Asynchronous Systems by...Huang, S. A. Smolka, W. Tan , and S. Tripakis, Deep Random Search for Efficient Model Checking of Timed Automata, in Proceedings of the 13th Monterey

  12. Neoclassical toroidal viscosity calculations in tokamaks using a δf Monte Carlo simulation and their verifications.

    Science.gov (United States)

    Satake, S; Park, J-K; Sugama, H; Kanno, R

    2011-07-29

    Neoclassical toroidal viscosities (NTVs) in tokamaks are investigated using a δf Monte Carlo simulation, and are successfully verified with a combined analytic theory over a wide range of collisionality. A Monte Carlo simulation has been required in the study of NTV since the complexities in guiding-center orbits of particles and their collisions cannot be fully investigated by any means of analytic theories alone. Results yielded the details of the complex NTV dependency on particle precessions and collisions, which were predicted roughly in a combined analytic theory. Both numerical and analytic methods can be utilized and extended based on these successful verifications.

  13. TWRS system drawings and field verification

    International Nuclear Information System (INIS)

    Shepard, D.G.

    1995-01-01

    The Configuration Management Program combines the TWRS Labeling and O and M drawing and drawing verification programs. The combined program will produce system drawings for systems that are normally operated or have maintenance performed on the system, label individual pieces of equipment for proper identification, even if system drawings are not warranted, and perform verification of drawings that are identified as essential in Tank Farm Essential Drawing Plans. During fiscal year 1994, work was begun to label Tank Farm components and provide user friendly system based drawings for Tank Waste Remediation System (TWRS) operations and maintenance. During the first half of fiscal 1995, the field verification program continued to convert TWRS drawings into CAD format and verify the accuracy based on visual inspections. During the remainder of fiscal year 1995 these efforts will be combined into a single program providing system based drawings and field verification of TWRS equipment and facilities. This combined program for TWRS will include all active systems for tank farms. Operations will determine the extent of drawing and labeling requirements for single shell tanks, i.e. the electrical distribution, HVAC, leak detection, and the radiation monitoring system. The tasks required to meet these objectives, include the following: identify system boundaries or scope for drawing being verified; label equipment/components in the process systems with a unique Equipment Identification Number (EIN) per the TWRS Data Standard; develop system drawings that are coordinated by ''smart'' drawing numbers and/or drawing references as identified on H-14-020000; develop a Master Equipment List (MEL) multi-user data base application which will contain key information about equipment identified in the field; and field verify and release TWRS Operation and Maintenance (O and M) drawings

  14. System Description: Embedding Verification into Microsoft Excel

    OpenAIRE

    Collins, Graham; Dennis, Louise Abigail

    2000-01-01

    The aim of the PROSPER project is to allow the embedding of existing verification technology into applications in such a way that the theorem proving is hidden, or presented to the end user in a natural way. This paper describes a system built to test whether the PROSPER toolkit satisfied this aim. The system combines the toolkit with Microsoft Excel, a popular commercial spreadsheet application.

  15. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  16. Survey on Offline Finger Print Verification System

    NARCIS (Netherlands)

    Suman, R.; Kaur, R.

    2012-01-01

    The fingerprint verification, means where "verification" implies a user matching a fingerprint against a single fingerprint associated with the identity that the user claims. Biometrics can be classified into two types Behavioral (signature verification, keystroke dynamics, etc.) And Physiological

  17. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  18. Computer system for Monte Carlo experimentation

    International Nuclear Information System (INIS)

    Grier, D.A.

    1986-01-01

    A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language

  19. Formal verification of industrial control systems

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Verification of critical software is a high priority but a challenging task for industrial control systems. For many kinds of problems, testing is not an efficient method. Formal methods, such as model checking appears to be an appropriate complementary method. However, it is not common to use model checking in industry yet, as this method needs typically formal methods expertise and huge computing power. In the EN-ICE-PLC section, we are working on a [methodology][1] and a tool ([PLCverif][2]) to overcome these challenges and to integrate formal verification in the development process of our PLC-based control systems. [1]: http://cern.ch/project-plc-formalmethods [2]: http://cern.ch/plcverif

  20. Systems Approach to Arms Control Verification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, K; Neimeyer, I; Listner, C; Stein, G; Chen, C; Dreicer, M

    2015-05-15

    Using the decades of experience of developing concepts and technologies for verifying bilateral and multilateral arms control agreements, a broad conceptual systems approach is being developed that takes into account varying levels of information and risk. The IAEA has already demonstrated the applicability of a systems approach by implementing safeguards at the State level, with acquisition path analysis as the key element. In order to test whether such an approach could also be implemented for arms control verification, an exercise was conducted in November 2014 at the JRC ITU Ispra. Based on the scenario of a hypothetical treaty between two model nuclear weapons states aimed at capping their nuclear arsenals at existing levels, the goal of this exercise was to explore how to use acquisition path analysis in an arms control context. Our contribution will present the scenario, objectives and results of this exercise, and attempt to define future workshops aimed at further developing verification measures that will deter or detect treaty violations.

  1. Automated Formal Verification for PLC Control Systems

    CERN Multimedia

    Fernández Adiego, Borja

    2014-01-01

    Programmable Logic Controllers (PLCs) are widely used devices used in industrial control systems. Ensuring that the PLC software is compliant with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of the safety-critical software. However, these techniques are still not widely applied in industry due to the complexity of building formal models, which represent the system and the formalization of requirement specifications. We propose a general methodology to perform automated model checking of complex properties expressed in temporal logics (e.g. CTL, LTL) on PLC programs. This methodology is based on an Intermediate Model (IM), meant to transform PLC programs written in any of the languages described in the IEC 61131-3 standard (ST, IL, etc.) to different modeling languages of verification tools. This approach has been applied to CERN PLC programs validating the methodology.

  2. Safety Verification for Probabilistic Hybrid Systems

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; She, Z.; Ratschan, Stefan; Hermanns, H.; Hahn, E.M.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 572-587 ISSN 0947-3580 R&D Projects: GA MŠk OC10048; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : model checking * hybrid system s * formal verification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.250, year: 2012

  3. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  4. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...... a global update function that yields an assignment to each node in a PDG. For an iterative application of the function, we prove that a fixed point assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering, thus ensuring that the fixed point assignment can be found after...

  5. Formal System Verification - Extension 2

    Science.gov (United States)

    2012-08-08

    vision of truly trustworthy systems has been to provide a formally verified microkernel basis. We have previously developed the seL4 microkernel...together with a formal proof (in the theorem prover Isabelle/HOL) of its functional correctness [6]. This means that all the behaviours of the seL4 C...source code are included in the high-level, formal specification of the kernel. This work enabled us to provide further formal guarantees about seL4 , in

  6. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  7. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  8. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    EDENBURN, MICHAEL W.; BUNTING, MARCUS; PAYNE, ARTHUR C. JR.; TROST, LAWRENCE C.

    2000-01-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  9. Validation and verification of the ORNL Monte Carlo codes for nuclear safety analysis

    International Nuclear Information System (INIS)

    Emmett, M.B.

    1993-01-01

    The process of ensuring the quality of computer codes can be very time consuming and expensive. The Oak Ridge National Laboratory (ORNL) Monte Carlo codes all predate the existence of quality assurance (QA) standards and configuration control. The number of person-years and the amount of money spent on code development make it impossible to adhere strictly to all the current requirements. At ORNL, the Nuclear Engineering Applications Section of the Computing Applications Division is responsible for the development, maintenance, and application of the Monte Carlo codes MORSE and KENO. The KENO code is used for doing criticality analyses; the MORSE code, which has two official versions, CGA and SGC, is used for radiation transport analyses. Because KENO and MORSE were very thoroughly checked out over the many years of extensive use both in the United States and in the international community, the existing codes were open-quotes baselined.close quotes This means that the versions existing at the time the original configuration plan is written are considered to be validated and verified code systems based on the established experience with them

  10. Verification of Monte Carlo calculations of the neutron flux in the carousel channels of the TRIGA Mark II reactor, Ljubljana

    International Nuclear Information System (INIS)

    Jacimovic, R.; Maucec, M.; Trkov, A.

    2002-01-01

    In this work experimental verification of Monte Carlo neutron flux calculations in the carousel facility (CF) of the 250 kW TRIGA Mark II reactor at the Jozef Stefan Institute is presented. Simulations were carried out using the Monte Carlo radiation-transport code, MCNP4B. The objective of the work was to model and verify experimentally the azimuthal variation of neutron flux in the CF for core No. 176, set up in April 2002. '1'9'8Au activities of Al-Au(0.1%) disks irradiated in 11 channels of the CF covering 180'0 around the perimeter of the core were measured. The comparison between MCNP calculation and measurement shows relatively good agreement and demonstrates the overall accuracy with which the detailed spectral characteristics can be predicted by calculations.(author)

  11. Palmprint Based Verification System Using SURF Features

    Science.gov (United States)

    Srinivas, Badrinath G.; Gupta, Phalguni

    This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.

  12. Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.

    2015-01-01

    Highlights: • Pu-239 based spectral history method was tested on 3D BWR single assembly case. • Burnup of a BWR fuel assembly was performed with the nodal code DYN3D. • Reference solution was obtained by coupled Monte-Carlo thermal-hydraulic code BGCore. • The proposed method accurately reproduces moderator density history effect for BWR test case. - Abstract: This research focuses on the verification of a recently developed methodology accounting for spectral history effects in 3D full core nodal simulations. The traditional deterministic core simulation procedure includes two stages: (1) generation of homogenized macroscopic cross section sets and (2) application of these sets to obtain a full 3D core solution with nodal codes. The standard approach adopts the branch methodology in which the branches represent all expected combinations of operational conditions as a function of burnup (main branch). The main branch is produced for constant, usually averaged, operating conditions (e.g. coolant density). As a result, the spectral history effects that associated with coolant density variation are not taken into account properly. Number of methods to solve this problem (such as micro-depletion and spectral indexes) were developed and implemented in modern nodal codes. Recently, we proposed a new and robust method to account for history effects. The methodology was implemented in DYN3D and involves modification of the few-group cross section sets. The method utilizes the local Pu-239 concentration as an indicator of spectral history. The method was verified for PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. The purpose of the current work is investigating the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal-hydraulic solvers and

  13. Verification and validation of control system software

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.; Kisner, R.A.; Bhadtt, S.C.

    1991-01-01

    The following guidelines are proposed for verification and validation (V ampersand V) of nuclear power plant control system software: (a) use risk management to decide what and how much V ampersand V is needed; (b) classify each software application using a scheme that reflects what type and how much V ampersand V is needed; (c) maintain a set of reference documents with current information about each application; (d) use Program Inspection as the initial basic verification method; and (e) establish a deficiencies log for each software application. The following additional practices are strongly recommended: (a) use a computer-based configuration management system to track all aspects of development and maintenance; (b) establish reference baselines of the software, associated reference documents, and development tools at regular intervals during development; (c) use object-oriented design and programming to promote greater software reliability and reuse; (d) provide a copy of the software development environment as part of the package of deliverables; and (e) initiate an effort to use formal methods for preparation of Technical Specifications. The paper provides background information and reasons for the guidelines and recommendations. 3 figs., 3 tabs

  14. Monte Carlo study of the multiquark systems

    International Nuclear Information System (INIS)

    Kerbikov, B.O.; Polikarpov, M.I.; Zamolodchikov, A.B.

    1986-01-01

    Random walks have been used to calculate the energies of the ground states in systems of N=3, 6, 9, 12 quarks. Multiquark states with N>3 are unstable with respect to the spontaneous dissociation into color singlet hadrons. The modified Green's function Monte Carlo algorithm which proved to be more simple and much accurate than the conventional few body methods have been employed. In contrast to other techniques, the same equations are used for any number of particles, while the computer time increases only linearly V, S the number of particles

  15. Development of film dosimetric measurement system for verification of RTP

    International Nuclear Information System (INIS)

    Chen Yong; Bao Shanglian; Ji Changguo; Zhang Xin; Wu Hao; Han Shukui; Xiao Guiping

    2007-01-01

    Objective: To develop a novel film dosimetry system based on general laser scanner in order to verify patient-specific Radiotherapy Treatment Plan(RTP) in three-Dimensional Adaptable Radiotherapy(3D ART) and Intensity Modulated Radiotherapy (IMRT). Methods: Some advanced methods, including film saturated development, wavelet filtering with multi-resolution thresholds and discrete Fourier reconstruction are employed in this system to reduce artifacts, noise and distortion induced by film digitizing with general scanner; a set of coefficients derived from Monte Carlo(MC) simulation are adopted to correct the film over-response to low energy scattering photons; a set of newly emerging criteria, including γ index and Normalized Agreement Test (NAT) method, are employed to quantitatively evaluate agreement of 2D dose distributions between the results measured by the films and calculated by Treatment Planning System(TPS), so as to obtain straightforward presentations, displays and results with high accuracy and reliability. Results: Radiotherapy doses measured by developed system agree within 2% with those measured by ionization chamber and VeriSoft Film Dosimetry System, and quantitative evaluation indexes are within 3%. Conclusions: The developed system can be used to accurately measure the radiotherapy dose and reliably make quantitative evaluation for RTP dose verification. (authors)

  16. Temporal Specification and Verification of Real-Time Systems.

    Science.gov (United States)

    1991-08-30

    of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .

  17. A Synthesized Framework for Formal Verification of Computing Systems

    Directory of Open Access Journals (Sweden)

    Nikola Bogunovic

    2003-12-01

    Full Text Available Design process of computing systems gradually evolved to a level that encompasses formal verification techniques. However, the integration of formal verification techniques into a methodical design procedure has many inherent miscomprehensions and problems. The paper explicates the discrepancy between the real system implementation and the abstracted model that is actually used in the formal verification procedure. Particular attention is paid to the seamless integration of all phases of the verification procedure that encompasses definition of the specification language and denotation and execution of conformance relation between the abstracted model and its intended behavior. The concealed obstacles are exposed, computationally expensive steps identified and possible improvements proposed.

  18. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  19. Automatic Verification of Timing Constraints for Safety Critical Space Systems

    Science.gov (United States)

    Fernandez, Javier; Parra, Pablo; Sanchez Prieto, Sebastian; Polo, Oscar; Bernat, Guillem

    2015-09-01

    In this paper is presented an automatic process of verification. We focus in the verification of scheduling analysis parameter. This proposal is part of process based on Model Driven Engineering to automate a Verification and Validation process of the software on board of satellites. This process is implemented in a software control unit of the energy particle detector which is payload of Solar Orbiter mission. From the design model is generated a scheduling analysis model and its verification model. The verification as defined as constraints in way of Finite Timed Automatas. When the system is deployed on target the verification evidence is extracted as instrumented points. The constraints are fed with the evidence, if any of the constraints is not satisfied for the on target evidence the scheduling analysis is not valid.

  20. Compositional verification of real-time systems using Ecdar

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2012-01-01

    We present a specification theory for timed systems implemented in the Ecdar tool. We illustrate the operations of the specification theory on a running example, showing the models and verification checks. To demonstrate the power of the compositional verification, we perform an in depth case study...... of a leader election protocol; Modeling it in Ecdar as Timed input/output automata Specifications and performing both monolithic and compositional verification of two interesting properties on it. We compare the execution time of the compositional to the classical verification showing a huge difference...

  1. Entropy Measurement for Biometric Verification Systems.

    Science.gov (United States)

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.

  2. Formal Development and Verification of a Distributed Railway Control System

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan

    1999-01-01

    In this article we introduce the concept for a distributed railway control system and present the specification and verification of the main algorithm used for safe distributed control. Our design and verification approach is based on the RAISE method, starting with highly abstract algebraic...

  3. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  4. Formal Development and Verification of a Distributed Railway Control System

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan

    1998-01-01

    In this article we introduce the concept for a distributed railway control system and present the specification and verification of the main algorithm used for safe distributed control. Our design and verification approach is based on the RAISE method, starting with highly abstract algebraic spec...

  5. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  6. Verification of the shift Monte Carlo code with the C5G7 reactor benchmark

    International Nuclear Information System (INIS)

    Sly, N. C.; Mervin, B. T.; Mosher, S. W.; Evans, T. M.; Wagner, J. C.; Maldonado, G. I.

    2012-01-01

    Shift is a new hybrid Monte Carlo/deterministic radiation transport code being developed at Oak Ridge National Laboratory. At its current stage of development, Shift includes a parallel Monte Carlo capability for simulating eigenvalue and fixed-source multigroup transport problems. This paper focuses on recent efforts to verify Shift's Monte Carlo component using the two-dimensional and three-dimensional C5G7 NEA benchmark problems. Comparisons were made between the benchmark eigenvalues and those output by the Shift code. In addition, mesh-based scalar flux tally results generated by Shift were compared to those obtained using MCNP5 on an identical model and tally grid. The Shift-generated eigenvalues were within three standard deviations of the benchmark and MCNP5-1.60 values in all cases. The flux tallies generated by Shift were found to be in very good agreement with those from MCNP. (authors)

  7. Verification of three dimensional triangular prismatic discrete ordinates transport code ENSEMBLE-TRIZ by comparison with Monte Carlo code GMVP

    International Nuclear Information System (INIS)

    Homma, Y.; Moriwaki, H.; Ikeda, K.; Ohdi, S.

    2013-01-01

    This paper deals with the verification of the 3 dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with the multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at the beginning of cycle of an initial core and at the beginning and the end of cycle of an equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multiplication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity. (authors)

  8. Preliminary Validation and Verification Plan for CAREM Reactor Protection System

    International Nuclear Information System (INIS)

    Fittipaldi, Ana; Maciel Felix

    2000-01-01

    The purpose of this paper, is to present a preliminary validation and verification plan for a particular architecture proposed for the CAREM reactor protection system with software modules (computer based system).These software modules can be either own design systems or systems based in commercial modules such as programmable logic controllers (PLC) redundant of last generation.During this study, it was seen that this plan can also be used as a validation and verification plan of commercial products (COTS, commercial off the shelf) and/or smart transmitters.The software life cycle proposed and its features are presented, and also the advantages of the preliminary validation and verification plan

  9. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Locke, C.; Zavgorodni, S.; British Columbia Cancer Agency, Vancouver Island Center, Victoria BC

    2008-01-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam

  10. Standard Verification System Lite (SVS Lite)

    Data.gov (United States)

    Social Security Administration — SVS Lite is a mainframe program used exclusively by the Office of Child Support Enforcement (OCSE) to perform batch SSN verifications. This process is exactly the...

  11. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study

    International Nuclear Information System (INIS)

    Gear, J I; Partridge, M; Flux, G D; Charles-Edwards, E

    2011-01-01

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  12. Verification and Validation Issues in Systems of Systems

    Directory of Open Access Journals (Sweden)

    Eric Honour

    2013-11-01

    Full Text Available The cutting edge in systems development today is in the area of "systems of systems" (SoS large networks of inter-related systems that are developed and managed separately, but that also perform collective activities. Such large systems typically involve constituent systems operating with different life cycles, often with uncoordinated evolution. The result is an ever-changing SoS in which adaptation and evolution replace the older engineering paradigm of "development". This short paper presents key thoughts about verification and validation in this environment. Classic verification and validation methods rely on having (a a basis of proof, in requirements and in operational scenarios, and (b a known system configuration to be proven. However, with constant SoS evolution, management of both requirements and system configurations are problematic. Often, it is impossible to maintain a valid set of requirements for the SoS due to the ongoing changes in the constituent systems. Frequently, it is even difficult to maintain a vision of the SoS operational use as users find new ways to adapt the SoS. These features of the SoS result in significant challenges for system proof. In addition to discussing the issues, the paper also indicates some of the solutions that are currently used to prove the SoS.

  13. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

    International Nuclear Information System (INIS)

    Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

    2000-01-01

    Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

  14. NPP Temelin instrumentation and control system upgrade and verification

    International Nuclear Information System (INIS)

    Ubra, O.; Petrlik, J.

    1998-01-01

    Two units of Ver 1000 type of the Czech nuclear power plant Temelin, which are under construction are being upgraded with the latest instrumentation and control system delivered by WEC. To confirm that the functional design of the new Reactor Control and Limitation System, Turbine Control System and Plant Control System are in compliance with the Czech customer requirements and that these requirements are compatible with NPP Temelin upgraded technology, the verification of the control systems has been performed. The method of transient analysis has been applied. Some details of the NPP Temelin Reactor Control and Limitation System verification are presented.(author)

  15. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  16. IDEF method for designing seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Jin Ping; Zhang Huimin; Zheng Jiangling; Sun Peng

    2004-01-01

    Seismic information system is of great importance for improving the capability of CTBT verification. A large amount of money has been appropriated for the research in this field in the U.S. and some other countries in recent years. However, designing and developing a seismic information system involves various technologies about complex system design. This paper discusses the IDEF0 method to construct function models and the IDEF1x method to make information models systemically, as well as how they are used in designing seismic information system in CTBT verification. (authors)

  17. SU-E-J-145: Validation of An Analytical Model for in Vivo Range Verification Using GATE Monte Carlo Simulation in Proton Therapy

    International Nuclear Information System (INIS)

    Lee, C; Lin, H; Chao, T; Hsiao, I; Chuang, K

    2015-01-01

    Purpose: Predicted PET images on the basis of analytical filtering approach for proton range verification has been successful developed and validated using FLUKA Monte Carlo (MC) codes and phantom measurements. The purpose of the study is to validate the effectiveness of analytical filtering model for proton range verification on GATE/GEANT4 Monte Carlo simulation codes. Methods: In this study, we performed two experiments for validation of predicted β+-isotope by the analytical model with GATE/GEANT4 simulations. The first experiments to evaluate the accuracy of predicting β+-yields as a function of irradiated proton energies. In second experiment, we simulate homogeneous phantoms of different materials irradiated by a mono-energetic pencil-like proton beam. The results of filtered β+-yields distributions by the analytical model is compared with those of MC simulated β+-yields in proximal and distal fall-off ranges. Results: The results investigate the distribution between filtered β+-yields and MC simulated β+-yields distribution in different conditions. First, we found that the analytical filtering can be applied over the whole range of the therapeutic energies. Second, the range difference between filtered β+-yields and MC simulated β+-yields at the distal fall-off region are within 1.5mm for all materials used. The findings validated the usefulness of analytical filtering model on range verification of proton therapy on GATE Monte Carlo simulations. In addition, there is a larger discrepancy between filtered prediction and MC simulated β+-yields using GATE code, especially in proximal region. This discrepancy might Result from the absence of wellestablished theoretical models for predicting the nuclear interactions. Conclusion: Despite the fact that large discrepancies of the distributions between MC-simulated and predicted β+-yields were observed, the study prove the effectiveness of analytical filtering model for proton range verification using

  18. Logic verification system for power plant sequence diagrams

    International Nuclear Information System (INIS)

    Fukuda, Mitsuko; Yamada, Naoyuki; Teshima, Toshiaki; Kan, Ken-ichi; Utsunomiya, Mitsugu.

    1994-01-01

    A logic verification system for sequence diagrams of power plants has been developed. The system's main function is to verify correctness of the logic realized by sequence diagrams for power plant control systems. The verification is based on a symbolic comparison of the logic of the sequence diagrams with the logic of the corresponding IBDs (interlock Block Diagrams) in combination with reference to design knowledge. The developed system points out the sub-circuit which is responsible for any existing mismatches between the IBD logic and the logic realized by the sequence diagrams. Applications to the verification of actual sequence diagrams of power plants confirmed that the developed system is practical and effective. (author)

  19. Monte Carlo verification of control-rod worth for the Savannah River K reactor

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1992-01-01

    The Savannah River K Reactor is a heavy-water reactor that relies on control-rod movement to control its reactivity and power distribution during normal operations. It is necessary, therefore, to have an accurate estimate of the reactivity worth of its control rods in order to predict the behavior of the reactor. Westinghouse Savannah River Company (WSRC) uses the GLASS lattice-physics code to calculate few-group cross sections for fuel and control-rod assemblies in the K reactor. This paper compares the control-rod worth calculated by GLASS to that calculated by the MCNP Monte Carlo program. The GLASS calculations utilize its standard 37-group cross-section library, while the MCNP calculations employ continuous-energy isotopic cross-section libraries derived from ENDF/B-V. The MCNP calculations therefore combine the most rigorous analytical model and the most accurate cross sections currently available for thermal-reactor analysis. Consequently, the MCNP results comprise a computational benchmark against which the accuracy of the GLASS code can be evaluated

  20. Verification of the Monte Carlo differential operator technique for MCNP trademark

    International Nuclear Information System (INIS)

    McKinney, G.W.; Iverson, J.L.

    1996-02-01

    The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and second order terms of the Taylor series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Perturbation and sensitivity analyses can benefit from this technique in that predicted changes in one or more tally responses may be obtained for multiple perturbations in a single run. The user interface is intuitive, yet flexible enough to allow for changes in a specific microscopic cross section over a specified energy range. With this technique, a precise estimate of a small change in response is easily obtained, even when the standard deviation of the unperturbed tally is greater than the change. Furthermore, results presented in this report demonstrate that first and second order terms can offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response

  1. Verification of Transformer Restricted Earth Fault Protection by using the Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    KRSTIVOJEVIC, J. P.

    2015-08-01

    Full Text Available The results of a comprehensive investigation of the influence of current transformer (CT saturation on restricted earth fault (REF protection during power transformer magnetization inrush are presented. Since the inrush current during switch-on of unloaded power transformer is stochastic, its values are obtained by: (i laboratory measurements and (ii calculations based on the input data obtained by the Monte Carlo (MC simulation. To make a detailed assessment of the current transformer performance the uncertain input data for the CT model were obtained by applying the MC method. In this way, different levels of remanent flux in CT core are taken into consideration. By the generated CT secondary currents, the algorithm for REF protection based on phase comparison in time domain is tested. On the basis of the obtained results, a method of adjustment of the triggering threshold in order to ensure safe operation during transients, and thereby improve the algorithm security, has been proposed. The obtained results indicate that power transformer REF protection would be enhanced by using the proposed adjustment of triggering threshold in the algorithm which is based on phase comparison in time domain.

  2. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Formal development and verification of a distributed railway control system

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, J.

    2000-01-01

    specifications which are transformed into directly implementable distributed control processes by applying a series of refinement and verification steps. Concrete safety requirements are derived from an abstract version that can be easily validated with respect to soundness and completeness. Complexity......The authors introduce the concept for a distributed railway control system and present the specification and verification of the main algorithm used for safe distributed control. Our design and verification approach is based on the RAISE method, starting with highly abstract algebraic...... is further reduced by separating the system model into a domain model and a controller model. The domain model describes the physical system in absence of control and the controller model introduces the safety-related control mechanisms as a separate entity monitoring observables of the physical system...

  4. A hand held photo identity verification system for mobile applications

    International Nuclear Information System (INIS)

    Kumar, Ranajit; Upreti, Anil; Mahaptra, U.; Bhattacharya, S.; Srivastava, G.P.

    2009-01-01

    A handheld portable system has been developed for mobile personnel identity verification. The system consists of a contact less RF smart card reader integrated to a Simputer through serial link. The simputer verifies the card data, with the data base and aids the security operator in identifying the persons by providing the facial image of the verified person along with other personal details like name, designation, division etc. All transactions are recorded in the Simputer with time and date for future record. This system finds extensive applications in mobile identity verification in nuclear or other industries. (author)

  5. Verification and validation of computer based systems for PFBR

    International Nuclear Information System (INIS)

    Thirugnanamurthy, D.

    2017-01-01

    Verification and Validation (V and V) process is essential to build quality into system. Verification is the process of evaluating a system to determine whether the products of each development phase satisfies the requirements imposed by the previous phase. Validation is the process of evaluating a system at the end of the development process to ensure compliance with the functional, performance and interface requirements. This presentation elaborates the V and V process followed, documents submission requirements in each stage, V and V activities, check list used for reviews in each stage and reports

  6. Parallel verification of dynamic systems with rich configurations

    OpenAIRE

    Pessoa, Eduardo José Dias

    2016-01-01

    Dissertação de mestrado em Engenharia Informática (área de especialização em Informática) Model checking is a technique used to automatically verify a model which represents the specification of some system. To ensure the correctness of the system the verification of both static and dynamic properties is often needed. The specification of a system is made through modeling languages, while the respective verification is made by its model-checker. Most modeling frameworks are not...

  7. Formal Verification of Real-Time System Requirements

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2000-01-01

    Full Text Available The methodology of system requirements verification presented in this paper is a proposition of a practical procedure for reducing some negatives of the specification of requirements. The main problem that is considered is to create a complete description of the system requirements without any negatives. Verification of the initially defined requirements is based on the coloured Petri nets. Those nets are useful for testing some properties of system requirements such as completeness, consistency and optimality. An example ofthe litt controller is presented.

  8. Verification of IMRT dose distributions using a water beam imaging system

    International Nuclear Information System (INIS)

    Li, J.S.; Boyer, Arthur L.; Ma, C.-M.

    2001-01-01

    A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cmx10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification

  9. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields

    International Nuclear Information System (INIS)

    Pavon, Ester Carrasco; Sanchez-Doblado, Francisco; Leal, Antonio; Capote, Roberto; Lagares, Juan Ignacio; Perucha, Maria; Arrans, Rafael

    2003-01-01

    Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm 2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm 2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm 2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R 50 , R 80 , R 100 , R p , E 0 ) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13deg at SSD 100 cm to more than 30deg at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC

  10. Applying Formal Verification Techniques to Ambient Assisted Living Systems

    Science.gov (United States)

    Benghazi, Kawtar; Visitación Hurtado, María; Rodríguez, María Luisa; Noguera, Manuel

    This paper presents a verification approach based on timed traces semantics and MEDISTAM-RT [1] to check the fulfillment of non-functional requirements, such as timeliness and safety, and assure the correct functioning of the Ambient Assisted Living (AAL) systems. We validate this approach by its application to an Emergency Assistance System for monitoring people suffering from cardiac alteration with syncope.

  11. SU-E-J-82: Intra-Fraction Proton Beam-Range Verification with PET Imaging: Feasibility Studies with Monte Carlo Simulations and Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lou, K [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Mirkovic, D; Sun, X; Zhu, X; Poenisch, F; Grosshans, D; Shao, Y [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Clark, J [Rice University, Houston, TX (United States)

    2014-06-01

    Purpose: To study the feasibility of intra-fraction proton beam-range verification with PET imaging. Methods: Two phantoms homogeneous cylindrical PMMA phantoms (290 mm axial length, 38 mm and 200 mm diameter respectively) were studied using PET imaging: a small phantom using a mouse-sized PET (61 mm diameter field of view (FOV)) and a larger phantom using a human brain-sized PET (300 mm FOV). Monte Carlo (MC) simulations (MCNPX and GATE) were used to simulate 179.2 MeV proton pencil beams irradiating the two phantoms and be imaged by the two PET systems. A total of 50 simulations were conducted to generate 50 positron activity distributions and correspondingly 50 measured activity-ranges. The accuracy and precision of these activity-ranges were calculated under different conditions (including count statistics and other factors, such as crystal cross-section). Separate from the MC simulations, an activity distribution measured from a simulated PET image was modeled as a noiseless positron activity distribution corrupted by Poisson counting noise. The results from these two approaches were compared to assess the impact of count statistics on the accuracy and precision of activity-range calculations. Results: MC Simulations show that the accuracy and precision of an activity-range are dominated by the number (N) of coincidence events of the reconstructed image. They are improved in a manner that is inversely proportional to 1/sqrt(N), which can be understood from the statistical modeling. MC simulations also indicate that the coincidence events acquired within the first 60 seconds with 10{sup 9} protons (small phantom) and 10{sup 10} protons (large phantom) are sufficient to achieve both sub-millimeter accuracy and precision. Conclusion: Under the current MC simulation conditions, the initial study indicates that the accuracy and precision of beam-range verification are dominated by count statistics, and intra-fraction PET image-based beam-range verification is

  12. Verification and Validation for Flight-Critical Systems (VVFCS)

    Science.gov (United States)

    Graves, Sharon S.; Jacobsen, Robert A.

    2010-01-01

    On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%).

  13. Formal verification of automated teller machine systems using SPIN

    Science.gov (United States)

    Iqbal, Ikhwan Mohammad; Adzkiya, Dieky; Mukhlash, Imam

    2017-08-01

    Formal verification is a technique for ensuring the correctness of systems. This work focuses on verifying a model of the Automated Teller Machine (ATM) system against some specifications. We construct the model as a state transition diagram that is suitable for verification. The specifications are expressed as Linear Temporal Logic (LTL) formulas. We use Simple Promela Interpreter (SPIN) model checker to check whether the model satisfies the formula. This model checker accepts models written in Process Meta Language (PROMELA), and its specifications are specified in LTL formulas.

  14. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Y. E-mail: nagao@jmtr.oarai.jaeri.go.jp; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H

    2000-11-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of {sup 6}Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high {sup 6}Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10{sup 13} n cm{sup -2} per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2.

  15. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    International Nuclear Information System (INIS)

    Nagao, Y.; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H.

    2000-01-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of 6 Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high 6 Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10 13 n cm -2 per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2

  16. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  17. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy

    Science.gov (United States)

    Moteabbed, M.; España, S.; Paganetti, H.

    2011-02-01

    The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as 11C, 15O, 13N, 30P and 38K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the

  18. Monte Carlo methods for the reliability analysis of Markov systems

    International Nuclear Information System (INIS)

    Buslik, A.J.

    1985-01-01

    This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator

  19. Software verification in on-line systems

    International Nuclear Information System (INIS)

    Ehrenberger, W.

    1980-01-01

    Operator assistance is more and more provided by computers. Computers contain programs, whose quality should be above a certain level, before they are allowed to be used in reactor control rooms. Several possibilities for gaining software reliability figures are discussed in this paper. By supervising the testing procedure of a program, one can estimate the number of remaining programming errors. Such an estimation, however, is not very accurate. With mathematical proving procedures one can gain some knowledge on program properties. Such proving procedures are important for the verification of general WHILE-loops, which tend to be error prone. The program analysis decomposes a program into its parts. First the program structure is made visible, which includes the data movements and the control flow. From this analysis test cases can be derived that lead to a complete test. Program analysis can be done by hand or automatically. A statistical program test normally requires a large number of test runs. This number is diminished if details concerning both the program to be tested or its use are known in advance. (orig.)

  20. A multi-microcomputer system for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Berg, B.; Krasemann, H.

    1981-01-01

    We propose a microcomputer system which allows parallel processing for Monte Carlo calculations in lattice gauge theories, simulations of high energy physics experiments and presumably many other fields of current interest. The master-n-slave multiprocessor system is based on the Motorola MC 68000 microprocessor. One attraction if this processor is that it allows up to 16 M Byte random access memory. (orig.)

  1. Development and benchmark verification of a parallelized Monte Carlo burnup calculation program MCBMPI

    International Nuclear Information System (INIS)

    Yang Wankui; Liu Yaoguang; Ma Jimin; Yang Xin; Wang Guanbo

    2014-01-01

    MCBMPI, a parallelized burnup calculation program, was developed. The program is modularized. Neutron transport calculation module employs the parallelized MCNP5 program MCNP5MPI, and burnup calculation module employs ORIGEN2, with the MPI parallel zone decomposition strategy. The program system only consists of MCNP5MPI and an interface subroutine. The interface subroutine achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, data exchanging with MCNP5MPI. Also, the program was verified with the Pressurized Water Reactor (PWR) cell burnup benchmark, the results showed that it's capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)

  2. Applicability of quasi-Monte Carlo for lattice systems

    International Nuclear Information System (INIS)

    Ammon, Andreas; Deutsches Elektronen-Synchrotron; Hartung, Tobias; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Mueller-Preussker, Michael

    2013-11-01

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N -1/2 , where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N -1 , or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  3. Applicability of quasi-Monte Carlo for lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics

    2013-11-15

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  4. Android-Based Verification System for Banknotes

    Directory of Open Access Journals (Sweden)

    Ubaid Ur Rahman

    2017-11-01

    Full Text Available With the advancement in imaging technologies for scanning and printing, production of counterfeit banknotes has become cheaper, easier, and more common. The proliferation of counterfeit banknotes causes loss to banks, traders, and individuals involved in financial transactions. Hence, it is inevitably needed that efficient and reliable techniques for detection of counterfeit banknotes should be developed. With the availability of powerful smartphones, it has become possible to perform complex computations and image processing related tasks on these phones. In addition to this, smartphone users have increased greatly and numbers continue to increase. This is a great motivating factor for researchers and developers to propose innovative mobile-based solutions. In this study, a novel technique for verification of Pakistani banknotes is developed, targeting smartphones with android platform. The proposed technique is based on statistical features, and surface roughness of a banknote, representing different properties of the banknote, such as paper material, printing ink, paper quality, and surface roughness. The selection of these features is motivated by the X-ray Diffraction (XRD and Scanning Electron Microscopy (SEM analysis of genuine and counterfeit banknotes. In this regard, two important areas of the banknote, i.e., serial number and flag portions were considered since these portions showed the maximum difference between genuine and counterfeit banknote. The analysis confirmed that genuine and counterfeit banknotes are very different in terms of the printing process, the ingredients used in preparation of banknotes, and the quality of the paper. After extracting the discriminative set of features, support vector machine is used for classification. The experimental results confirm the high accuracy of the proposed technique.

  5. Towards Verification of Constituent Systems through Automated Proof

    DEFF Research Database (Denmark)

    Couto, Luis Diogo Monteiro Duarte; Foster, Simon; Payne, R

    2014-01-01

    This paper explores verification of constituent systems within the context of the Symphony tool platform for Systems of Systems (SoS). Our SoS modelling language, CML, supports various contractual specification elements, such as state invariants and operation preconditions, which can be used...... to specify contractual obligations on the constituent systems of a SoS. To support verification of these obligations we have developed a proof obligation generator and theorem prover plugin for Symphony. The latter uses the Isabelle/HOL theorem prover to automatically discharge the proof obligations arising...... from a CML model. Our hope is that the resulting proofs can then be used to formally verify the conformance of each constituent system, which is turn would result in a dependable SoS....

  6. Alien Registration Number Verification via the U.S. Citizenship and Immigration Service's Systematic Alien Verification for Entitlements System

    National Research Council Canada - National Science Library

    Ainslie, Frances M; Buck, Kelly R

    2008-01-01

    The purpose of this study was to evaluate the implications of conducting high-volume automated checks of the United States Citizenship and Immigration Services Systematic Allen Verification for Entitlements System (SAVE...

  7. Verification and validation guidelines for high integrity systems. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, H.; Hecht, M.; Dinsmore, G.; Hecht, S.; Tang, D. [SoHaR, Inc., Beverly Hills, CA (United States)

    1995-03-01

    High integrity systems include all protective (safety and mitigation) systems for nuclear power plants, and also systems for which comparable reliability requirements exist in other fields, such as in the process industries, in air traffic control, and in patient monitoring and other medical systems. Verification aims at determining that each stage in the software development completely and correctly implements requirements that were established in a preceding phase, while validation determines that the overall performance of a computer system completely and correctly meets system requirements. Volume I of the report reviews existing classifications for high integrity systems and for the types of errors that may be encountered, and makes recommendations for verification and validation procedures, based on assumptions about the environment in which these procedures will be conducted. The final chapter of Volume I deals with a framework for standards in this field. Volume II contains appendices dealing with specific methodologies for system classification, for dependability evaluation, and for two software tools that can automate otherwise very labor intensive verification and validation activities.

  8. Verification and validation guidelines for high integrity systems. Volume 1

    International Nuclear Information System (INIS)

    Hecht, H.; Hecht, M.; Dinsmore, G.; Hecht, S.; Tang, D.

    1995-03-01

    High integrity systems include all protective (safety and mitigation) systems for nuclear power plants, and also systems for which comparable reliability requirements exist in other fields, such as in the process industries, in air traffic control, and in patient monitoring and other medical systems. Verification aims at determining that each stage in the software development completely and correctly implements requirements that were established in a preceding phase, while validation determines that the overall performance of a computer system completely and correctly meets system requirements. Volume I of the report reviews existing classifications for high integrity systems and for the types of errors that may be encountered, and makes recommendations for verification and validation procedures, based on assumptions about the environment in which these procedures will be conducted. The final chapter of Volume I deals with a framework for standards in this field. Volume II contains appendices dealing with specific methodologies for system classification, for dependability evaluation, and for two software tools that can automate otherwise very labor intensive verification and validation activities

  9. Monte Carlo simulations of confined polymer systems

    NARCIS (Netherlands)

    Vliet, Johannes Henricus van

    1991-01-01

    This thesis considers confined polymer systems. These systems are of considerable interest, e.g., thin polymer films, chromotography of polymer solutions, drag reduction, enhanced oil recovery, stabilization of colloidal dispersions, lubrication and biolubrication. The method used to study these

  10. MESA: Message-Based System Analysis Using Runtime Verification

    Science.gov (United States)

    Shafiei, Nastaran; Tkachuk, Oksana; Mehlitz, Peter

    2017-01-01

    In this paper, we present a novel approach and framework for run-time verication of large, safety critical messaging systems. This work was motivated by verifying the System Wide Information Management (SWIM) project of the Federal Aviation Administration (FAA). SWIM provides live air traffic, site and weather data streams for the whole National Airspace System (NAS), which can easily amount to several hundred messages per second. Such safety critical systems cannot be instrumented, therefore, verification and monitoring has to happen using a nonintrusive approach, by connecting to a variety of network interfaces. Due to a large number of potential properties to check, the verification framework needs to support efficient formulation of properties with a suitable Domain Specific Language (DSL). Our approach is to utilize a distributed system that is geared towards connectivity and scalability and interface it at the message queue level to a powerful verification engine. We implemented our approach in the tool called MESA: Message-Based System Analysis, which leverages the open source projects RACE (Runtime for Airspace Concept Evaluation) and TraceContract. RACE is a platform for instantiating and running highly concurrent and distributed systems and enables connectivity to SWIM and scalability. TraceContract is a runtime verication tool that allows for checking traces against properties specified in a powerful DSL. We applied our approach to verify a SWIM service against several requirements.We found errors such as duplicate and out-of-order messages.

  11. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    Science.gov (United States)

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  12. Integrated knowledge base tool for acquisition and verification of NPP alarm systems

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1998-01-01

    Knowledge acquisition and knowledge base verification are important activities in developing knowledge-based systems such as alarm processing systems. In this work, we developed the integrated tool, for knowledge acquisition and verification of NPP alarm processing systems, by using G2 tool. The tool integrates document analysis method and ECPN matrix analysis method, for knowledge acquisition and knowledge verification, respectively. This tool enables knowledge engineers to perform their tasks from knowledge acquisition to knowledge verification consistently

  13. Automatic Verification of Railway Interlocking Systems: A Case Study

    DEFF Research Database (Denmark)

    Petersen, Jakob Lyng

    1998-01-01

    This paper presents experiences in applying formal verification to a large industrial piece of software. The are of application is railway interlocking systems. We try to prove requirements of the program controlling the Swedish railway Station Alingsås by using the decision procedure which...... express thoughts on what is needed in order to be able to successfully verify large real-life systems....

  14. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  15. Expert system verification and validation for nuclear power industry applications

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    The potential for the use of expert systems in the nuclear power industry is widely recognized. The benefits of such systems include consistency of reasoning during off-normal situations when humans are under great stress, the reduction of times required to perform certain functions, the prevention of equipment failures through predictive diagnostics, and the retention of human expertise in performing specialized functions. The increased use of expert systems brings with it concerns about their reliability. Difficulties arising from software problems can affect plant safety, reliability, and availability. A joint project between EPRI and the US Nuclear Regulatory Commission is being initiated to develop a methodology for verification and validation of expert systems for nuclear power applications. This methodology will be tested on existing and developing expert systems. This effort will explore the applicability of conventional verification and validation methodologies to expert systems. The major area of concern will be certification of the knowledge base. This is expected to require new types of verification and validation techniques. A methodology for developing validation scenarios will also be studied

  16. The verification of neutron activation analysis support system (cooperative research)

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sawahata, Hiroyuki; Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Onizawa, Kouji [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k{sub 0} method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k{sub 0} method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  17. Modelling and Verification of Relay Interlocking Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Bliguet, Marie Le; Kjær, Andreas

    2010-01-01

    This paper describes how relay interlocking systems as used by the Danish railways can be formally modelled and verified. Such systems are documented by circuit diagrams describing their static layout. It is explained how to derive a state transition system model for the dynamic behaviour...

  18. Compositional Verification of Multi-Station Interlocking Systems

    DEFF Research Database (Denmark)

    Macedo, Hugo Daniel dos Santos; Fantechi, Alessandro; Haxthausen, Anne Elisabeth

    2016-01-01

    pose a big challenge to current verification methodologies, due to the explosion of state space size as soon as large, if not medium sized, multi-station systems have to be controlled. For these reasons, verification techniques that exploit locality principles related to the topological layout...... of the controlled system to split in different ways the state space have been investigated. In particular, compositional approaches divide the controlled track network in regions that can be verified separately, once proper assumptions are considered on the way the pieces are glued together. Basing on a successful...... method to verify the size of rather large networks, we propose a compositional approach that is particularly suitable to address multi-station interlocking systems which control a whole line composed of stations linked by mainline tracks. Indeed, it turns out that for such networks, and for the adopted...

  19. Orion GN&C Fault Management System Verification: Scope And Methodology

    Science.gov (United States)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  20. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  1. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  2. Temporal logic runtime verification of dynamic systems

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-07-01

    Full Text Available , this paper provides a novel framework that automatically and verifiably monitors these systems at runtime. The main aim of the framework is to assist the operator through witnesses and counterexamples that are generated during the execution of the system...

  3. Formal modelling and verification of interlocking systems featuring sequential release

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

    2017-01-01

    In this article, we present a method and an associated toolchain for the formal verification of the new Danish railway interlocking systems that are compatible with the European Train Control System (ETCS) Level 2. We have made a generic and reconfigurable model of the system behaviour and generic...... safety properties. This model accommodates sequential release - a feature in the new Danish interlocking systems. To verify the safety of an interlocking system, first a domain-specific description of interlocking configuration data is constructed and validated. Then the generic model and safety...

  4. Systems analysis-independent analysis and verification

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J.S.; DiPietro, J.P. [Energetics, Inc., Columbia, MD (United States)

    1995-09-01

    The DOE Hydrogen Program is supporting research, development, and demonstration activities to overcome the barriers to the integration of hydrogen into the Nation`s energy infrastructure. Much work is required to gain acceptance of hydrogen energy system concepts and to develop them for implementation. A systems analysis database has been created that includes a formal documentation of technology characterization profiles and cost and performance information. Through a systematic and quantitative approach, system developers can understand and address important issues and thereby assure effective and timely commercial implementation. This project builds upon and expands the previously developed and tested pathway model and provides the basis for a consistent and objective analysis of all hydrogen energy concepts considered by the DOE Hydrogen Program Manager. This project can greatly accelerate the development of a system by minimizing the risk of costly design evolutions, and by stimulating discussions, feedback, and coordination of key players and allows them to assess the analysis, evaluate the trade-offs, and to address any emerging problem areas. Specific analytical studies will result in the validation of the competitive feasibility of the proposed system and identify system development needs. Systems that are investigated include hydrogen bromine electrolysis, municipal solid waste gasification, electro-farming (biomass gasifier and PEM fuel cell), wind/hydrogen hybrid system for remote sites, home electrolysis and alternate infrastructure options, renewable-based electrolysis to fuel PEM fuel cell vehicle fleet, and geothermal energy used to produce hydrogen. These systems are compared to conventional and benchmark technologies. Interim results and findings are presented. Independent analyses emphasize quality, integrity, objectivity, a long-term perspective, corporate memory, and the merging of technical, economic, operational, and programmatic expertise.

  5. Verification on reliability of heat exchanger for primary cooling system

    International Nuclear Information System (INIS)

    Koike, Sumio; Gorai, Shigeru; Onoue, Ryuji; Ohtsuka, Kaoru

    2010-07-01

    Prior to the JMTR refurbishment, verification on reliability of the heat exchangers for primary cooling system was carried out to investigate an integrity of continuously use component. From a result of the significant corrosion, decrease of tube thickness, crack were not observed on the heat exchangers, and integrity of heat exchangers were confirmed. In the long terms usage of the heat exchangers, the maintenance based on periodical inspection and a long-term maintenance plan is scheduled. (author)

  6. System Identification and Verification of Rotorcraft UAVs

    Science.gov (United States)

    Carlton, Zachary M.

    The task of a controls engineer is to design and implement control logic. To complete this task, it helps tremendously to have an accurate model of the system to be controlled. Obtaining a very accurate system model is not a trivial one, as much time and money is usually associated with the development of such a model. A typical physics based approach can require hundreds of hours of flight time. In an iterative process the model is tuned in such a way that it accurately models the physical system's response. This process becomes even more complicated for unstable and highly non-linear systems such as the dynamics of rotorcraft. An alternate approach to solving this problem is to extract an accurate model by analyzing the frequency response of the system. This process involves recording the system's responses for a frequency range of input excitations. From this data, an accurate system model can then be deduced. Furthermore, it has been shown that with use of the software package CIFER® (Comprehensive Identification from FrEquency Responses), this process can both greatly reduce the cost of modeling a dynamic system and produce very accurate results. The topic of this thesis is to apply CIFER® to a quadcopter to extract a system model for the flight condition of hover. The quadcopter itself is comprised of off-the-shelf components with a Pixhack flight controller board running open source Ardupilot controller logic. In this thesis, both the closed and open loop systems are identified. The model is next compared to dissimilar flight data and verified in the time domain. Additionally, the ESC (Electronic Speed Controller) motor/rotor subsystem, which is comprised of all the vehicle's actuators, is also identified. This process required the development of a test bench environment, which included a GUI (Graphical User Interface), data pre and post processing, as well as the augmentation of the flight controller source code. This augmentation of code allowed for

  7. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    International Nuclear Information System (INIS)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-01-01

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  8. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  9. Functional verification of dynamically reconfigurable FPGA-based systems

    CERN Document Server

    Gong, Lingkan

    2015-01-01

    This book analyzes the challenges in verifying Dynamically Reconfigurable Systems (DRS) with respect to the user design and the physical implementation of such systems. The authors describe the use of a simulation-only layer to emulate the behavior of target FPGAs and accurately model the characteristic features of reconfiguration. Readers are enabled with this simulation-only layer to maintain verification productivity by abstracting away the physical details of the FPGA fabric.  Two implementations of the simulation-only layer are included: Extended ReChannel is a SystemC library that can be used to check DRS designs at a high level; ReSim is a library to support RTL simulation of a DRS reconfiguring both its logic and state. Through a number of case studies, the authors demonstrate how their approach integrates seamlessly with existing, mainstream DRS design flows and with well-established verification methodologies such as top-down modeling and coverage-driven verification. Provides researchers with an i...

  10. Verification test of control rod system for HTR-10

    International Nuclear Information System (INIS)

    Zhou Huizhong; Diao Xingzhong; Huang Zhiyong; Cao Li; Yang Nianzu

    2002-01-01

    There are 10 sets of control rods and driving devices in 10 MW High Temperature Gas-cooled Test Reactor (HTR-10). The control rod system is the controlling and shutdown system of HTR-10, which is designed for reactor criticality, operation, and shutdown. In order to guarantee technical feasibility, a series of verification tests were performed, including room temperature test, thermal test, test after control rod system installed in HTR-10, and test of control rod system before HTR-10 first criticality. All the tests data showed that driving devices working well, control rods running smoothly up and down, random position settling well, and exactly position indicating

  11. Systems analysis - independent analysis and verification

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, J.P.; Skolnik, E.G.; Badin, J.S. [Energetics, Inc., Columbia, MD (United States)

    1996-10-01

    The Hydrogen Program of the U.S. Department of Energy (DOE) funds a portfolio of activities ranging from conceptual research to pilot plant testing. The long-term research projects support DOE`s goal of a sustainable, domestically based energy system, and the development activities are focused on hydrogen-based energy systems that can be commercially viable in the near-term. Energetics develops analytic products that enable the Hydrogen Program Manager to assess the potential for near- and long-term R&D activities to satisfy DOE and energy market criteria. This work is based on a pathway analysis methodology. The authors consider an energy component (e.g., hydrogen production from biomass gasification, hybrid hydrogen internal combustion engine (ICE) vehicle) within a complete energy system. The work involves close interaction with the principal investigators to ensure accurate representation of the component technology. Comparisons are made with the current cost and performance of fossil-based and alternative renewable energy systems, and sensitivity analyses are conducted to determine the effect of changes in cost and performance parameters on the projects` viability.

  12. Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo

    Science.gov (United States)

    Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik

    2018-05-01

    Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.

  13. Study of TXRF experimental system by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Costa, Ana Cristina M.; Leitao, Roberta G.; Lopes, Ricardo T.; Anjos, Marcelino J.; Conti, Claudio C.

    2011-01-01

    The Total-Reflection X-ray Fluorescence (TXRF) technique offers unique possibilities to study the concentrations of a wide range of trace elements in various types of samples. Besides that, the TXRF technique is widely used to study the trace elements in biological, medical and environmental samples due to its multielemental character as well as simplicity of sample preparation and quantification methods used. In general the TXRF experimental setup is not simple and might require substantial experimental efforts. On the other hand, in recent years, experimental TXRF portable systems have been developed. It has motivated us to develop our own TXRF portable system. In this work we presented a first step in order to optimize a TXRF experimental setup using Monte Carlo simulation by MCNP code. The results found show that the Monte Carlo simulation method can be used to investigate the development of a TXRF experimental system before its assembly. (author)

  14. On the Symbolic Verification of Timed Systems

    DEFF Research Database (Denmark)

    Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif

    1999-01-01

    This paper describes how to analyze a timed system symbolically. That is, given a symbolic representation of a set of (timed) states (as an expression), we describe how to determine an expression that represents the set of states that can be reached either by firing a discrete transition...... or by advancing time. These operations are used to determine the set of reachable states symbolically. We also show how to symbolically determine the set of states that can reach a given set of states (i.e., a backwards step), thus making it possible to verify TCTL-formulae symbolically. The analysis is fully...... symbolic in the sense that both the discrete and the continuous part of the state space are represented symbolically. Furthermore, both the synchronous and asynchronous concurrent composition of timed systems can be performed symbolically. The symbolic representations are given as formulae expressed...

  15. Tracer verification and monitoring of containment systems

    International Nuclear Information System (INIS)

    Lowry, W.; Dunn, S.D.; Williams, C.

    1996-01-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential for movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Consequently, barriers are primarily intended for use in high-risk sites where few viable alternatives exist to stop the movement of contaminants in the near term. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Existing surface-based and borehole geophysical techniques do not provide the degree of resolution required to assure the formation of an integral in-situ barrier. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) are developing a quantitative subsurface barrier assessment system using gaseous tracers. Called SEAtrace trademark, this system integrates an autonomous, multipoint soil vapor sampling and analysis system with a global optimization modeling methodology to pinpoint leak sources and sizes in real time. SEAtrace trademark is applicable to impermeable barrier emplacements above the water table, providing a conservative assessment of barrier integrity after emplacement, as well as a long term integrity monitoring function. The SEAtrace trademark system is being developed under funding by the DOE-EM Subsurface Contaminant Focus Area

  16. Verification station for Sandia/Rockwell Plutonium Protection system

    International Nuclear Information System (INIS)

    Nicholson, N.; Hastings, R.D.; Henry, C.N.; Millegan, D.R.

    1979-04-01

    A verification station has been designed to confirm the presence of plutonium within a container module. These container modules [about 13 cm (5 in.) in diameter and 23 cm (9 in.) high] hold sealed food-pack cans containing either plutonium oxide or metal and were designed by Sandia Laboratories to provide security and continuous surveillance and safety. After the plutonium is placed in the container module, it is closed with a solder seal. The verification station discussed here is used to confirm the presence of plutonium in the container module before it is placed in a carousel-type storage array inside the plutonium storage vault. This measurement represents the only technique that uses nuclear detectors in the plutonium protection system

  17. Diffusion Monte Carlo calculation of three-body systems

    International Nuclear Information System (INIS)

    Lu Mengjiao; Lin Qihu; Ren Zhongzhou

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)

  18. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  19. Improved local lattice Monte Carlo simulation for charged systems

    Science.gov (United States)

    Jiang, Jian; Wang, Zhen-Gang

    2018-03-01

    Maggs and Rossetto [Phys. Rev. Lett. 88, 196402 (2002)] proposed a local lattice Monte Carlo algorithm for simulating charged systems based on Gauss's law, which scales with the particle number N as O(N). This method includes two degrees of freedom: the configuration of the mobile charged particles and the electric field. In this work, we consider two important issues in the implementation of the method, the acceptance rate of configurational change (particle move) and the ergodicity in the phase space sampled by the electric field. We propose a simple method to improve the acceptance rate of particle moves based on the superposition principle for electric field. Furthermore, we introduce an additional updating step for the field, named "open-circuit update," to ensure that the system is fully ergodic under periodic boundary conditions. We apply this improved local Monte Carlo simulation to an electrolyte solution confined between two low dielectric plates. The results show excellent agreement with previous theoretical work.

  20. Dielectric response of periodic systems from quantum Monte Carlo calculations.

    Science.gov (United States)

    Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola

    2005-11-11

    We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.

  1. Two Dimensional Verification of the Dose Distribution of Gamma Knife Model C using Monte Carlo Simulation with a Virtual Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.

  2. Monte Carlo simulation of hybrid systems: An example

    International Nuclear Information System (INIS)

    Bacha, F.; D'Alencon, H.; Grivelet, J.; Jullien, E.; Jejcic, A.; Maillard, J.; Silva, J.; Zukanovich, R.; Vergnes, J.

    1997-01-01

    Simulation of hybrid systems needs tracking of particles from the GeV (incident proton beam) range down to a fraction of eV (thermic neutrons). We show how a GEANT based Monte-Carlo program can achieve this, with a realistic computer time and accompanying tools. An example of a dedicated original actinide burner is simulated with this chain. 8 refs., 5 figs

  3. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  4. Geometrical verification system using Adobe Photoshop in radiotherapy.

    Science.gov (United States)

    Ishiyama, Hiromichi; Suzuki, Koji; Niino, Keiji; Hosoya, Takaaki; Hayakawa, Kazushige

    2005-02-01

    Adobe Photoshop is used worldwide and is useful for comparing portal films with simulation films. It is possible to scan images and then view them simultaneously with this software. The purpose of this study was to assess the accuracy of a geometrical verification system using Adobe Photoshop. We prepared the following two conditions for verification. Under one condition, films were hanged on light boxes, and examiners measured distances between the isocenter on simulation films and that on portal films by adjusting the bony structures. Under the other condition, films were scanned into a computer and displayed using Adobe Photoshop, and examiners measured distances between the isocenter on simulation films and those on portal films by adjusting the bony structures. To obtain control data, lead balls were used as a fiducial point for matching the films accurately. The errors, defined as the differences between the control data and the measurement data, were assessed. Errors of the data obtained using Adobe Photoshop were significantly smaller than those of the data obtained from films on light boxes (p Adobe Photoshop is available on any PC with this software and is useful for improving the accuracy of verification.

  5. Internet-based dimensional verification system for reverse engineering processes

    International Nuclear Information System (INIS)

    Song, In Ho; Kim, Kyung Don; Chung, Sung Chong

    2008-01-01

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  6. Internet-based dimensional verification system for reverse engineering processes

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho [Ajou University, Suwon (Korea, Republic of); Kim, Kyung Don [Small Business Corporation, Suwon (Korea, Republic of); Chung, Sung Chong [Hanyang University, Seoul (Korea, Republic of)

    2008-07-15

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  7. Expert system verification and validation survey. Delivery 3: Recommendations

    Science.gov (United States)

    1990-01-01

    The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.

  8. Formal Modeling and Verification of Interlocking Systems Featuring Sequential Release

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

    2015-01-01

    In this paper, we present a method and an associated tool suite for formal verification of the new ETCS level 2 based Danish railway interlocking systems. We have made a generic and reconfigurable model of the system behavior and generic high-level safety properties. This model accommodates seque...... SMT based bounded model checking (BMC) and inductive reasoning, we are able to verify the properties for model instances corresponding to railway networks of industrial size. Experiments also show that BMC is efficient for finding bugs in the railway interlocking designs....

  9. Formal Modeling and Verification of Interlocking Systems Featuring Sequential Release

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

    2014-01-01

    In this paper, we present a method and an associated tool suite for formal verification of the new ETCS level 2 based Danish railway interlocking systems. We have made a generic and reconfigurable model of the system behavior and generic high-level safety properties. This model accommodates seque...... SMT based bounded model checking (BMC) and inductive reasoning, we are able to verify the properties for model instances corresponding to railway networks of industrial size. Experiments also show that BMC is efficient for finding bugs in the railway interlocking designs....

  10. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    Vehicle Code System (VCS), the Monte Carlo Adjoint SHielding (MASH), and the Monte Carlo n- Particle ( MCNP ) code. Of the three, the oldest and still most...widely utilized radiation transport code is MCNP . First created at Los Alamos National Laboratory (LANL) in 1957, the code simulated neutral...particle types, and previous versions of MCNP were repeatedly validated using both simple and complex 10 geometries [12, 13]. Much greater discussion and

  11. Source Code Verification for Embedded Systems using Prolog

    Directory of Open Access Journals (Sweden)

    Frank Flederer

    2017-01-01

    Full Text Available System relevant embedded software needs to be reliable and, therefore, well tested, especially for aerospace systems. A common technique to verify programs is the analysis of their abstract syntax tree (AST. Tree structures can be elegantly analyzed with the logic programming language Prolog. Moreover, Prolog offers further advantages for a thorough analysis: On the one hand, it natively provides versatile options to efficiently process tree or graph data structures. On the other hand, Prolog's non-determinism and backtracking eases tests of different variations of the program flow without big effort. A rule-based approach with Prolog allows to characterize the verification goals in a concise and declarative way. In this paper, we describe our approach to verify the source code of a flash file system with the help of Prolog. The flash file system is written in C++ and has been developed particularly for the use in satellites. We transform a given abstract syntax tree of C++ source code into Prolog facts and derive the call graph and the execution sequence (tree, which then are further tested against verification goals. The different program flow branching due to control structures is derived by backtracking as subtrees of the full execution sequence. Finally, these subtrees are verified in Prolog. We illustrate our approach with a case study, where we search for incorrect applications of semaphores in embedded software using the real-time operating system RODOS. We rely on computation tree logic (CTL and have designed an embedded domain specific language (DSL in Prolog to express the verification goals.

  12. Rule Systems for Runtime Verification: A Short Tutorial

    Science.gov (United States)

    Barringer, Howard; Havelund, Klaus; Rydeheard, David; Groce, Alex

    In this tutorial, we introduce two rule-based systems for on and off-line trace analysis, RuleR and LogScope. RuleR is a conditional rule-based system, which has a simple and easily implemented algorithm for effective runtime verification, and into which one can compile a wide range of temporal logics and other specification formalisms used for runtime verification. Specifications can be parameterized with data, or even with specifications, allowing for temporal logic combinators to be defined. We outline a number of simple syntactic extensions of core RuleR that can lead to further conciseness of specification but still enabling easy and efficient implementation. RuleR is implemented in Java and we will demonstrate its ease of use in monitoring Java programs. LogScope is a derivation of RuleR adding a simple very user-friendly temporal logic. It was developed in Python, specifically for supporting testing of spacecraft flight software for NASA’s next 2011 Mars mission MSL (Mars Science Laboratory). The system has been applied by test engineers to analysis of log files generated by running the flight software. Detailed logging is already part of the system design approach, and hence there is no added instrumentation overhead caused by this approach. While post-mortem log analysis prevents the autonomous reaction to problems possible with traditional runtime verification, it provides a powerful tool for test automation. A new system is being developed that integrates features from both RuleR and LogScope.

  13. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-01-01

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (γ) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% ± 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm 2 field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm 2 ) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the

  14. An evaluation of the management system verification pilot at Hanford

    International Nuclear Information System (INIS)

    Briggs, C.R.; Ramonas, L.; Westendorf, W.

    1998-01-01

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview

  15. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  16. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  17. Image-based fingerprint verification system using LabVIEW

    Directory of Open Access Journals (Sweden)

    Sunil K. Singla

    2008-09-01

    Full Text Available Biometric-based identification/verification systems provide a solution to the security concerns in the modern world where machine is replacing human in every aspect of life. Fingerprints, because of their uniqueness, are the most widely used and highly accepted biometrics. Fingerprint biometric systems are either minutiae-based or pattern learning (image based. The minutiae-based algorithm depends upon the local discontinuities in the ridge flow pattern and are used when template size is important while image-based matching algorithm uses both the micro and macro feature of a fingerprint and is used if fast response is required. In the present paper an image-based fingerprint verification system is discussed. The proposed method uses a learning phase, which is not present in conventional image-based systems. The learning phase uses pseudo random sub-sampling, which reduces the number of comparisons needed in the matching stage. This system has been developed using LabVIEW (Laboratory Virtual Instrument Engineering Workbench toolbox version 6i. The availability of datalog files in LabVIEW makes it one of the most promising candidates for its usage as a database. Datalog files can access and manipulate data and complex data structures quickly and easily. It makes writing and reading much faster. After extensive experimentation involving a large number of samples and different learning sizes, high accuracy with learning image size of 100 100 and a threshold value of 700 (1000 being the perfect match has been achieved.

  18. ECG based biometrics verification system using LabVIEW

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Singla

    2010-07-01

    Full Text Available Biometric based authentication systems provide solutions to the problems in high security which remain with conventionalsecurity systems. In a biometric verification system, human’s biological parameters (such as voice, finger print,palm print or hand geometry, face, iris etc. are used to verify the authenticity of a person. These parameters are good to beused as biometric parameters but do not provide the guarantee that the person is present and alive. As voice can be copied,finger print can be picked from glass on synthetic skin and in face recognition system due to genetic factors identical twinsor father-son may have the same facial appearance. ECG does not have these problems. It can not be recorded without theknowledge of the person and ECG of every person is unique even identical twins have different ECG. In this paper an ECGbasedbiometrics verification system which was developed using Laboratory Virtual Instruments Engineering Workbench(LabVIEW version 7.1 is discussed. Experiments were conducted on the database stored in the laboratory of 20 individualshaving 10 samples each and the results revealed a false rejection rate (FRR of 3% and false acceptance rate (FAR of 3.21%.

  19. FIR signature verification system characterizing dynamics of handwriting features

    Science.gov (United States)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.

  20. Memory Efficient Data Structures for Explicit Verification of Timed Systems

    DEFF Research Database (Denmark)

    Taankvist, Jakob Haahr; Srba, Jiri; Larsen, Kim Guldstrand

    2014-01-01

    Timed analysis of real-time systems can be performed using continuous (symbolic) or discrete (explicit) techniques. The explicit state-space exploration can be considerably faster for models with moderately small constants, however, at the expense of high memory consumption. In the setting of timed......-arc Petri nets, we explore new data structures for lowering the used memory: PTries for efficient storing of configurations and time darts for semi-symbolic description of the state-space. Both methods are implemented as a part of the tool TAPAAL and the experiments document at least one order of magnitude...... of memory savings while preserving comparable verification times....

  1. Monte Carlo technique for local perturbations in multiplying systems

    International Nuclear Information System (INIS)

    Bernnat, W.

    1974-01-01

    The use of the Monte Carlo method for the calculation of reactivity perturbations in multiplying systems due to changes in geometry or composition requires a correlated sampling technique to make such calculations economical or in the case of very small perturbations even feasible. The technique discussed here is suitable for local perturbations. Very small perturbation regions will be treated by an adjoint mode. The perturbation of the source distribution due to the changed system and its reaction on the reactivity worth or other values of interest is taken into account by a fission matrix method. The formulation of the method and its application are discussed. 10 references. (U.S.)

  2. Simulation of quantum systems by the tomography Monte Carlo method

    International Nuclear Information System (INIS)

    Bogdanov, Yu I

    2007-01-01

    A new method of statistical simulation of quantum systems is presented which is based on the generation of data by the Monte Carlo method and their purposeful tomography with the energy minimisation. The numerical solution of the problem is based on the optimisation of the target functional providing a compromise between the maximisation of the statistical likelihood function and the energy minimisation. The method does not involve complicated and ill-posed multidimensional computational procedures and can be used to calculate the wave functions and energies of the ground and excited stationary sates of complex quantum systems. The applications of the method are illustrated. (fifth seminar in memory of d.n. klyshko)

  3. Specification and verification of the RTOS for plant protection systems

    International Nuclear Information System (INIS)

    Kim, Jin Hyun; Ahn, Young Ah; Lee, Su-Young; Choi, Jin Young; Lee, Na Young

    2004-01-01

    PLC is a computer system for instrumentation and control (I and C) systems such as control of machinery on factory assembly lines. control of machinery on factory assembly lines and Nucleare power plants. In nuclear power industry, systems is classified into 3 classes- Non-safety, safety-related and safety-critical up to integrity on system's using purpose. If PLC is used for controlling reactor in nuclear power plant, it should be identified as safety-critical. PLC has several I and C logics in software, including real-time operating system (RTOS). Hence, RTOS must be also proved that it is safe and reliable by various way and methods. In this paper, we apply formal methods to a development of RTOS for PLC in safety-critical level; Statecharts for specification and model checking for verification. In this paper, we give the results of applying formal methods to RTOS. (author)

  4. Verification of Opacity and Diagnosability for Pushdown Systems

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available In control theory of discrete event systems (DESs, one of the challenging topics is the extension of theory of finite-state DESs to that of infinite-state DESs. In this paper, we discuss verification of opacity and diagnosability for infinite-state DESs modeled by pushdown automata (called here pushdown systems. First, we discuss opacity of pushdown systems and prove that opacity of pushdown systems is in general undecidable. In addition, a decidable class is clarified. Next, in diagnosability, we prove that under a certain assumption, which is different from the assumption in the existing result, diagnosability of pushdown systems is decidable. Furthermore, a necessary condition and a sufficient condition using finite-state approximations are derived. Finally, as one of the applications, we consider data integration using XML (Extensible Markup Language. The obtained result is useful for developing control theory of infinite-state DESs.

  5. A Quantitative Approach to the Formal Verification of Real-Time Systems.

    Science.gov (United States)

    1996-09-01

    Computer Science A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos September 1996 CMU-CS-96-199...ptisiic raieaiSI v Diambimos Lboiamtad _^ A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos...implied, of NSF, the Semiconduc- tor Research Corporation, ARPA or the U.S. government. Keywords: real - time systems , formal verification, symbolic

  6. Development of a practical Monte Carlo based fuel management system for the Penn State University Breazeale Research Reactor (PSBR)

    International Nuclear Information System (INIS)

    Tippayakul, Chanatip; Ivanov, Kostadin; Frederick Sears, C.

    2008-01-01

    A practical fuel management system for the he Pennsylvania State University Breazeale Research Reactor (PSBR) based on the advanced Monte Carlo methodology was developed from the existing fuel management tool in this research. Several modeling improvements were implemented to the old system. The improved fuel management system can now utilize the burnup dependent cross section libraries generated specifically for PSBR fuel and it is also able to update the cross sections of these libraries by the Monte Carlo calculation automatically. Considerations were given to balance the computation time and the accuracy of the cross section update. Thus, certain types of a limited number of isotopes, which are considered 'important', are calculated and updated by the scheme. Moreover, the depletion algorithm of the existing fuel management tool was replaced from the predictor only to the predictor-corrector depletion scheme to account for burnup spectrum changes during the burnup step more accurately. An intermediate verification of the fuel management system was performed to assess the correctness of the newly implemented schemes against HELIOS. It was found that the agreement of both codes is good when the same energy released per fission (Q values) is used. Furthermore, to be able to model the reactor at various temperatures, the fuel management tool is able to utilize automatically the continuous cross sections generated at different temperatures. Other additional useful capabilities were also added to the fuel management tool to make it easy to use and be practical. As part of the development, a hybrid nodal diffusion/Monte Carlo calculation was devised to speed up the Monte Carlo calculation by providing more converged initial source distribution for the Monte Carlo calculation from the nodal diffusion calculation. Finally, the fuel management system was validated against the measured data using several actual PSBR core loadings. The agreement of the predicted core

  7. Methods and practices for verification and validation of programmable systems

    International Nuclear Information System (INIS)

    Heimbuerger, H.; Haapanen, P.; Pulkkinen, U.

    1993-01-01

    The programmable systems deviate by their properties and behaviour from the conventional non-programmable systems in such extent, that their verification and validation for safety critical applications requires new methods and practices. The safety assessment can not be based on conventional probabilistic methods due to the difficulties in the quantification of the reliability of the software and hardware. The reliability estimate of the system must be based on qualitative arguments linked to a conservative claim limit. Due to the uncertainty of the quantitative reliability estimate other means must be used to get more assurance about the system safety. Methods and practices based on research done by VTT for STUK, are discussed in the paper as well as the methods applicable in the reliability analysis of software based safety functions. The most essential concepts and models of quantitative reliability analysis are described. The application of software models in probabilistic safety analysis (PSA) is evaluated. (author). 18 refs

  8. Monte Carlo modeling of neutron and gamma-ray imaging systems

    International Nuclear Information System (INIS)

    Hall, J.

    1996-04-01

    Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ''real world'' complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification

  9. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  10. Standard practice for verification and classification of extensometer systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for the verification and classification of extensometer systems, but it is not intended to be a complete purchase specification. The practice is applicable only to instruments that indicate or record values that are proportional to changes in length corresponding to either tensile or compressive strain. Extensometer systems are classified on the basis of the magnitude of their errors. 1.2 Because strain is a dimensionless quantity, this document can be used for extensometers based on either SI or US customary units of displacement. Note 1—Bonded resistance strain gauges directly bonded to a specimen cannot be calibrated or verified with the apparatus described in this practice for the verification of extensometers having definite gauge points. (See procedures as described in Test Methods E251.) 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish app...

  11. Development of the clearance level verification evaluation system. 2. Construction of the clearance data management system

    International Nuclear Information System (INIS)

    Kubota, Shintaro; Usui, Hideo; Kawagoshi, Hiroshi

    2014-06-01

    Clearance is defined as the removal of radioactive materials or radioactive objects within authorized practices from any further regulatory control by the regulatory body. In Japan, clearance level and a procedure for its verification has been introduced under the Laws and Regulations, and solid clearance wastes inspected by the national authority can be handled and recycled as normal wastes. The most prevalent type of wastes have generated from the dismantling of nuclear facilities, so the Japan Atomic Energy Agency (JAEA) has been developing the Clearance Level Verification Evaluation System (CLEVES) as a convenient tool. The Clearance Data Management System (CDMS), which is a part of CLEVES, has been developed to support measurement, evaluation, making and recording documents with clearance level verification. In addition, validation of the evaluation result of the CDMS was carried out by inputting the data of actual clearance activities in the JAEA. Clearance level verification is easily applied by using the CDMS for the clearance activities. (author)

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: TRITON SYSTEMS, LLC SOLID BOWL CENTRIFUGE, MODEL TS-5000

    Science.gov (United States)

    Verification testing of the Triton Systems, LLC Solid Bowl Centrifuge Model TS-5000 (TS-5000) was conducted at the Lake Wheeler Road Field Laboratory Swine Educational Unit in Raleigh, North Carolina. The TS-5000 was 48" in diameter and 30" deep, with a bowl capacity of 16 ft3. ...

  13. Electroacoustic verification of frequency modulation systems in cochlear implant users.

    Science.gov (United States)

    Fidêncio, Vanessa Luisa Destro; Jacob, Regina Tangerino de Souza; Tanamati, Liége Franzini; Bucuvic, Érika Cristina; Moret, Adriane Lima Mortari

    2017-12-26

    The frequency modulation system is a device that helps to improve speech perception in noise and is considered the most beneficial approach to improve speech recognition in noise in cochlear implant users. According to guidelines, there is a need to perform a check before fitting the frequency modulation system. Although there are recommendations regarding the behavioral tests that should be performed at the fitting of the frequency modulation system to cochlear implant users, there are no published recommendations regarding the electroacoustic test that should be performed. Perform and determine the validity of an electroacoustic verification test for frequency modulation systems coupled to different cochlear implant speech processors. The sample included 40 participants between 5 and 18 year's users of four different models of speech processors. For the electroacoustic evaluation, we used the Audioscan Verifit device with the HA-1 coupler and the listening check devices corresponding to each speech processor model. In cases where the transparency was not achieved, a modification was made in the frequency modulation gain adjustment and we used the Brazilian version of the "Phrases in Noise Test" to evaluate the speech perception in competitive noise. It was observed that there was transparency between the frequency modulation system and the cochlear implant in 85% of the participants evaluated. After adjusting the gain of the frequency modulation receiver in the other participants, the devices showed transparency when the electroacoustic verification test was repeated. It was also observed that patients demonstrated better performance in speech perception in noise after a new adjustment, that is, in these cases; the electroacoustic transparency caused behavioral transparency. The electroacoustic evaluation protocol suggested was effective in evaluation of transparency between the frequency modulation system and the cochlear implant. Performing the adjustment of

  14. European Train Control System: A Case Study in Formal Verification

    Science.gov (United States)

    Platzer, André; Quesel, Jan-David

    Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free parameters, we successively identify constraints that are required to ensure collision freedom. We formally prove the parameter constraints to be sharp by characterizing them equivalently in terms of reachability properties of the hybrid system dynamics. Using our deductive verification tool KeYmaera, we formally verify controllability, safety, liveness, and reactivity properties of the ETCS protocol that entail collision freedom. We prove that the ETCS protocol remains correct even in the presence of perturbation by disturbances in the dynamics. We verify that safety is preserved when a PI controlled speed supervision is used.

  15. Real-Time System Verification by Kappa-Induction

    Science.gov (United States)

    Pike, Lee S.

    2005-01-01

    We report the first formal verification of a reintegration protocol for a safety-critical, fault-tolerant, real-time distributed embedded system. A reintegration protocol increases system survivability by allowing a node that has suffered a fault to regain state consistent with the operational nodes. The protocol is verified in the Symbolic Analysis Laboratory (SAL), where bounded model checking and decision procedures are used to verify infinite-state systems by k-induction. The protocol and its environment are modeled as synchronizing timeout automata. Because k-induction is exponential with respect to k, we optimize the formal model to reduce the size of k. Also, the reintegrator's event-triggered behavior is conservatively modeled as time-triggered behavior to further reduce the size of k and to make it invariant to the number of nodes modeled. A corollary is that a clique avoidance property is satisfied.

  16. Development of prompt gamma measurement system for in vivo proton beam range verification

    International Nuclear Information System (INIS)

    Min, Chul Hee

    2011-02-01

    In radiation therapy, most research has focused on reducing unnecessary radiation dose to normal tissues and critical organs around the target tumor volume. Proton therapy is considered to be one of the most promising radiation therapy methods with its physical characteristics in the dose distribution, delivering most of the dose just before protons come to rest at the so-named Bragg peak; that is, proton therapy allows for a very high radiation dose to the tumor volume, effectively sparing adjacent critical organs. However, the uncertainty in the location of the Bragg peak, coming from not only the uncertainty in the beam delivery system and the treatment planning method but also anatomical changes and organ motions of a patient, could be a critical problem in proton therapy. In spite of the importance of the in vivo dose verification to prevent the misapplication of the Bragg peak and to guarantee both successful treatment and patient safety, there is no practical methodology to monitor the in vivo dose distribution, only a few attempts have been made so far. The present dissertation suggests the prompt gamma measurement method for monitoring of the in vivo proton dose distribution during treatment. As a key part of the process of establishing the utility of this method, the verification of the clear relationship between the prompt gamma distribution and the proton dose distribution was accomplished by means of Monte Carlo simulations and experimental measurements. First, the physical properties of prompt gammas were investigated on the basis of cross-section data and Monte Carlo simulations. Prompt gammas are generated mainly from proton-induced nuclear interactions, and then emitted isotropically in less than 10 -9 sec at energies up to 10 MeV. Simulation results for the prompt gamma yield of the major elements of a human body show that within the optimal energy range of 4-10 MeV the highest number of prompt gammas is generated from oxygen, whereas over the

  17. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  18. Automated data acquisition and analysis system for inventory verification

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Kaye, J.H.

    1974-03-01

    A real-time system is proposed which would allow CLO Safeguards Branch to conduct a meaningful inventory verification using a variety of NDA instruments. The overall system would include the NDA instruments, automated data handling equipment, and a vehicle to house and transport the instruments and equipment. For the purpose of the preliminary cost estimate a specific data handling system and vehicle were required. A Tracor Northern TN-11 data handling system including a PDP-11 minicomputer and a measurement vehicle similar to the Commission's Regulatory Region I van were used. The basic system is currently estimated to cost about $100,000, and future add-ons which would expand the systems' capabilities are estimated to cost about $40,000. The concept of using a vehicle in order to permanently rack mount the data handling equipmentoffers a number of benefits such as control of equipment environment and allowance for improvements, expansion, and flexibility in the system. Justification is also presented for local design and assembly of the overall system. A summary of the demonstration system which illustrates the advantages and feasibility of the overall system is included in this discussion. Two ideas are discussed which are not considered to be viable alternatives to the proposed system: addition of the data handling capabilities to the semiportable ''cart'' and use of a telephone link to a large computer center

  19. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  20. Application of verification and validation on safety parameter display systems

    International Nuclear Information System (INIS)

    Thomas, N.C.

    1983-01-01

    Offers some explanation of how verification and validation (VandV) can support development and licensing of the Safety Parameter Display Systems (SPDS). Advocates that VandV can be more readily accepted within the nuclear industry if a better understanding exists of what the objectives of VandV are and should be. Includes a discussion regarding a reasonable balance of costs and benefits of VandV as applied to the SPDS and to other digital systems. Represents the author's perception of the regulator's perspective based on background information and experience, and discussions with regulators about their current concerns and objectives. Suggests that the introduction of the SPDS into the Control Room is a first step towards growing dependency on use of computers

  1. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  2. Interacting multiagent systems kinetic equations and Monte Carlo methods

    CERN Document Server

    Pareschi, Lorenzo

    2014-01-01

    The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...

  3. Beam intensity scanner system for three dimensional dose verification of IMRT

    International Nuclear Information System (INIS)

    Vahc, Young W.; Kwon, Ohyun; Park, Kwangyl; Park, Kyung R.; Yi, Byung Y.; Kim, Keun M.

    2003-01-01

    Patient dose verification is clinically one of the most important parts in the treatment delivery of radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in IMRT. Here we present beam intensity scanner (BInS) system for the pre-treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom-made software for dose conversion of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6 MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera-based scintillator (DVCS) will be processed by our custom made software to reproduce 3D- relative dose distribution. For the intensity modulated beam (IMB), the BInS calculates absorbed dose in absolute beam fluence which is used for the patient dose distribution. Using BInS, we performed various measurements related to IMRT and found the following: (1) The 3D-dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimation of dynamic and/or step MLC system. This is mostly due to leaf transmission, leaf penumbra scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multi leaf opening. These phenomena result in a fluence distribution that can be substantially different from the initial and calculated intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT. (author)

  4. Verification and Validation of Embedded Knowledge-Based Software Systems

    National Research Council Canada - National Science Library

    Santos, Eugene

    1999-01-01

    .... We pursued this by carefully examining the nature of uncertainty and information semantics and developing intelligent tools for verification and validation that provides assistance to the subject...

  5. Monte Carlo simulations for stereotactic radiotherapy system with various kilo-voltage x-ray energy

    International Nuclear Information System (INIS)

    Deloar, H.M.; Kunieda, E.; Kawase, T.; Kubo, Atsushi; Saitoh, H.; Myojoyama, A.; Ozaki, M.; Fujisaki, T.; Saito, K.

    2005-01-01

    Stereotactic radiotherapy (SRT) of lung tumors with a narrow and precise medium energy x-ray beam where the homogeneous high dose area will be confined within the tumors are desirable. A conventional x-ray CT with medium energy x-ray has been modified to develop a radiotherapy system for lung SRT. A cylindrical collimator (0.3 cm φ) made of tungsten was introduced to collimate the X-ray beam. The system was simulated with BEAMnrc(EGS4) Monte Carlo code and various x-ray energy spectra were generated to investigate the dose distributions with our kilo-voltage SRT system. Experiments were performed to acquire the energy spectra of 100, 120 and 135 kVp (kilo-voltage peak) from CT measurements and those results were compared with the spectra obtained from Monte Carlo simulations. Verifications of percentage of dose depth (PDD) for 120 and 147.5 kVp were investigated in a water phantom with experiments and Monte Carlo simulations. Finally dose distributions of 120, 135, 147.5, 200, 250, 300, 350, 400, 500 kVp spectra were investigated with lung phantom and human lung. The Percentage of Depth Dose (PDD) in the water phantom calculated from the experimental and simulated spectra of 120 and 147.5 kVp show good agreement with each other. The PDD of 147.5 and 120 kVp spectra at 9 cm depth was approximately 10% and 9%, respectively. Dose distributions around the lung tumor in the phantom and human for all x-ray energies were almost uniform but in the case of the human lung absorptions of dose at ribs for the energy lower than 135 kVp was more than 35% and those absorptions for the energy spectra of 147.5 kVp and above was less than 30%. This absorption gradually decreases with increasing x-ray energies. Uniform dose distributions in the lung region of human and thorax phantom demonstrated the possibility of SRT system with medium energy X-ray. A detail performance of this system as a kilo-voltage conformal radiotherapy is under investigations. (author)

  6. 75 FR 4100 - Enterprise Income Verification (EIV) System-Debts Owed to PHAs and Terminations

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-04] Enterprise Income Verification (EIV) System-Debts Owed to PHAs and Terminations AGENCY: Office of the Chief Information Officer... Following Information Title of Proposal: Enterprise Income Verification (EIV) System- Debts Owed to PHAs and...

  7. Monte Carlo simulations of quantum systems on massively parallel supercomputers

    International Nuclear Information System (INIS)

    Ding, H.Q.

    1993-01-01

    A large class of quantum physics applications uses operator representations that are discrete integers by nature. This class includes magnetic properties of solids, interacting bosons modeling superfluids and Cooper pairs in superconductors, and Hubbard models for strongly correlated electrons systems. This kind of application typically uses integer data representations and the resulting algorithms are dominated entirely by integer operations. The authors implemented an efficient algorithm for one such application on the Intel Touchstone Delta and iPSC/860. The algorithm uses a multispin coding technique which allows significant data compactification and efficient vectorization of Monte Carlo updates. The algorithm regularly switches between two data decompositions, corresponding naturally to different Monte Carlo updating processes and observable measurements such that only nearest-neighbor communications are needed within a given decomposition. On 128 nodes of Intel Delta, this algorithm updates 183 million spins per second (compared to 21 million on CM-2 and 6.2 million on a Cray Y-MP). A systematic performance analysis shows a better than 90% efficiency in the parallel implementation

  8. Reliability-Based Decision Fusion in Multimodal Biometric Verification Systems

    Directory of Open Access Journals (Sweden)

    Kryszczuk Krzysztof

    2007-01-01

    Full Text Available We present a methodology of reliability estimation in the multimodal biometric verification scenario. Reliability estimation has shown to be an efficient and accurate way of predicting and correcting erroneous classification decisions in both unimodal (speech, face, online signature and multimodal (speech and face systems. While the initial research results indicate the high potential of the proposed methodology, the performance of the reliability estimation in a multimodal setting has not been sufficiently studied or evaluated. In this paper, we demonstrate the advantages of using the unimodal reliability information in order to perform an efficient biometric fusion of two modalities. We further show the presented method to be superior to state-of-the-art multimodal decision-level fusion schemes. The experimental evaluation presented in this paper is based on the popular benchmarking bimodal BANCA database.

  9. Dual-use benefits of the CTBT verification system

    International Nuclear Information System (INIS)

    Meade, C.E.F.

    1999-01-01

    Since it has been completed in September 1996, the CTBT has been signed by 151 countries. Awaiting the 44 ratifications and entry into force, all of the nuclear powers have imposed unilateral moratoriums on nuclear test explosions. The end of these weapons development activities is often cited as the principal benefit of the CTBT. As the world begins to implement the Treaty, it has become clear that the development and operation of the CTBT verification system will provide a wide range of additional benefits if the data analysis products are available for dual-purpose applications. As this paper describes these could have economic and social implications, especially for countries with limited technical infrastructures. These involve, seismic monitoring, mineral exploration, scientific and technical training

  10. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  11. OGRE, Monte-Carlo System for Gamma Transport Problems

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50

  12. Verification of vectorized Monte Carlo code MVP using JRR-4 experiment of fast neutrons penetrating through graphite and water

    International Nuclear Information System (INIS)

    Odano, N.; Miura, T.; Yamaji, A.

    1996-01-01

    Measurement of activation reaction rates was carried out for fast neutrons penetrating through graphite and water from the core of JRR-4 research reactor of JAERI, with paying attention to the energy above 10 MeV. Analysis of the experiment was made using a vectorized continuous energy Monte Carlo code MVP to verify the code. The analysis shows good agreements between the measurement and calculation and the MVP code has been confirmed its validity for the fast neutron transport calculations above 10 MeV in fission neutron field. (author)

  13. A new approach for the verification of optical systems

    Science.gov (United States)

    Siddique, Umair; Aravantinos, Vincent; Tahar, Sofiène

    2013-09-01

    Optical systems are increasingly used in microsystems, telecommunication, aerospace and laser industry. Due to the complexity and sensitivity of optical systems, their verification poses many challenges to engineers. Tra­ditionally, the analysis of such systems has been carried out by paper-and-pencil based proofs and numerical computations. However, these techniques cannot provide perfectly accurate results due to the risk of human error and inherent approximations of numerical algorithms. In order to overcome these limitations, we propose to use theorem proving (i.e., a computer-based technique that allows to express mathematical expressions and reason about them by taking into account all the details of mathematical reasoning) as an alternative to computational and numerical approaches to improve optical system analysis in a comprehensive framework. In particular, this paper provides a higher-order logic (a language used to express mathematical theories) formalization of ray optics in the HOL Light theorem prover. Based on the multivariate analysis library of HOL Light, we formalize the notion of light ray and optical system (by defining medium interfaces, mirrors, lenses, etc.), i.e., we express these notions mathematically in the software. This allows us to derive general theorems about the behavior of light in such optical systems. In order to demonstrate the practical effectiveness, we present the stability analysis of a Fabry-Perot resonator.

  14. ETV REPORT AND VERIFICATION STATEMENT - KASELCO POSI-FLO ELECTROCOAGULATION TREATMENT SYSTEM

    Science.gov (United States)

    The Kaselco Electrocoagulation Treatment System (Kaselco system) in combination with an ion exchange polishing system was tested, under actual production conditions, processing metal finishing wastewater at Gull Industries in Houston, Texas. The verification test evaluated the a...

  15. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    Science.gov (United States)

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  16. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  17. Research on key technology of the verification system of steel rule based on vision measurement

    Science.gov (United States)

    Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun

    2018-01-01

    The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.

  18. SU-F-T-619: Dose Evaluation of Specific Patient Plans Based On Monte Carlo Algorithm for a CyberKnife Stereotactic Radiosurgery System

    Energy Technology Data Exchange (ETDEWEB)

    Piao, J [PLA General Hospital, Beijing (China); PLA 302 Hospital, Beijing (China); Xu, S [PLA General Hospital, Beijing (China); Tsinghua University, Beijing (China); Wu, Z; Liu, Y [Tsinghua University, Beijing (China); Li, Y [Beihang University, Beijing (China); Qu, B [PLA General Hospital, Beijing (China); Duan, X [PLA 302 Hospital, Beijing (China)

    2016-06-15

    Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combined 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant

  19. Exact Monte Carlo for few-fermion systems

    International Nuclear Information System (INIS)

    Kalos, M.H.

    1991-01-01

    The author reconsiders the fundamental difficulties of fermion Monte Carlo as applied to few-body systems. He concludes that necessary ingredients of successful algorithms include the following: there must be equal populations of random walkers that carry positive and negative weights. The positions of positive walkers should be selected from a distribution that uses Green's functions to couple all walkers. The positions of negative walkers should be generated from those of positive walkers by means of odd permutations. The correct importance functions that take into account the global interactions of the populations are different for positive and negative walkers. Use of such important functions breaks the symmetry that otherwise would exist between configurations (of the entire population) and configurations derived by interchanging positive and negative walkers. Based upon these observations, he has constructed a stable and accurate algorithm that solves a fully-polarized, three-dimensional three-body model problem

  20. Design Development and Verification of a System Integrated Modular PWR

    International Nuclear Information System (INIS)

    Kim, S.-H.; Kim, K. K.; Chang, M. H.; Kang, C. S.; Park, G.-C.

    2002-01-01

    An advanced PWR with a rated thermal power of 330 MW has been developed at the Korea Atomic Energy Research Institute (KAERI) for a dual purpose: seawater desalination and electricity generation. The conceptual design of SMART ( System-Integrated Modular Advanced ReacTor) with a desalination system was already completed in March of 1999. The basic design for the integrated nuclear desalination system is currently underway and will be finished by March of 2002. The SMART co-generation plant with the MED seawater desalination process is designed to supply forty thousand (40,000) tons of fresh water per day and ninety (90) MW of electricity to an area with approximately a ten thousand (100,000) population or an industrialized complex. This paper describes advanced design features adopted in the SMART design and also introduces the design and engineering verification program. In the beginning stage of the SMART development, top-level requirements for safety and economics were imposed for the SMART design features. To meet the requirements, highly advanced design features enhancing the safety, reliability, performance, and operability are introduced in the SMART design. The SMART consists of proven KOFA (Korea Optimized Fuel Assembly), helical once-through steam generators, a self-controlled pressurizer, control element drive mechanisms, and main coolant pumps in a single pressure vessel. In order to enhance safety characteristics, innovative design features adopted in the SMART system are low core power density, large negative Moderator Temperature Coefficient (MTC), high natural circulation capability and integral arrangement to eliminate large break loss of coolant accident, etc. The progression of emergency situations into accidents is prevented with a number of advanced engineered safety features such as passive residual heat removal system, passive emergency core cooling system, safeguard vessel, and passive containment over-pressure protection. The preliminary

  1. VALGALI: VERIFICATION AND VALIDATION TOOL FOR THE LIBRARIES PRODUCED BY THE GALILEE SYSTEM

    International Nuclear Information System (INIS)

    Mengelle, S.

    2011-01-01

    Full text: In this paper we present VALGALI the verification and validation tool for the libraries produced by the nuclear data processing system GALILEE. The aim of this system is to provide libraries with consistent physical data for various application codes (the deterministic transport code APOLLO2, the Monte Carlo transport code TRRIPOLI-4, the depletion code DARWIN, ...). For each library, are the data stored at the good place with the good format and so one. Are the libraries used by the various codes consistent. What is the physical quality of the cross sections and data present in the libraries. These three types of tests correspond to the classic stages of VandV. The great strength of VALGALI is to be generic and not dedicated to one application code Consequently, it is based on a common physical validation database which coverage is regularly increased. For all these test cases, the input data are declined for each relevant application code Moreover it can exist specific test case for each application code: At the present, VALGALI an check and validate the libraries of APOLLO2 and TRIPOLI4, but in the near future VALGALI wil also treat the libraries of DARWIN.

  2. A GIS support system for declaration and verification

    International Nuclear Information System (INIS)

    Poucet, A.; Contini, S.; Bellezza, F.

    2001-01-01

    Full text: The timely detection of a diversion of a significant amount of nuclear material from the civil cycle represents a complex activity that requires the use of powerful support systems. In this field the authors developed SIT (Safeguards Inspection Tool), an integrated platform for collecting, managing and analysing data from a variety of sources to support declarations and verification activities. Information dealt with is that requested by both INFCIRC/153 and INFCIRC/540 protocols. SIT is based on a low-cost Geographic Information System platform and extensive use is made of commercial software to reduce maintenance costs. The system has been developed using ARCVIEW GIS for Windows NT platforms. SIT is conceived as an integrator of multimedia information stored into local and remote databases; efforts have been focused on the automation of several tasks in order to produce a user-friendly system. Main characteristics of SIT are: Capability to deal with multimedia data, e.g. text, images, video, using user-selected COTS; Easy access to external databases, e.g. Oracle, Informix, Sybase, MS-Access, directly from the site map; Selected access to open source information via Internet; Capability to easily geo-reference site maps, to generate thematic layers of interest and to perform spatial analysis; Capability of performing aerial and satellite image analysis operations, e.g. rectification, change detection, feature extraction; Capability to easily add and run external models for e.g. material data accounting, completeness check, air dispersion models, material flow graph generation and to describe results in graphical form; Capability to use a Geo-positioning systems (GPS) with a portable computer, SIT is at an advanced stage of development and will be very soon interfaced with VERITY, a powerful Web search engine in order to allow open source information retrieval from geographical maps. The paper will describe the main features of SIT and the advantages of

  3. A GIS support system for declaration and verification

    Energy Technology Data Exchange (ETDEWEB)

    Poucet, A; Contini, S; Bellezza, F [European Commission, Joint Research Centre, Institute for Systems Informatics and Safety (ISIS), Ispra (Italy)

    2001-07-01

    Full text: The timely detection of a diversion of a significant amount of nuclear material from the civil cycle represents a complex activity that requires the use of powerful support systems. In this field the authors developed SIT (Safeguards Inspection Tool), an integrated platform for collecting, managing and analysing data from a variety of sources to support declarations and verification activities. Information dealt with is that requested by both INFCIRC/153 and INFCIRC/540 protocols. SIT is based on a low-cost Geographic Information System platform and extensive use is made of commercial software to reduce maintenance costs. The system has been developed using ARCVIEW GIS for Windows NT platforms. SIT is conceived as an integrator of multimedia information stored into local and remote databases; efforts have been focused on the automation of several tasks in order to produce a user-friendly system. Main characteristics of SIT are: Capability to deal with multimedia data, e.g. text, images, video, using user-selected COTS; Easy access to external databases, e.g. Oracle, Informix, Sybase, MS-Access, directly from the site map; Selected access to open source information via Internet; Capability to easily geo-reference site maps, to generate thematic layers of interest and to perform spatial analysis; Capability of performing aerial and satellite image analysis operations, e.g. rectification, change detection, feature extraction; Capability to easily add and run external models for e.g. material data accounting, completeness check, air dispersion models, material flow graph generation and to describe results in graphical form; Capability to use a Geo-positioning systems (GPS) with a portable computer, SIT is at an advanced stage of development and will be very soon interfaced with VERITY, a powerful Web search engine in order to allow open source information retrieval from geographical maps. The paper will describe the main features of SIT and the advantages of

  4. System design and verification process for LHC programmable trigger electronics

    CERN Document Server

    Crosetto, D

    1999-01-01

    The rapid evolution of electronics has made it essential to design systems in a technology-independent form that will permit their realization in any future technology. This article describes two practical projects that have been developed for fast, programmable, scalable, modular electronics for the first-level trigger of Large Hadron Collider (LHC) experiments at CERN, Geneva. In both projects, one for the front-end electronics and the second for executing first- level trigger algorithms, the whole system requirements were constrained to two types of replicated components. The overall problem is described, the 3D-Flow design is introduced as a novel solution, and current solutions to the problem are described and compared with the 3D-Flow solution. The design/verification methodology proposed allows the user's real-time system algorithm to be verified down to the gate-level simulation on a technology- independent platform, thus yielding the design for a system that can be implemented with any technology at ...

  5. Verification and Validation of Flight-Critical Systems

    Science.gov (United States)

    Brat, Guillaume

    2010-01-01

    For the first time in many years, the NASA budget presented to congress calls for a focused effort on the verification and validation (V&V) of complex systems. This is mostly motivated by the results of the VVFCS (V&V of Flight-Critical Systems) study, which should materialize as a a concrete effort under the Aviation Safety program. This talk will present the results of the study, from requirements coming out of discussions with the FAA and the Joint Planning and Development Office (JPDO) to technical plan addressing the issue, and its proposed current and future V&V research agenda, which will be addressed by NASA Ames, Langley, and Dryden as well as external partners through NASA Research Announcements (NRA) calls. This agenda calls for pushing V&V earlier in the life cycle and take advantage of formal methods to increase safety and reduce cost of V&V. I will present the on-going research work (especially the four main technical areas: Safety Assurance, Distributed Systems, Authority and Autonomy, and Software-Intensive Systems), possible extensions, and how VVFCS plans on grounding the research in realistic examples, including an intended V&V test-bench based on an Integrated Modular Avionics (IMA) architecture and hosted by Dryden.

  6. Tracer verification and monitoring of containment systems (II)

    International Nuclear Information System (INIS)

    Williams, C.V.; Dunn, S.D.; Lowry, W.E.

    1997-01-01

    A tracer verification and monitoring system, SEAtrace trademark, has been designed and field tested which uses gas tracers to evaluate, verify, and monitor the integrity of subsurface barriers. This is accomplished using an automatic, rugged, autonomous monitoring system combined with an inverse optimization code. A gaseous tracer is injected inside the barrier and an array of wells outside the barrier are monitored. When the tracer gas is detected, a global optimization code is used to calculate the leak parameters, including leak size, location, and when the leak began. The multipoint monitoring system operates in real-time, can be used to measure both the tracer gas and soil vapor contaminants, and is capable of unattended operation for long periods of time (months). The global optimization code searches multi-dimensional open-quotes spaceclose quotes to find the best fit for all of the input parameters. These parameters include tracer gas concentration histories from multiple monitoring points, medium properties, barrier location, and the source concentration. SEAtrace trademark does not attempt to model all of the nuances associated with multi-phase, multi-component flow, but rather, the inverse code uses a simplistic forward model which can provide results which are reasonably accurate. The system has calculated leak locations to within 0.5 meters and leak radii to within 0.12 meters

  7. ALGORITHM VERIFICATION FOR A TLD PERSONAL DOSIMETRY SYSTEM

    International Nuclear Information System (INIS)

    SHAHEIN, A.; SOLIMAN, H.A.; MAGHRABY, A.

    2008-01-01

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study, an automated Harshaw 6600 reader was vigorously tested prior to the use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose; Hp(10), shallow dose; Hp(0.07), and eye lens dose; Hp(3). Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  8. Development of NSSS Control System Performance Verification Tool

    International Nuclear Information System (INIS)

    Sohn, Suk Whun; Song, Myung Jun

    2007-01-01

    Thanks to many control systems and control components, the nuclear power plant can be operated safely and efficiently under the transient condition as well as the steady state condition. If a fault or an error exists in control systems, the nuclear power plant should experience the unwanted and unexpected transient condition. Therefore, the performance of these control systems and control components should be completely verified through power ascension tests of startup period. However, there are many needs to replace control components or to modify control logic or to change its setpoint. It is important to verify the performance of changed control system without redoing power ascension tests in order to perform these changes. Up to now, a simulation method with computer codes which has been used for design of nuclear power plants was commonly used to verify its performance. But, if hardware characteristics of control system are changed or the software in control system has an unexpected fault or error, this simulation method is not effective to verify the performance of changed control system. Many tests related to V and V (Verification and Validation) are performed in the factory as well as in the plant to eliminate these errors which might be generated in hardware manufacturing or software coding. It reveals that these field tests and the simulation method are insufficient to guaranty the performance of changed control system. Two unexpected transients occurred in YGN 5 and 6 startup period are good examples to show this fact. One occurred at 50% reactor power and caused reactor trip. The other occurred during 70% loss of main feedwater pump test and caused the excess turbine runback

  9. Density scaling of phantom materials for a 3D dose verification system.

    Science.gov (United States)

    Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi

    2018-05-21

    In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley

  10. Secure stand alone positive personnel identity verification system (SSA-PPIV)

    International Nuclear Information System (INIS)

    Merillat, P.D.

    1979-03-01

    The properties of a secure stand-alone positive personnel identity verification system are detailed. The system is designed to operate without the aid of a central computing facility and the verification function is performed in the absence of security personnel. Security is primarily achieved by means of data encryption on a magnetic stripe badge. Several operational configurations are discussed. Advantages and disadvantages of this system compared to a central computer driven system are detailed

  11. Runtime verification of embedded real-time systems.

    Science.gov (United States)

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  12. System verification and validation report for the TMAD code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the Verification and Validation Report for the TMAD code system, which includes the TMAD code and the LIBMAKR Code. The TMAD code was commissioned to facilitate the interpretation of moisture probe measurements in the Hanford Site waste tanks. In principle, the code is an interpolation routine that acts over a library of benchmark data based on two independent variables, typically anomaly size and moisture content. Two additional variables, anomaly type and detector type, can also be considered independent variables, but no interpolation is done over them. The dependent variable is detector response. The intent is to provide the code with measured detector responses from two or more detectors. The code will then interrogate (and interpolate upon) the benchmark data library and find the anomaly-type/anomaly-size/moisture-content combination that provides the closest match to the measured data. The primary purpose of this document is to provide the results of the system testing and the conclusions based thereon. The results of the testing process are documented in the body of the report. Appendix A gives the test plan, including test procedures, used in conducting the tests. Appendix B lists the input data required to conduct the tests, and Appendices C and 0 list the numerical results of the tests

  13. Optical Verification Laboratory Demonstration System for High Security Identification Cards

    Science.gov (United States)

    Javidi, Bahram

    1997-01-01

    Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the

  14. Quantitative dosimetric verification of an IMRT planning and delivery system

    International Nuclear Information System (INIS)

    Low, D.A.; Mutic, S.; Dempsey, J.F.; Gerber, R.L.; Bosch, W.R.; Perez, C.A.; Purdy, J.A.

    1998-01-01

    Background and purpose: The accuracy of dose calculation and delivery of a commercial serial tomotherapy treatment planning and delivery system (Peacock, NOMOS Corporation) was experimentally determined. Materials and methods: External beam fluence distributions were optimized and delivered to test treatment plan target volumes, including three with cylindrical targets with diameters ranging from 2.0 to 6.2 cm and lengths of 0.9 through 4.8 cm, one using three cylindrical targets and two using C-shaped targets surrounding a critical structure, each with different dose distribution optimization criteria. Computer overlays of film-measured and calculated planar dose distributions were used to assess the dose calculation and delivery spatial accuracy. A 0.125 cm 3 ionization chamber was used to conduct absolute point dosimetry verification. Thermoluminescent dosimetry chips, a small-volume ionization chamber and radiochromic film were used as independent checks of the ion chamber measurements. Results: Spatial localization accuracy was found to be better than ±2.0 mm in the transverse axes (with one exception of 3.0 mm) and ±1.5 mm in the longitudinal axis. Dosimetric verification using single slice delivery versions of the plans showed that the relative dose distribution was accurate to ±2% within and outside the target volumes (in high dose and low dose gradient regions) with a mean and standard deviation for all points of -0.05% and 1.1%, respectively. The absolute dose per monitor unit was found to vary by ±3.5% of the mean value due to the lack of consideration for leakage radiation and the limited scattered radiation integration in the dose calculation algorithm. To deliver the prescribed dose, adjustment of the monitor units by the measured ratio would be required. Conclusions: The treatment planning and delivery system offered suitably accurate spatial registration and dose delivery of serial tomotherapy generated dose distributions. The quantitative dose

  15. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  16. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  17. Mathematical verification of a nuclear power plant protection system function with combined CPN and PVS

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, a translator has been developed in this work. The combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip) and found to be promising for further research and applications. 7 refs., 10 figs. (Author)

  18. Mathematical verification of a nuclear power plant protection system function with combined CPN and PVS

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, a translator has been developed in this work. The combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip) and found to be promising for further research and applications. 7 refs., 10 figs. (Author)

  19. Monte Carlo simulation of nuclear spin relaxation in disordered system

    International Nuclear Information System (INIS)

    Luo, X.; Sholl, C.A.

    2002-01-01

    Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined

  20. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  1. Wu’s Characteristic Set Method for SystemVerilog Assertions Verification

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2013-01-01

    Full Text Available We propose a verification solution based on characteristic set of Wu’s method towards SystemVerilog assertion checking over digital circuit systems. We define a suitable subset of SVAs so that an efficient polynomial modeling mechanism for both circuit descriptions and assertions can be applied. We present an algorithm framework based on the algebraic representations using characteristic set of polynomial system. This symbolic algebraic approach is a useful supplement to the existent verification methods based on simulation.

  2. VERIFICATION OF THE FOOD SAFETY MANAGEMENT SYSTEM IN DEEP FROZEN FOOD PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Peter Zajác

    2010-07-01

    Full Text Available In work is presented verification of food safety management system of deep frozen food. Main emphasis is on creating set of verification questions within articles of standard STN EN ISO 22000:2006 and on searching of effectiveness in food safety management system. Information were acquired from scientific literature sources and they pointed out importance of implementation and upkeep of effective food safety management system. doi:10.5219/28

  3. Verification of Triple Modular Redundancy Insertion for Reliable and Trusted Systems

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth

    2016-01-01

    If a system is required to be protected using triple modular redundancy (TMR), improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process and the complexity of digital designs, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems.

  4. AVNG System Software-Attribute Verification System with Information Barriers for Mass Isotopic Measurements

    International Nuclear Information System (INIS)

    Elmont, T.H.; Langner, Diana C.; MacArthur, D.W.; Mayo, D.R.; Smith, M.K.; Modenov, A.

    2005-01-01

    This report describes the software development for the plutonium attribute verification system - AVNG. A brief synopsis of the technical solution for the measurement system is presented. The main tasks for the software development that is underway are formulated. The development tasks are shown in software structural flowcharts, measurement system state diagram and a description of the software. The current status of the AVNG software development is elucidated.

  5. 75 FR 38765 - Domestic Origin Verification System Questionnaire and Regulations Governing Inspection and...

    Science.gov (United States)

    2010-07-06

    ..., facility assessment services, certifications of quantity and quality, import product inspections, and... control number. These include export certification, inspection of section 8e import products, and...] Domestic Origin Verification System Questionnaire and Regulations Governing Inspection and Certification of...

  6. In pursuit of carbon accountability: the politics of REDD+ measuring, reporting and verification systems

    NARCIS (Netherlands)

    Gupta, A.; Lövbrand, E.; Turnhout, E.; Vijge, M.J.

    2012-01-01

    This article reviews critical social science analyses of carbonaccounting and monitoring, reporting and verification (MRV) systems associated with reducing emissions from deforestation, forest degradation and conservation, sustainable use and enhancement of forest carbon stocks (REDD+). REDD+ MRV

  7. Comparative Analysys of Speech Parameters for the Design of Speaker Verification Systems

    National Research Council Canada - National Science Library

    Souza, A

    2001-01-01

    Speaker verification systems are basically composed of three stages: feature extraction, feature processing and comparison of the modified features from speaker voice and from the voice that should be...

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  9. Results of verifications of the control automatic exposure in equipment of RX with CR systems

    International Nuclear Information System (INIS)

    Ruiz Manzano, P.; Rivas Ballarin, M. A.; Ortega Pardina, P.; Villa Gazulla, D.; Calvo Carrillo, S.; Canellas Anoz, M.; Millan Cebrian, E.

    2013-01-01

    After the entry into force in 2012, the new Spanish Radiology quality control protocol lists and discusses the results obtained after verification of the automatic control of exposure in computed radiography systems. (Author)

  10. RRB's SVES Input File - Post Entitlement State Verification and Exchange System (PSSVES)

    Data.gov (United States)

    Social Security Administration — Several PSSVES request files are transmitted to SSA each year for processing in the State Verification and Exchange System (SVES). This is a first step in obtaining...

  11. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM

    2016-01-01

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  12. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  13. The JPSS Ground Project Algorithm Verification, Test and Evaluation System

    Science.gov (United States)

    Vicente, G. A.; Jain, P.; Chander, G.; Nguyen, V. T.; Dixon, V.

    2016-12-01

    The Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) is an operational system that provides services to the Suomi National Polar-orbiting Partnership (S-NPP) Mission. It is also a unique environment for Calibration/Validation (Cal/Val) and Data Quality Assessment (DQA) of the Join Polar Satellite System (JPSS) mission data products. GRAVITE provides a fast and direct access to the data and products created by the Interface Data Processing Segment (IDPS), the NASA/NOAA operational system that converts Raw Data Records (RDR's) generated by sensors on the S-NPP into calibrated geo-located Sensor Data Records (SDR's) and generates Mission Unique Products (MUPS). It also facilitates algorithm investigation, integration, checkouts and tuning, instrument and product calibration and data quality support, monitoring and data/products distribution. GRAVITE is the portal for the latest S-NPP and JPSS baselined Processing Coefficient Tables (PCT's) and Look-Up-Tables (LUT's) and hosts a number DQA offline tools that takes advantage of the proximity to the near-real time data flows. It also contains a set of automated and ad-hoc Cal/Val tools used for algorithm analysis and updates, including an instance of the IDPS called GRAVITE Algorithm Development Area (G-ADA), that has the latest installation of the IDPS algorithms running in an identical software and hardware platforms. Two other important GRAVITE component are the Investigator-led Processing System (IPS) and the Investigator Computing Facility (ICF). The IPS is a dedicated environment where authorized users run automated scripts called Product Generation Executables (PGE's) to support Cal/Val and data quality assurance offline. This data-rich and data-driven service holds its own distribution system and allows operators to retrieve science data products. The ICF is a workspace where users can share computing applications and resources and have full access to libraries and

  14. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.; Watanabe, Hiroshi; Ito, Nobuyasu

    2010-01-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing

  15. Review of quantum Monte Carlo methods and results for Coulombic systems

    International Nuclear Information System (INIS)

    Ceperley, D.

    1983-01-01

    The various Monte Carlo methods for calculating ground state energies are briefly reviewed. Then a summary of the charged systems that have been studied with Monte Carlo is given. These include the electron gas, small molecules, a metal slab and many-body hydrogen

  16. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  17. Television system for verification and documentation of treatment fields during intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Fraass, B.A.; Harrington, F.S.; Kinsella, T.J.; Sindelar, W.F.

    1983-01-01

    Intraoperative radiation therapy (IORT) involves direct treatment of tumors or tumor beds with large single doses of radiation. The verification of the area to be treated before irradiation and the documentation of the treated area are critical for IORT, just as for other types of radiation therapy. A television system which allows the target area to be directly imaged immediately before irradiation has been developed. Verification and documentation of treatment fields has made the IORT television system indispensable

  18. ECG Sensor Verification System with Mean-Interval Algorithm for Handling Sport Issue

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2016-01-01

    Full Text Available With the development of biometric verification, we proposed a new algorithm and personal mobile sensor card system for ECG verification. The proposed new mean-interval approach can identify the user quickly with high accuracy and consumes a small amount of flash memory in the microprocessor. The new framework of the mobile card system makes ECG verification become a feasible application to overcome the issues of a centralized database. For a fair and comprehensive evaluation, the experimental results have been tested on public MIT-BIH ECG databases and our circuit system; they confirm that the proposed scheme is able to provide excellent accuracy and low complexity. Moreover, we also proposed a multiple-state solution to handle the heat rate changes of sports problem. It should be the first to address the issue of sports in ECG verification.

  19. Property-based Code Slicing for Efficient Verification of OSEK/VDX Operating Systems

    Directory of Open Access Journals (Sweden)

    Mingyu Park

    2012-12-01

    Full Text Available Testing is a de-facto verification technique in industry, but insufficient for identifying subtle issues due to its optimistic incompleteness. On the other hand, model checking is a powerful technique that supports comprehensiveness, and is thus suitable for the verification of safety-critical systems. However, it generally requires more knowledge and cost more than testing. This work attempts to take advantage of both techniques to achieve integrated and efficient verification of OSEK/VDX-based automotive operating systems. We propose property-based environment generation and model extraction techniques using static code analysis, which can be applied to both model checking and testing. The technique is automated and applied to an OSEK/VDX-based automotive operating system, Trampoline. Comparative experiments using random testing and model checking for the verification of assertions in the Trampoline kernel code show how our environment generation and abstraction approach can be utilized for efficient fault-detection.

  20. Verification of Triple Modular Redundancy (TMR) Insertion for Reliable and Trusted Systems

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems. If a system is expected to be protected using TMR, improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. This manuscript addresses the challenge of confirming that TMR has been inserted without corruption of functionality and with correct application of the expected TMR topology. The proposed verification method combines the usage of existing formal analysis tools with a novel search-detect-and-verify tool. Field programmable gate array (FPGA),Triple Modular Redundancy (TMR),Verification, Trust, Reliability,

  1. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  2. Verification and synthesis of optimal decision strategies for complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Summers, S. J.

    2013-07-01

    Complex systems make a habit of disagreeing with the mathematical models strategically designed to capture their behavior. A recursive process ensues where data is used to gain insight into the disagreement. A simple model may give way to a model with hybrid dynamics. A deterministic model may give way to a model with stochastic dynamics. In many cases, the modeling framework that sufficiently characterises the system is both hybrid and stochastic; these systems are referred to as stochastic hybrid systems. This dissertation considers the stochastic hybrid system framework for modeling complex systems and provides mathematical methods for analysing, and synthesizing decision laws for, such systems. We first propose a stochastic reach-avoid problem for discrete time stochastic hybrid systems. In particular, we present a dynamic programming based solution to a probabilistic reach-avoid problem for a controlled discrete time stochastic hybrid system. We address two distinct interpretations of the reach-avoid problem via stochastic optimal control. In the first case, a sum-multiplicative cost function is introduced along with a corresponding dynamic recursion that quantifies the probability of hitting a target set at some point during a finite time horizon, while avoiding an unsafe set at all preceding time steps. In the second case, we introduce a multiplicative cost function and a dynamic recursion that quantifies the probability of hitting a target set at the terminal time, while avoiding an unsafe set at all preceding time steps. In each case, optimal reach-avoid control policies are derived as the solution to an optimal control problem via dynamic programming. We next introduce an extension of the reach-avoid problem where we consider the verification of discrete time stochastic hybrid systems when there exists uncertainty in the reachability specifications themselves. A sum multiplicative cost function is introduced along with a corresponding dynamic recursion

  3. Verification and synthesis of optimal decision strategies for complex systems

    International Nuclear Information System (INIS)

    Summers, S. J.

    2013-01-01

    Complex systems make a habit of disagreeing with the mathematical models strategically designed to capture their behavior. A recursive process ensues where data is used to gain insight into the disagreement. A simple model may give way to a model with hybrid dynamics. A deterministic model may give way to a model with stochastic dynamics. In many cases, the modeling framework that sufficiently characterises the system is both hybrid and stochastic; these systems are referred to as stochastic hybrid systems. This dissertation considers the stochastic hybrid system framework for modeling complex systems and provides mathematical methods for analysing, and synthesizing decision laws for, such systems. We first propose a stochastic reach-avoid problem for discrete time stochastic hybrid systems. In particular, we present a dynamic programming based solution to a probabilistic reach-avoid problem for a controlled discrete time stochastic hybrid system. We address two distinct interpretations of the reach-avoid problem via stochastic optimal control. In the first case, a sum-multiplicative cost function is introduced along with a corresponding dynamic recursion that quantifies the probability of hitting a target set at some point during a finite time horizon, while avoiding an unsafe set at all preceding time steps. In the second case, we introduce a multiplicative cost function and a dynamic recursion that quantifies the probability of hitting a target set at the terminal time, while avoiding an unsafe set at all preceding time steps. In each case, optimal reach-avoid control policies are derived as the solution to an optimal control problem via dynamic programming. We next introduce an extension of the reach-avoid problem where we consider the verification of discrete time stochastic hybrid systems when there exists uncertainty in the reachability specifications themselves. A sum multiplicative cost function is introduced along with a corresponding dynamic recursion

  4. Guidelines for the verification and validation of expert system software and conventional software: Bibliography. Volume 8

    International Nuclear Information System (INIS)

    Miller, L.A.; Hayes, J.E.; Mirsky, S.M.

    1995-03-01

    This volume contains all of the technical references found in Volumes 1-7 concerning the development of guidelines for the verification and validation of expert systems, knowledge-based systems, other AI systems, object-oriented systems, and conventional systems

  5. Guidelines for the verification and validation of expert system software and conventional software: Bibliography. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.A.; Hayes, J.E.; Mirsky, S.M. [Science Applications International Corp., McLean, VA (United States)

    1995-03-01

    This volume contains all of the technical references found in Volumes 1-7 concerning the development of guidelines for the verification and validation of expert systems, knowledge-based systems, other AI systems, object-oriented systems, and conventional systems.

  6. Six types Monte Carlo for estimating the current unavailability of Markov system with dependent repair

    International Nuclear Information System (INIS)

    Xiao Gang; Li Zhizhong

    2004-01-01

    Based on integral equaiton describing the life-history of Markov system, six types of estimators of the current unavailability of Markov system with dependent repair are propounded. Combining with the biased sampling of state transition time of system, six types of Monte Carlo for estimating the current unavailability are given. Two numerical examples are given to deal with the variances and efficiencies of the six types of Monte Carlo methods. (authors)

  7. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

    Science.gov (United States)

    Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank

    2018-02-01

    Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists

  8. Quasi-Monte Carlo methods for lattice systems. A first look

    International Nuclear Information System (INIS)

    Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.

    2013-02-01

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  9. Compositional Verification of Interlocking Systems for Large Stations

    DEFF Research Database (Denmark)

    Fantechi, Alessandro; Haxthausen, Anne Elisabeth; Macedo, Hugo Daniel dos Santos

    2017-01-01

    -networks that are independent at some degree. At this regard, we study how the division of a complex network into sub-networks, using stub elements to abstract all the routes that are common between sub-networks, may still guarantee compositionality of verification of safety properties....... for networks of large size due to the exponential computation time and resources needed. Some recent attempts to address this challenge adopt a compositional approach, targeted to track layouts that are easily decomposable into sub-networks such that a route is almost fully contained in a sub......-network: in this way granting the access to a route is essentially a decision local to the sub-network, and the interfaces with the rest of the network easily abstract away less interesting details related to the external world. Following up on previous work, where we defined a compositional verification method...

  10. A knowledge-base verification of NPP expert systems using extended Petri nets

    International Nuclear Information System (INIS)

    Kwon, Il Won; Seong, Poong Hyun

    1995-01-01

    The verification phase of knowledge base is an important part for developing reliable expert systems, especially in nuclear industry. Although several strategies or tools have been developed to perform potential error checking, they often neglect the reliability of verification methods. Because a Petri net provides a uniform mathematical formalization of knowledge base, it has been employed for knowledge base verification. In this work, we devise and suggest an automated tool, called COKEP (Checker Of Knowledge base using Extended Petri net), for detecting incorrectness, inconsistency, and incompleteness in a knowledge base. The scope of the verification problem is expanded to chained errors, unlike previous studies that assumed error incidence to be limited to rule pairs only. In addition, we consider certainty factor in checking, because most of knowledge bases have certainty factors

  11. Dynamic Isotope Power System: technology verification phase, program plan, 1 October 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The technology verification phase program plan of the Dynamic Isotope Power System (DIPS) project is presented. DIPS is a project to develop a 0.5 to 2.0 kW power system for spacecraft using an isotope heat source and a closed-cycle Rankine power-system with an organic working fluid. The technology verification phase's purposes are to increase the system efficiency to over 18%, to demonstrate system reliability, and to provide an estimate for flight test scheduling. Progress toward these goals is reported

  12. Automated Offline Arabic Signature Verification System using Multiple Features Fusion for Forensic Applications

    Directory of Open Access Journals (Sweden)

    Saad M. Darwish

    2016-12-01

    Full Text Available The signature of a person is one of the most popular and legally accepted behavioral biometrics that provides a secure means for verification and personal identification in many applications such as financial, commercial and legal transactions. The objective of the signature verification system is to classify between genuine and forged signatures that are often associated with intrapersonal and interpersonal variability. Unlike other languages, Arabic has unique features; it contains diacritics, ligatures, and overlapping. Because of lacking any form of dynamic information during the Arabic signature’s writing process, it will be more difficult to obtain higher verification accuracy. This paper addresses the above difficulty by introducing a novel offline Arabic signature verification algorithm. The key point is using multiple feature fusion with fuzzy modeling to capture different aspects of a signature individually in order to improve the verification accuracy. State-of-the-art techniques adopt the fuzzy set to describe the properties of the extracted features to handle a signature’s uncertainty; this work also employs the fuzzy variables to describe the degree of similarity of the signature’s features to deal with the ambiguity of questioned document examiner judgment of signature similarity. It is concluded from the experimental results that the verification system performs well and has the ability to reduce both False Acceptance Rate (FAR and False Rejection Rate (FRR.

  13. Subtle Monte Carlo Updates in Dense Molecular Systems

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.

    2012-01-01

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results...... suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions....

  14. Development of a tool for knowledge base verification of expert system based on Design/CPN

    International Nuclear Information System (INIS)

    Kim, Jong Hyun

    1998-02-01

    Verification is a necessary work in developing a reliable expert system. Verification is a process aimed at demonstrating whether a system meets it's specified requirements. As expert systems are used in various applications, the knowledge base verification of systems takes an important position. The conventional Petri net approach that has been studied recently in order to verify the knowledge base is found that it is inadequate to verify the knowledge base of large and complex system, such as alarm processing system of nuclear power plant. Thus, we propose an improved method that models the knowledge base as enhanced colored Petri net. In this study, we analyze the reachability and the error characteristics of the knowledge base. Generally, verification process requires computational support by automated tools. For this reason, this study developed a tool for knowledge base verification based on Design/CPN, which is a tool for editing, modeling, and simulating Colored Petri net. This tool uses Enhanced Colored Petri net as a modeling method. By applying this tool to the knowledge base of nuclear power plant, it is noticed that it can successfully check most of the anomalies that can occur in a knowledge base

  15. Data-driven property verification of grey-box systems by Bayesian experiment design

    NARCIS (Netherlands)

    Haesaert, S.; Van den Hof, P.M.J.; Abate, A.

    2015-01-01

    A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a

  16. REQUIREMENT VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM

    Science.gov (United States)

    2017-09-01

    VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM by Theresa L. Thomas September... ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM 5. FUNDING NUMBERS 6. AUTHOR(S) Theresa L. Thomas 7...CODE 13. ABSTRACT (maximum 200 words) The Naval Air Systems Command (NAVAIR) systems engineering technical review (SETR) process does not

  17. Ongoing Work on Automated Verification of Noisy Nonlinear Systems with Ariadne

    NARCIS (Netherlands)

    Geretti, Luca; Bresolin, Davide; Collins, Pieter; Zivanovic Gonzalez, Sanja; Villa, Tiziano

    2017-01-01

    Cyber-physical systems (CPS) are hybrid systems that commonly consist of a discrete control part that operates in a continuous environment. Hybrid automata are a convenient model for CPS suitable for formal verification. The latter is based on reachability analysis of the system to trace its hybrid

  18. TH-CD-202-05: DECT Based Tissue Segmentation as Input to Monte Carlo Simulations for Proton Treatment Verification Using PET Imaging

    International Nuclear Information System (INIS)

    Berndt, B; Wuerl, M; Dedes, G; Landry, G; Parodi, K; Tessonnier, T; Schwarz, F; Kamp, F; Thieke, C; Belka, C; Reiser, M; Sommer, W; Bauer, J; Verhaegen, F

    2016-01-01

    Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrose and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification

  19. TH-CD-202-05: DECT Based Tissue Segmentation as Input to Monte Carlo Simulations for Proton Treatment Verification Using PET Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, B; Wuerl, M; Dedes, G; Landry, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen, Garching, DE (Germany); Tessonnier, T [Ludwig-Maximilians-Universitaet Muenchen, Garching, DE (Germany); Universitaetsklinikum Heidelberg, Heidelberg, DE (Germany); Schwarz, F; Kamp, F; Thieke, C; Belka, C; Reiser, M; Sommer, W [LMU Munich, Munich, DE (Germany); Bauer, J [Universitaetsklinikum Heidelberg, Heidelberg, DE (Germany); Heidelberg Ion-Beam Therapy Center, Heidelberg, DE (Germany); Verhaegen, F [Maastro Clinic, Maastricht (Netherlands)

    2016-06-15

    Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrose and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification

  20. Digital system verification a combined formal methods and simulation framework

    CERN Document Server

    Li, Lun

    2010-01-01

    Integrated circuit capacity follows Moore's law, and chips are commonly produced at the time of this writing with over 70 million gates per device. Ensuring correct functional behavior of such large designs before fabrication poses an extremely challenging problem. Formal verification validates the correctness of the implementation of a design with respect to its specification through mathematical proof techniques. Formal techniques have been emerging as commercialized EDA tools in the past decade. Simulation remains a predominantly used tool to validate a design in industry. After more than 5

  1. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Taylor [Colorado Energy Office, Denver, CO (United States)

    2017-12-05

    This measurement and verification (M and V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with cooling tower efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M and V plan, and details the procedures to use to determine water savings.

  2. Formal Development and Verification of Railway Control Systems

    DEFF Research Database (Denmark)

    Vu Hong, Linh; Haxthausen, Anne Elisabeth; Peleska, Jan

    done applying conventional methods where requirements and designs are described using natural language, diagrams and pseudo code, and the verification of requirements has been done by code inspection and non-exhaustive testing. These techniques are not sufficient, leading to errors and an in-effective...... for Strategic Research. The work is affiliated with a number of partners: DTU Compute, DTU Transport, DTU Management, DTU Fotonik, Bremen University, Banedanmark, Trafikstyrelsen, DSB, and DSB S-tog. More information about RobustRails project is available at http://www.dtu.dk/subsites/robustrails/English.aspx...

  3. Automated Image Acquisition System for the Verification of Copper-Brass Seal Images

    International Nuclear Information System (INIS)

    Stringa, E.; Bergonzi, C.; Littmann, F.; ); Marszalek, Y.; Tempesta, S.; )

    2015-01-01

    This paper describes a system for the verification of copper-brass seals realized by JRC according to DG ENER requirements. DG ENER processes about 20,000 metal seals per year. The verification of metal seals consists in visually checking the identity of a removed seal. The identity of a copper-brass seal is defined by a random stain pattern realized by the seal producer together with random scratches engraved when the seals are initialized ('seal production'). In order to verify that the seal returned from the field is the expected one its pattern is compared with an image taken during seal production. Formerly, seal initialization and verification were very heavy tasks as seal pictures were acquired with a camera one by one both in the initialization and verification stages. During the initialization the Nuclear Safeguards technicians had to place one by one new seals under a camera and acquire the related reference images. During the verification, the technician had to take used seals and place them one by one under a camera to take new pictures. The new images were presented to the technicians without any preprocessing and the technicians had to recognize the seal. The new station described in this paper has an automated image acquisition system allowing to easily process seals in batches of 100 seals. To simplify the verification, a software automatically centres and rotates the newly acquired seal image in order to perfectly overlap with the reference image acquired during the production phase. The new system significantly speeds up seal production and helps particularly with the demanding task of seal verification. As a large part of the seals is dealt with by a joint Euratom-IAEA team, the IAEA directly profits from this development. The new tool has been in routine use since mid 2013. (author)

  4. The inverse method parametric verification of real-time embedded systems

    CERN Document Server

    André , Etienne

    2013-01-01

    This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solv

  5. Application of Integrated Verification Approach to FPGA-based Safety-Critical I and C System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ibrahim; Heo, Gyunyoung [Kyunghee Univ., Yongin (Korea, Republic of); Jung, Jaecheon [KEPCO, Ulsan (Korea, Republic of)

    2016-10-15

    Safety-critical instrumentation and control (I and C) system in nuclear power plant (NPP) implemented on programmable logic controllers (PLCs) plays a vital role in safe operation of the plant. The challenges such as fast obsolescence, the vulnerability to cyber-attack, and other related issues of software systems have currently led to the consideration of field programmable gate arrays (FPGAs) as an alternative to PLCs because of their advantages and hardware related benefits. Generally in FPGA design verification, the designers make use of verification techniques by writing the test benches which involved various stages of verification activities of register-transfer level (RTL), gate-level, and place and route. Writing the test benches is considerably time consuming and require a lot of efforts to achieve a satisfied desire results. Furthermore, performing the verification at each stage is a major bottleneck and demanded much activities and time. In addition, verification is conceivably, the most difficult and complicated aspect of any design. Therefore, in view of these, this work applied an integrated verification approach to the verification of FPGA-based I and C system in NPP that simultaneously verified the whole design modules using MATLAB/Simulink HDL Co-simulation models. Verification is conceivably, the most difficult and complicated aspect of any design, and an FPGA design is not an exception. Therefore, in this work, we introduced and discussed how an application of integrated verification technique to the verification and testing of FPGA-based I and C system design in NPP can facilitate the verification processes, and verify the entire design modules of the system simultaneously using MATLAB/Simulink HDL co-simulation models. In conclusion, the results showed that, the integrated verification approach through MATLAB/Simulink models, if applied to any design to be verified, could speed up the design verification and reduce the V and V tasks.

  6. Application of Integrated Verification Approach to FPGA-based Safety-Critical I and C System of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ahmed, Ibrahim; Heo, Gyunyoung; Jung, Jaecheon

    2016-01-01

    Safety-critical instrumentation and control (I and C) system in nuclear power plant (NPP) implemented on programmable logic controllers (PLCs) plays a vital role in safe operation of the plant. The challenges such as fast obsolescence, the vulnerability to cyber-attack, and other related issues of software systems have currently led to the consideration of field programmable gate arrays (FPGAs) as an alternative to PLCs because of their advantages and hardware related benefits. Generally in FPGA design verification, the designers make use of verification techniques by writing the test benches which involved various stages of verification activities of register-transfer level (RTL), gate-level, and place and route. Writing the test benches is considerably time consuming and require a lot of efforts to achieve a satisfied desire results. Furthermore, performing the verification at each stage is a major bottleneck and demanded much activities and time. In addition, verification is conceivably, the most difficult and complicated aspect of any design. Therefore, in view of these, this work applied an integrated verification approach to the verification of FPGA-based I and C system in NPP that simultaneously verified the whole design modules using MATLAB/Simulink HDL Co-simulation models. Verification is conceivably, the most difficult and complicated aspect of any design, and an FPGA design is not an exception. Therefore, in this work, we introduced and discussed how an application of integrated verification technique to the verification and testing of FPGA-based I and C system design in NPP can facilitate the verification processes, and verify the entire design modules of the system simultaneously using MATLAB/Simulink HDL co-simulation models. In conclusion, the results showed that, the integrated verification approach through MATLAB/Simulink models, if applied to any design to be verified, could speed up the design verification and reduce the V and V tasks

  7. TLM.open: a SystemC/TLM Frontend for the CADP Verification Toolbox

    Directory of Open Access Journals (Sweden)

    Claude Helmstetter

    2014-04-01

    Full Text Available SystemC/TLM models, which are C++ programs, allow the simulation of embedded software before hardware low-level descriptions are available and are used as golden models for hardware verification. The verification of the SystemC/TLM models is an important issue since an error in the model can mislead the system designers or reveal an error in the specifications. An open-source simulator for SystemC/TLM is provided but there are no tools for formal verification.In order to apply model checking to a SystemC/TLM model, a semantics for standard C++ code and for specific SystemC/TLM features must be provided. The usual approach relies on the translation of the SystemC/TLM code into a formal language for which a model checker is available.We propose another approach that suppresses the error-prone translation effort. Given a SystemC/TLM program, the transitions are obtained by executing the original code using g++ and an extended SystemC library, and we ask the user to provide additional functions to store the current model state. These additional functions generally represent less than 20% of the size of the original model, and allow it to apply all CADP verification tools to the SystemC/TLM model itself.

  8. Monte Carlo analysis of a control technique for a tunable white lighting system

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen

    2017-01-01

    A simulated colour control mechanism for a multi-coloured LED lighting system is presented. The system achieves adjustable and stable white light output and allows for system-to-system reproducibility after application of the control mechanism. The control unit works using a pre-calibrated lookup...... table for an experimentally realized system, with a calibrated tristimulus colour sensor. A Monte Carlo simulation is used to examine the system performance concerning the variation of luminous flux and chromaticity of the light output. The inputs to the Monte Carlo simulation, are variations of the LED...... peak wavelength, the LED rated luminous flux bin, the influence of the operating conditions, ambient temperature, driving current, and the spectral response of the colour sensor. The system performance is investigated by evaluating the outputs from the Monte Carlo simulation. The outputs show...

  9. A Cache System Design for CMPs with Built-In Coherence Verification

    Directory of Open Access Journals (Sweden)

    Mamata Dalui

    2016-01-01

    Full Text Available This work reports an effective design of cache system for Chip Multiprocessors (CMPs. It introduces built-in logic for verification of cache coherence in CMPs realizing directory based protocol. It is developed around the cellular automata (CA machine, invented by John von Neumann in the 1950s. A special class of CA referred to as single length cycle 2-attractor cellular automata (TACA has been planted to detect the inconsistencies in cache line states of processors’ private caches. The TACA module captures coherence status of the CMPs’ cache system and memorizes any inconsistent recording of the cache line states during the processors’ reference to a memory block. Theory has been developed to empower a TACA to analyse the cache state updates and then to settle to an attractor state indicating quick decision on a faulty recording of cache line status. The introduction of segmentation of the CMPs’ processor pool ensures a better efficiency, in determining the inconsistencies, by reducing the number of computation steps in the verification logic. The hardware requirement for the verification logic points to the fact that the overhead of proposed coherence verification module is much lesser than that of the conventional verification units and is insignificant with respect to the cost involved in CMPs’ cache system.

  10. Novel hybrid Monte Carlo/deterministic technique for shutdown dose rate analyses of fusion energy systems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2014-01-01

    Highlights: •Develop the novel Multi-Step CADIS (MS-CADIS) hybrid Monte Carlo/deterministic method for multi-step shielding analyses. •Accurately calculate shutdown dose rates using full-scale Monte Carlo models of fusion energy systems. •Demonstrate the dramatic efficiency improvement of the MS-CADIS method for the rigorous two step calculations of the shutdown dose rate in fusion reactors. -- Abstract: The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000

  11. A Formal Approach for the Construction and Verification of Railway Control Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan; Kinder, Sebastian

    2011-01-01

    This paper describes a complete model-based development and verification approach for railway control systems. For each control system to be generated, the user makes a description of the application-specific parameters in a domain-specific language. This description is automatically transformed...

  12. An Improved Constraint-Based System for the Verification of Security Protocols

    NARCIS (Netherlands)

    Corin, R.J.; Etalle, Sandro

    We propose a constraint-based system for the verification of security protocols that improves upon the one developed by Millen and Shmatikov [30]. Our system features (1) a significantly more efficient implementation, (2) a monotonic behavior, which also allows to detect flaws associated to partial

  13. The dynamic flowgraph methodology as a safety analysis tool : programmable electronic system design and verification

    NARCIS (Netherlands)

    Houtermans, M.J.M.; Apostolakis, G.E.; Brombacher, A.C.; Karydas, D.M.

    2002-01-01

    The objective of this paper is to demonstrate the use of the Dynamic Flowgraph Methodology (DFM) during the design and verification of programmable electronic safety-related systems. The safety system consists of hardware as well as software. This paper explains and demonstrates the use of DFM, and

  14. Proceedings of the 7th International Workshop on Verification of Infinite-State Systems (INFINITY'05)

    DEFF Research Database (Denmark)

    2005-01-01

    The aim of the workshop is, to provide a forum for researchers interested in the development of mathematical techniques for the analysis and verification of systems with infinitely many states. Topics: Techniques for modeling and analysis of infinite-state systems; Equivalence-checking and model-...

  15. Towards a Framework for Modelling and Verification of Relay Interlocking Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2011-01-01

    This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor...

  16. Towards a Framework for Modelling and Verification of Relay Interlocking Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2010-01-01

    This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor ...

  17. ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Crispo, Bruno; Etalle, Sandro

    2007-01-01

    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network

  18. An Improved Constraint-based system for the verification of security protocols

    NARCIS (Netherlands)

    Corin, R.J.; Etalle, Sandro; Hermenegildo, Manuel V.; Puebla, German

    We propose a constraint-based system for the verification of security protocols that improves upon the one developed by Millen and Shmatikov. Our system features (1) a significantly more efficient implementation, (2) a monotonic behavior, which also allows to detect aws associated to partial runs

  19. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  20. A Survey on Formal Verification Techniques for Safety-Critical Systems-on-Chip

    Directory of Open Access Journals (Sweden)

    Tomás Grimm

    2018-05-01

    Full Text Available The high degree of miniaturization in the electronics industry has been, for several years, a driver to push embedded systems to different fields and applications. One example is safety-critical systems, where the compactness in the form factor helps to reduce the costs and allows for the implementation of new techniques. The automotive industry is a great example of a safety-critical area with a great rise in the adoption of microelectronics. With it came the creation of the ISO 26262 standard with the goal of guaranteeing a high level of dependability in the designs. Other areas in the safety-critical applications domain have similar standards. However, these standards are mostly guidelines to make sure that designs reach the desired dependability level without explicit instructions. In the end, the success of the design to fulfill the standard is the result of a thorough verification process. Naturally, the goal of any verification team dealing with such important designs is complete coverage as well as standards conformity, but as these are complex hardware, complete functional verification is a difficult task. From the several techniques that exist to verify hardware, where each has its pros and cons, we studied six well-established in academia and in industry. We can divide them into two categories: simulation, which needs extremely large amounts of time, and formal verification, which needs unrealistic amounts of resources. Therefore, we conclude that a hybrid approach offers the best balance between simulation (time and formal verification (resources.

  1. Formal verification and validation of the safety-critical software in a digital reactor protection system

    International Nuclear Information System (INIS)

    Kwon, K. C.; Park, G. Y.

    2006-01-01

    This paper describes the Verification and Validation (V and V) activities for the safety-critical software in a Digital Reactor Protection System (DRPS) that is being developed through the Korea nuclear instrumentation and control system project. The main activities of the DRPS V and V process are a preparation of the software planning documentation, a verification of the software according to the software life cycle, a software safety analysis and a software configuration management. The verification works for the Software Requirement Specification (SRS) of the DRPS consist of a technical evaluation, a licensing suitability evaluation, a inspection and traceability analysis, a formal verification, and preparing a test plan and procedure. Especially, the SRS is specified by the formal specification method in the development phase, and the formal SRS is verified by a formal verification method. Through these activities, we believe we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the nuclear safety-critical software in a DRPS. (authors)

  2. Monte-Carlo Modelling and Verification of Photoluminescence of Gd{sub 2}O{sub 3}:Eu Scintillator by Using the GEANT4 Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyu-Seok; Kim, Kum-Bae; Choi, Sang-Hyoun [Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of); Song, Yong-Keun [Inje University, Gimhae (Korea, Republic of); Lee, Soon-Sung [University of Science and Technology, Daejeon (Korea, Republic of)

    2017-01-15

    Recently, Monte Carlo methods have been used to optimize the design and modeling of radiation detectors. However, most Monte Carlo codes have a fixed and simple optical physics, and the effect of the signal readout devices is not considered because of the limitations of the geometry function. Therefore, the disadvantages of the codes prevent the modeling of the scintillator detector. The modeling of a comprehensive and extensive detector system has been reported to be feasible when the optical physics model of the GEomerty ANd Tracking 4 (GEANT 4) simulation code is used. In this study, we performed a Gd{sub 2}O{sub 3}:Eu scintillator modelling by using the GEANT4 simulation code and compared the results with the measurement data. To obtain the measurement data for the scintillator, we synthesized the Gd{sub 2}O{sub 3}:Eu scintillator by using solution combustion method and we evaluated the characteristics of the scintillator by using X-ray diffraction and photoluminescence. We imported the measured data into the GEANT4 code because GEANT4 cannot simulate a fluorescence phenomenon. The imported data were used as an energy distribution for optical photon generation based on the energy deposited in the scintillator. As a result of the simulation, a strong emission peak consistent with the measured data was observed at 611 nm, and the overall trends of the spectrum agreed with the measured data. This result is significant because the characteristics of the scintillator are equally implemented in the simulation, indicating a valuable improvement in the modeling of scintillator-based radiation detectors.

  3. Cognitive Bias in the Verification and Validation of Space Flight Systems

    Science.gov (United States)

    Larson, Steve

    2012-01-01

    Cognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of

  4. Progress of the AVNG System - Attribute Verification System with Information Barriers for Mass Isotopics Measurements

    International Nuclear Information System (INIS)

    Budnikov, D.; Bulatov, M.; Jarikhine, I.; Lebedev, B.; Livke, A.; Modenov, A.; Morkin, A.; Razinkov, S.; Tsaregorodtsev, D.; Vlokh, A.; Yakovleva, S.; Elmont, T.H.; Langner, D.C.; MacArthur, D.W.; Mayo, D.R.; Smith, M.K.; Luke, S.J.

    2005-01-01

    An attribute verification system (AVNG) with information barriers for mass and isotopics measurements has been designed and its fabrication is nearly completed. The AVNG is being built by scientists at the Russian Federal Nuclear Center-VNIIEF, with support of Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Such a system could be used to verify the presence of several unclassified attributes of classified material with no classified information release. The system is comprised of a neutron multiplicity counter and gamma-spectrometry system based on a high purity germanium gamma detector (nominal relative efficiency @ 1332 keV 50%) and digital gamma-ray spectrometer DSPEC PLUS . The neutron multiplicity counter is a three ring counter with 164 3 He tubes. The system was designed to measure prototype containers 491 mm in diameter and 503 mm high. This paper provides a brief history of the project and documents the progress of this effort with drawings and photographs.

  5. MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    LIXIN LIU

    2014-01-01

    Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.

  6. Verification of FPGA-based NPP I and C systems. General approach and techniques

    International Nuclear Information System (INIS)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir; Reva, Lubov; Siora, Alexander

    2011-01-01

    This paper presents a general approach and techniques for design and verification of Field Programmable Gates Arrays (FPGA)-based Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP). Appropriate regulatory documents used for I and C systems design, development, verification and validation (V and V) are discussed considering the latest international standards and guidelines. Typical development and V and V processes of FPGA electronic design for FPGA-based NPP I and C systems are presented. Some safety-related features of implementation process are discussed. Corresponding development artifacts, related to design and implementation activities are outlined. An approach to test-based verification of FPGA electronic design algorithms, used in FPGA-based reactor trip systems is proposed. The results of application of test-based techniques for assessment of FPGA electronic design algorithms for reactor trip system (RTS) produced by Research and Production Corporation (RPC) 'Radiy' are presented. Some principles of invariant-oriented verification for FPGA-based safety-critical systems are outlined. (author)

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT HYDRO COMPLIANCE MANAGEMENT, INC. HYDRO-KLEEN FILTRATION SYSTEM, 03/07/WQPC-SWP, SEPTEMBER 2003

    Science.gov (United States)

    Verification testing of the Hydro-Kleen(TM) Filtration System, a catch-basin filter designed to reduce hydrocarbon, sediment, and metals contamination from surface water flows, was conducted at NSF International in Ann Arbor, Michigan. A Hydro-Kleen(TM) system was fitted into a ...

  8. Track 4: basic nuclear science variance reduction for Monte Carlo criticality simulations. 2. Assessment of MCNP Statistical Analysis of keff Eigenvalue Convergence with an Analytical Criticality Verification Test Set

    International Nuclear Information System (INIS)

    Sood, Avnet; Forster, R. Arthur; Parsons, D. Kent

    2001-01-01

    Monte Carlo simulations of nuclear criticality eigenvalue problems are often performed by general purpose radiation transport codes such as MCNP. MCNP performs detailed statistical analysis of the criticality calculation and provides feedback to the user with warning messages, tables, and graphs. The purpose of the analysis is to provide the user with sufficient information to assess spatial convergence of the eigenfunction and thus the validity of the criticality calculation. As a test of this statistical analysis package in MCNP, analytic criticality verification benchmark problems have been used for the first time to assess the performance of the criticality convergence tests in MCNP. The MCNP statistical analysis capability has been recently assessed using the 75 multigroup criticality verification analytic problem test set. MCNP was verified with these problems at the 10 -4 to 10 -5 statistical error level using 40 000 histories per cycle and 2000 active cycles. In all cases, the final boxed combined k eff answer was given with the standard deviation and three confidence intervals that contained the analytic k eff . To test the effectiveness of the statistical analysis checks in identifying poor eigenfunction convergence, ten problems from the test set were deliberately run incorrectly using 1000 histories per cycle, 200 active cycles, and 10 inactive cycles. Six problems with large dominance ratios were chosen from the test set because they do not achieve the normal spatial mode in the beginning of the calculation. To further stress the convergence tests, these problems were also started with an initial fission source point 1 cm from the boundary thus increasing the likelihood of a poorly converged initial fission source distribution. The final combined k eff confidence intervals for these deliberately ill-posed problems did not include the analytic k eff value. In no case did a bad confidence interval go undetected. Warning messages were given signaling that

  9. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models: Appendices

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

  10. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  11. Development Concept of Guaranteed Verification Electric Power System Simulation Tools and Its Realization

    Directory of Open Access Journals (Sweden)

    Gusev Alexander

    2015-01-01

    Full Text Available The analysis of existing problem reliability and verification of widespread electric power systems (EPS simulation tools is presented in this article. Everything simulation tools are based on the using of numerical methods for ordinary differential equations. Described the concept of guaranteed verification EPS simulation tools and the structure of its realization are based using the Simulator having properties of continuous , without decomposition three-phase EPS simulation in real time and on an unlimited range with guaranteed accuracy. The information from the Simulator can be verified by using data only quasi-steady-state regime received from the SCADA and such Simulator can be applied as the standard model for verification any EPS simulation tools.

  12. Towards the Formal Verification of a Distributed Real-Time Automotive System

    Science.gov (United States)

    Endres, Erik; Mueller, Christian; Shadrin, Andrey; Tverdyshev, Sergey

    2010-01-01

    We present the status of a project which aims at building, formally and pervasively verifying a distributed automotive system. The target system is a gate-level model which consists of several interconnected electronic control units with independent clocks. This model is verified against the specification as seen by a system programmer. The automotive system is implemented on several FPGA boards. The pervasive verification is carried out using combination of interactive theorem proving (Isabelle/HOL) and model checking (LTL).

  13. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    Science.gov (United States)

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two

  14. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  15. 75 FR 4101 - Enterprise Income Verification (EIV) System User Access Authorization Form and Rules of Behavior...

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-05] Enterprise Income Verification (EIV) System User Access Authorization Form and Rules of Behavior and User Agreement AGENCY... Access, Authorization Form and Rules Of Behavior and User Agreement. OMB Approval Number: 2577-New. Form...

  16. Reliability program plan for the Kilowatt Isotope Power System (KIPS) technology verification phase

    International Nuclear Information System (INIS)

    1978-01-01

    Ths document is an integral part of the Kilowatt Isotope Power System (KIPS) Program Plan. This document defines the KIPS Reliability Program Plan for the Technology Verification Phase. This document delineates the reliability assurance tasks that are to be accomplished by Sundstrand and its suppliers during the design, fabrication and testing of the KIPS

  17. Verification tests for remote controlled inspection system in nuclear power plants

    International Nuclear Information System (INIS)

    Kohno, Tadaaki

    1986-01-01

    Following the increase of nuclear power plants, the total radiation exposure dose accompanying inspection and maintenance works tended to increase. Japan Power Engineering and Inspection Corp. carried out the verification test of a practical power reactor automatic inspection system from November, 1981, to March, 1986, and in this report, the state of having carried out this verification test is described. The objects of the verification test were the equipment which is urgently required for reducing radiation exposure dose, the possibility of realization of which is high, and which is important for ensuring the safety and reliability of plants, that is, an automatic ultrasonic flaw detector for the welded parts of bend pipes, an automatic disassembling and inspection system for control rod driving mechanism, a fuel automatic inspection system, and automatic decontaminating equipments for steam generator water chambers, primary system crud and radioactive gas in coolant. The results of the verification test of these equipments were judged as satisfactory, therefore, the application to actual plants is possible. (Kako, I.)

  18. Development Modules for Specification of Requirements for a System of Verification of Parallel Algorithms

    Directory of Open Access Journals (Sweden)

    Vasiliy Yu. Meltsov

    2012-05-01

    Full Text Available This paper presents the results of the development of one of the modules of the system verification of parallel algorithms that are used to verify the inference engine. This module is designed to build the specification requirements, the feasibility of which on the algorithm is necessary to prove (test.

  19. Preface of Special issue on Automated Verification of Critical Systems (AVoCS'14)

    NARCIS (Netherlands)

    Huisman, Marieke; van de Pol, Jaco

    2016-01-01

    AVoCS 2014, the 14th International Conference on Automated Verification of Critical Systems has been hosted by the University of Twente, and has taken place in Enschede, Netherlands, on 24–26 September, 2014. The aim of the AVoCS series is to contribute to the interaction and exchange of ideas among

  20. A method of knowledge base verification for nuclear power plant expert systems using extended Petri Nets

    International Nuclear Information System (INIS)

    Kwon, I. W.; Seong, P. H.

    1996-01-01

    The adoption of expert systems mainly as operator supporting systems is becoming increasingly popular as the control algorithms of system become more and more sophisticated and complicated. The verification phase of knowledge base is an important part for developing reliable expert systems, especially in nuclear industry. Although several strategies or tools have been developed to perform potential error checking, they often neglect the reliability of verification methods. Because a Petri net provides a uniform mathematical formalization of knowledge base, it has been employed for knowledge base verification. In this work, we devise and suggest an automated tool, called COKEP(Checker of Knowledge base using Extended Petri net), for detecting incorrectness, inconsistency, and incompleteness in a knowledge base. The scope of the verification problem is expended to chained errors, unlike previous studies that assume error incidence to be limited to rule pairs only. In addition, we consider certainty factor in checking, because most of knowledge bases have certainly factors. 8 refs,. 2 figs,. 4 tabs. (author)

  1. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  2. A new verification film system for routine quality control of radiation fields: Kodak EC-L.

    Science.gov (United States)

    Hermann, A; Bratengeier, K; Priske, A; Flentje, M

    2000-06-01

    The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged "good", only 18% were classified "moderate" or "poor" 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be "good". The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated.

  3. Software Verification and Validation Test Report for the HEPA filter Differential Pressure Fan Interlock System

    International Nuclear Information System (INIS)

    ERMI, A.M.

    2000-01-01

    The HEPA Filter Differential Pressure Fan Interlock System PLC ladder logic software was tested using a Software Verification and Validation (VandV) Test Plan as required by the ''Computer Software Quality Assurance Requirements''. The purpose of his document is to report on the results of the software qualification

  4. Safety verification of non-linear hybrid systems is quasi-decidable

    Czech Academy of Sciences Publication Activity Database

    Ratschan, Stefan

    2014-01-01

    Roč. 44, č. 1 (2014), s. 71-90 ISSN 0925-9856 R&D Projects: GA ČR GCP202/12/J060 Institutional support: RVO:67985807 Keywords : hybrid system s * safety verification * decidability * robustness Subject RIV: IN - Informatics, Computer Science Impact factor: 0.875, year: 2014

  5. Formal modeling and verification of systems with self-x properties

    OpenAIRE

    Reif, Wolfgang

    2006-01-01

    Formal modeling and verification of systems with self-x properties / Matthias Güdemann, Frank Ortmeier and Wolfgang Reif. - In: Autonomic and trusted computing : third international conference, ATC 2006, Wuhan, China, September 3-6, 2006 ; proceedings / Laurence T. Yang ... (eds.). - Berlin [u.a.] : Springer, 2006. - S. 38-47. - (Lecture notes in computer science ; 4158)

  6. A new verification film system for routine quality control of radiation fields: Kodak EC-L

    International Nuclear Information System (INIS)

    Hermann, A.; Bratengeier, K.; Priske, A.; Flentje, M.

    2000-01-01

    Background: The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. Material and Methods: For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. Results: In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged 'good', only 18% were classified 'moderate' or 'poor' 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be 'good'. Conclusions: The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated. (orig.) [de

  7. Mathematical verification of a nuclear power plant protection system function with combined CPN and PVS

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun

    1999-01-01

    In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsung NPP SDS2 (Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP software verification and validation. (author). 9 refs., 15 figs

  8. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Liborio I., E-mail: liborio78@gmail.com

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  9. Monte Carlo simulations of lattice models for single polymer systems

    Science.gov (United States)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  10. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  11. Application of plutonium inventory measurement system (PIMS) and temporary canister verification system (TCVS) at RRP

    International Nuclear Information System (INIS)

    Noguchi, Yoshihiko; Nakamura, Hironobu; Adachi, Hideto; Iwamoto, Tomonori

    2004-01-01

    In U-Pu co-denitration area at Rokkasho Reprocessing Plant (RRP), Plutonium Inventory Measurement System (PIMS) and Temporary Canister Verification System (TCVS) are installed to provide efficient and effective safeguards. PIMS measures Pu quantity inside pipes and vessels installed in glove boxes by total neutron counting method. PIMS consists of total 142 neutron detector attached on the wall and top of glove boxes and neutron count rates of each detectors are related to each other to calculate Pu quantity of each process areas. In this moment, inactive calibration using Cf-source was completed. On the other hand, TCVS measures Pu quantity of canisters inside temporary storage by coincidence counting method and it will be installed before the active test. These systems have monitoring function as additional measures. This paper describes specification, performance and measurement principles of PIMS and TCVS. (author)

  12. Verification of the safety communication protocol in train control system using colored Petri net

    International Nuclear Information System (INIS)

    Chen Lijie; Tang Tao; Zhao Xianqiong; Schnieder, Eckehard

    2012-01-01

    This paper deals with formal and simulation-based verification of the safety communication protocol in ETCS (European Train Control System). The safety communication protocol controls the establishment of safety connection between train and trackside. Because of its graphical user interface and modeling flexibility upon the changes in the system conditions, this paper proposes a composition Colored Petri Net (CPN) representation for both the logic and the timed model. The logic of the protocol is proved to be safe by means of state space analysis: the dead markings are correct; there are no dead transitions; being fair. Further analysis results have been obtained using formal and simulation-based verification approach. The timed models for the open transmit system and the application process are created for the purpose of performance analysis of the safety communication protocol. The models describe the procedure of data transmission and processing, and also provide relevant timed and stochastic factors, as well as time delay and lost packet, which may influence the time for establishment of safety connection of the protocol. Time for establishment of safety connection of the protocol in normal state is verified by formal verification, and then time for establishment of safety connection with different probability of lost packet is simulated. After verification it is found that the time for establishment of safety connection of the safety communication protocol satisfies the safety requirements.

  13. Monte-Carlo Simulation for PDC-Based Optical CDMA System

    Directory of Open Access Journals (Sweden)

    FAHIM AZIZ UMRANI

    2010-10-01

    Full Text Available This paper presents the Monte-Carlo simulation of Optical CDMA (Code Division Multiple Access systems, and analyse its performance in terms of the BER (Bit Error Rate. The spreading sequence chosen for CDMA is Perfect Difference Codes. Furthermore, this paper derives the expressions of noise variances from first principles to calibrate the noise for both bipolar (electrical domain and unipolar (optical domain signalling required for Monte-Carlo simulation. The simulated results conform to the theory and show that the receiver gain mismatch and splitter loss at the transceiver degrades the system performance.

  14. Verification and disarmament

    Energy Technology Data Exchange (ETDEWEB)

    Blix, H. [IAEA, Vienna (Austria)

    1998-07-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed.

  15. Verification and disarmament

    International Nuclear Information System (INIS)

    Blix, H.

    1998-01-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed

  16. 'PET -Compton' system. Comparative evaluation with PET system using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2011-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called 'PET-Compton' systems and includes comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation is done on a PET-Compton system consisting of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named 'Clear-PET' and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e + ) and γ quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. (Author)

  17. Quasi-Monte Carlo methods for lattice systems. A first look

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2013-02-15

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  18. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  19. Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan; FINAL

    International Nuclear Information System (INIS)

    CLARK, D.L.

    1999-01-01

    The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000

  20. Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan

    International Nuclear Information System (INIS)

    CLARK, D.L.

    1999-01-01

    The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000

  1. Simulation-based design process for the verification of ITER remote handling systems

    International Nuclear Information System (INIS)

    Sibois, Romain; Määttä, Timo; Siuko, Mikko; Mattila, Jouni

    2014-01-01

    Highlights: •Verification and validation process for ITER remote handling system. •Simulation-based design process for early verification of ITER RH systems. •Design process centralized around simulation lifecycle management system. •Verification and validation roadmap for digital modelling phase. -- Abstract: The work behind this paper takes place in the EFDA's European Goal Oriented Training programme on Remote Handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. One of the projects of this programme focuses on the verification and validation (V and V) of ITER RH system requirements using digital mock-ups (DMU). The purpose of this project is to study and develop efficient approach of using DMUs in the V and V process of ITER RH system design utilizing a System Engineering (SE) framework. Complex engineering systems such as ITER facilities lead to substantial rise of cost while manufacturing the full-scale prototype. In the V and V process for ITER RH equipment, physical tests are a requirement to ensure the compliance of the system according to the required operation. Therefore it is essential to virtually verify the developed system before starting the prototype manufacturing phase. This paper gives an overview of the current trends in using digital mock-up within product design processes. It suggests a simulation-based process design centralized around a simulation lifecycle management system. The purpose of this paper is to describe possible improvements in the formalization of the ITER RH design process and V and V processes, in order to increase their cost efficiency and reliability

  2. The performance of a hybrid analytical-Monte Carlo system response matrix in pinhole SPECT reconstruction

    International Nuclear Information System (INIS)

    El Bitar, Z; Pino, F; Candela, C; Ros, D; Pavía, J; Rannou, F R; Ruibal, A; Aguiar, P

    2014-01-01

    It is well-known that in pinhole SPECT (single-photon-emission computed tomography), iterative reconstruction methods including accurate estimations of the system response matrix can lead to submillimeter spatial resolution. There are two different methods for obtaining the system response matrix: those that model the system analytically using an approach including an experimental characterization of the detector response, and those that make use of Monte Carlo simulations. Methods based on analytical approaches are faster and handle the statistical noise better than those based on Monte Carlo simulations, but they require tedious experimental measurements of the detector response. One suggested approach for avoiding an experimental characterization, circumventing the problem of statistical noise introduced by Monte Carlo simulations, is to perform an analytical computation of the system response matrix combined with a Monte Carlo characterization of the detector response. Our findings showed that this approach can achieve high spatial resolution similar to that obtained when the system response matrix computation includes an experimental characterization. Furthermore, we have shown that using simulated detector responses has the advantage of yielding a precise estimate of the shift between the point of entry of the photon beam into the detector and the point of interaction inside the detector. Considering this, it was possible to slightly improve the spatial resolution in the edge of the field of view. (paper)

  3. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre

    2010-01-01

    Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...... as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one...

  4. Computer program user's manual for FIREFINDER digital topographic data verification library dubbing system

    Science.gov (United States)

    Ceres, M.; Heselton, L. R., III

    1981-11-01

    This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.

  5. Standard practice for verification of constant amplitude dynamic forces in an axial fatigue testing system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers procedures for the dynamic verification of cyclic force amplitude control or measurement accuracy during constant amplitude testing in an axial fatigue testing system. It is based on the premise that force verification can be done with the use of a strain gaged elastic element. Use of this practice gives assurance that the accuracies of forces applied by the machine or dynamic force readings from the test machine, at the time of the test, after any user applied correction factors, fall within the limits recommended in Section 9. It does not address static accuracy which must first be addressed using Practices E 4 or equivalent. 1.2 Verification is specific to a particular test machine configuration and specimen. This standard is recommended to be used for each configuration of testing machine and specimen. Where dynamic correction factors are to be applied to test machine force readings in order to meet the accuracy recommended in Section 9, the verification is also specific to the c...

  6. Application of the perturbation series expansion quantum Monte Carlo method to multiorbital systems having Hund's coupling

    International Nuclear Information System (INIS)

    Sakai, Shiro; Arita, Ryotaro; Aoki, Hideo

    2006-01-01

    We propose a new quantum Monte Carlo method especially intended to couple with the dynamical mean-field theory. The algorithm is not only much more efficient than the conventional Hirsch-Fye algorithm, but is applicable to multiorbital systems having an SU(2)-symmetric Hund's coupling as well

  7. Acceptance and implementation of a system of planning computerized based on Monte Carlo

    International Nuclear Information System (INIS)

    Lopez-Tarjuelo, J.; Garcia-Molla, R.; Suan-Senabre, X. J.; Quiros-Higueras, J. Q.; Santos-Serra, A.; Marco-Blancas, N.; Calzada-Feliu, S.

    2013-01-01

    It has been done the acceptance for use clinical Monaco computerized planning system, based on an on a virtual model of the energy yield of the head of the linear electron Accelerator and that performs the calculation of the dose with an algorithm of x-rays (XVMC) based on Monte Carlo algorithm. (Author)

  8. Formal Development and Verification of Railway Control Systems - In the context of ERTMS/ETCS Level 2

    DEFF Research Database (Denmark)

    Vu, Linh Hong

    This dissertation presents a holistic, formal method for efficient modelling and verification of safety-critical railway control systems that have product line characteristics, i.e., each individual system is constructed by instantiating common generic applications with concrete configuration dat...... standardized railway control systems ERTMS/ETCS Level 2. Experiments showed that the method can be used for specification, verification and validation of systems of industrial size....

  9. Modeling and Verification of Dependable Electronic Power System Architecture

    Science.gov (United States)

    Yuan, Ling; Fan, Ping; Zhang, Xiao-fang

    The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.

  10. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2013-10-01

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  11. Formal Abstractions for Automated Verification and Synthesis of Stochastic Systems

    NARCIS (Netherlands)

    Esmaeil Zadeh Soudjani, S.

    2014-01-01

    Stochastic hybrid systems involve the coupling of discrete, continuous, and probabilistic phenomena, in which the composition of continuous and discrete variables captures the behavior of physical systems interacting with digital, computational devices. Because of their versatility and generality,

  12. Abstractions for Fault-Tolerant Distributed System Verification

    Science.gov (United States)

    Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons

    2004-01-01

    Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.

  13. Rigorous Verification for the Solution of Nonlinear Interval System ...

    African Journals Online (AJOL)

    We survey a general method for solving nonlinear interval systems of equations. In particular, we paid special attention to the computational aspects of linear interval systems since the bulk of computations are done during the stage of computing outer estimation of the including linear interval systems. The height of our ...

  14. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    Science.gov (United States)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  15. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  16. Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection

    International Nuclear Information System (INIS)

    Muhammad Subekti

    2009-01-01

    Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection. The present research was done for verification of previous developed method on Loss of Coolant Accident (LOCA) detection and perform simulations for knowing the sensitivity of the PWR monitoring system that applied neuro-expert method. The previous research continuing on present research, has developed and has tested the neuro-expert method for several anomaly detections in Nuclear Power Plant (NPP) typed Pressurized Water Reactor (PWR). Neuro-expert can detect the LOCA anomaly with sensitivity of primary coolant leakage of 7 gallon/min and the conventional method could not detect the primary coolant leakage of 30 gallon/min. Neuro expert method detects significantly LOCA anomaly faster than conventional system in Surry-1 NPP as well so that the impact risk is reducible. (author)

  17. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 & Vol 2

    Energy Technology Data Exchange (ETDEWEB)

    PARSONS, J.E.

    2000-07-15

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  18. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 and Vol 2

    CERN Document Server

    Parsons, J E

    2000-01-01

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  19. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 and Vol 2

    International Nuclear Information System (INIS)

    PARSONS, J.E.

    2000-01-01

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented

  20. Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation & Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kleban, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Curtis M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gabert, Kasimir Georg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chen, Wei [Northwestern Univ., Evanston, IL (United States); DeLaurentis, Daniel [Purdue Univ., West Lafayette, IN (United States); Hubler, Alfred [Univ. of Illinois, Urbana, IL (United States); Oberkampf, Bill [WLO Consulting, Austin, TX (United States)

    2016-08-01

    This report contains the written footprint of a Sandia-hosted workshop held in Albuquerque, New Mexico, June 22-23, 2016 on “Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation and Uncertainty Quantification,” as well as of pre-work that fed into the workshop. The workshop’s intent was to explore and begin articulating research opportunities at the intersection between two important Sandia communities: the complex systems (CS) modeling community, and the verification, validation and uncertainty quantification (VVUQ) community The overarching research opportunity (and challenge) that we ultimately hope to address is: how can we quantify the credibility of knowledge gained from complex systems models, knowledge that is often incomplete and interim, but will nonetheless be used, sometimes in real-time, by decision makers?

  1. Technical experiences of implementing a wireless tracking and facial biometric verification system for a clinical environment

    Science.gov (United States)

    Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.

    2006-03-01

    By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).

  2. Environmental Technology Verification: Biological Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Systems--American Ultraviolet Corporation, DC24-6-120 [EPA600etv08005

    Science.gov (United States)

    The Air Pollution Control Technology Verification Center (APCT Center) is operated by RTI International (RTI), in cooperation with EPA's National Risk Management Research Laboratory. The APCT Center conducts verifications of technologies that clean air in ventilation systems, inc...

  3. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    International Nuclear Information System (INIS)

    Folkerts, M; Graves, Y; Tian, Z; Gu, X; Jia, X; Jiang, S

    2014-01-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA

  4. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); University of California, San Diego, La Jolla, CA (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States); Tian, Z; Gu, X; Jia, X; Jiang, S [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.

  5. Active Learning of Markov Decision Processes for System Verification

    DEFF Research Database (Denmark)

    Chen, Yingke; Nielsen, Thomas Dyhre

    2012-01-01

    deterministic Markov decision processes from data by actively guiding the selection of input actions. The algorithm is empirically analyzed by learning system models of slot machines, and it is demonstrated that the proposed active learning procedure can significantly reduce the amount of data required...... demanding process, and this shortcoming has motivated the development of algorithms for automatically learning system models from observed system behaviors. Recently, algorithms have been proposed for learning Markov decision process representations of reactive systems based on alternating sequences...... of input/output observations. While alleviating the problem of manually constructing a system model, the collection/generation of observed system behaviors can also prove demanding. Consequently we seek to minimize the amount of data required. In this paper we propose an algorithm for learning...

  6. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  7. Monte Carlo importance sampling optimization for system reliability applications

    International Nuclear Information System (INIS)

    Campioni, Luca; Vestrucci, Paolo

    2004-01-01

    This paper focuses on the reliability analysis of multicomponent systems by the importance sampling technique, and, in particular, it tackles the optimization aspect. A methodology based on the minimization of the variance at the component level is proposed for the class of systems consisting of independent components. The claim is that, by means of such a methodology, the optimal biasing could be achieved without resorting to the typical approach by trials

  8. Acceptance and implementation of a system of planning computerized based on Monte Carlo; Aceptacion y puesta en marcha de un sistema de planificacion comutarizada basado en Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Tarjuelo, J.; Garcia-Molla, R.; Suan-Senabre, X. J.; Quiros-Higueras, J. Q.; Santos-Serra, A.; Marco-Blancas, N.; Calzada-Feliu, S.

    2013-07-01

    It has been done the acceptance for use clinical Monaco computerized planning system, based on an on a virtual model of the energy yield of the head of the linear electron Accelerator and that performs the calculation of the dose with an algorithm of x-rays (XVMC) based on Monte Carlo algorithm. (Author)

  9. International exchange on nuclear safety related expert systems: The role of software verification and validation

    International Nuclear Information System (INIS)

    Sun, B.K.H.

    1996-01-01

    An important lesson learned from the Three Mile Island accident is that human errors can be significant contributors to risk. Recent advancement in computer hardware and software technology helped make expert system techniques potentially viable tools for improving nuclear power plant safety and reliability. As part of the general man-machine interface technology, expert systems have recently become increasingly prominent as a potential solution to a number of previously intractable problems in many phases of human activity, including operation, maintenance, and engineering functions. Traditional methods for testing and analyzing analog systems are no longer adequate to handle the increased complexity of software systems. The role of Verification and Validation (V and V) is to add rigor to the software development and maintenance cycle to guarantee the high level confidence needed for applications. Verification includes the process and techniques for confirming that all the software requirements in one stage of the development are met before proceeding on to the next stage. Validation involves testing the integrated software and hardware system to ensure that it reliably fulfills its intended functions. Only through a comprehensive V and V program can a high level of confidence be achieved. There exist many different standards and techniques for software verification and validation, yet they lack uniform approaches that provides adequate levels of practical guidance which can be used by users for nuclear power plant applications. There is a need to unify different approaches for addressing software verification and validation and to develop practical and cost effective guidelines for user and regulatory acceptance. (author). 8 refs

  10. MOVES - A tool for Modeling and Verification of Embedded Systems

    DEFF Research Database (Denmark)

    Ellebæk, Jens; Knudsen, Kristian S.; Brekling, Aske Wiid

    2007-01-01

    We demonstrate MOVES, a tool which allows designers of embedded systems to explore possible implementations early in the design process. The demonstration of MOVES will show how designers can explore different designs by changing the mapping of tasks on processing elements, the number and/or spee...... of processing elements, the size of local memories, and the operating systems (scheduling algorithm)....

  11. Seismic monitoring: a unified system for research and verifications

    International Nuclear Information System (INIS)

    Thigpen, L.

    1979-01-01

    A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables

  12. Capturing Assumptions while Designing a Verification Model for Embedded Systems

    NARCIS (Netherlands)

    Marincic, J.; Mader, Angelika H.; Wieringa, Roelf J.

    A formal proof of a system correctness typically holds under a number of assumptions. Leaving them implicit raises the chance of using the system in a context that violates some assumptions, which in return may invalidate the correctness proof. The goal of this paper is to show how combining

  13. Models and formal verification of multiprocessor system-on-chips

    DEFF Research Database (Denmark)

    Brekling, Aske Wiid; Hansen, Michael Reichhardt; Madsen, Jan

    2008-01-01

    present experimental results on rather small systems with high complexity, primarily due to differences between best-case and worst-case execution times. Considering worst-case execution times only, the system becomes deterministic and using a special version of {Uppaal}, where the no history is saved, we...

  14. Verification and validation of the safety parameter display system for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Yuanfang

    1993-05-01

    During the design and development phase of the safety parameter display system for nuclear power plant, a verification and validation (V and V) plan has been implemented to improve the quality of system design. The V and V activities are briefly introduced, which were executed in four stages of feasibility research, system design, code development and system integration and regulation. The evaluation plan and the process of implementation as well as the evaluation conclusion of the final technical validation for this system are also presented in detail

  15. Spaceport Command and Control System Automated Verification Software Development

    Science.gov (United States)

    Backus, Michael W.

    2017-01-01

    For as long as we have walked the Earth, humans have always been explorers. We have visited our nearest celestial body and sent Voyager 1 beyond our solar system1 out into interstellar space. Now it is finally time for us to step beyond our home and onto another planet. The Spaceport Command and Control System (SCCS) is being developed along with the Space Launch System (SLS) to take us on a journey further than ever attempted. Within SCCS are separate subsystems and system level software, each of which have to be tested and verified. Testing is a long and tedious process, so automating it will be much more efficient and also helps to remove the possibility of human error from mission operations. I was part of a team of interns and full-time engineers who automated tests for the requirements on SCCS, and with that was able to help verify that the software systems are performing as expected.

  16. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera HernAndez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A.; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2012-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10 -5 -10 -6 %) instead of values around 5*10 -1 % that have been achieved in PET system. (author)

  17. Experimental verification by means of thermoluminescent dosimetry of the distribution dose absorbed in water for a 137Cs Amersham CDCS-M-3 source, Monte Carlo simulated

    International Nuclear Information System (INIS)

    Fragoso Valdez, F. R.; Alvarez Romero, J. T.

    2001-01-01

    It verifies, in a experimental way, the Monte Carlo simulation results (PENELOPE algorithm) for the water absorbed dose distribution, imparted by a 1 37 Cs - Amersham source (model CDCS-M-3). The feigned results are expressed in terms of the functions Α(r,z), g(r) and F(r,Θ) according to the recommendations of the AAPM TG 43 [es

  18. Verification and uncertainty evaluation of CASMO-3/MASTER nuclear analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Seung; Cho, Byung Oh; Joo, Han Kyu; Zee, Sung Quun; Lee, Chung Chan; Park, Sang Yoon

    2000-06-01

    MASTER is a nuclear design code developed by KAERI. It uses group constants generated by CASMO-3 developed by Studsvik. In this report the verification and evaluation of uncertainty were performed for the code system application in nuclear reactor core analysis and design. The verification is performed via various benchmark comparisons for static and transient core condition, and core follow calculations with startup physics test predictions of total 14 cycles of pressurized water reactors. Benchmark calculation include comparisons with reference solutions of IAEA and OECA/NEA problems and critical experiment measurements. The uncertainty evaluation is focused to safety related parameters such as power distribution, reactivity coefficients, control rod worth and core reactivity. It is concluded that CASMO-3/MASTER can be applied for PWR core nuclear analysis and design without any bias factors. Also, it is verified that the system can be applied for SMART core, via supplemental comparisons with reference calculations by MCNP which is a probabilistic nuclear calculation code.

  19. Verification and uncertainty evaluation of CASMO-3/MASTER nuclear analysis system

    International Nuclear Information System (INIS)

    Song, Jae Seung; Cho, Byung Oh; Joo, Han Kyu; Zee, Sung Quun; Lee, Chung Chan; Park, Sang Yoon

    2000-06-01

    MASTER is a nuclear design code developed by KAERI. It uses group constants generated by CASMO-3 developed by Studsvik. In this report the verification and evaluation of uncertainty were performed for the code system application in nuclear reactor core analysis and design. The verification is performed via various benchmark comparisons for static and transient core condition, and core follow calculations with startup physics test predictions of total 14 cycles of pressurized water reactors. Benchmark calculation include comparisons with reference solutions of IAEA and OECA/NEA problems and critical experiment measurements. The uncertainty evaluation is focused to safety related parameters such as power distribution, reactivity coefficients, control rod worth and core reactivity. It is concluded that CASMO-3/MASTER can be applied for PWR core nuclear analysis and design without any bias factors. Also, it is verified that the system can be applied for SMART core, via supplemental comparisons with reference calculations by MCNP which is a probabilistic nuclear calculation code

  20. A Verification and Validation Tool for Diagnostic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced diagnostic systems have the potential to improve safety, increase availability, and reduce maintenance costs in aerospace vehicle and a variety of other...

  1. Acquisition System Verification for Energy Efficiency Analysis of Building Materials

    Directory of Open Access Journals (Sweden)

    Natalia Cid

    2017-08-01

    Full Text Available Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs. To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.

  2. submitter Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    CERN Document Server

    Muraro, S; Belcari, N; Bisogni, M G; Camarlinghi, N; Cristoforetti, L; Guerra, A Del; Ferrari, A; Fracchiolla, F; Morrocchi, M; Righetto, R; Sala, P; Schwarz, M; Sportelli, G; Topi, A; Rosso, V

    2017-01-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two plana...

  3. The application of coloured Petri nets to verification of distributed systems specified by message Sequence Charts

    OpenAIRE

    CHERNENOK S.A.; NEPOMNIASCHY V.A.

    2015-01-01

    The language of message sequence charts (MSC) is a popular scenario-based specification language used to describe the interaction of components in distributed systems. However, the methods for validation of MSC diagrams are underdeveloped. This paper describes a method for translation of MSC diagrams into coloured Petri nets (CPN). The method is applied to the property verification of these diagrams. The considered set of diagram elements is extended by the elements of UML sequence diagrams a...

  4. Quantum Mechanics and locality in the K0 K-bar0 system experimental verification possibilities

    International Nuclear Information System (INIS)

    Muller, A.

    1994-11-01

    It is shown that elementary Quantum Mechanics, applied to the K 0 K-bar 0 system, predicts peculiar long range EPR correlations. Possible experimental verifications are discussed, and a concrete experiment with anti-protons annihilations at rest is proposed. A pedestrian approach to local models shows that K 0 K-bar 0 experimentation could provide arguments to the local realism versus quantum theory controversy. (author). 17 refs., 23 figs

  5. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  6. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  7. MONTE CARLO METHOD AND APPLICATION IN @RISK SIMULATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Gabriela Ižaríková

    2015-12-01

    Full Text Available The article is an example of using the software simulation @Risk designed for simulation in Microsoft Excel spread sheet, demonstrated the possibility of its usage in order to show a universal method of solving problems. The simulation is experimenting with computer models based on the real production process in order to optimize the production processes or the system. The simulation model allows performing a number of experiments, analysing them, evaluating, optimizing and afterwards applying the results to the real system. A simulation model in general is presenting modelling system by using mathematical formulations and logical relations. In the model is possible to distinguish controlled inputs (for instance investment costs and random outputs (for instance demand, which are by using a model transformed into outputs (for instance mean value of profit. In case of a simulation experiment at the beginning are chosen controlled inputs and random (stochastic outputs are generated randomly. Simulations belong into quantitative tools, which can be used as a support for a decision making.

  8. Verification of Security Policy Enforcement in Enterprise Systems

    Science.gov (United States)

    Gupta, Puneet; Stoller, Scott D.

    Many security requirements for enterprise systems can be expressed in a natural way as high-level access control policies. A high-level policy may refer to abstract information resources, independent of where the information is stored; it controls both direct and indirect accesses to the information; it may refer to the context of a request, i.e., the request’s path through the system; and its enforcement point and enforcement mechanism may be unspecified. Enforcement of a high-level policy may depend on the system architecture and the configurations of a variety of security mechanisms, such as firewalls, host login permissions, file permissions, DBMS access control, and application-specific security mechanisms. This paper presents a framework in which all of these can be conveniently and formally expressed, a method to verify that a high-level policy is enforced, and an algorithm to determine a trusted computing base for each resource.

  9. Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)

    International Nuclear Information System (INIS)

    Kirk, B.L.; West, J.T.

    1984-06-01

    The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided

  10. Verification of Continuous Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...

  11. Measurability and Safety Verification for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Hahn, Ernst Moritz; Hermanns, Holger

    2011-01-01

    method that establishes safe upper bounds on reachability probabilities. To arrive there requires us to solve semantic intricacies as well as practical problems. In particular, we show that measurability of a complete system follows from the measurability of its constituent parts. On the practical side......-time behaviour is given by differential equations, as for usual hybrid systems, but the targets of discrete jumps are chosen by probability distributions. These distributions may be general measures on state sets. Also non-determinism is supported, and the latter is exploited in an abstraction and evaluation...

  12. Application of semi-active RFID power meter in automatic verification pipeline and intelligent storage system

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In this paper, the semi-active RFID watt-hour meter is applied to automatic test lines and intelligent warehouse management, from the transmission system, test system and auxiliary system, monitoring system, realize the scheduling of watt-hour meter, binding, control and data exchange, and other functions, make its more accurate positioning, high efficiency of management, update the data quickly, all the information at a glance. Effectively improve the quality, efficiency and automation of verification, and realize more efficient data management and warehouse management.

  13. A hardware-software system for the automation of verification and calibration of oil metering units secondary equipment

    Science.gov (United States)

    Boyarnikov, A. V.; Boyarnikova, L. V.; Kozhushko, A. A.; Sekachev, A. F.

    2017-08-01

    In the article the process of verification (calibration) of oil metering units secondary equipment is considered. The purpose of the work is to increase the reliability and reduce the complexity of this process by developing a software and hardware system that provides automated verification and calibration. The hardware part of this complex carries out the commutation of the measuring channels of the verified controller and the reference channels of the calibrator in accordance with the introduced algorithm. The developed software allows controlling the commutation of channels, setting values on the calibrator, reading the measured data from the controller, calculating errors and compiling protocols. This system can be used for checking the controllers of the secondary equipment of the oil metering units in the automatic verification mode (with the open communication protocol) or in the semi-automatic verification mode (without it). The peculiar feature of the approach used is the development of a universal signal switch operating under software control, which can be configured for various verification methods (calibration), which allows to cover the entire range of controllers of metering units secondary equipment. The use of automatic verification with the help of a hardware and software system allows to shorten the verification time by 5-10 times and to increase the reliability of measurements, excluding the influence of the human factor.

  14. Specification styles in distributed systems design and verification

    NARCIS (Netherlands)

    Vissers, C.A.; Scollo, Giuseppe; van Sinderen, Marten J.; Brinksma, Hendrik

    1991-01-01

    Substantial experience with the use of formal specification languages in the design of distributed systems has shown that finding appropriate structures for formal specifications presents a serious, and often underestimated problem. Its solutions are of great importance for ensuring the quality of

  15. Verification of control system using inverter and canned motor pump

    International Nuclear Information System (INIS)

    Sawada, Yoshiaki; Misato, Hisashi

    2002-01-01

    Control on flow volume and so on of auxiliary systems at power stations is generally carried out by using control valves (CVs), of which numbers and kinds ranges to wide areas. CVs are required for periodical change of packing and so on, of which labor for maintenance is never few. Therefore, to reduce the maintenance of CVs, a system to operate pumps by using an inverter control was investigated. When carrying out flow control by an inverter, valves at output side of pumps was made perfectly open, but because of control on rotation numbers so as to keep required amount excess energy is never consumed. And, by reducing flow volume of a pump, consumed energy is reduced at a rate of its three powers as feature of pumps, so large energy saving effect can be established. Selected canned motor pumps have such characteristics as upgrading of reliability for leakage because of their seal-less ones and extension of periodical inspection period by setting a monitor for abrasion of bearings. As results of some investigations, it could be considered that a control system combining an inverter with a canned motor pump had equal feature as that of a control system using CVs. And, from a test result adding useless time and first order delay element to its control feature forecasting on its application to practical machine could be obtained. (G.K.)

  16. Model Verification and Validation Using Graphical Information Systems Tools

    Science.gov (United States)

    2013-07-31

    Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be...12 Geomorphic Measurements...to a model. Ocean flows, which are organized E-2 current systems, transport heat and salinity and cause water to pile up as a water surface

  17. Development and verification of symptom based emergency procedure support system

    International Nuclear Information System (INIS)

    Saijou, Nobuyuki; Sakuma, Akira; Takizawa, Yoji; Tamagawa, Naoko; Kubota, Ryuji; Satou, Hiroyuki; Ikeda, Koji; Taminami, Tatsuya

    1998-01-01

    A Computerized Emergency Procedure Guideline (EPG) Support System has been developed for BWR and evaluated using training simulator. It aims to enhance the effective utilization of EPG. The system identifies suitable symptom-based operating procedures for present plant status automatically. It has two functions : one is plant status identification function, and the other is man-machine interface function. For the realization of the former function, a method which identifies and prioritize suitable symptom-based operational procedures against present plant status has been developed. As man-machine interface, operation flow chart display has been developed. It express the flow of the identified operating procedures graphically. For easy understanding of the display, important information such as plant status change, priority of operating procedures and completion/uncompletion of the operation is displayed on the operation flow display by different colors. As evaluation test, the response of the system to the design based accidents was evaluated by actual plant operators, using training simulator at BWR Training Center. Through the analysis of interviews and questionnaires to operators, it was shown that the system is effective and can be utilized for a real plant. (author)

  18. Formal Verification of the Danish Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

    2014-01-01

    in the new Danish interlocking systems. Instantiating the generic model with interlocking configuration data results in a concrete model and high-level safety properties. Using bounded model checking and inductive reasoning, we are able to verify safety properties for model instances corresponding to railway...

  19. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips

    International Nuclear Information System (INIS)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-01-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  20. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    Energy Technology Data Exchange (ETDEWEB)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor [Gamma Knife Unit, Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029 (India)

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  1. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    International Nuclear Information System (INIS)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-01-01

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film

  2. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Yin, Y; Lin, X [Shandong Cancer Hospital and Institute, China, Jinan, Shandong (China)

    2016-06-15

    Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system. Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.

  3. Formal Verification Method for Configuration of Integrated Modular Avionics System Using MARTE

    Directory of Open Access Journals (Sweden)

    Lisong Wang

    2018-01-01

    Full Text Available The configuration information of Integrated Modular Avionics (IMA system includes almost all details of whole system architecture, which is used to configure the hardware interfaces, operating system, and interactions among applications to make an IMA system work correctly and reliably. It is very important to ensure the correctness and integrity of the configuration in the IMA system design phase. In this paper, we focus on modelling and verification of configuration information of IMA/ARINC653 system based on MARTE (Modelling and Analysis for Real-time and Embedded Systems. Firstly, we define semantic mapping from key concepts of configuration (such as modules, partitions, memory, process, and communications to components of MARTE element and propose a method for model transformation between XML-formatted configuration information and MARTE models. Then we present a formal verification framework for ARINC653 system configuration based on theorem proof techniques, including construction of corresponding REAL theorems according to the semantics of those key components of configuration information and formal verification of theorems for the properties of IMA, such as time constraints, spatial isolation, and health monitoring. After that, a special issue of schedulability analysis of ARINC653 system is studied. We design a hierarchical scheduling strategy with consideration of characters of the ARINC653 system, and a scheduling analyzer MAST-2 is used to implement hierarchical schedule analysis. Lastly, we design a prototype tool, called Configuration Checker for ARINC653 (CC653, and two case studies show that the methods proposed in this paper are feasible and efficient.

  4. A method of knowledge base verification and validation for nuclear power plants expert systems

    International Nuclear Information System (INIS)

    Kwon, Il Won

    1996-02-01

    The adoption of expert systems mainly as operator supporting systems is becoming increasingly popular as the control algorithms of system become more and more sophisticated and complicated. As a result of this popularity, a large number of expert systems are developed. The nature of expert systems, however, requires that they be verified and validated carefully and that detailed methodologies for their development be devised. Therefore, it is widely noted that assuring the reliability of expert systems is very important, especially in nuclear industry, and it is also recognized that the process of verification and validation is an essential part of reliability assurance for these systems. Research and practices have produced numerous methods for expert system verification and validation (V and V) that suggest traditional software and system approaches to V and V. However, many approaches and methods for expert system V and V are partial, unreliable, and not uniform. The purpose of this paper is to present a new approach to expert system V and V, based on Petri nets, providing a uniform model. We devise and suggest an automated tool, called COKEP (Checker Of Knowledge base using Extended Petri net), for checking incorrectness, inconsistency, and incompleteness in a knowledge base. We also suggest heuristic analysis for validation process to show that the reasoning path is correct

  5. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  6. Simulated coal gas MCFC power plant system verification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  7. Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    OpenAIRE

    Delzanno, Giorgio; Stückrath, Jan

    2014-01-01

    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presenta...

  8. Fault diagnosis for discrete event systems: Modelling and verification

    International Nuclear Information System (INIS)

    Simeu-Abazi, Zineb; Di Mascolo, Maria; Knotek, Michal

    2010-01-01

    This paper proposes an effective way for diagnosis of discrete-event systems using a timed-automaton. It is based on the model-checking technique, thanks to time analysis of the timed model. The paper proposes a method to construct all the timed models and details the different steps used to obtain the diagnosis path. A dynamic model with temporal transitions is proposed in order to model the system. By 'dynamical model', we mean an extension of timed automata for which the faulty states are identified. The model of the studied system contains the faultless functioning states and all the faulty states. Our method is based on the backward exploitation of the dynamic model, where all possible reverse paths are searched. The reverse path is the connection of the faulty state to the initial state. The diagnosis method is based on the coherence between the faulty occurrence time and the reverse path length. A real-world batch process is used to demonstrate the modelling steps and the proposed backward time analysis method to reach the diagnosis results.

  9. Behavioural Verification: Preventing Report Fraud in Decentralized Advert Distribution Systems

    Directory of Open Access Journals (Sweden)

    Stylianos S. Mamais

    2017-11-01

    Full Text Available Service commissions, which are claimed by Ad-Networks and Publishers, are susceptible to forgery as non-human operators are able to artificially create fictitious traffic on digital platforms for the purpose of committing financial fraud. This places a significant strain on Advertisers who have no effective means of differentiating fabricated Ad-Reports from those which correspond to real consumer activity. To address this problem, we contribute an advert reporting system which utilizes opportunistic networking and a blockchain-inspired construction in order to identify authentic Ad-Reports by determining whether they were composed by honest or dishonest users. What constitutes a user’s honesty for our system is the manner in which they access adverts on their mobile device. Dishonest users submit multiple reports over a short period of time while honest users behave as consumers who view adverts at a balanced pace while engaging in typical social activities such as purchasing goods online, moving through space and interacting with other users. We argue that it is hard for dishonest users to fake honest behaviour and we exploit the behavioural patterns of users in order to classify Ad-Reports as real or fabricated. By determining the honesty of the user who submitted a particular report, our system offers a more secure reward-claiming model which protects against fraud while still preserving the user’s anonymity.

  10. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  11. The SAMS: Smartphone Addiction Management System and verification.

    Science.gov (United States)

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  12. Verification of failover effects from distributed control system communication networks in digitalized nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Moon Gi; Lee, Jae Ki; Lee, Kwang Hyun; Lee, Dong Il; Lim, Hee Taek [Korea Hydro and Nuclear Power Co., Ltd, Daejeon (Korea, Republic of)

    2017-08-15

    Distributed Control System (DCS) communication networks, which use Fast Ethernet with redundant networks for the transmission of information, have been installed in digitalized nuclear power plants. Normally, failover tests are performed to verify the reliability of redundant networks during design and manufacturing phases; however, systematic integrity tests of DCS networks cannot be fully performed during these phases because all relevant equipment is not installed completely during these two phases. In additions, practical verification tests are insufficient, and there is a need to test the actual failover function of DCS redundant networks in the target environment. The purpose of this study is to verify that the failover functions works correctly in certain abnormal conditions during installation and commissioning phase and identify the influence of network failover on the entire DCS. To quantify the effects of network failover in the DCS, the packets (Protocol Data Units) must be collected and resource usage of the system has to be monitored and analyzed. This study introduces the use of a new methodology for verification of DCS network failover during the installation and commissioning phases. This study is expected to provide insight into verification methodology and the failover effects from DCS redundant networks. It also provides test results of network performance from DCS network failover in digitalized domestic nuclear power plants (NPPs)

  13. Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Adina Aniculaesei

    2016-12-01

    Full Text Available There is an increasing necessity to deploy autonomous systems in highly heterogeneous, dynamic environments, e.g. service robots in hospitals or autonomous cars on highways. Due to the uncertainty in these environments, the verification results obtained with respect to the system and environment models at design-time might not be transferable to the system behavior at run time. For autonomous systems operating in dynamic environments, safety of motion and collision avoidance are critical requirements. With regard to these requirements, Macek et al. [6] define the passive safety property, which requires that no collision can occur while the autonomous system is moving. To verify this property, we adopt a two phase process which combines static verification methods, used at design time, with dynamic ones, used at run time. In the design phase, we exploit UPPAAL to formalize the autonomous system and its environment as timed automata and the safety property as TCTL formula and to verify the correctness of these models with respect to this property. For the runtime phase, we build a monitor to check whether the assumptions made at design time are also correct at run time. If the current system observations of the environment do not correspond to the initial system assumptions, the monitor sends feedback to the system and the system enters a passive safe state.

  14. Requirements Verification Report AN Farm to 200E Waste Transfer System for Project W-314, Tank Farm Restoration and Safe Operations

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    1999-01-01

    This Requirements Verification Report (RVR) for Project W-314 ''AN Farm to 200E Waste Transfer System'' package provides documented verification of design compliance to all the applicable Project Development Specification (PDS) requirements. Additional PDS requirements verification will be performed during the project's procurement, construction, and testing phases, and the RVR will be updated to reflect this information as appropriate

  15. Burnup verification tests with the FORK measurement system-implementation for burnup credit

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. It was designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program and is well suited to verify burnup and cooling time records at commercial Pressurized Water Reactor (PWR) sites. This report deals with the application of the FORK system to burnup credit operations

  16. Robust control design verification using the modular modeling system

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ben-Abdennour, A.; Lee, K.Y.

    1991-01-01

    The Modular Modeling System (B ampersand W MMS) is being used as a design tool to verify robust controller designs for improving power plant performance while also providing fault-accommodating capabilities. These controllers are designed based on optimal control theory and are thus model based controllers which are targeted for implementation in a computer based digital control environment. The MMS is being successfully used to verify that the controllers are tolerant of uncertainties between the plant model employed in the controller and the actual plant; i.e., that they are robust. The two areas in which the MMS is being used for this purpose is in the design of (1) a reactor power controller with improved reactor temperature response, and (2) the design of a multiple input multiple output (MIMO) robust fault-accommodating controller for a deaerator level and pressure control problem

  17. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  18. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  19. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  20. Validation, verification and evaluation of a Train to Train Distance Measurement System by means of Colored Petri Nets

    International Nuclear Information System (INIS)

    Song, Haifeng; Liu, Jieyu; Schnieder, Eckehard

    2017-01-01

    Validation, verification and evaluation are necessary processes to assure the safety and functionality of a system before its application in practice. This paper presents a Train to Train Distance Measurement System (TTDMS), which can provide distance information independently from existing onboard equipment. Afterwards, we proposed a new process using Colored Petri Nets to verify the TTDMS system functional safety, as well as to evaluate the system performance. Three main contributions are carried out in the paper: Firstly, this paper proposes a formalized TTDMS model, and the model correctness is validated using state space analysis and simulation-based verification. Secondly, corresponding checking queries are proposed for the purpose of functional safety verification. Further, the TTDMS performance is evaluated by applying parameters in the formal model. Thirdly, the reliability of a functional prototype TTDMS is estimated. It is found that the procedure can cooperate with the system development, and both formal and simulation-based verifications are performed. Using our process to evaluate and verify a system is easier to read and more reliable compared to executable code and mathematical methods. - Highlights: • A new Train to Train Distance Measurement System. • New approach verifying system functional safety and evaluating system performance by means of CPN. • System formalization using the system property concept. • Verification of system functional safety using state space analysis. • Evaluation of system performance applying simulation-based analysis.

  1. Guidelines for the verification and validation of expert system software and conventional software: Survey and documentation of expert system verification and validation methodologies. Volume 3

    International Nuclear Information System (INIS)

    Groundwater, E.H.; Miller, L.A.; Mirsky, S.M.

    1995-03-01

    This report is the third volume in the final report for the Expert System Verification and Validation (V ampersand V) project which was jointly sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute. The ultimate objective is the formulation of guidelines for the V ampersand V of expert systems for use in nuclear power applications. The purpose of this activity was to survey and document techniques presently in use for expert system V ampersand V. The survey effort included an extensive telephone interviewing program, site visits, and a thorough bibliographic search and compilation. The major finding was that V ampersand V of expert systems is not nearly as established or prevalent as V ampersand V of conventional software systems. When V ampersand V was used for expert systems, it was almost always at the system validation stage after full implementation and integration usually employing the non-systematic dynamic method of open-quotes ad hoc testing.close quotes There were few examples of employing V ampersand V in the early phases of development and only weak sporadic mention of the possibilities in the literature. There is, however, a very active research area concerning the development of methods and tools to detect problems with, particularly, rule-based expert systems. Four such static-testing methods were identified which were not discovered in a comprehensive review of conventional V ampersand V methods in an earlier task

  2. Guidelines for the verification and validation of expert system software and conventional software: Survey and documentation of expert system verification and validation methodologies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Groundwater, E.H.; Miller, L.A.; Mirsky, S.M. [Science Applications International Corp., McLean, VA (United States)

    1995-03-01

    This report is the third volume in the final report for the Expert System Verification and Validation (V&V) project which was jointly sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute. The ultimate objective is the formulation of guidelines for the V&V of expert systems for use in nuclear power applications. The purpose of this activity was to survey and document techniques presently in use for expert system V&V. The survey effort included an extensive telephone interviewing program, site visits, and a thorough bibliographic search and compilation. The major finding was that V&V of expert systems is not nearly as established or prevalent as V&V of conventional software systems. When V&V was used for expert systems, it was almost always at the system validation stage after full implementation and integration usually employing the non-systematic dynamic method of {open_quotes}ad hoc testing.{close_quotes} There were few examples of employing V&V in the early phases of development and only weak sporadic mention of the possibilities in the literature. There is, however, a very active research area concerning the development of methods and tools to detect problems with, particularly, rule-based expert systems. Four such static-testing methods were identified which were not discovered in a comprehensive review of conventional V&V methods in an earlier task.

  3. Standard practices for verification of displacement measuring systems and devices used in material testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These practices cover procedures and requirements for the calibration and verification of displacement measuring systems by means of standard calibration devices for static and quasi-static testing machines. This practice is not intended to be complete purchase specifications for testing machines or displacement measuring systems. Displacement measuring systems are not intended to be used for the determination of strain. See Practice E83. 1.2 These procedures apply to the verification of the displacement measuring systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the displacement-measuring system(s) to be verified. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems m...

  4. Validation of variance reduction techniques in Mediso (SPIRIT DH-V) SPECT system by Monte Carlo

    International Nuclear Information System (INIS)

    Rodriguez Marrero, J. P.; Diaz Garcia, A.; Gomez Facenda, A.

    2015-01-01

    Monte Carlo simulation of nuclear medical imaging systems is a widely used method for reproducing their operation in a real clinical environment, There are several Single Photon Emission Tomography (SPECT) systems in Cuba. For this reason it is clearly necessary to introduce a reliable and fast simulation platform in order to obtain consistent image data. This data will reproduce the original measurements conditions. In order to fulfill these requirements Monte Carlo platform GAMOS (Geant4 Medicine Oriented Architecture for Applications) have been used. Due to the very size and complex configuration of parallel hole collimators in real clinical SPECT systems, Monte Carlo simulation usually consumes excessively high time and computing resources. main goal of the present work is to optimize the efficiency of calculation by means of new GAMOS functionality. There were developed and validated two GAMOS variance reduction techniques to speed up calculations. These procedures focus and limit transport of gamma quanta inside the collimator. The obtained results were asses experimentally in Mediso (SPIRIT DH-V) SPECT system. Main quality control parameters, such as sensitivity and spatial resolution were determined. Differences of 4.6% sensitivity and 8.7% spatial resolution were reported against manufacturer values. Simulation time was decreased up to 650 times. Using these techniques it was possible to perform several studies in almost 8 hours each. (Author)

  5. Fuzzy Controllers for a Gantry Crane System with Experimental Verifications

    Directory of Open Access Journals (Sweden)

    Naif B. Almutairi

    2016-01-01

    Full Text Available The control problem of gantry cranes has attracted the attention of many researchers because of the various applications of these cranes in the industry. In this paper we propose two fuzzy controllers to control the position of the cart of a gantry crane while suppressing the swing angle of the payload. Firstly, we propose a dual PD fuzzy controller where the parameters of each PD controller change as the cart moves toward its desired position, while maintaining a small swing angle of the payload. This controller uses two fuzzy subsystems. Then, we propose a fuzzy controller which is based on heuristics. The rules of this controller are obtained taking into account the knowledge of an experienced crane operator. This controller is unique in that it uses only one fuzzy system to achieve the control objective. The validity of the designed controllers is tested through extensive MATLAB simulations as well as experimental results on a laboratory gantry crane apparatus. The simulation results as well as the experimental results indicate that the proposed fuzzy controllers work well. Moreover, the simulation and the experimental results demonstrate the robustness of the proposed control schemes against output disturbances as well as against uncertainty in some of the parameters of the crane.

  6. Design, analysis, and test verification of advanced encapsulation systems

    Science.gov (United States)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  7. Design, analysis, and test verification of advanced encapsulation systems

    Science.gov (United States)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  8. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  9. Power distribution system reliability evaluation using dagger-sampling Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.; Zhao, S.; Ma, Y. [North China Electric Power Univ., Hebei (China). Dept. of Electrical Engineering

    2009-03-11

    A dagger-sampling Monte Carlo simulation method was used to evaluate power distribution system reliability. The dagger-sampling technique was used to record the failure of a component as an incident and to determine its occurrence probability by generating incident samples using random numbers. The dagger sampling technique was combined with the direct sequential Monte Carlo method to calculate average values of load point indices and system indices. Results of the 2 methods with simulation times of up to 100,000 years were then compared. The comparative evaluation showed that less computing time was required using the dagger-sampling technique due to its higher convergence speed. When simulation times were 1000 years, the dagger-sampling method required 0.05 seconds to accomplish an evaluation, while the direct method required 0.27 seconds. 12 refs., 3 tabs., 4 figs.

  10. Development of the criticality capability for the SAM-CE Monte Carlo System

    International Nuclear Information System (INIS)

    Lichtenstein, H.; Troubetzkoy, E.; Steinberg, H.; Cohen, M.O.

    1979-04-01

    A criticality capabilty has been developed and implemented in the SAM-CE Monte Carlo system. The data processing component, SAM-X, preserves, to any required accuracy, the data quality inherent in the ENDF/B library. The generated data is Doppler-broadened and includes (where applicable) probability tables for the unresolved resonance range, and thermal-scattering law data. Curves of several total and partial cross sections are generated and displayed. The Monte Carlo component, SAM-F, includes several eigenvalue estimators and variance reduction schemes. Stratification was found to effect significant improvement in calculational efficiency, but the usefulness of importance sampling is marginal in criticality problems. The entire system has been installed at BNL, for the analysis of TRX benchmarks. The TRX-1 and TRX-2 cell calculations have been performed, with estimated eigenvalues of 1.1751 +- 0.0016 and 1.1605 +- .0015, respectively. These results are shown to be statistically consistent with other sources

  11. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  12. Nondestructive verification and assay systems for spent fuels. Technical appendixes

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Baker, M.P.

    1982-04-01

    Six technical appendixes are presented that provide important supporting technical information for the study of the application of nondestructive measurements to spent-fuel storage. Each appendix addresses a particular technical subject in a reasonably self-contained fashion. Appendix A is a comparison of spent-fuel data predicted by reactor operators with measured data from reprocessors. This comparison indicates a rather high level of uncertainty in previous burnup calculations. Appendix B describes a series of nondestructive measurements at the GE-Morris Operation Spent-Fuel Storage Facility. This series of experiments successfully demonstrated a technique for reproducible positioning of fuel assemblies for nondestructive measurement. The experimental results indicate the importance of measuring the axial and angular burnup profiles of irradiated fuel assemblies for quantitative determination of spent-fuel parameters. Appendix C is a reasonably comprehensive bibliography of reports and symposia papers on spent-fuel nondestructive measurements to April 1981. Appendix D is a compendium of spent-fuel calculations that includes isotope production and depletion calculations using the EPRI-CINDER code, calculations of neutron and gamma-ray source terms, and correlations of these sources with burnup and plutonium content. Appendix E describes the pulsed-neutron technique and its potential application to spent-fuel measurements. Although not yet developed, the technique holds the promise of providing separate measurements of the uranium and plutonium fissile isotopes. Appendix F describes the experimental program and facilities at Los Alamos for the development of spent-fuel nondestructive measurement systems. Measurements are reported showing that the active neutron method is sensitive to the replacement of a single fuel rod with a dummy rod in an unirradiated uranium fuel assembly

  13. Model-Based Design and Formal Verification Processes for Automated Waterway System Operations

    Directory of Open Access Journals (Sweden)

    Leonard Petnga

    2016-06-01

    Full Text Available Waterway and canal systems are particularly cost effective in the transport of bulk and containerized goods to support global trade. Yet, despite these benefits, they are among the most under-appreciated forms of transportation engineering systems. Looking ahead, the long-term view is not rosy. Failures, delays, incidents and accidents in aging waterway systems are doing little to attract the technical and economic assistance required for modernization and sustainability. In a step toward overcoming these challenges, this paper argues that programs for waterway and canal modernization and sustainability can benefit significantly from system thinking, supported by systems engineering techniques. We propose a multi-level multi-stage methodology for the model-based design, simulation and formal verification of automated waterway system operations. At the front-end of development, semi-formal modeling techniques are employed for the representation of project goals and scenarios, requirements and high-level models of behavior and structure. To assure the accuracy of engineering predictions and the correctness of operations, formal modeling techniques are used for the performance assessment and the formal verification of the correctness of functionality. The essential features of this methodology are highlighted in a case study examination of ship and lock-system behaviors in a two-stage lock system.

  14. A system for deduction-based formal verification of workflow-oriented software models

    Directory of Open Access Journals (Sweden)

    Klimek Radosław

    2014-12-01

    Full Text Available The work concerns formal verification of workflow-oriented software models using the deductive approach. The formal correctness of a model’s behaviour is considered. Manually building logical specifications, which are regarded as a set of temporal logic formulas, seems to be a significant obstacle for an inexperienced user when applying the deductive approach. A system, along with its architecture, for deduction-based verification of workflow-oriented models is proposed. The process inference is based on the semantic tableaux method, which has some advantages when compared with traditional deduction strategies. The algorithm for automatic generation of logical specifications is proposed. The generation procedure is based on predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea behind the approach is to consider patterns, defined in terms of temporal logic, as a kind of (logical primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between the intuitiveness of deductive reasoning and the difficulty of its practical application when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing, our understanding of deduction-based formal verification of workflow-oriented models.

  15. Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    Science.gov (United States)

    Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.

    2017-12-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.

  16. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    Energy Technology Data Exchange (ETDEWEB)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji [Department of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2016-04-15

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  17. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    International Nuclear Information System (INIS)

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-01-01

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  18. Assertion based verification methodology for HDL designs of primary sodium pump speed and eddy current flow measurement systems of PFBR

    International Nuclear Information System (INIS)

    Misra, M.K.; Menon, Saritha P.; Thirugnana Murthy, D.

    2013-01-01

    With the growing complexity and size of digital designs, functional verification has become a huge challenge. The validation and testing process accounts for a significant percentage of the overall development effort and cost for electronic systems. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected upfront, they can result in severe consequences - both financially and from a safety viewpoint. This paper covers the various types of verification methodologies and focuses on Assertion Based Verification Methodology for HDL designs, taking as case studies, the Primary Sodium Pump Speed and Eddy Current Flow Measurement Systems of PFBR. (author)

  19. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    International Nuclear Information System (INIS)

    Lewis, R.D.; Ryde, S.J.S.; Seaby, A.W.; Hancock, D.A.; Evans, C.J.

    2000-01-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms. (author)

  20. Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems

    Science.gov (United States)

    Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris

    2010-01-01

    Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.

  1. VerifEYE: a real-time meat inspection system for the beef processing industry

    Science.gov (United States)

    Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula

    2003-02-01

    Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.

  2. Preparation of a program for the independent verification of the brachytherapy planning systems calculations

    International Nuclear Information System (INIS)

    V Carmona, V.; Perez-Calatayud, J.; Lliso, F.; Richart Sancho, J.; Ballester, F.; Pujades-Claumarchirant, M.C.; Munoz, M.

    2010-01-01

    In this work a program is presented that independently checks for each patient the treatment planning system calculations in low dose rate, high dose rate and pulsed dose rate brachytherapy. The treatment planning system output text files are automatically loaded in this program in order to get the source coordinates, the desired calculation point coordinates and the dwell times when it is the case. The source strength and the reference dates are introduced by the user. The program allows implementing the recommendations about independent verification of the clinical brachytherapy dosimetry in a simple and accurate way, in few minutes. (Author).

  3. Verification and validation as an integral part of the development of digital systems for nuclear applications

    International Nuclear Information System (INIS)

    Straker, E.A.; Thomas, N.C.

    1983-01-01

    The nuclear industry's current attitude toward verification and validation (V and V) is realized through the experiences gained to date. On the basis of these experiences, V and V can effectively be applied as an integral part of digital system development for nuclear electric power applications. An overview of a typical approach for integrating V and V with system development is presented. This approach represents a balance between V and V as applied in the aerospace industry and the standard practice commonly applied within the nuclear industry today

  4. Research on database realization technology of seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Zhang Huimin; Jing Ping; Sun Peng; Zheng Jiangling

    2005-01-01

    Developing CTBT verification technology has become the most important method that makes sure CTBT to be fulfilled conscientiously. The seismic analysis based on seismic information system (SIS) is playing an important rule in this field. Based on GIS, the SIS will be very sufficient and powerful in spatial analysis, topologic analysis and visualization. However, the critical issue to implement the whole system function depends on the performance of SIS DB. Based on the ArcSDE Geodatabase data model, not only have the spatial data and attribute data seamless integrated management been realized with RDBMS ORACLE really, but also the most functions of ORACLE have been reserved. (authors)

  5. Groebner Bases Based Verification Solution for SystemVerilog Concurrent Assertions

    Directory of Open Access Journals (Sweden)

    Ning Zhou

    2014-01-01

    of polynomial ring algebra to perform SystemVerilog assertion verification over digital circuit systems. This method is based on Groebner bases theory and sequential properties checking. We define a constrained subset of SVAs so that an efficient polynomial modeling mechanism for both circuit descriptions and assertions can be applied. We present an algorithm framework based on the algebraic representations using Groebner bases for concurrent SVAs checking. Case studies show that computer algebra can provide canonical symbolic representations for both assertions and circuit designs and can act as a novel solver engine from the viewpoint of symbolic computation.

  6. Evaluation of IMRT plans of prostate carcinoma from four treatment planning systems based on Monte Carlo

    International Nuclear Information System (INIS)

    Chi Zifeng; Han Chun; Liu Dan; Cao Yankun; Li Runxiao

    2011-01-01

    Objective: With the Monte Carlo method to recalculate the IMRT dose distributions from four TPS to provide a platform for independent comparison and evaluation of the plan quality.These results will help make a clinical decision as which TPS will be used for prostate IMRT planning. Methods: Eleven prostate cancer cases were planned with the Corvus, Xio, Pinnacle and Eclipse TPS. The plans were recalculated by Monte Carlo using leaf sequences and MUs for individual plans. Dose-volume-histograms and isodose distributions were compared. Other quantities such as D min (the minimum dose received by 99% of CTV/PTV), D max (the maximum dose received by 1% of CTV/PTV), V 110% , V 105% , V 95% (the volume of CTV/PTV receiving 110%, 105%, 95% of the prescription dose), the volume of rectum and bladder receiving >65 Gy and >40 Gy, and the volume of femur receiving >50 Gy were evaluated. Total segments and MUs were also compared. Results: The Monte Carlo results agreed with the dose distributions from the TPS to within 3%/3 mm. The Xio, Pinnacle and Eclipse plans show less target dose heterogeneity and lower V 65 and V 40 for the rectum and bladder compared to the Corvus plans. The PTV D min is about 2 Gy lower for Xio plans than others while the Corvus plans have slightly lower female head V 50 (0.03% and 0.58%) than others. The Corvus plans require significantly most segments (187.8) and MUs (1264.7) to deliver and the Pinnacle plans require fewest segments (82.4) and MUs (703.6). Conclusions: We have tested an independent Monte Carlo dose calculation system for dose reconstruction and plan evaluation. This system provides a platform for the fair comparison and evaluation of treatment plans to facilitate clinical decision making in selecting a TPS and beam delivery system for particular treatment sites. (authors)

  7. Inspector measurement verification activities

    International Nuclear Information System (INIS)

    George, R.S.; Crouch, R.

    e most difficult and complex activity facing a safeguards inspector involves the verification of measurements and the performance of the measurement system. Remeasurement is the key to measurement verification activities. Remeasurerements using the facility's measurement system provide the bulk of the data needed for determining the performance of the measurement system. Remeasurements by reference laboratories are also important for evaluation of the measurement system and determination of systematic errors. The use of these measurement verification activities in conjunction with accepted inventory verification practices provides a better basis for accepting or rejecting an inventory. (U.S.)

  8. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration.

    Science.gov (United States)

    Jones, David; Cundell, Tony

    2018-01-01

    The Growth Direct™ System that automates the incubation and reading of membrane filtration microbial counts on soybean-casein digest, Sabouraud dextrose, and R2A agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. LAY ABSTRACT: The Growth Direct™ System that automates the incubation and reading of microbial counts on membranes on solid agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation time. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. © PDA, Inc. 2018.

  9. Practical requirements for software tools to assist in the validation and verification of hybrid expert systems

    International Nuclear Information System (INIS)

    Singh, G.P.; Cadena, D.; Burgess, J.

    1992-01-01

    Any practical software development effort must remain focused on verification and validation of user requirements. Knowledge-based system development is no different in this regard. In industry today, most expert systems being produced are, in reality, hybrid software systems which, in addition to those components that provide the knowledge base and expert reasoning over the problem domain using various rule-based and object-oriented paradigms, incorporate significant bodies of code based on more traditional software techniques such as database management, graphical user interfaces, hypermedia, spreadsheets, as well as specially developed sequential code. Validation and verification of such hybrid systems must perforce integrate suitable methodologies from all such fields. This paper attempts to provide a broad overview of the practical requirements for methodologies and the concomitant groupware tools which would assist in such an enterprise. These methodologies and groupware tools would facilitate the teamwork efforts necessary to validate and verify all components of such hybrid systems by emphasizing cooperative recording of requirements and negotiated resolutions of any conflicts grounded in a solid understanding of the semantics of such a system

  10. Design Verification Enhancement of FPGA-based Plant Protection System Trip Logics for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ahmed, Ibrahim; Jung, Jae Cheon; Heo, Gyun Young

    2016-01-01

    As part of strengthening the application of FPGA technology and find solution to its challenges in NPPs, international atomic energy agency (IAEA) has indicated interest by joining sponsorship of Topical Group on FPGA Applications in NPPs (TG-FAN) that hold meetings up to 7th times until now, in form of workshop (International workshop on the application of FPGAs in NPPs) annually since 2008. The workshops attracted a significant interest and had a broad representation of stakeholders such as regulators, utilities, research organizations, system designers, and vendors, from various countries that converge to discuss the current issues regarding instrumentation and control (I and C) systems as well as FPGA applications. Two out of many technical issues identified by the group are lifecycle of FPGA-based platforms, systems, and applications; and methods and tools for V and V. Therefore, in this work, several design steps that involved the use of model-based systems engineering process as well as MATLAB/SIMULINK model which lead to the enhancement of design verification are employed. The verified and validated design output works correctly and effectively. Conclusively, the model-based systems engineering approach and the structural step-by-step design modeling techniques including SIMULINK model utilized in this work have shown how FPGA PPS trip logics design verification can be enhanced. If these design approaches are employ in the design of FPGA-based I and C systems, the design can be easily verified and validated

  11. Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Shaoyun Ge

    2014-01-01

    Full Text Available In this paper we have treated the reliability assessment problem of low and high DG penetration level of active distribution system using the Monte Carlo simulation method. The problem is formulated as a two-case program, the program of low penetration simulation and the program of high penetration simulation. The load shedding strategy and the simulation process were introduced in detail during each FMEA process. Results indicate that the integration of DG can improve the reliability of the system if the system was operated actively.

  12. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    Science.gov (United States)

    Karim, Julia Abdul

    2008-05-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.

  13. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    International Nuclear Information System (INIS)

    Karim, Julia Abdul

    2008-01-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained

  14. Determinantal and worldline quantum Monte Carlo methods for many-body systems

    International Nuclear Information System (INIS)

    Vekic, M.; White, S.R.

    1993-01-01

    We examine three different quantum Monte Carlo methods for studying systems of interacting particles. The determinantal quantum Monte Carlo method is compared to two different worldline simulations. The first worldline method consists of a simulation carried out in the real-space basis, while the second method is implemented using as basis the eigenstates of the Hamiltonian on blocks of the two-dimensional lattice. We look, in particular, at the Hubbard model on a 4x4 lattice with periodic boundary conditions. The block method is superior to the real-space method in terms of the computational cost of the simulation, but shows a much worse negative sign problem. For larger values of U and away from half-filling it is found that the real-space method can provide results at lower temperatures than the determinantal method. We show that the sign problem in the block method can be slightly improved by an appropriate choice of basis

  15. A standardized approach to verification and validation to assist in expert system development

    International Nuclear Information System (INIS)

    Hines, J.W.; Hajek, B.K.; Miller, D.W.; Haas, M.A.

    1992-01-01

    For the past six years, the Nuclear Engineering Program's Artificial Intelligence (AI) Group at The Ohio State University has been developing an integration of expert systems to act as an aid to nuclear power plant operators. This Operator Advisor consists of four modules that monitor plant parameters, detect deviations from normality, diagnose the root cause of the abnormality, manage procedures to effectively respond to the abnormality, and mitigate its consequences. To aid in the development of this new system, a standardized Verification and Validation (V and V) approach is being implemented. The primary functions are to guide the development of the expert system and to ensure that the end product fulfills the initial objectives. The development process has been divided into eight life-cycle V and V phases from concept to operation and maintenance. Each phase has specific V and V tasks to be performed to ensure a quality end product. Four documents are being used to guide development. The Software Verification and Validation Plan (SVVP) outlines the V and V tasks necessary to verify the product at the end of each software development phase, and to validate that the end product complies with the established software and system requirements and meets the needs of the user. The Software Requirements Specification (SRS) documents the essential requirements of the system. The Software Design Description (SDD) represents these requirements with a specific design. And lastly, the Software Test Document establishes a testing methodology to be used throughout the development life-cycle

  16. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    Science.gov (United States)

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  17. Verification and testing of the RTOS for safety-critical embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na Young [Seoul National University, Seoul (Korea, Republic of); Kim, Jin Hyun; Choi, Jin Young [Korea University, Seoul (Korea, Republic of); Sung, Ah Young; Choi, Byung Ju [Ewha Womans University, Seoul (Korea, Republic of); Lee, Jang Soo [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Development in Instrumentation and Control (I and C) technology provides more convenience and better performance, thus, adopted in many fields. To adopt newly developed technology, nuclear industry requires rigorous V and V procedure and tests to assure reliable operation. Adoption of digital system requires verification and testing of the OS for licensing. Commercial real-time operating system (RTOS) is targeted to apply to various, unpredictable needs, which makes it difficult to verify. For this reason, simple, application-oriented realtime OS is developed for the nuclear application. In this work, we show how to verify the developed RTOS at each development lifecycle. Commercial formal tool is used in specification and verification of the system. Based on the developed model, software in C language is automatically generated. Tests are performed for two purposes; one is to identify consistency between the verified model and the generated code, the other is to find errors in the generated code. The former assumes that the verified model is correct, and the latter incorrect. Test data are generated separately to satisfy each purpose. After we test the RTOS software, we implement the test board embedded with the developed RTOS and the application software, which simulates the safety critical plant protection function. Testing to identify whether the reliability criteria is satisfied or not is also designed in this work. It results in that the developed RTOS software works well when it is embedded in the system.

  18. Verification and testing of the RTOS for safety-critical embedded systems

    International Nuclear Information System (INIS)

    Lee, Na Young; Kim, Jin Hyun; Choi, Jin Young; Sung, Ah Young; Choi, Byung Ju; Lee, Jang Soo

    2003-01-01

    Development in Instrumentation and Control (I and C) technology provides more convenience and better performance, thus, adopted in many fields. To adopt newly developed technology, nuclear industry requires rigorous V and V procedure and tests to assure reliable operation. Adoption of digital system requires verification and testing of the OS for licensing. Commercial real-time operating system (RTOS) is targeted to apply to various, unpredictable needs, which makes it difficult to verify. For this reason, simple, application-oriented realtime OS is developed for the nuclear application. In this work, we show how to verify the developed RTOS at each development lifecycle. Commercial formal tool is used in specification and verification of the system. Based on the developed model, software in C language is automatically generated. Tests are performed for two purposes; one is to identify consistency between the verified model and the generated code, the other is to find errors in the generated code. The former assumes that the verified model is correct, and the latter incorrect. Test data are generated separately to satisfy each purpose. After we test the RTOS software, we implement the test board embedded with the developed RTOS and the application software, which simulates the safety critical plant protection function. Testing to identify whether the reliability criteria is satisfied or not is also designed in this work. It results in that the developed RTOS software works well when it is embedded in the system

  19. Experimental study on design verification of new concept for integral reactor safety system

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Park, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa

    2004-01-01

    The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the Steam Generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant

  20. Flexible prototype of modular multilevel converters for experimental verification of DC transmission and multiterminal systems

    DEFF Research Database (Denmark)

    Konstantinou, Georgios; Ceballos, Salvador; Gabiola, Igor

    2017-01-01

    Testing and verification of high-level and low-level control, modulation, fault handling and converter co-ordination for modular multilevel converters (MMCs) requires development of experimental prototype converters. In this paper, we provide a a complete overview of the MMC-based experimental...... prototype at UNSW Sydney (The University of New South Wales) including the structure of the sub-modules, communication, control and protection functions as well as the possible configurations of the system. The prototype, rated at a dc voltage of up to 800 V and power of 20 kVA and can be used to study...

  1. Verification of Treatment Planning System (TPS) on Beam Axis of Co-60 Teletherapy

    International Nuclear Information System (INIS)

    Nunung-Nuraeni; Budhy-Kurniawan; Purwanto; Sugiyantari; Heru-Prasetio; Nasukha

    2001-01-01

    Cancer diseases up to now can be able to be treated by using surgery, chemotherapy and radiotherapy. The need of high level precision and accuracy on radiation dose are very important task. One of task is verification of Treatment Planning System (Tps) to the treatment of patients. The research has been done to verify Tps on beam exis of teletherapy Co-60. Result found that the different between Tps and measurements are about -2.682 % to 1.918% for simple geometry and homogeneous material, 5.278 % to 4.990 % for complex geometry, and -3.202 % to -2.090 % for more complex geometry. (author)

  2. Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2003-01-01

    An increasing number of patients receiving radiation therapy have metallic implants such as hip prostheses. Therefore, beams are normally set up to avoid irradiation through the implant; however, this cannot always be accomplished. In such situations, knowledge of the accuracy of the used treatment planning system (TPS) is required. Two algorithms, the pencil beam (PB) and the collapsed cone (CC), are implemented in the studied TPS. Comparisons are made with Monte Carlo simulations for 6 and 18 MV. The studied materials are steel, CoCrMo, Orthinox(a stainless steel alloy and registered trademark of Stryker Corporation), TiAlV and Ti. Monte Carlo simulated depth dose curves and dose profiles are compared to CC and PB calculated data. The CC algorithm shows overall a better agreement with Monte Carlo than the PB algorithm. Thus, it is recommended to use the CC algorithm to get the most accurate dose calculation both for the planning target volume and for tissues adjacent to the implants when beams are set up to pass through implants

  3. Improvements of MCOR: A Monte Carlo depletion code system for fuel assembly reference calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, C.; Ivanov, K. [Pennsylvania State Univ., Univ. Park (United States); Misu, S. [AREVA NP GmbH, An AREVA and SIEMENS Company, Erlangen (Germany)

    2006-07-01

    This paper presents the improvements of MCOR, a Monte Carlo depletion code system for fuel assembly reference calculations. The improvements of MCOR were initiated by the cooperation between the Penn State Univ. and AREVA NP to enhance the original Penn State Univ. MCOR version in order to be used as a new Monte Carlo depletion analysis tool. Essentially, a new depletion module using KORIGEN is utilized to replace the existing ORIGEN-S depletion module in MCOR. Furthermore, the online burnup cross section generation by the Monte Carlo calculation is implemented in the improved version instead of using the burnup cross section library pre-generated by a transport code. Other code features have also been added to make the new MCOR version easier to use. This paper, in addition, presents the result comparisons of the original and the improved MCOR versions against CASMO-4 and OCTOPUS. It was observed in the comparisons that there were quite significant improvements of the results in terms of k{sub inf}, fission rate distributions and isotopic contents. (authors)

  4. Monte Carlo simulation of activity measurements by means of 4πβ-γ coincidence system

    International Nuclear Information System (INIS)

    Takeda, Mauro N.; Dias, Mauro S.; Koskinas, Marina F.

    2004-01-01

    The methodology for simulating all detection processes in a 4πβ-γ coincidence system by means of the Monte Carlo technique is described. The goal is to predict the behavior of the observed activity as a function of the 4πβ detector efficiency. In this approach, the information contained in the decay scheme is used for determining the contribution of all radiations emitted by the selected radionuclide, to the measured spectra by each detector. This simulation yields the shape of the coincidence spectrum, allowing the choice of suitable gamma-ray windows for which the activity can be obtained with maximum accuracy. The simulation can predict a detailed description of the extrapolation curve, mainly in the region where the 4πβ detector efficiency approaches 100%, which is experimentally unreachable due to self absorption of low energy electrons in the radioactive source substrate. The theoretical work is being developed with MCNP Monte Carlo code, applied to a gas-flow proportional counter of 4π geometry, coupled to a pair of NaI(Tl) crystals. The calculated efficiencies are compared to experimental results. The extrapolation curve can be obtained by means of another Monte Carlo algorithm, being developed in the present work, to take into account fundamental characteristics of a complex decay scheme, including different types of radiation and transitions. The present paper shows preliminary calculated values obtained by the simulation and compared to predicted analytical values for a simple decay scheme. (author)

  5. Design and evaluation of a Monte Carlo based model of an orthovoltage treatment system

    International Nuclear Information System (INIS)

    Penchev, Petar; Maeder, Ulf; Fiebich, Martin; Zink, Klemens; University Hospital Marburg

    2015-01-01

    The aim of this study was to develop a flexible framework of an orthovoltage treatment system capable of calculating and visualizing dose distributions in different phantoms and CT datasets. The framework provides a complete set of various filters, applicators and X-ray energies and therefore can be adapted to varying studies or be used for educational purposes. A dedicated user friendly graphical interface was developed allowing for easy setup of the simulation parameters and visualization of the results. For the Monte Carlo simulations the EGSnrc Monte Carlo code package was used. Building the geometry was accomplished with the help of the EGSnrc C++ class library. The deposited dose was calculated according to the KERMA approximation using the track-length estimator. The validation against measurements showed a good agreement within 4-5% deviation, down to depths of 20% of the depth dose maximum. Furthermore, to show its capabilities, the validated model was used to calculate the dose distribution on two CT datasets. Typical Monte Carlo calculation time for these simulations was about 10 minutes achieving an average statistical uncertainty of 2% on a standard PC. However, this calculation time depends strongly on the used CT dataset, tube potential, filter material/thickness and applicator size.

  6. A rule induction approach to improve Monte Carlo system reliability assessment

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.

    2003-01-01

    A Decision Tree (DT) approach to build empirical models for use in Monte Carlo reliability evaluation is presented. The main idea is to develop an estimation algorithm, by training a model on a restricted data set, and replacing the Evaluation Function (EF) by a simpler calculation, which provides reasonably accurate model outputs. The proposed approach is illustrated with two systems of different size, represented by their equivalent networks. The robustness of the DT approach as an approximated method to replace the EF is also analysed. Excellent system reliability results are obtained by training a DT with a small amount of information

  7. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R.

    2007-01-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  8. Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system

    International Nuclear Information System (INIS)

    Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.

    1992-01-01

    Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs

  9. Phase behaviour of heteronuclear dimers in three-dimensional systems-a Monte Carlo study

    International Nuclear Information System (INIS)

    Rzysko, W; Binder, K

    2008-01-01

    Monte Carlo simulation in the grand canonical ensemble, the histogram reweighting technique and finite size scaling are used to study the phase behaviour of dimers in three-dimensional systems. A single molecule is composed of two segments A and B, and the bond between them cannot be broken. The phase diagrams have been estimated for a set of model systems. Different structures formed by heteronuclear dimers have been found. The results show a great variety of vapour-liquid coexistence behaviour depending on the strength of the interactions between segments

  10. CARMEN: a system Monte Carlo based on linear programming from direct openings

    International Nuclear Information System (INIS)

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-01-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  11. Enhancement of the use of digital mock-ups in the verification and validation process for ITER remote handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Sibois, R., E-mail: romain.sibois@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Salminen, K.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland)

    2013-10-15

    Highlights: • Verification and validation process for ITER remote handling system. • Verification and validation framework for complex engineering systems. • Verification and validation roadmap for digital modelling phase. • Importance of the product life-cycle management in the verification and validation framework. -- Abstract: The paper is part of the EFDA's programme of European Goal Oriented Training programme on remote handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. This paper is written based on the results of a project “verification and validation (V and V) of ITER RH system using digital mock-ups (DMUs)”. The purpose of this project is to study efficient approach of using DMU for the V and V of the ITER RH system design utilizing a system engineering (SE) framework. This paper reviews the definitions of DMU and virtual prototype and overviews the current trends of using virtual prototyping in the industry during the early design phase. Based on the survey of best industrial practices, this paper proposes ways to improve the V and V process for ITER RH system utilizing DMUs.

  12. Considerations for control system software verification and validation specific to implementations using distributed processor architectures

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.

    1993-01-01

    Until recently, digital control systems have been implemented on centralized processing systems to function in one of several ways: (1) as a single processor control system; (2) as a supervisor at the top of a hierarchical network of multiple processors; or (3) in a client-server mode. Each of these architectures uses a very different set of communication protocols. The latter two architectures also belong to the category of distributed control systems. Distributed control systems can have a central focus, as in the cases just cited, or be quite decentralized in a loosely coupled, shared responsibility arrangement. This last architecture is analogous to autonomous hosts on a local area network. Each of the architectures identified above will have a different set of architecture-associated issues to be addressed in the verification and validation activities during software development. This paper summarizes results of efforts to identify, describe, contrast, and compare these issues

  13. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    Science.gov (United States)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  14. Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit

    Science.gov (United States)

    Sartori, John

    2005-01-01

    The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.

  15. Formal specification and verification of interactive systems with plasticity: Applications to nuclear-plant supervision

    International Nuclear Information System (INIS)

    Oliveira, Raquel Araujo de

    2015-01-01

    The advent of ubiquitous computing and the increasing variety of platforms and devices change user expectations in terms of user interfaces. Systems should be able to adapt themselves to their context of use, i.e., the platform (e.g. a PC or a tablet), the users who interact with the system (e.g. administrators or regular users), and the environment in which the system executes (e.g. a dark room or outdoor). The capacity of a UI to withstand variations in its context of use while preserving usability is called plasticity. Plasticity provides users with different versions of a UI. Although it enhances UI capabilities, plasticity adds complexity to the development of user interfaces: the consistency between multiple versions of a given UI should be ensured. Given the large number of possible versions of a UI, it is time-consuming and error prone to check these requirements by hand. Some automation must be provided to verify plasticity.This complexity is further increased when it comes to UIs of safety-critical systems. Safety-critical systems are systems in which a failure has severe consequences. The complexity of such systems is reflected in the UIs, which are now expected not only to provide correct, intuitive, non-ambiguous and adaptable means for users to accomplish a goal, but also to cope with safety requirements aiming to make sure that systems are reasonably safe before they enter the market. Several techniques to ensure quality of systems in general exist, which can also be used to safety-critical systems. Formal verification provides a rigorous way to perform verification, which is suitable for safety-critical systems. Our contribution is an approach to verify safety-critical interactive systems provided with plastic UIs using formal methods. Using a powerful tool-support, our approach permits:-The verification of sets of properties over a model of the system. Using model checking, our approach permits the verification of properties over the system formal

  16. THRIVE: threshold homomorphic encryption based secure and privacy preserving biometric verification system

    Science.gov (United States)

    Karabat, Cagatay; Kiraz, Mehmet Sabir; Erdogan, Hakan; Savas, Erkay

    2015-12-01

    In this paper, we introduce a new biometric verification and template protection system which we call THRIVE. The system includes novel enrollment and authentication protocols based on threshold homomorphic encryption where a private key is shared between a user and a verifier. In the THRIVE system, only encrypted binary biometric templates are stored in a database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during authentication. Due to the underlying threshold homomorphic encryption scheme, a malicious database owner cannot perform full decryption on encrypted templates of the users in the database. In addition, security of the THRIVE system is enhanced using a two-factor authentication scheme involving user's private key and biometric data. Using simulation-based techniques, the proposed system is proven secure in the malicious model. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form, but needs to prove her identity by using biometrics. The system can be used with any biometric modality where a feature extraction method yields a fixed size binary template and a query template is verified when its Hamming distance to the database template is less than a threshold. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biometric templates on a desktop PC running with quad core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real-life applications.

  17. Using Monte Carlo Simulation To Improve Cargo Mass Estimates For International Space Station Commercial Resupply Flights

    Science.gov (United States)

    2016-12-01

    The Challenges of ISS Resupply .......................................... 23 F. THE IMPORTANCE OF MASS PROPERTIES IN SPACECRAFT AND MISSION DESIGN...Transportation System TBA trundle bearing assembly VLC verification loads cycle xv EXECUTIVE SUMMARY Resupplying the International Space Station...management priorities. This study addresses those challenges by developing Monte Carlo simulations based on over 13 years of as- flownSS resupply

  18. A microcomputer system for prescription, calculation, verification and recording of radiotherapy treatments

    International Nuclear Information System (INIS)

    Morrey, D.; Smith, C.W.; Belcher, R.A.; Harding, T.; Sutherland, W.H.

    1982-01-01

    The design of a microcomputer system for the reduction of mistakes in radiotherapy is described. The system covers prescription entry, prescription and treatment calculations, and verification and recording of the treatment set-up. A telecobalt unit was interfaced to the system and in the first 12 months 400 patients have been prescribed and 5000 treatment fields verified. The prescription is entered by the medical officer using an interactive program and this prescription provides the reference for verifying the treatment set-up. The program allows amendments to the prescription to be made easily during the treatment course. The treatment parameters verified are field size, wedge and treatment time. The system uses bar-codes for patient and field identification. A reduction in the number of mistakes has been achieved and future developments are discussed. (author)

  19. SELF: expert system for supporting verification of network operating constraints in power transmission planning

    Energy Technology Data Exchange (ETDEWEB)

    Cicoria, R; Migliardi, P [Ente Nazionale per l` Energia Elettrica, Milan (Italy); Pogliano, P [Centro Informazioni Studi Esperienze (CISE), Milan (Italy)

    1995-06-01

    Performing planned studies into very large HV transmission systems is a very complex task which requires the use of simulation models and the application of the heuristic acquired by expert palnners during previous studies. The ENEL Electric Research Center and the CISE Artificial Intelligence Section have developed a knowledge-based system, named SELF, which is aimed at supporting the transmission system palnner. SELF is capable of assisting the engineer both in finding the convergence of the load flow calculation and determining solutions that respect active power, voltage and VAR operating constraints. This paper describes the overall architecture of the system and shows its integration in a larger planning environment called SPIRA, currently utilized at ENEL. More details are given on the least completed modules, the redispatching and network reinforcement subsystems which deal with active power constraint verification.

  20. CARMEN: a system Monte Carlo based on linear programming from direct openings; CARMEN: Un sistema de planficiacion Monte Carlo basado en programacion lineal a partir de aberturas directas

    Energy Technology Data Exchange (ETDEWEB)

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-07-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  1. Independent verification of monitor unit calculation for radiation treatment planning system.

    Science.gov (United States)

    Chen, Li; Chen, Li-Xin; Huang, Shao-Min; Sun, Wen-Zhao; Sun, Hong-Qiang; Deng, Xiao-Wu

    2010-02-01

    To ensure the accuracy of dose calculation for radiation treatment plans is an important part of quality assurance (QA) procedures for radiotherapy. This study evaluated the Monitor Units (MU) calculation accuracy of a third-party QA software and a 3-dimensional treatment planning system (3D TPS), to investigate the feasibility and reliability of independent verification for radiation treatment planning. Test plans in a homogenous phantom were designed with 3-D TPS, according to the International Atomic Energy Agency (IAEA) Technical Report No. 430, including open, blocked, wedge, and multileaf collimator (MLC) fields. Test plans were delivered and measured in the phantom. The delivered doses were input to the QA software and the independent calculated MUs were compared with delivery. All test plans were verified with independent calculation and phantom measurements separately, and the differences of the two kinds of verification were then compared. The deviation of the independent calculation to the measurements was (0.1 +/- 0.9)%, the biggest difference fell onto the plans that used block and wedge fields (2.0%). The mean MU difference between the TPS and the QA software was (0.6 +/- 1.0)%, ranging from -0.8% to 2.8%. The deviation in dose of the TPS calculation compared to the measurements was (-0.2 +/- 1.7)%, ranging from -3.9% to 2.9%. MU accuracy of the third-party QA software is clinically acceptable. Similar results were achieved with the independent calculations and the phantom measurements for all test plans. The tested independent calculation software can be used as an efficient tool for TPS plan verification.

  2. Verification of criticality safety in on-site spent fuel storage systems

    International Nuclear Information System (INIS)

    Rasmussen, R.W.

    1989-01-01

    On February 15, 1984, Duke Power Company received approval for a two-region, burnup credit, spent fuel storage rack design at both Units 1 and 2 of the McGuire Nuclear Station. Duke also hopes to obtain approval by January of 1990 for a dry spent fuel storage system at the Oconee Nuclear Station, which will incorporate the use of burnup credit in the criticality analysis governing the design of the individual storage units. While experiences in burnup verification for criticality safety for their dry storage system at Oconee are in the future, the methods proposed for burnup verification will be similar to those currently used at the McGuire Nuclear Station in the two-region storage racks installed in both pools. In conclusion, the primary benefit of the McGuire rerack effort has obviously been the amount of storage expansion it provided. A total increase of about 2,000 storage cells was realized, 1,000 of which were the result of pursuing the two-region rather than the conventional poison rack design. Less impacting, but equally as important, however, has been the experience gained during the planning, installation, and operation of these storage racks. This experience should prove useful for future rerack efforts likely to occur at Duke's Catawba Nuclear Station as well as for the current dry storage effort underway for the Oconee Nuclear Station

  3. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  4. A multi-transputer system for parallel Monte Carlo simulations of extensive air showers

    International Nuclear Information System (INIS)

    Gils, H.J.; Heck, D.; Oehlschlaeger, J.; Schatz, G.; Thouw, T.

    1989-01-01

    A multiprocessor computer system has been brought into operation at the Kernforschungszentrum Karlsruhe. It is dedicated to Monte Carlo simulations of extensive air showers induced by ultra-high energy cosmic rays. The architecture consists of two independently working VMEbus systems each with a 68020 microprocessor as host computer and twelve T800 transputers for parallel processing. The two systems are linked via Ethernet for data exchange. The T800 transputers are equipped with 4 Mbyte RAM each, sufficient to run rather large codes. The host computers are operated under UNIX 5.3. On the transputers compilers for PARALLEL FORTRAN, C, and PASCAL are available. The simple modular architecture of this parallel computer reflects the single purpose for which it is intended. The hardware of the multiprocessor computer is described as well as the way how the user software is handled and distributed to the 24 working processors. The performance of the parallel computer is demonstrated by well-known benchmarks and by realistic Monte Carlo simulations of air showers. Comparisons with other types of microprocessors and with large universal computers are made. It is demonstrated that a cost reduction by more than a factor of 20 is achieved by this system as compared to universal computer. (orig.)

  5. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K; Chen, D. Z; Hu, X. S [University of Notre Dame, Notre Dame, IN (United States); Zhou, B [Altera Corp., San Jose, CA (United States)

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  6. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    International Nuclear Information System (INIS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan

    2017-01-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.

  7. Integrated verification and testing system (IVTS) for HAL/S programs

    Science.gov (United States)

    Senn, E. H.; Ames, K. R.; Smith, K. A.

    1983-01-01

    The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.

  8. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    International Nuclear Information System (INIS)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user's guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACS is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway

  9. Issues of verification and validation of application-specific integrated circuits in reactor trip systems

    International Nuclear Information System (INIS)

    Battle, R.E.; Alley, G.T.

    1993-01-01

    Concepts of using application-specific integrated circuits (ASICs) in nuclear reactor safety systems are evaluated. The motivation for this evaluation stems from the difficulty of proving that software-based protection systems are adequately reliable. Important issues concerning the reliability of computers and software are identified and used to evaluate features of ASICS. These concepts indicate that ASICs have several advantages over software for simple systems. The primary advantage of ASICs over software is that verification and validation (V ampersand V) of ASICs can be done with much higher confidence than can be done with software. A method of performing this V ampersand V on ASICS is being developed at Oak Ridge National Laboratory. The purpose of the method's being developed is to help eliminate design and fabrication errors. It will not solve problems with incorrect requirements or specifications

  10. Research on MRV system of iron and steel industry and verification mechanism establishment in China

    Science.gov (United States)

    Guo, Huiting; Chen, Liang; Chen, Jianhua

    2017-12-01

    The national carbon emissions trading market will be launched in 2017 in China. The iron and steel industry will be covered as one of the first industries. Establishing its MRV system is critical to promote the development of the iron and steel industry in the carbon trading market. This paper studies the requirements and procedures of the accounting, monitoring, reporting and verification of the seven iron and steel industry carbon trading pilots. The construction and operating mechanism of the MRV systems are also analyzed. Combining with the emission feature of the iron and steel industry, we study the suitable national MRV system for the whole iron and steel industry to consummate the future national carbon trading framework of iron and steel industry.

  11. An automated portal verification system for the tangential breast portal field

    International Nuclear Information System (INIS)

    Yin, F.-F.; Lai, W.; Chen, C. W.; Nelson, D. F.

    1995-01-01

    Purpose/Objective: In order to ensure the treatment is delivered as planned, a portal image is acquired in the accelerator and is compared to the reference image. At present, this comparison is performed by radiation oncologists based on the manually-identified features, which is both time-consuming and potentially error-prone. With the introduction of various electronic portal imaging devices, real-time patient positioning correction is becoming clinically feasible to replace time-delayed analysis using films. However, this procedure requires present of radiation oncologists during patient treatment which is not cost-effective and practically not realistic. Therefore, the efficiency and quality of radiation therapy could be substantially improved if this procedure can be automated. The purpose of this study is to develop a fully computerized verification system for the radiation therapy of breast cancer for which a similar treatment setup is generally employed. Materials/Methods: The automated verification system involves image acquisition, image feature extraction, feature correlation between reference and portal images, and quantitative evaluation of patient setup. In this study, a matrix liquid ion-chamber EPID was used to acquire digital portal images which is directly attached to Varian CL2100C accelerator. For effective use of computation memory, the 12-bit gray levels in original portal images were quantized to form a range of 8-bit gray levels. A typical breast portal image includes three important components: breast and lung tissues in the treatment field, air space within the treatment field, and non-irradiated region. A hierarchical region processing technique was developed to separate these regions sequentially. The inherent hierarchical features were formulated based on different radiation attenuation for different regions as: treatment field edge -- breast skin line -- chest wall. Initially, a combination of a Canny edge detector and a constrained

  12. Development of decommissioning management system. 9. Remodeling to PC system and system verification by evaluation of real work

    International Nuclear Information System (INIS)

    Kondo, Hitoshi; Fukuda, Seiji; Okubo, Toshiyuki

    2004-03-01

    When the plan of decommissioning such as nuclear fuel cycle facilities and small-scale research reactors is examined, it is necessary to select the technology and the process of the work procedure, and to optimize the index (such as the radiation dose, the cost, amount of the waste, the number of workers, and the term of works, etc.) concerning dismantling the facility. In our waste management section, Development of the decommissioning management system, which is called 'DECMAN', for the support of making the decommissioning plan is advanced. DECMAN automatically calculates the index by using the facility data and dismantling method. This paper describes the remodeling of program to the personal computer and the system verification by evaluation of real work (Dismantling of the liquor dissolver in the old JOYO Waste Treatment Facility (the old JWTF), the glove boxes in Deuterium Critical Assembly (DCA), and the incinerator in Waste Dismantling Facility (WDF)). The outline of remodeling and verification is as follows. (1) Additional function: 1) Equipment arrangement mapping, 2) Evaluation of the radiation dose by using the air dose rate, 3) I/O of data that uses EXCEL (software). (2) Comparison of work amount between calculation value and results value: The calculation value is 222.67man·hour against the result value 249.40 man·hour in the old JWTF evaluation. (3) Forecast of accompanying work is predictable to multiply a certain coefficient by the calculation value. (4) A new idea that expected the amount of the work was constructed by using the calculation value of DECMAN. (author)

  13. Monte Carlo simulation of {beta}-{gamma} coincidence system using plastic scintillators in 4{pi} geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M.S. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)], E-mail: msdias@ipen.br; Piuvezam-Filho, H. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Baccarelli, A.M. [Departamento de Fisica-PUC/SP-Rua Marques de Paranagua 111, 01303-050 Sao Paulo, SP (Brazil); Takeda, M.N. [Universidade Santo Amaro, UNISA-Rua Prof. Eneas da Siqueira Neto 340, 04829-300 Sao Paulo, SP (Brazil); Koskinas, M.F. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2007-09-21

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4{pi}{beta}(PS)-{gamma} coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4{pi} geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to {sup 60}Co and {sup 133}Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4{pi}{beta}(PC)-{gamma} coincidence system.

  14. Monte Carlo simulation of β-γ coincidence system using plastic scintillators in 4π geometry

    International Nuclear Information System (INIS)

    Dias, M.S.; Piuvezam-Filho, H.; Baccarelli, A.M.; Takeda, M.N.; Koskinas, M.F.

    2007-01-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60 Co and 133 Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4πβ(PC)-γ coincidence system

  15. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

    Science.gov (United States)

    Suwa, Hidemaro

    2013-03-01

    We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad

  16. Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2006-01-01

    The computer code system PENELOPE (version 2006) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. These proceedings contain the corresponding manual and teaching notes of the PENELOPE-2006 workshop and training course, held on 4-7 July 2006 in Barcelona, Spain. (author)

  17. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  18. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  19. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  20. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.