WorldWideScience

Sample records for carlo transport calculations

  1. Neutron transport calculations using Quasi-Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, B.S.

    1997-07-01

    This paper examines the use of quasirandom sequences of points in place of pseudorandom points in Monte Carlo neutron transport calculations. For two simple demonstration problems, the root mean square error, computed over a set of repeated runs, is found to be significantly less when quasirandom sequences are used ({open_quotes}Quasi-Monte Carlo Method{close_quotes}) than when a standard Monte Carlo calculation is performed using only pseudorandom points.

  2. Analysis of error in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table

  3. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  4. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  5. Monte Carlo perturbation theory in neutron transport calculations

    International Nuclear Information System (INIS)

    The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures

  6. Adjoint electron-photon transport Monte Carlo calculations with ITS

    International Nuclear Information System (INIS)

    A general adjoint coupled electron-photon Monte Carlo code for solving the Boltzmann-Fokker-Planck equation has recently been created. It is a modified version of ITS 3.0, a coupled electronphoton Monte Carlo code that has world-wide distribution. The applicability of the new code to radiation-interaction problems of the type found in space environments is demonstrated

  7. Development of Monte Carlo decay gamma-ray transport calculation system

    International Nuclear Information System (INIS)

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  8. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  9. The calculation of criticality using the three dimensional Monte Carlo particle transport code SPARTAN

    International Nuclear Information System (INIS)

    Two methods of calculating criticality are available in the 3D generalised geometry Monte Carlo particle transport code SPARTAN (Bending and Heffer, 1975). The first is a matrix technique in which the multiplication constant and source distribution of the system under study are calculated from estimates of fission probabilities and the second a method in which the multiplication constant is inferred from estimates of changes in neutron population over a number of neutron generations. Modifications are described which have been made to the way in which these methods are used in SPARTAN in order to improve the efficiency of criticality calculations. (author)

  10. A priori efficiency calculations for Monte Carlo applications in neutron transport

    International Nuclear Information System (INIS)

    In this paper a general derivation is given of equations describing the variance of an arbitrary detector response in a Monte Carlo simulation and the average number of collisions a particle will suffer until its history ends. The theory is validated for a simple slab system using the two-direction transport model and for a two-group infinite system, which both allow analytical solutions. Numerical results from the analytical solutions are compared with actual Monte Carlo calculations, showing excellent agreement. These analytical solutions demonstrate the possibilities for optimizing the weight window settings with respect to variance. Using the average number of collisions as a measure for the simulation time a cost function inversely proportional to the usual figure of merit is defined, which allows optimization with respect to overall efficiency of the Monte Carlo calculation. For practical applications it is outlined how the equations for the variance and average number of collisions can be solved using a suitable existing deterministic neutron transport code with adapted number of energy groups and scattering matrices. (author)

  11. Large-scale Monte Carlo neutron transport calculations with thermal hydraulic feedback

    International Nuclear Information System (INIS)

    Highlights: • Method of internal coupling, based on dynamic material distribution, is presented. • The Wielandt shift method is implemented to accelerate Mote Carlo calculations. • The Uniform Fission Site method is introduced for tallies with large numbers of bins. • The stochastic approximation scheme is used to stabilize coupled code convergence. - Abstract: The Monte Carlo method provides the most accurate description of the particle transport problem. The criticality problem is simulated by following the histories of individual particles without approximating the energy, angle or the coordinate dependence. These calculations are usually done using homogeneous thermal hydraulic conditions. This is a very crude approximation in the general case. In this paper, the method of internal coupling between neutron transport and thermal hydraulics is presented. The method is based on dynamic material distribution, where coordinate dependent temperature and density information is supplied on the fly during the transport calculation. This method does not suffer from the deficiencies characteristic of the external coupling via the input files. In latter case, the geometry is split into multiple cells having distinct temperatures and densities to supply the feedback. The possibility to efficiently simulate large scale geometries at pin-by-pin and subchannel level resolution was investigated. The Wielandt shift method for reducing the dominance ratio of the system and accelerating the fission source convergence was implemented. During the coupled iteration a detailed distribution of the fission heat deposition is required by the thermal hydraulics calculation. Providing reasonable statistical uncertainties for tallies having large numbers of bins, is a complicated task. This problem was resolved by applying the Uniform Fission Site method. Previous investigations showed that the convergence of the coupled neutron transport/thermal hydraulics calculation is limited by

  12. Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations

    International Nuclear Information System (INIS)

    A study was done to evaluate a 3-D SN charged particle transport code called SMARTEPANTS1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS2. The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations

  13. Calculation of the radiation transport in rock salt using Monte Carlo methods. Final report. HAW project

    International Nuclear Information System (INIS)

    This report provides absorbed dose rate and photon fluence rate distributions in rock salt around 30 testwise emplaced canisters containing high-level radioactive material (HAW project) and around a single canister containing radioactive material of a lower activity level (INHAW experiment). The site of this test emplacement was located in test galleries at the 800-m-level in the Asse salt mine. The data given were calculated using a Monte Carlo method simulating photon transport in complex geometries of differently composed materials. The aim of these calculations was to enable determination of the dose absorbed in any arbitrary sample of salt to be further examined in the future with sufficient reliability. The geometry of the test arrangement, the materials involved and the calculational method are characterised and the results are shortly described and some figures presenting selected results are shown. In the appendices, the results for emplacement of the highly radioactive canisters are given in tabular form. (orig.)

  14. Vectorization and parallelization of Monte-Carlo programs for calculation of radiation transport

    International Nuclear Information System (INIS)

    The versatile MCNP-3B Monte-Carlo code written in FORTRAN77, for simulation of the radiation transport of neutral particles, has been subjected to vectorization and parallelization of essential parts, without touching its versatility. Vectorization is not dependent on a specific computer. Several sample tasks have been selected in order to test the vectorized MCNP-3B code in comparison to the scalar MNCP-3B code. The samples are a representative example of the 3-D calculations to be performed for simulation of radiation transport in neutron and reactor physics. (1) 4πneutron detector. (2) High-energy calorimeter. (3) PROTEUS benchmark (conversion rates and neutron multiplication factors for the HCLWR (High Conversion Light Water Reactor)). (orig./HP)

  15. Ge(Li) intrinsic efficiency calculation using Monte Carlo simulation for γ radiation transport

    International Nuclear Information System (INIS)

    To solve a radiation transport problem by using Monte Carlo simulation method, the evolution of a large number of radiations must be simulated and also the analysis of their history must be done. The evolution of a radiation starts by the radiation emission, followed by the radiation unperturbed propagation in the medium between the successive interactions and then the radiation parameters modification in the points where interactions occur. The goal of this paper consists in the calculation of the total detection efficiency and the intrinsic efficiency for a coaxial Ge(Li) detector, using Monte Carlo method in order to simulate the γ radiation transport. A Ge(Li) detector with 106 cm3 active volume and γ photons with energies in 50 keV - 2 MeV range, emitted by a point source situated on the detector axis, were considered. Each γ photon evolution is simulated by an analogue process step-by-step until the photon escapes from the detector or is completely absorbed in the active volume of the detector. (author)

  16. Adjoint-based deviational Monte Carlo methods for phonon transport calculations

    Science.gov (United States)

    Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.

    2015-06-01

    In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.

  17. A new assembly-level Monte Carlo neutron transport code for reactor physics calculations

    International Nuclear Information System (INIS)

    This paper presents a new assembly-level Monte Carlo neutron transport code, specifically intended for diffusion code group-constant generation and other reactor physics calculations. The code is being developed at the Technical Research Centre of Finland (VTT), under the working title 'Probabilistic Scattering Game', or PSG. The PSG code uses a method known as Woodcock tracking to simulate neutron histories. The advantages of the method include fast simulation in complex geometries and relatively simple handling of complicated geometrical objects. The main drawback is the inability to calculate reaction rates in optically thin volumes. This narrows the field of application to calculations involving parameters integrated over large volumes. The main features of the PSG code and the Woodcock tracking method are introduced. The code is applied in three example cases, involving infinite lattices of two-dimensional LWR fuel assemblies. Comparison calculations are carried out using MCNP4C and CASMO-4E. The results reveal that the code performs quite well in the calculation cases of this study, especially when compared to MCNP. The PSG code is still under extensive development and there are both flaws in the simulation of the interaction physics and programming errors in the source code. The results presented here, however, seem very encouraging, especially considering the early development stage of the code. (author)

  18. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  19. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  20. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  1. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  2. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author)

  3. Application of artificial intelligence techniques to the acceleration of Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems

  4. Testing the accuracy of electron transport in the Monte Carlo code FLUKA for calculation of ion chamber wall perturbation factors

    International Nuclear Information System (INIS)

    A reliable Monte Carlo based investigation of ion chambers in medical physics problems depends on the accuracy of the charged particle transport and implementations of the condensed history technique. Improper handling of media interfaces can lead to anomalous results or 'interface artefacts'. This work presents a rigorous investigation of the electron transport algorithm in the general purpose Monte Carlo (MC) code FLUKA (2008.3b.1). A 'Fano test' was implemented in order to benchmark the accuracy of the algorithm. Furthermore, the calculation of wall perturbation factors pwall of a Roos type chamber irradiated by electrons were performed and compared with values based on the EGSnrc MC code

  5. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  6. Monte Carlo transport calculations and analysis for reactor pressure vessel neutron fluence

    International Nuclear Information System (INIS)

    The application of Monte Carlo methods for reactor pressure vessel (RPV) neutron fluence calculations is examined. As many commercial nuclear light water reactors approach the end of their design lifetime, it is of great consequence that reactor operators and regulators be able to characterize the structural integrity of the RPV accurately for financial reasons, as well as safety reasons, due to the possibility of plant life extensions. The Monte Carlo method, which offers explicit three-dimensional geometric representation and continuous energy and angular simulation, is well suited for this task. A model of the Three Mile Island unit 1 reactor is presented for determination of RPV fluence; Monte Carlo (MCNP) and deterministic (DORT) results are compared for this application; and numerous issues related to performing these calculations are examined. Synthesized three-dimensional deterministic models are observed to produce results that are comparable to those of Monte Carlo methods, provided the two methods utilize the same cross-section libraries. Continuous energy Monte Carlo methods are shown to predict more (15 to 20%) high-energy neutrons in the RPV than deterministic methods

  7. Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    CERN Document Server

    Jia, Xun; Sempau, Josep; Choi, Dongju; Majumdar, Amitava; Jiang, Steve B

    2009-01-01

    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in two cases. Our results demonstrate the adequate accuracy of the GPU implementation for both electron and photon beams in radiotherapy energy range. A speed up factor of 4.5 and 5.5 times have been observed for electron and photon testing cases, respectively, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor .

  8. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J.M. [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  9. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U235, U238, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  10. Testing the Accuracy of Electron Transport in the Monte Carlo Code FLUKA for Calculation of Ionization Chamber Wall Perturbation Factors

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the Monte Carlo (MC) code FLUKA, regarding its ability to accurately simulate electron transport at density inhomogeneities and in ionization chamber geometries. In order to evaluate the accuracy of FLUKA's electron transport algorithm and the implementation of the condensed history technique, a Fano test was used. This test allows the comparison of calculated and theoretically expected results. The ratio of the two results is ideally equal to unity, and a deviation usually indicates artifacts in the treatment of density interfaces. As a more practical problem, wall perturbation factors pwall of a plane parallel chamber in electron beams were calculated and compared with results based on the EGSnrc MC code. Additionally, the impact of wall material and thickness on calculated cavity dose was investigated for two different thimble chambers irradiated by 60Co. The correct choice of parameters within FLUKA's electron transport algorithm ensured passing the Fano test within ∼0.7% and a good agreement for practical examples within 0.4% compared to results of the EGSnrc MC code. The latter is known to allow an artifact free simulation of ionization chamber response in photon and electron beams. Based on these results, the electron transport accuracy within the FLUKA code can generally be regarded as much better than 1% for typical ionization chamber dosimetry problems. (author)

  11. Modern calculations of pulsed-sphere time-of-flight experiments using the mercury Monte Carlo transport code

    International Nuclear Information System (INIS)

    Modern Monte Carlo transport simulations of the Lawrence Livermore National Laboratory pulsed-sphere time of flight experiments have recently been performed. In these experiments, 14 MeV neutrons, generated via the 3H(d, n)4He reaction, interact with a sphere of material that surrounds the neutron generating target. The time of arrival of the uncollided and collided neutrons are recorded in a detector system placed up to 10 meters from the center of the sphere. A collection of experiments with varying sphere materials, mean-free-paths and detector systems have been modeled using the Mercury Monte Carlo transport code. This effort serves to validate new features of the Mercury code, including general sources, tallies and point-detector / biased-collisions variance reduction methods, as well as assess the quality of evaluated nuclear data sets. In general, the level of agreement between the calculations and experiment is very good. However, for certain pulsed spheres, discrepancies are observed between the simulations using different nuclear data sets. (author)

  12. Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

    Science.gov (United States)

    Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.

    2010-01-01

    The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,

  13. An OpenCL-based Monte Carlo dose calculation engine (oclMC) for coupled photon-electron transport

    CERN Document Server

    Tian, Zhen; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) method has been recognized the most accurate dose calculation method for radiotherapy. However, its extremely long computation time impedes clinical applications. Recently, a lot of efforts have been made to realize fast MC dose calculation on GPUs. Nonetheless, most of the GPU-based MC dose engines were developed in NVidia CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a fast cross-platform MC dose engine oclMC using OpenCL environment for external beam photon and electron radiotherapy in MeV energy range. Coupled photon-electron MC simulation was implemented with analogue simulations for photon transports and a Class II condensed history scheme for electron transports. To test the accuracy and efficiency of our dose engine oclMC, we compared dose calculation results of oclMC and gDPM, our previously developed GPU-based MC code, for a 15 MeV electron ...

  14. A New Monte Carlo Photon Transport Code for Research Reactor Hotcell Shielding Calculation using Splitting and Russian Roulette Methods

    International Nuclear Information System (INIS)

    The Monte Carlo method was used to build a new code for the simulation of particle transport. Several calculations were done after that for verification, where different sources were used, the source term was obtained using the ORIGEN-S code. Water and lead shield were used with spherical geometry, and the tally results were obtained on the external surface of the shield, afterward the results were compared with the results of MCNPX for verification of the new code. The variance reduction techniques of splitting and Russian Roulette were implemented in the code to be more efficient, by reducing the amount of custom programming required, by artificially increasing the particles being tallied with decreasing the weight. The code shows lower results than the results of MCNPX, this can be interpreted by the effect of the secondary gamma radiation that can be produced by the electron, which is ejected by the primary radiation. In the future a more study will be made on the effect of the electron production and transport, either by a real transport of the electron or by simply using an approximation such the thick target bremsstahlung(TTB) option which is used in MCNPX

  15. A New Monte Carlo Photon Transport Code for Research Reactor Hotcell Shielding Calculation using Splitting and Russian Roulette Methods

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, Alaaddin [Univ. of Science and Technology, Daejeon (Korea, Republic of); Park, Chang Je; Lee, Byunchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Monte Carlo method was used to build a new code for the simulation of particle transport. Several calculations were done after that for verification, where different sources were used, the source term was obtained using the ORIGEN-S code. Water and lead shield were used with spherical geometry, and the tally results were obtained on the external surface of the shield, afterward the results were compared with the results of MCNPX for verification of the new code. The variance reduction techniques of splitting and Russian Roulette were implemented in the code to be more efficient, by reducing the amount of custom programming required, by artificially increasing the particles being tallied with decreasing the weight. The code shows lower results than the results of MCNPX, this can be interpreted by the effect of the secondary gamma radiation that can be produced by the electron, which is ejected by the primary radiation. In the future a more study will be made on the effect of the electron production and transport, either by a real transport of the electron or by simply using an approximation such the thick target bremsstahlung(TTB) option which is used in MCNPX.

  16. The energy band memory server algorithm for parallel Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    An algorithm is developed to significantly reduce the on-node footprint of cross section memory in Monte Carlo particle tracking algorithms. The classic method of per-node replication of cross section data is replaced by a memory server model, in which the read-only lookup tables reside on a remote set of disjoint processors. The main particle tracking algorithm is then modified in such a way as to enable efficient use of the remotely stored data in the particle tracking algorithm. Results of a prototype code on a Blue Gene/Q installation reveal that the penalty for remote storage is reasonable in the context of time scales for real-world applications, thus yielding a path forward for a broad range of applications that are memory bound using current techniques. (authors)

  17. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    International Nuclear Information System (INIS)

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  18. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Morgan C. White

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  19. Stochastic calculations for radiation risk assessment: a Monte-Carlo approach to the simulation of radiocesium transport in the pasture-cow-milk food chain

    International Nuclear Information System (INIS)

    The effects of introducing probability distributions of the parameters in radionuclide transport models are investigated. Results from a Monte-Carlo simulation were presented for the transport of 137Cs via the pasture-cow-milk pathway, taking into the account the uncertainties and naturally occurring fluctuations in the rate constants. The results of the stochastic model calculations characterize the activity concentrations at a given time t and provide a great deal more information for analysis of the environmental transport of radionuclides than deterministic calculations in which the variation of parameters is not taken into consideration. Moreover the stochastic model permits an estimate of the variation of the physico-chemical behaviour of radionuclides in the environment in a more realistic way than by using only the highest transfer coefficients in deterministic approaches, which can lead to non-realistic overestimates of the probability with which high activity levels will be encountered. (U.K.)

  20. GPU - Accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using 6 GPU cards

    International Nuclear Information System (INIS)

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*106 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)

  1. Guideline for radiation transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Today, the photon and neutron transport calculations with the Monte Carlo method have been progressed with advanced Monte Carlo codes and high-speed computers. Monte Carlo simulation is rather suitable expression than the calculation. Once Monte Carlo codes become more friendly and performance of computer progresses, most of the shielding problems will be solved by using the Monte Carlo codes and high-speed computers. As those codes prepare the standard input data for some problems, the essential techniques for solving the Monte Carlo method and variance reduction techniques of the Monte Carlo calculation might lose the interests to the general Monte Carlo users. In this paper, essential techniques of the Monte Carlo method and the variance reduction techniques, such as importance sampling method, selection of estimator, and biasing technique, are described to afford a better understanding of the Monte Carlo method and Monte Carlo code. (author)

  2. Monte Carlo photon transport techniques

    International Nuclear Information System (INIS)

    The basis of Monte Carlo calculation of photon transport problems is the computer simulation of individual photon histories and their subsequent averaging to provide the quantities of interest. As the history of a photon is followed the values of variables are selected and decisions made by sampling known distributions using random numbers. The transport of photon is simulated by creation of particles from a defined source region, generally with a random initial orientation in space, with tracking of particles as they travel through the system, sampling the probability density functions for their interactions to evaluate their trajectories and energy deposition at different points in the system. The interactions determine the penetration and the motion of particles. The computational model, for radiation transport problems includes geometry and material specifications. Every computer code contains a database of experimentally obtained quantities, known as cross-sections that determine the probability of a particle interacting with the medium through which it is transported. Every cross-section is peculiar to the type and energy of the incident particle and to the kind of interaction it undergoes. These partial cross-sections are summed to form the total cross-section; the ratio of the partial cross-section to the total cross-section gives the probability of this particular interaction occurring. Cross-section data for the interaction types of interest must be supplied for each material present. The model also consists of algorithms used to compute the result of interactions (changes in particle energy, direction, etc.) based on the physical principles that describe the interaction of radiation with matter and the cross-section data provided

  3. Monte Carlo method application to shielding calculations

    International Nuclear Information System (INIS)

    CANDU spent fuel discharged from the reactor core contains Pu, so it must be stressed in two directions: tracing for the fuel reactivity in order to prevent critical mass formation and personnel protection during the spent fuel manipulation. The basic tasks accomplished by the shielding calculations in a nuclear safety analysis consist in dose rates calculations in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. To perform photon dose rates calculations the Monte Carlo MORSE-SGC code incorporated in SAS4 sequence from SCALE system was used. The paper objective was to obtain the photon dose rates to the spent fuel transport cask wall, both in radial and axial directions. As source of radiation one spent CANDU fuel bundle was used. All the geometrical and material data related to the transport cask were considered according to the shipping cask type B model, whose prototype has been realized and tested in the Institute for Nuclear Research Pitesti. (authors)

  4. MVP/GMVP 2: general purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

    International Nuclear Information System (INIS)

    In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two vectorized Monte Carlo codes MVP and GMVP have been developed at JAERI. MVP is based on the continuous energy model and GMVP is on the multigroup model. Compared with conventional scalar codes, these codes achieve higher computation speed by a factor of 10 or more on vector super-computers. Both codes have sufficient functions for production use by adopting accurate physics model, geometry description capability and variance reduction techniques. The first version of the codes was released in 1994. They have been extensively improved and new functions have been implemented. The major improvements and new functions are (1) capability to treat the scattering model expressed with File 6 of the ENDF-6 format, (2) time-dependent tallies, (3) reaction rate calculation with the pointwise response function, (4) flexible source specification, (5) continuous-energy calculation at arbitrary temperatures, (6) estimation of real variances in eigenvalue problems, (7) point detector and surface crossing estimators, (8) statistical geometry model, (9) function of reactor noise analysis (simulation of the Feynman-α experiment), (10) arbitrary shaped lattice boundary, (11) periodic boundary condition, (12) parallelization with standard libraries (MPI, PVM), (13) supporting many platforms, etc. This report describes the physical model, geometry description method used in the codes, new functions and how to use them. (author)

  5. Importance iteration in MORSE Monte Carlo calculations

    International Nuclear Information System (INIS)

    An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)

  6. Monte Carlo dose calculations for dynamic IMRT treatments

    International Nuclear Information System (INIS)

    Dose calculations for intensity modulated radiation therapy (IMRT) face new challenges due to the complex leaf geometry and time dependent nature of the delivery. A fast method of particle transport through a dynamic multileaf collimator (MLC) geometry that accounts for photon attenuation and first-scattered Compton photon production has been incorporated into an existing Monte Carlo code used for patient dose calculations. Dosimetric agreement between calculation and measurement for two photon energies and MLC types is within experimental error for the sliding window tests. For a patient IMRT field, the Monte Carlo calculations are closer to measured dose than similar superposition or pencil beam calculations. (author)

  7. Comparison of the distribution of doses calculated with Monte Carlo N-particle transport code and those practically measured by 60Co therapy facility

    International Nuclear Information System (INIS)

    Objective: To discuss the feasibility of Monte Carlo N-particle transport code (MCNP) simulated calculation. Methods: The calculation in water phantom was contrasted with the practical measurements and the reported values using the percent depth dose (PDD) curve and normal peak scatter factor. Results: There Was no significant difference between calculated and measured results in the 10 cm×10 cm field (t=-0.41, P>0.05), however, there were significant differences in the 5 cm×5 cm field (t=7.2, P<0.05) and in the 12 cm×12 cm field (t=-4.6, P<0.05). There was no significant difference between the calculated results and the reported values (t=-1.91, P>0.05). In the same radiation field, the PDD decreased as the depth increased, but increased as the size of the radiation field increased at the same depth. PDD and normal peak scatter factor were both important parameters for calculation of prescribed dose. Conclusions: It is possible to establish a set of accurate and comprehensive percent depth doses and normal peak scatter factor parameters so as to provide the basis of clinical use, quality assurance and quality control for radiotherapy. (authors)

  8. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  9. Quantum Monte Carlo calculations of light nuclei

    International Nuclear Information System (INIS)

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on 3H, 4He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed

  10. Monte Carlo method in radiation transport problems

    International Nuclear Information System (INIS)

    In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media

  11. Comparison of two accelerators for Monte Carlo radiation transport calculations, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: A case study for X-ray CT imaging dose calculation

    International Nuclear Information System (INIS)

    Highlights: • A new Monte Carlo photon transport code ARCHER-CT for CT dose calculations is developed to execute on the GPU and coprocessor. • ARCHER-CT is verified against MCNP. • The GPU code on an Nvidia M2090 GPU is 5.15–5.81 times faster than the parallel CPU code on an Intel X5650 6-core CPU. • The coprocessor code on an Intel Xeon Phi 5110p coprocessor is 3.30–3.38 times faster than the CPU code. - Abstract: Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three components, ARCHER-CTCPU, ARCHER-CTGPU and ARCHER-CTCOP designed to be run on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI processes, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel ARCHER-CTCPU, respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work concurrently can increase the overall performance by 13–18%

  12. Comparison of 2 accelerators of Monte Carlo radiation transport calculations, NVIDIA tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: a case study for X-ray CT Imaging Dose calculation

    International Nuclear Information System (INIS)

    Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER-CT(CPU), ARCHER-CT(GPU) and ARCHER-CT(COP) to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89-4.49 and 3.01-3.23 times faster than the parallel ARCHER-CT(CPU) running with 12 hyper-threads. (authors)

  13. The MCNPX Monte Carlo Radiation Transport Code

    International Nuclear Information System (INIS)

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4c and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics, particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development

  14. THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE

    Energy Technology Data Exchange (ETDEWEB)

    WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory

    2007-01-10

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.

  15. Reactor lattice transport calculations

    International Nuclear Information System (INIS)

    The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)

  16. Common misconceptions in Monte Carlo particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Thomas E., E-mail: teb@lanl.gov [LANL, XCP-7, MS F663, Los Alamos, NM 87545 (United States)

    2012-07-15

    Monte Carlo particle transport is often introduced primarily as a method to solve linear integral equations such as the Boltzmann transport equation. This paper discusses some common misconceptions about Monte Carlo methods that are often associated with an equation-based focus. Many of the misconceptions apply directly to standard Monte Carlo codes such as MCNP and some are worth noting so that one does not unnecessarily restrict future methods. - Highlights: Black-Right-Pointing-Pointer Adjoint variety and use from a Monte Carlo perspective. Black-Right-Pointing-Pointer Misconceptions and preconceived notions about statistical weight. Black-Right-Pointing-Pointer Reasons that an adjoint based weight window sometimes works well or does not. Black-Right-Pointing-Pointer Pulse height/probability of initiation tallies and 'the' transport equation. Black-Right-Pointing-Pointer Highlights unnecessary preconceived notions about Monte Carlo transport.

  17. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  18. Monte Carlo methods for particle transport

    CERN Document Server

    Haghighat, Alireza

    2015-01-01

    The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...

  19. Monte Carlo small-sample perturbation calculations

    International Nuclear Information System (INIS)

    Two different Monte Carlo methods have been developed for benchmark computations of small-sample-worths in simplified geometries. The first is basically a standard Monte Carlo perturbation method in which neutrons are steered towards the sample by roulette and splitting. One finds, however, that two variance reduction methods are required to make this sort of perturbation calculation feasible. First, neutrons that have passed through the sample must be exempted from roulette. Second, neutrons must be forced to undergo scattering collisions in the sample. Even when such methods are invoked, however, it is still necessary to exaggerate the volume fraction of the sample by drastically reducing the size of the core. The benchmark calculations are then used to test more approximate methods, and not directly to analyze experiments. In the second method the flux at the surface of the sample is assumed to be known. Neutrons entering the sample are drawn from this known flux and tracking by Monte Carlo. The effect of the sample or the fission rate is then inferred from the histories of these neutrons. The characteristics of both of these methods are explored empirically

  20. Analysis of some splitting and roulette algorithms in shield calculations by the Monte Carlo method

    International Nuclear Information System (INIS)

    Different schemes of using the splitting and roulette methods in calculation of radiation transport in nuclear facility shields by the Monte Carlo method are considered. Efficiency of the considered schemes is estimated on the example of test calculations

  1. Quantum Monte Carlo calculations for carbon nanotubes

    Science.gov (United States)

    Luu, Thomas; Lähde, Timo A.

    2016-04-01

    We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.

  2. Computation cluster for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)

  3. A hybrid Monte Carlo and response matrix Monte Carlo method in criticality calculation

    International Nuclear Information System (INIS)

    Full core calculations are very useful and important in reactor physics analysis, especially in computing the full core power distributions, optimizing the refueling strategies and analyzing the depletion of fuels. To reduce the computing time and accelerate the convergence, a method named Response Matrix Monte Carlo (RMMC) method based on analog Monte Carlo simulation was used to calculate the fixed source neutron transport problems in repeated structures. To make more accurate calculations, we put forward the RMMC method based on non-analog Monte Carlo simulation and investigate the way to use RMMC method in criticality calculations. Then a new hybrid RMMC and MC (RMMC+MC) method is put forward to solve the criticality problems with combined repeated and flexible geometries. This new RMMC+MC method, having the advantages of both MC method and RMMC method, can not only increase the efficiency of calculations, also simulate more complex geometries rather than repeated structures. Several 1-D numerical problems are constructed to test the new RMMC and RMMC+MC method. The results show that RMMC method and RMMC+MC method can efficiently reduce the computing time and variations in the calculations. Finally, the future research directions are mentioned and discussed at the end of this paper to make RMMC method and RMMC+MC method more powerful. (authors)

  4. Dependence of Monte Carlo Prediction on Evaluated Nuclear Data Library in Continuous Energy Criticality Calculations

    International Nuclear Information System (INIS)

    Monte Carlo neutronics calculations can estimate accurate nuclear parameters from continuous energy nuclear library and detailed geometry. The continuous energy nuclear library for Monte Carlo simulations can be generated from several evaluated nuclear data files - ENDF/B-VI.8, JENDL-3.3, JEFF-3.0, etc . by NJOY 99. The objective of this paper is to quantify effects of evaluated nuclear data files on nuclear parameters estimated by Monte Carlo calculations for various critical experiment problems. In this study, Monte Carlo calculations are conducted by the MCCARD which is designed exclusively for the neutron transport calculation

  5. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  6. Monte Carlo calculations in lattice gauge theories

    International Nuclear Information System (INIS)

    This paper covers the following: a few words of motivation for numerical simulations, and a description of the Monte Carlo method as applied to lattice gauge theories. This is followed by a discussion of systems that contain bosonic degrees of freedom only. The authors review Monte Carlo results for pure gauge systems, illustrating the determination of a variety of observables - the string tension, the potential, the temperature at which quarks become deconfined, and attempts to calculate the mass gap of the theory, also called the glue-ball mass. They try to explain what happens if one considers various types of the action, how one verifies universality in the passage to the continuum limit and we mention briefly simulations applied to systems that go beyond just gauge fields and include other bosonic fields, known in general as Higgs scalars. Finally they consider fermions on the lattice, pointing out conceptual problems in the formulation of the Dirac equation on the lattice, and then discussing the difficulties that arise in attempting to apply the same kind of numerical methods to fermionic systems, the approximations and the techniques that are used to overcome these problems and some of the numerical results

  7. A New Monte Carlo Neutron Transport Code at UNIST

    International Nuclear Information System (INIS)

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  8. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    International Nuclear Information System (INIS)

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water-–but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  9. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    Science.gov (United States)

    Madsen, J. R.; Akabani, G.

    2014-05-01

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water--but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  10. Radiation Transport Calculations and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto; /SLAC; Ferrari, A.; /CERN

    2011-06-30

    This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.

  11. Monte Carlo Calculation of Sensitivities to Secondary Angular Distributions. Theory and Validation

    International Nuclear Information System (INIS)

    The basic methods for solution of the transport equation that are in practical use today are the discrete ordinates (SN) method, and the Monte Carlo (Monte Carlo) method. While the SN method is typically less computation time consuming, the Monte Carlo method is often preferred for detailed and general description of three-dimensional geometries, and for calculations using cross sections that are point-wise energy dependent. For analysis of experimental and calculated results, sensitivities are needed. Sensitivities to material parameters in general, and to the angular distribution of the secondary (scattered) neutrons in particular, can be calculated by well known SN methods, using the fluxes obtained from solution of the direct and the adjoint transport equations. Algorithms to calculate sensitivities to cross-sections with Monte Carlo methods have been known for quite a time. However, only just recently we have developed a general Monte Carlo algorithm for the calculation of sensitivities to the angular distribution of the secondary neutrons

  12. The Monte Carlo calculation of gamma family

    International Nuclear Information System (INIS)

    The method of the Monte Carlo calculation for gamma family was investigated. The effects of the variation of values or terms of parameters on observed quantities were studied. The terms taken for the standard calculation are the scaling law for the model, simple proton spectrum for primary cosmic ray, a constant cross section of interaction, zero probability of neutral pion production, and the bending of the curve of primary energy spectrum. This is called S model. Calculations were made by changing one of above mentioned parameters. The chamber size, the mixing of gamma and hadrons, and the family size were fitted to the practical ECC data. When the model was changed from the scaling law to the CKP model, the energy spectrum of the family was able to be expressed by the CKP model better than the scaling law. The scaling law was better in the symmetry around the family center. It was denied that primary cosmic ray mostly consists of heavy particles. The increase of the interaction cross section was necessary in view of the frequency of the families. (Kato, T.)

  13. Linear Scaling Quantum Monte Carlo Calculations

    Science.gov (United States)

    Williamson, Andrew

    2002-03-01

    New developments to the quantum Monte Carlo approach are presented that improve the scaling of the time required to calculate the total energy of a configuration of electronic coordinates from N^3 to nearly linear[1]. The first factor of N is achieved by applying a unitary transform to the set of single particle orbitals used to construct the Slater determinant, creating a set of maximally localized Wannier orbitals. These localized functions are then truncated beyond a given cutoff radius to introduce sparsity into the Slater determinant. The second factor of N is achieved by evaluating the maximally localized Wannier orbitals on a cubic spline grid, which removes the size dependence of the basis set (e.g. plane waves, Gaussians) typically used to expand the orbitals. Application of this method to the calculation of the binding energy of carbon fullerenes and silicon nanostructures will be presented. An extension of the approach to deal with excited states of systems will also be presented in the context of the calculation of the excitonic gap of a variety of systems. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/LLNL under contract no. W-7405-Eng-48. [1] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001)

  14. Parallel implementation of the Monte Carlo transport code EGS4 on the hypercube

    International Nuclear Information System (INIS)

    Monte Carlo transport codes are commonly used in the study of particle interactions. The CALOR89 code system is a combination of several Monte Carlo transport and analysis programs. In order to produce good results, a typical Monte Carlo run will have to produce many particle histories. On a single processor computer, the transport calculation can take a huge amount of time. However, if the transport of particles were divided among several processors in a multiprocessor machine, the time can be drastically reduced

  15. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    Science.gov (United States)

    Ma, C.-M.; Li, J. S.; Pawlicki, T.; Jiang, S. B.; Deng, J.; Lee, M. C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-05-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ.

  16. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  17. Development of Monte Carlo machine for particle transport problem

    International Nuclear Information System (INIS)

    Monte Carlo machine, Monte-4 has been developed to realize high performance computing of Monte Carlo codes for particle transport. The calculation for particle tracking in a complex geometry requires (1) classification of particles by the region types using multi-way conditional branches, and (2) determination whether intersections of particle paths with surfaces of the regions are on the boundaries of the regions or not, using nests of conditional branches. However, these procedures require scalar operations or unusual vector operations. Thus the speedup ratios have been low, i.e. nearly two times, in vector processing of Monte Carlo codes for particle transport on conventional vector processors. The Monte Carlo machine Monte-4 has been equipped with the special hardware called Monte Carlo pipelines to process these procedures with high performance. Additionally Monte-4 has been equipped with enhanced load/store pipelines to realize fast transfer of indirectly addressed data for the purpose of resolving imbalances between the performance of data transfers and arithmetic operations in vector processing of Monte Carlo codes on conventional vector processors. Finally, Monte-4 has a parallel processing capability with four processors to multiply the performance of vector processing. We have evaluated the effective performance of Monte-4 using production-level Monte Carlo codes such as vectorized KENO-IV and MCNP. In the performance evaluation, nearly ten times speedup ratios have been obtained, compared with scalar processing of the original codes. (author)

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  19. Monte Carlo analysis of transient electron transport in wurtzite Zn1−xMgxO combined with first principles calculations

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-01-01

    Full Text Available Transient characteristics of wurtzite Zn1−xMgxO are investigated using a three-valley Ensemble Monte Carlo model verified by the agreement between the simulated low-field mobility and the experiment result reported. The electronic structures are obtained by first principles calculations with density functional theory. The results show that the peak electron drift velocities of Zn1−xMgxO (x = 11.1%, 16.7%, 19.4%, 25% at 3000 kV/cm are 3.735 × 107, 2.133 × 107, 1.889 × 107, 1.295 × 107 cm/s, respectively. With the increase of Mg concentration, a higher electric field is required for the onset of velocity overshoot. When the applied field exceeds 2000 kV/cm and 2500 kV/cm, a phenomena of velocity undershoot is observed in Zn0.889Mg0.111O and Zn0.833Mg0.167O respectively, while it is not observed for Zn0.806Mg0.194O and Zn0.75Mg0.25O even at 3000 kV/cm which is especially important for high frequency devices.

  20. MONTE-CARLO SIMULATION OF ROAD TRANSPORT EMISSION

    Directory of Open Access Journals (Sweden)

    Adam Torok

    2015-09-01

    Full Text Available There are microscopic, mezoscopic and macroscopic models in road traffic analysis and forecasting. From microscopic models one can calculate the macroscopic data by aggregation. The following paper describes the disaggregation method of macroscopic state, which could lead to microscopic properties of traffic. In order to ensure the transform between macroscopic and microscopic states Monte-Carlo simulation was used. MS Excel macro environment was built to run Monte-Carlo simulation. With this method the macroscopic data can be disaggregated to macroscopic data and as a byproduct mezoscopic, regional data can be gained. These mezoscopic data can be used further on regional environmental or transport policy assessment.

  1. A CNS calculation line based on a Monte Carlo method

    International Nuclear Information System (INIS)

    Full text: The design of the moderator cell of a Cold Neutron Source (CNS) involves many different considerations regarding geometry, location, and materials. Decisions taken in this sense affect not only the neutron flux in the source neighborhood, which can be evaluated by a standard empirical method, but also the neutron flux values in experimental positions far away of the neutron source. At long distances from the neutron source, very time consuming 3D deterministic methods or Monte Carlo transport methods are necessary in order to get accurate figures. Standard and typical terminology such as average neutron flux, neutron current, angular flux, luminosity, are magnitudes very difficult to evaluate in positions located several meters away from the neutron source. The Monte Carlo method is a unique and powerful tool to transport neutrons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of systems. The proper use of MCNP as the main tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors. The design goal is to evaluate the performance of the neutron sources, their beam tubes and neutron guides at specific experimental locations in the reactor hall as well as in the neutron or experimental hall. In this work, the calculation methodology used to design Cold, Thermal and Hot Neutron Sources and their associated Neutron Beam Transport Systems, based on the use of the MCNP code, is presented. This work also presents some changes made to the cross section libraries in order to cope with cryogenic moderators such as liquid hydrogen and liquid deuterium. (author)

  2. A Monte Carlo dose calculation algorithm for proton therapy

    International Nuclear Information System (INIS)

    A Monte Carlo (MC) code (VMCpro) for treatment planning in proton beam therapy of cancer is introduced. It is based on ideas of the Voxel Monte Carlo algorithm for photons and electrons and is applicable to human tissue for clinical proton energies. In the present paper the implementation of electromagnetic and nuclear interactions is described. They are modeled by a Class II condensed history algorithm with continuous energy loss, ionization, multiple scattering, range straggling, δ-electron transport, nuclear elastic proton nucleus scattering and inelastic proton nucleus reactions. VMCpro is faster than the general purpose MC codes FLUKA by a factor of 13 and GEANT4 by a factor of 35 for simulations in a phantom with inhomogeneities. For dose calculations in patients the speed improvement is larger, because VMCpro has only a weak dependency on the heterogeneity of the calculation grid. Dose distributions produced with VMCpro are in agreement with GEANT4 results. Integrated or broad beam depth dose curves show maximum deviations not larger than 1% or 0.5 mm in regions with large dose gradients for the examples presented here

  3. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    International Nuclear Information System (INIS)

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors

  4. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  5. A Transport Condensed History Algorithm for Electron Monte Carlo Simulations

    International Nuclear Information System (INIS)

    An advanced multiple scattering algorithm for the Monte Carlo simulation of electron transport problems is developed. Unlike established multiple scattering algorithms, this new method, called transport condensed history (TCH), is a true transport process - it simulates a transport equation that approximates the exact Boltzmann transport process. In addition to having a larger mean free path and a more isotropic scattering operator than the Boltzmann equation, the approximate transport equation also preserves the zeroth- and first-order angular moments of the exact equation. These features enable TCH to accurately predict electron position as a function of energy (path length) and to move particles across material boundaries and interfaces with acceptable accuracy and efficiency. Numerical results and dose calculations are shown to reveal the advantages of TCH over conventional condensed history schemes

  6. Nuclear data treatment for SAM-CE Monte Carlo calculations

    International Nuclear Information System (INIS)

    The treatment of nuclear data by the SAM-CE Monte Carlo code system is presented. The retrieval of neutron, gamma production, and photon data from the ENDF/B fils is described. Integral cross sections as well as differential data are utilized in the Monte Carlo calculations, and the processing procedures for the requisite data are summarized

  7. The macro response Monte Carlo method for electron transport

    CERN Document Server

    Svatos, M M

    1999-01-01

    This thesis demonstrates the feasibility of basing dose calculations for electrons in radiotherapy on first-principles single scatter physics, in a calculation time that is comparable to or better than current electron Monte Carlo methods. The macro response Monte Carlo (MRMC) method achieves run times that have potential to be much faster than conventional electron transport methods such as condensed history. The problem is broken down into two separate transport calculations. The first stage is a local, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position, and trajectory after leaving the local geometry, a small sphere or "kugel." A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25-8 MeV) and sizes (0.025 to 0.1 cm in radius). The second transport stage is a global calculation, in which steps that conform to the size of the kugels in the...

  8. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons (3H+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  9. Monte Carlo methodologies for neutron streaming in diffusion calculations - Application to directional diffusion coefficients and leakage models in XS generation

    OpenAIRE

    Dorval, Eric

    2016-01-01

    Neutron transport calculations by Monte Carlo methods are finding increased application in nuclear reactor simulations. In particular, a versatile approach entails the use of a 2-step pro-cedure, with Monte Carlo as a few-group cross section data generator at lattice level, followed by deterministic multi-group diffusion calculations at core level. In this thesis, the Serpent 2 Monte Carlo reactor physics burnup calculation code is used in order to test a set of diffusion coefficient model...

  10. Confidence and efficiency scaling in Variational Quantum Monte Carlo calculations

    CERN Document Server

    Delyon, François; Holzmann, Markus

    2016-01-01

    Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by Variational Monte Carlo calculations on the two dimensional electron gas.

  11. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons (2H+) in the energy range 10 MeV-1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  12. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions (3He2+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  13. TRIPOLI-3: a neutron/photon Monte Carlo transport code

    International Nuclear Information System (INIS)

    The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)

  14. MONTE CARLO CALCULATION OF ENERGY DEPOSITION BY DELTA RAYS AROUND ION TRACKS

    Institute of Scientific and Technical Information of China (English)

    张纯祥; 刘小伟; 等

    1994-01-01

    The radial distribution of dose around the path of a heavy ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process.Result comparisons among this work and semi-empirical expression based delta ray theory of track structure,as well as other Monte Carlo calculations are made for 1,3MeV protons and several heavy ions.The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods.The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.

  15. Current status of the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    PSG is a new Monte Carlo neutron transport code, developed at the Technical Research Centre of Finland (VTT). The code is mainly intended for fuel assembly-level reactor physics calculations, such as group constant generation for deterministic reactor simulator codes. This paper presents the current status of the project and the essential capabilities of the code. Although the main application of PSG is in lattice calculations, the geometry is not restricted in two dimensions. This paper presents the validation of PSG against the experimental results of the three-dimensional MOX fuelled VENUS-2 reactor dosimetry benchmark. (authors)

  16. Applications of the Monte Carlo radiation transport toolkit at LLNL

    Science.gov (United States)

    Sale, Kenneth E.; Bergstrom, Paul M., Jr.; Buck, Richard M.; Cullen, Dermot; Fujino, D.; Hartmann-Siantar, Christine

    1999-09-01

    Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions.

  17. Investigations on Monte Carlo based coupled core calculations

    International Nuclear Information System (INIS)

    The present trend in advanced and next generation nuclear reactor core designs is towards increased material heterogeneity and geometry complexity. The continuous energy Monte Carlo method has the capability of modeling such core environments with high accuracy. This paper presents results from feasibility studies being performed at the Pennsylvania State University (PSU) on both accelerating Monte Carlo criticality calculations by using hybrid nodal diffusion Monte Carlo schemes and thermal-hydraulic feedback modeling in Monte Carlo core calculations. The computation process is greatly accelerated by calculating the three-dimensional (3D) distributions of fission source and thermal-hydraulics parameters with the coupled NEM/COBRA-TF code and then using coupled MCNP5/COBRA-TF code to fine tune the results to obtain an increased accuracy. The PSU NEM code employs cross-sections generated by MCNP5 for pin-cell based nodal compositions. The implementation of different code modifications facilitating coupled calculations are presented first. Then the coupled hybrid Monte Carlo based code system is applied to a 3D 2*2 pin array extracted from a Boiling Water Reactor (BWR) assembly with reflective radial boundary conditions. The obtained results are discussed and it is showed that performing Monte-Carlo based coupled core steady state calculations are feasible. (authors)

  18. Diffusion/transport hybrid discrete method for Monte Carlo solution of the neutron transport equation

    International Nuclear Information System (INIS)

    Monte Carlo method is widely used for solving neutron transport equation. Basically Monte Carlo method treats continuous angle, space and energy. It gives very accurate solution when enough many particle histories are used, but it takes too long computation time. To reduce computation time, discrete Monte Carlo method was proposed. It is called Discrete Transport Monte Carlo (DTMC) method. It uses discrete space but continuous angle in mono energy one dimension problem and uses lump, linear-discontinuous (LLD) equation to make probabilities of leakage, scattering, and absorption. LLD may cause negative angular fluxes in highly scattering problem, so two scatter variance reduction method is applied to DTMC and shows very accurate solution in various problems. In transport Monte Carlo calculation, the particle history does not end for scattering event. So it also takes much computation time in highly scattering problem. To further reduce computation time, Discrete Diffusion Monte Carlo (DDMC) method is implemented. DDMC uses diffusion equation to make probabilities and has no scattering events. So DDMC takes very short computation time comparing with DTMC and shows very well-agreed results with cell-centered diffusion results. It is known that diffusion result may not be good in boundaries. So in hybrid method of DTMC and DDMC, boundary regions are calculated by DTMC and the other regions are calculated by DDMC. In this thesis, DTMC, DDMC and hybrid methods and their results of several problems are presented. The results show that DDMC and DTMC are well agreed with deterministic diffusion and transport results, respectively. The hybrid method shows transport-like results in problems where diffusion results are poor. The computation time of hybrid method is between DDMC and DTMC, as expected

  19. Theoretical and practical study of the variance and efficiency of a Monte Carlo calculation due to Russian roulette

    International Nuclear Information System (INIS)

    Although Russian roulette is applied very often in Monte Carlo calculations, not much literature exists on its quantitative influence on the variance and efficiency of a Monte Carlo calculation. Elaborating on the work of Lux and Koblinger using moment equations, new relevant equations are derived to calculate the variance of a Monte Carlo simulation using Russian roulette. To demonstrate its practical application the theory is applied to a simplified transport model resulting in explicit analytical expressions for the variance of a Monte Carlo calculation and for the expected number of collisions per history. From these expressions numerical results are shown and compared with actual Monte Carlo calculations, showing an excellent agreement. By considering the number of collisions in a Monte Carlo calculation as a measure of the CPU time, also the efficiency of the Russian roulette can be studied. It opens the way for further investigations, including optimization of Russian roulette parameters. (authors)

  20. Quantum Monte Carlo diagonalization method as a variational calculation

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1997-05-01

    A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)

  1. Monte-carlo calculations for some problems of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Novoselov, A. A., E-mail: novoselov@goa.bog.msu.ru; Pavlovsky, O. V.; Ulybyshev, M. V. [Moscow State University (Russian Federation)

    2012-09-15

    The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.

  2. Monte-carlo calculations for some problems of quantum mechanics

    International Nuclear Information System (INIS)

    The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.

  3. Optimization of next-event estimation probability in Monte Carlo shielding calculations

    International Nuclear Information System (INIS)

    In Monte Carlo radiation transport calculations with point detectors, the next-event estimation is employed to estimate the response to each detector from all collision sites. The computation time required for this estimation process is substantial and often exceeds the time required to generate and process particle histories in a calculation. This estimation from all collision sites is, therefore, very wasteful in Monte Carlo shielding calculations. For example, in the source region and in regions far away from the detectors, the next-event contribution of a particle is often very small and insignificant. A method for reducing this inefficiency is described

  4. The macro response Monte Carlo method for electron transport

    Energy Technology Data Exchange (ETDEWEB)

    Svatos, M M

    1998-09-01

    The main goal of this thesis was to prove the feasibility of basing electron depth dose calculations in a phantom on first-principles single scatter physics, in an amount of time that is equal to or better than current electron Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that are on the order of conventional electron transport methods such as condensed history, with the potential to be much faster. This is possible because MRMC is a Local-to-Global method, meaning the problem is broken down into two separate transport calculations. The first stage is a local, in this case, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position and trajectory after leaving the local geometry, a small sphere or "kugel" A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second transport stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry. For each step, the appropriate PDFs from the MRMC library are sampled to determine the electron's new energy, position and trajectory. The electron is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until transport is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code. It was compared to Peregrine's class II condensed history electron transport package, EGS4, and MCNP for depth dose in simple phantoms having density inhomogeneities. Since the kugels completed in the library were of relatively small size, the zoning of the phantoms was scaled down from a clinical size, so that the energy deposition algorithms for spreading dose across 5-10 zones per kugel could

  5. Bias in Dynamic Monte Carlo Alpha Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-06

    A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.

  6. Morse Monte Carlo Radiation Transport Code System

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)

  7. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    Science.gov (United States)

    Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  8. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    International Nuclear Information System (INIS)

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife (registered) SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head and neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations

  9. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C-M; Li, J S; Deng, J; Fan, J [Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA (United States)], E-mail: Charlie.ma@fccc.edu

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife (registered) SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head and neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  10. Discrete angle biasing in Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    An angular biasing procedure is presented for use in Monte Carlo radiation transport with discretized scattering angle data. As in more general studies, the method is shown to reduce statistical weight fluctuations when it is combined with the exponential transformation. This discrete data application has a simple analytic form which is problem independent. The results from a sample problem illustrate the variance reduction and efficiency characteristics of the combined biasing procedures, and a large neutron and gamma ray integral experiment is also calculated. A proposal is given for the possible code generation of the biasing parameter p and the preferential direction /ovr/Omega//0 used in the combined biasing schemes

  11. Benchmarking of proton transport in Super Monte Carlo simulation program

    International Nuclear Information System (INIS)

    Full text of the publication follows. The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been integrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, Bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with excitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to

  12. MOx benchmark calculations by deterministic and Monte Carlo codes

    International Nuclear Information System (INIS)

    Highlights: ► MOx based depletion calculation. ► Methodology to create continuous energy pseudo cross section for lump of minor fission products. ► Mass inventory comparison between deterministic and Monte Carlo codes. ► Higher deviation was found for several isotopes. - Abstract: A depletion calculation benchmark devoted to MOx fuel is an ongoing objective of the OECD/NEA WPRS following the study of depletion calculation concerning UOx fuels. The objective of the proposed benchmark is to compare existing depletion calculations obtained with various codes and data libraries applied to fuel and back-end cycle configurations. In the present work the deterministic code NEWT/ORIGEN-S of the SCALE6 codes package and the Monte Carlo based code MONTEBURNS2.0 were used to calculate the masses of inventory isotopes. The methodology to apply the MONTEBURNS2.0 to this benchmark is also presented. Then the results from both code were compared.

  13. Quantum Monte Carlo calculations of light nuclei using chiral potentials

    CERN Document Server

    Lynn, J E; Epelbaum, E; Gandolfi, S; Gezerlis, A; Schwenk, A

    2014-01-01

    We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.

  14. Strategies for improving the efficiency of quantum Monte Carlo calculations

    CERN Document Server

    Lee, R M; Nemec, N; Rios, P Lopez; Drummond, N D

    2010-01-01

    We describe a number of strategies for optimizing the efficiency of quantum Monte Carlo (QMC) calculations. We investigate the dependence of the efficiency of the variational Monte Carlo method on the sampling algorithm. Within a unified framework, we compare several commonly used variants of diffusion Monte Carlo (DMC). We then investigate the behavior of DMC calculations on parallel computers and the details of parallel implementations, before proposing a technique to optimize the efficiency of the extrapolation of DMC results to zero time step, finding that a relative time step ratio of 1:4 is optimal. Finally, we discuss the removal of serial correlation from data sets by reblocking, setting out criteria for the choice of block length and quantifying the effects of the uncertainty in the estimated correlation length and the presence of divergences in the local energy on estimated error bars on QMC energies.

  15. A new method for the calculation of diffusion coefficients with Monte Carlo

    International Nuclear Information System (INIS)

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods. (author)

  16. A New Method for the Calculation of Diffusion Coefficients with Monte Carlo

    Science.gov (United States)

    Dorval, Eric

    2014-06-01

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.

  17. Research on GPU Acceleration for Monte Carlo Criticality Calculation

    Science.gov (United States)

    Xu, Qi; Yu, Ganglin; Wang, Kan

    2014-06-01

    The Monte Carlo neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The "neutron transport step" is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the "neutron transport step" strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs.

  18. Estimate of the gluon condensate from Monte Carlo calculations

    International Nuclear Information System (INIS)

    Using existing Monte Carlo data the value of the gluon condensate phi = is estimated. Given the limitations of the method and the available data reasonable agreement is found in both sign and magnitude with the value needed in QCD sum rule calculations. (H.K.)

  19. Monte Carlo shipping cask calculations using an automated biasing procedure

    International Nuclear Information System (INIS)

    This paper describes an automated biasing procedure for Monte Carlo shipping cask calculations within the SCALE system - a modular code system for Standardized Computer Analysis for Licensing Evaluation. The SCALE system was conceived and funded by the US Nuclear Regulatory Commission to satisfy a strong need for performing standardized criticality, shielding, and heat transfer analyses of nuclear systems

  20. An energy transfer method for 4D Monte Carlo dose calculation

    OpenAIRE

    Siebers, Jeffrey V; Zhong, Hualiang

    2008-01-01

    This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy ...

  1. Status of vectorized Monte Carlo for particle transport analysis

    International Nuclear Information System (INIS)

    The conventional particle transport Monte Carlo algorithm is ill suited for modern vector supercomputers because the random nature of the particle transport process in the history based algorithm inhibits construction of vectors. An alternative, event-based algorithm is suitable for vectorization and has been used recently to achieve impressive gains in performance on vector supercomputers. This review describes the event-based algorithm and several variations of it. Implementations of this algorithm for applications in particle transport are described, and their relative merits are discussed. The implementation of Monte Carlo methods on multiple vector parallel processors is considered, as is the potential of massively parallel processors for Monte Carlo particle transport simulations

  2. A Residual Monte Carlo Method for Spatially Discrete, Angularly Continuous Radiation Transport

    International Nuclear Information System (INIS)

    Residual Monte Carlo provides exponential convergence of statistical error with respect to the number of particle histories. In the past, residual Monte Carlo has been applied to a variety of angularly discrete radiation-transport problems. Here, we apply residual Monte Carlo to spatially discrete, angularly continuous transport. By maintaining angular continuity, our method avoids the deficiencies of angular discretizations, such as ray effects. For planar geometry and step differencing, we use the corresponding integral transport equation to calculate an angularly independent residual from the scalar flux in each stage of residual Monte Carlo. We then demonstrate that the resulting residual Monte Carlo method does indeed converge exponentially to within machine precision of the exact step differenced solution.

  3. Monte Carlo dose calculation in dental amalgam phantom

    OpenAIRE

    Mohd Zahri Abdul Aziz; Yusoff, A. L.; N D Osman; R. Abdullah; Rabaie, N. A.; M S Salikin

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatm...

  4. Calculating atomic and molecular properties using variational Monte Carlo methods

    International Nuclear Information System (INIS)

    The authors compute a number of properties for the 1 1S, 21S, and 23S states of helium as well as the ground states of H2 and H/+3 using Variational Monte Carlo. These are in good agreement with previous calculations (where available). Electric-response constants for the ground states of helium, H2 and H+3 are computed as derivatives of the total energy. The method used to calculate these quantities is discussed in detail

  5. Vibrato Monte Carlo and the calculation of greeks

    OpenAIRE

    Keegan, Sinead

    2008-01-01

    In computational ¯nance Monte Carlo simulation can be used to calculate the correct prices of ¯nancial options, and to compute the values of the as- sociated Greeks (the derivatives of the option price with respect to certain input parameters). The main methods used for the calculation of Greeks are finite difference, likelihood ratio, and pathwise sensitivity. Each of these has its limitations and in particular the pathwise sensitivity approach may not be used for an option...

  6. Quantum Monte Carlo calculations of two neutrons in finite volume

    OpenAIRE

    Klos, P.; Lynn, J. E.; Tews, I.; Gandolfi, S.; Gezerlis, A.; Hammer, H. -W.; Hoferichter, M.; Schwenk, A.

    2016-01-01

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effectiv...

  7. A Monte-Carlo method for calculations of the distribution of angular deflections due to multiple scattering

    International Nuclear Information System (INIS)

    A Monte Carlo method for calculation of the distribution of angular deflections of fast charged particles passing through thin layer of matter is described on the basis of Moliere theory of multiple scattering. The distribution of the angular deflections obtained as the result of calculations is compared with Moliere theory. The method proposed is useful to calculate the electron transport in matter by Monte Carlo method. (author)

  8. A Monte Carlo simulation of ion transport at finite temperatures

    International Nuclear Information System (INIS)

    We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. Special attention has been paid to properly treating the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulae for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics. (paper)

  9. Burnup calculation methodology in the serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  10. Monte Carlo Calculations Applied to NRU Reactor and Radiation Physics Analyses

    OpenAIRE

    G.B. Wilkin; Nguyen, T. S.

    2012-01-01

    The statistical MCNP (Monte Carlo N-Particle) code has been satisfactorily used for reactor and radiation physics calculations to support NRU operation and analysis. MCNP enables 3D modeling of the reactor and its components in great detail, the transport calculation of photons (in addition to neutrons), and the capability to model all locations in space, which are beyond the capabilities of the deterministic neutronics methods used for NRU. While the simple single-cell model is efficient for...

  11. Optimization of Monte Carlo transport simulations in stochastic media

    International Nuclear Information System (INIS)

    This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)

  12. Coupled MHD-Monte Carlo transport model for dense plasmas

    International Nuclear Information System (INIS)

    A two-dimensional, two fluid model of the MHD equations has been coupled to a Monte Carlo transport model of high energy, non-Maxwellian ions. The MHD part of the model assumes complete ionization and includes a perfect gas law for a scalar pressure, a tensor artificial viscosity, electron and ion thermal conduction, electron-ion coupling, and a radiation loss term. A simple Ohm's Law is used with a B/sub theta/ magnetic field. The MHD equations were solved in Lagrangian coordinates. The conservation equations were differenced explicitly and the diffusion-type equations implicitly using the splitting technique. The Monte Carlo model solves the equation of motion for high energy ions, moving through and suffering small and large angle collisions with the fluid Maxwellian plasma. The source of high energy ions is the thermonuclear reactions of the hydrogen isotopes, or it may be an externally injected beam of neutralized ions. In addition to using the usual Maxwell averaged thermonuclear cross sections for calculating the number of reactions taking place within the Maxwellian plasma, the high energy ions may suffer collisions resulting in a reaction. In the Monte Carlo model all neutrons are assumed to escape, and all energetic ions of Z less than or equal to 2 are followed

  13. On the Calculation of Reactor Time Constants Using the Monte Carlo Method

    International Nuclear Information System (INIS)

    Full-core reactor dynamics calculation involves the coupled modelling of thermal hydraulics and the time-dependent behaviour of core neutronics. The reactor time constants include prompt neutron lifetimes, neutron reproduction times, effective delayed neutron fractions and the corresponding decay constants, typically divided into six or eight precursor groups. The calculation of these parameters is traditionally carried out using deterministic lattice transport codes, which also produce the homogenised few-group constants needed for resolving the spatial dependence of neutron flux. In recent years, there has been a growing interest in the production of simulator input parameters using the stochastic Monte Carlo method, which has several advantages over deterministic transport calculation. This paper reviews the methodology used for the calculation of reactor time constants. The calculation techniques are put to practice using two codes, the PSG continuous-energy Monte Carlo reactor physics code and MORA, a new full-core Monte Carlo neutron transport code entirely based on homogenisation. Both codes are being developed at the VTT Technical Research Centre of Finland. The results are compared to other codes and experimental reference data in the CROCUS reactor kinetics benchmark calculation. (author)

  14. Variance Estimation In Domain Decomposed Monte Carlo Eigenvalue Calculations

    International Nuclear Information System (INIS)

    The number of tallies performed in a given Monte Carlo calculation is limited in most modern Monte Carlo codes by the amount of memory that can be allocated on a single processor. By using domain decomposition, the calculation is now limited by the total amount of memory available on all processors, allowing for significantly more tallies to be performed. However, decomposing the problem geometry introduces significant issues with the way tally statistics are conventionally calculated. In order to deal with the issue of calculating tally variances in domain decomposed environments for the Shift hybrid Monte Carlo code, this paper presents an alternative approach for reactor scenarios in which an assumption is made that once a particle leaves a domain, it does not reenter the domain. Particles that reenter the domain are instead treated as separate independent histories. This assumption introduces a bias that inevitably leads to under-prediction of the calculated variances for tallies within a few mean free paths of the domain boundaries. However, through the use of different decomposition strategies, primarily overlapping domains, the negative effects of such an assumption can be significantly reduced to within reasonable levels.

  15. Parallel Monte Carlo Synthetic Acceleration methods for discrete transport problems

    Science.gov (United States)

    Slattery, Stuart R.

    This work researches and develops Monte Carlo Synthetic Acceleration (MCSA) methods as a new class of solution techniques for discrete neutron transport and fluid flow problems. Monte Carlo Synthetic Acceleration methods use a traditional Monte Carlo process to approximate the solution to the discrete problem as a means of accelerating traditional fixed-point methods. To apply these methods to neutronics and fluid flow and determine the feasibility of these methods on modern hardware, three complementary research and development exercises are performed. First, solutions to the SPN discretization of the linear Boltzmann neutron transport equation are obtained using MCSA with a difficult criticality calculation for a light water reactor fuel assembly used as the driving problem. To enable MCSA as a solution technique a group of modern preconditioning strategies are researched. MCSA when compared to conventional Krylov methods demonstrated improved iterative performance over GMRES by converging in fewer iterations when using the same preconditioning. Second, solutions to the compressible Navier-Stokes equations were obtained by developing the Forward-Automated Newton-MCSA (FANM) method for nonlinear systems based on Newton's method. Three difficult fluid benchmark problems in both convective and driven flow regimes were used to drive the research and development of the method. For 8 out of 12 benchmark cases, it was found that FANM had better iterative performance than the Newton-Krylov method by converging the nonlinear residual in fewer linear solver iterations with the same preconditioning. Third, a new domain decomposed algorithm to parallelize MCSA aimed at leveraging leadership-class computing facilities was developed by utilizing parallel strategies from the radiation transport community. The new algorithm utilizes the Multiple-Set Overlapping-Domain strategy in an attempt to reduce parallel overhead and add a natural element of replication to the algorithm. It

  16. Diffusion Monte Carlo calculations of three-body systems

    Institute of Scientific and Technical Information of China (English)

    L(U) Meng-Jiao; REN Zhong-Zhou; LIN Qi-Hu

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied.We develop a program and use it to calculate the property of various three-body systems.Regular Coulomb systems such as atoms,molecules,and ions are investigated.The calculation is then extended to exotic systems where electrons are replaced by muons.Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons.Our results agree well with experiments and others' work.

  17. Application of the peregrine Monte Carlo dose calculation system to stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Purpose/Objective: This work describes the capability to perform Monte Carlo dose calculations for stereotactic radiosurgery within the framework of the PEREGRINE dose calculation system. A future study will use this capability to assess the clinical benefits to this technique of higher accuracy in dose calculation. Materials and Methods: PEREGRINE is a first-principles 3D Monte Carlo dose calculation system for clinical radiation therapy treatment planning (RTP) systems. By taking advantage of recent advances in low-cost computer commodity hardware, modern symmetric multiprocessor architectures and state-of-the-art Monte Carlo transport algorithms, PEREGRINE performs high-resolution (1 mm), high accuracy, Monte Carlo RTP calculations in times that are reasonable for clinical use (< 30 minutes.) The PEREGRINE source model provides a compact, accurate representation of the radiation source and the effects of beam modifiers. Our experience in implementing blocks, wedges, and static MLC ports in PEREGRINE as beam modifiers provides physics models that accurately reproduce the transmitted and scattered fluence at the patient surface. Adapting PEREGRINE to calculate stereotactic radiosurgery dose distributions requires extending the PEREGRINE source model to include stereotactic apertures and treatment arcs. The physics models used for other modifiers will accurately determine stereotactic aperture effects. We only need to provide a new geometry module to describe the physical properties of the apertures. Treatment arcs are easily implemented as a probability distribution in beam direction as a function of delivered dose. Results: A comparison of results from PEREGRINE calculations and experimental measurements made at the University of Wisconsin/Madison is presented. The distribution of direct, transmitted and scattered radiation and the resulting contributions to dose from stereotactic apertures are shown. The accuracy and calculational efficiency of the physics

  18. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Coulot, J

    2003-08-07

    Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor

  19. Hybrid Deterministic-Monte Carlo Methods for Neutral Particle Transport

    International Nuclear Information System (INIS)

    In the history of transport analysis methodology for nuclear systems, there have been two fundamentally different methods, i.e., deterministic and Monte Carlo (MC) methods. Even though these two methods coexisted for the past 60 years and are complementary each other, they never been coded in the same computer codes. Recently, however, researchers have started to consider to combine these two methods in a computer code to make use of the strengths of two algorithms and avoid weaknesses. Although the advanced modern deterministic techniques such as method of characteristics (MOC) can solve a multigroup transport equation very accurately, there are still uncertainties in the MOC solutions due to the inaccuracy of the multigroup cross section data caused by approximations in the process of multigroup cross section generation, i.e., equivalence theory, interference effects, etc. Conversely, the MC method can handle the resonance shielding effect accurately when sufficiently many neutron histories are used but it takes a long calculation time. There was also a research to combine a multigroup transport and a continuous energy transport solver in a computer code system depending on the energy range. This paper proposes a hybrid deterministic-MC method in which a multigroup MOC method is used for high and low energy range and continuous MC method is used for the intermediate resonance energy range for efficient and accurate transport analysis

  20. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.)

  1. Green's Function Monte Carlo calculations of light nuclei

    International Nuclear Information System (INIS)

    Recently, Green's Function Monte Carlo methods have been developed which enable one to perform exact calculations for the ground states of three and four body nuclei. These methods allow the alpha particle to be used as a testing ground for a variety of two- and three-nucleon interaction models, both in terms of their ground state energies and a variety of other ground state expectation values. We present a brief review of GFMC methods as applied to light nuclei, including recent improvements of the algorithm and a discussion of the prospects for the inclusion of momentum-dependent terms. We then discuss results for the ground state energy, one- and two-body density distributions, D-state probability, coulomb sum rule, and momentum distributions. The GFMC results are compared to experimental results and to variational Monte Carlo calculations. 27 refs., 5 figs., 1 tab

  2. CSnrc: Correlated sampling Monte Carlo calculations using EGSnrc

    International Nuclear Information System (INIS)

    CSnrc, a new user-code for the EGSnrc Monte Carlo system is described. This user-code improves the efficiency when calculating ratios of doses from similar geometries. It uses a correlated sampling variance reduction technique. CSnrc is developed from an existing EGSnrc user-code CAVRZnrc and improves upon the correlated sampling algorithm used in an earlier version of the code written for the EGS4 Monte Carlo system. Improvements over the EGS4 version of the algorithm avoid repetition of sections of particle tracks. The new code includes a rectangular phantom geometry not available in other EGSnrc cylindrical codes. Comparison to CAVRZnrc shows gains in efficiency of up to a factor of 64 for a variety of test geometries when computing the ratio of doses to the cavity for two geometries. CSnrc is well suited to in-phantom calculations and is used to calculate the central electrode correction factor Pcel in high-energy photon and electron beams. Current dosimetry protocols base the value of Pcel on earlier Monte Carlo calculations. The current CSnrc calculations achieve 0.02% statistical uncertainties on Pcel, much lower than those previously published. The current values of Pcel compare well with the values used in dosimetry protocols for photon beams. For electrons beams, CSnrc calculations are reported at the reference depth used in recent protocols and show up to a 0.2% correction for a graphite electrode, a correction currently ignored by dosimetry protocols. The calculations show that for a 1 mm diameter aluminum central electrode, the correction factor differs somewhat from the values used in both the IAEA TRS-398 code of practice and the AAPM's TG-51 protocol

  3. Calculating Variable Annuity Liability 'Greeks' Using Monte Carlo Simulation

    OpenAIRE

    Cathcart, Mark J.; Steven Morrison; McNeil, Alexander J.

    2011-01-01

    Hedging methods to mitigate the exposure of variable annuity products to market risks require the calculation of market risk sensitivities (or "Greeks"). The complex, path-dependent nature of these products means these sensitivities typically must be estimated by Monte Carlo simulation. Standard market practice is to measure such sensitivities using a "bump and revalue" method. As well as requiring multiple valuations, such approaches can be unreliable for higher order Greeks, e.g., gamma. In...

  4. Calculations of pair production by Monte Carlo methods

    International Nuclear Information System (INIS)

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs

  5. Calculations of pair production by Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Strayer, M.R.

    1991-01-01

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.

  6. Monte Carlo Simulations of Novel Scintillator Detectors and Dosimetry Calculations

    OpenAIRE

    Lo Meo, Sergio

    2009-01-01

    Monte Carlo (MC) simulation techniques are becoming very common in the Medical Physicists community. MC can be used for modeling Single Photon Emission Computed Tomography (SPECT) and for dosimetry calculations. 188Re, is a promising candidate for radiotherapeutic production and understanding the mechanisms of the radioresponse of tumor cells "in vitro" is of crucial importance as a first step before "in vivo" studies. The dosimetry of 188Re, used to target different lines of c...

  7. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the keff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport

  8. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Seker, V.; Thomas, J. W.; Downar, T. J.; Purdue Univ.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k{sub eff} and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic

  9. Towards exact variational Monte-Carlo calculations in light nuclei

    CERN Document Server

    Usmani, Q N; Singh, A

    2005-01-01

    We propose a new variational wave function, which is a modification of an earlier one with operatorial correlations. Calculations are carried out for light nuclei with the new wave function using AV₁₈ NN and UrbanaIX (UIX) NNN interactions. The new variational ansatz is based on an error analysis of the earlier wave function. The calculated energies are in better agreement with the Green's Function Monte Carlo (GFMC) and other techniques. Error analysis is extended further and additional reasonable modification of the wave function are also proposed for future studies.

  10. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  11. Electron transport in radiotherapy using local-to-global Monte Carlo

    International Nuclear Information System (INIS)

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given

  12. Infinite variance in fermion quantum Monte Carlo calculations

    Science.gov (United States)

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  13. Coupled Monte Carlo - Discrete ordinates computational scheme for three-dimensional shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport simulation technique. This work proposes a dedicated computational approach for coupled Monte Carlo - deterministic transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. To enable the coupling of these two different computational methods, a mapping approach has been developed for calculating the discrete ordinates angular flux distribution from the scored data of the Monte Carlo particle tracks crossing a specified surface. The approach has been implemented in an interface program and validated by means of test calculations using a simplified three-dimensional geometric model. Satisfactory agreement was obtained for the angular fluxes calculated by the mapping approach using the MCNP code for the Monte Carlo calculations and direct three-dimensional discrete ordinates calculations using the TORT code. In the next step, a complete program system has been developed for coupled three-dimensional Monte Carlo deterministic transport calculations by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and the mapping interface program. Test calculations with two simple models have been performed to validate the program system by means of comparison calculations using the

  14. Neutron spectrum obtained with Monte Carlo and transport theory

    International Nuclear Information System (INIS)

    The development of the computer, resulting in increasing memory capacity and processing speed, has enabled the application of Monte Carlo method to estimate the fluxes in thousands of fine bin energy structure. Usually the MC calculation is made using continuous energy nuclear data and exact geometry. Self shielding and interference of nuclides resonances are properly considered. Therefore, the fluxes obtained by this method may be a good estimation of the neutron energy distribution (spectrum) for the problem. In an early work it was proposed to use these fluxes as weighting spectrum to generate multigroup cross section for fast reactor analysis using deterministic codes. This non-traditional use of MC calculation needs a validation to gain confidence in the results. The work presented here is the validation start step of this scheme. The spectra of the JOYO first core fuel assembly MK-I and the benchmark Godiva were calculated using the tally flux estimator of the MCNP code and compared with the reference. Also, the two problems were solved with the multigroup transport theory code XSDRN of the AMPX system using the 171 energy groups VITAMIN-C library. The spectra differences arising from the utilization of these codes, the influence of evaluated data file and the application to fast reactor calculation are discussed. (author)

  15. Monte-Carlo calculations of positron implantation profiles in silver and gold

    CERN Document Server

    Aydin, A

    2000-01-01

    To investigate the implantation profiles of positrons in silver and gold, the Monte-Carlo programs developed previously by to simulate the transport of positrons in metals was used. The simulation technique is mainly based on the screened Rutherford differential cross section with a spin-relativistic correction factor for the elastic scattering at high energies supplemented by total cross sections at low energies, Gryzinski's semi-empirical expression to simulate the energy loss due to inelastic scattering, and Liljequist's model to calculate the total inelastic scattering cross section. Backscattering probabilities and mean penetration depths were calculated from the implantation profiles of positrons at energies between 1 and 50 keV, entering normally to semi-infinite silver and gold targets. The calculated backscattering probabilities and mean penetration depths are compared with comparable Monte-Carlo data and experimental results for semi-infinite silver and gold targets. The agreement is quite satisfact...

  16. Quantum Monte Carlo calculations of two neutrons in finite volume

    CERN Document Server

    Klos, P; Tews, I; Gandolfi, S; Gezerlis, A; Hammer, H -W; Hoferichter, M; Schwenk, A

    2016-01-01

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial for determining observables from the calculated energies. Using the L\\"uscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.

  17. Monte Carlo calculation of the radiation field at aircraft altitudes

    International Nuclear Information System (INIS)

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft. (author)

  18. Infinite Variance in Fermion Quantum Monte Carlo Calculations

    CERN Document Server

    Shi, Hao

    2015-01-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties, without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, lattice QCD calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied upon to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple sub-areas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations turn out to have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calc...

  19. Second Order Perturbations of Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Perturbation techniques are powerful tools for determining the effects of small changes, or perturbations, to a problem. Perturbations have long been problematic in Monte Carlo calculations because the effects of small changes to the problem are usually masked by the inherent statistical uncertainties. The recently released MCNP4B Monte Carlo computer code uses the differential operator technique, to calculate changes in tallies caused by perturbations in density and composition over given energy ranges and reaction types. This technique will allow for precise calculation of the changes in tallies even if the standard deviation of the unperturbed tally is larger than the change. The differential operator is approximated by a second order Taylor series. The implementation of the Taylor series expansion assumes that the coefficients are independent of any perturbed cross-sections. However, if the tally is multiplied by cross-section data this assumption is invalid and incorrect results will be generated. Of significant interest is the use of perturbations in criticality calculations. Although the criticality source feature for MCNP cannot directly calculate perturbed eigenvalues, a track-length estimate for Keff can be tallied and the perturbation feature can be applied to this tally. However, since the tally multiplies the flux by the macroscopic fission cross-section, this tally is dependent on perturbed cross-section data and incorrect results will be calculated by the perturbation feature. In order to compute the correct tally, a correction term is needed that will account for the dependence of the Taylor series coefficients on the perturbed cross-section data

  20. Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, P S; Stuart, L M

    2006-11-06

    A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.

  1. MCOR - Monte Carlo depletion code for reference LWR calculations

    International Nuclear Information System (INIS)

    Research highlights: → Introduction of a reference Monte Carlo based depletion code with extended capabilities. → Verification and validation results for MCOR. → Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations

  2. Adjoint Monte Carlo techniques and codes for organ dose calculations

    International Nuclear Information System (INIS)

    Adjoint Monte Carlo simulations can be effectively used for the estimation of doses in small targets when the sources are extended in large volumes or surfaces. The main features of two computer codes for calculating doses at free points or in organs of an anthropomorphic phantom are described. In the first program (REBEL-3) natural gamma-emitting sources are contained in the walls of a dwelling room; in the second one (POKER-CAMP) the user can specify arbitrary gamma sources with different spatial distributions in the environment: in (or on the surface of) the ground and in the air. 3 figures

  3. Development and verification of Monte Carlo burnup calculation system

    International Nuclear Information System (INIS)

    Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)

  4. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  5. Tracklength biassing in Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    Tracklength stretching is employed in deep penetration Monte Carlo studies for variance reduction. Incorporating a dependence of the biassing on the angular disposition of the track improves the procedure. Linear and exponential forms for this dependence are investigated here, using Spanier's self-learning technique. Suitable biassing parameters are worked out for representative shield systems, for use in practical simulations. Of the two, we find that the exponential scheme performs better. (orig.)

  6. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    International Nuclear Information System (INIS)

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions

  7. Performance analysis for neutronics benchmark experiments with partial adjoint contribution estimated by forward Monte Carlo calculation

    International Nuclear Information System (INIS)

    Highlights: • Performance estimation of nuclear-data benchmark was investigated. • Point detector contribution played a benchmark role not only to the neutron producing the detector contribution but also equally to all the upstream transport neutrons. • New functions were defined to give how well the contribution could be interpreted for benchmarking. • Benchmark performance could be evaluated only by a forward Monte Carlo calculation. -- Abstract: The author's group has been investigating how the performance estimation of nuclear-data benchmark using experiment and its analysis by Monte Carlo code should be carried out especially at 14 MeV. We have recently found that a detector contribution played a benchmark role not only to the neutron producing the detector contribution but also equally to all the upstream neutrons during the neutron history. This result would propose that the benchmark performance could be evaluated only by a forward Monte Carlo calculation. In this study, we thus defined new functions to give how well the contribution could be utilized for benchmarking using the point detector, and described that it was deeply related to the newly introduced “partial adjoint contribution”. By preparing these functions before benchmark experiments, one could know beforehand how well and for which nuclear data the experiment results could do benchmarking in forward Monte Carlo calculations

  8. Global variance reduction for Monte Carlo reactor physics calculations

    International Nuclear Information System (INIS)

    Over the past few decades, hybrid Monte-Carlo-Deterministic (MC-DT) techniques have been mostly focusing on the development of techniques primarily with shielding applications in mind, i.e. problems featuring a limited number of responses. This paper focuses on the application of a new hybrid MC-DT technique: the SUBSPACE method, for reactor analysis calculation. The SUBSPACE method is designed to overcome the lack of efficiency that hampers the application of MC methods in routine analysis calculations on the assembly level where typically one needs to execute the flux solver in the order of 103-105 times. It places high premium on attaining high computational efficiency for reactor analysis application by identifying and capitalizing on the existing correlations between responses of interest. This paper places particular emphasis on using the SUBSPACE method for preparing homogenized few-group cross section sets on the assembly level for subsequent use in full-core diffusion calculations. A BWR assembly model is employed to calculate homogenized few-group cross sections for different burn-up steps. It is found that using the SUBSPACE method significant speedup can be achieved over the state of the art FW-CADIS method. While the presented speed-up alone is not sufficient to render the MC method competitive with the DT method, we believe this work will become a major step on the way of leveraging the accuracy of MC calculations for assembly calculations. (authors)

  9. Reference Monte Carlo calculations of Maria reactor core

    International Nuclear Information System (INIS)

    The reference Monte Carlo calculations of MARIA reactor core have been carried to evaluate accuracy of the calculations at each stage of its neutron-physics analysis using deterministic codes. The elementary cell has been calculated with two main goals; evaluation of effects of simplifications introduced in deterministic lattice spectrum calculations by the WIMS code and evaluation of library data in recently developed WIMS libraries. In particular the beryllium data of those libraries needed evaluation. The whole core calculations mainly the first MARIA critical experiment and the first critical core after the 8-year break in operation. Both cores contained only fresh fuel elements but only in the first critical core the beryllium blocks were not poisoned by Li-6 and He-3. Thus the MCNP k-eff results could be compared with the experiment. The MCNP calculations for the cores with beryllium poisoned suffered the deficiency of uncertainty in the poison concentration, but a comparison of power distribution shows that realistic poison levels have been carried out for the operating reactor MARIA configurations. (author)

  10. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark

    International Nuclear Information System (INIS)

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  11. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark

    Science.gov (United States)

    Renner, F.; Wulff, J.; Kapsch, R.-P.; Zink, K.

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  12. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J. E-mail: ghassoun@ucam.ac.ma; Jehouani, A

    2000-11-15

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at E{sub s}=2 MeV and E{sub s}=676.45 eV, whereas the energy cut-off is fixed at E{sub c}=2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions.

  13. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    Science.gov (United States)

    Ghassoun; Jehouani

    2000-10-01

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es = 2 MeV and Es = 676.45 eV, whereas the energy cut-off is fixed at Ec = 2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions. PMID:11003535

  14. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    International Nuclear Information System (INIS)

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es=2 MeV and Es=676.45 eV, whereas the energy cut-off is fixed at Ec=2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions

  15. Calculation of gamma-ray families by Monte Carlo method

    International Nuclear Information System (INIS)

    Extensive Monte Carlo calculation on gamma-ray families was carried out under appropriate model parameters which are currently used in high energy cosmic ray phenomenology. Characteristics of gamma-ray families are systematically investigated by the comparison of calculated results with experimental data obtained at mountain altitudes. The main point of discussion is devoted to examine the validity of Feynman scaling in the fragmentation region of the multiple meson production. It is concluded that experimental data cannot be reproduced under the assumption of scaling law when primary cosmic rays are dominated by protons. Other possibilities on primary composition and increase of interaction cross section are also examined. These assumptions are consistent with experimental data only when we introduce intense dominance of heavy primaries in E0>1015 eV region and very strong increase of interaction cross section (say sigma varies as Esub(0)sup(0.06)) simultaneously

  16. Path Integral Monte Carlo Calculation of the Deuterium Hugoniot

    International Nuclear Information System (INIS)

    Restricted path integral Monte Carlo simulations have been used to calculate the equilibrium properties of deuterium for two densities: 0.674 and 0.838 g cm -3 (rs=2.00 and 1.86) in the temperature range of 105≤T≤106 K . We carefully assess size effects and dependence on the time step of the path integral. Further, we compare the results obtained with a free particle nodal restriction with those from a self-consistent variational principle, which includes interactions and bound states. By using the calculated internal energies and pressures, we determine the shock Hugoniot and compare with recent laser shock wave experiments as well as other theories. (c) 2000 The American Physical Society

  17. Monte Carlo calculation for TLD personal neutron dosimeter

    International Nuclear Information System (INIS)

    The monitor of neutron personal dose to professional worker become more and more important with the development of nuclear industry, nuclear plant and nuclear radiation cure. In this paper, the design and calculation of TLD-albedo personal dosimeter were taken by using MCNP-3B Monte Carlo code. After the present of neutron and photon fluence response, the method to determine the field correction factor was introduced. The calculated result showed that TLD-albedo personal dosimeter could work well for photon with energy: from 33 keV to 1.5 MeV and for neutron with energy from thermo-neutron to 10 MeV, and corresponding energy response error could be less than 30% and 60% respectively. (authors)

  18. Quantum states of confined hydrogen plasma species: Monte Carlo calculations

    Science.gov (United States)

    Micca Longo, G.; Longo, S.; Giordano, D.

    2015-12-01

    The diffusion Monte Carlo method with symmetry-based state selection is used to calculate the quantum energy states of \\text{H}2+ confined into potential barriers of atomic dimensions (a model for these ions in solids). Special solutions are employed, permitting one to obtain satisfactory results with rather simple native code. As a test case, {{}2}{{\\Pi}u} and {{}2}{{\\Pi}g} states of \\text{H}2+ ions under spherical confinement are considered. The results are interpreted using the correlation of \\text{H}2+ states to atomic orbitals of H atoms lying on the confining surface and perturbation calculations. The method is straightforwardly applied to cavities of any shape and different hydrogen plasma species (at least one-electron ones, including H) for future studies with real crystal symmetries.

  19. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  20. A Monte Carlo Green's function method for three-dimensional neutron transport

    International Nuclear Information System (INIS)

    This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution

  1. Using Nuclear Theory, Data and Uncertainties in Monte Carlo Transport Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-03

    These are slides for a presentation on using nuclear theory, data and uncertainties in Monte Carlo transport applications. The following topics are covered: nuclear data (experimental data versus theoretical models, data evaluation and uncertainty quantification), fission multiplicity models (fixed source applications, criticality calculations), uncertainties and their impact (integral quantities, sensitivity analysis, uncertainty propagation).

  2. MCNP, a general Monte Carlo code for neutron and photon transport: a summary

    International Nuclear Information System (INIS)

    The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces

  3. Monte Carlo dose calculation in dental amalgam phantom.

    Science.gov (United States)

    Aziz, Mohd Zahri Abdul; Yusoff, A L; Osman, N D; Abdullah, R; Rabaie, N A; Salikin, M S

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  4. Monte carlo dose calculation in dental amalgam phantom

    Directory of Open Access Journals (Sweden)

    Mohd Zahri Abdul Aziz

    2015-01-01

    Full Text Available It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC. On the other hand, computed tomography (CT images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation.

  5. Calculating alpha Eigenvalues in a Continuous-Energy Infinite Medium with Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Betzler, Benjamin R. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-04

    The {alpha} eigenvalue has implications for time-dependent problems where the system is sub- or supercritical. We present methods and results from calculating the {alpha}-eigenvalue spectrum for a continuous-energy infinite medium with a simplified Monte Carlo transport code. We formulate the {alpha}-eigenvalue problem, detail the Monte Carlo code physics, and provide verification and results. We have a method for calculating the {alpha}-eigenvalue spectrum in a continuous-energy infinite-medium. The continuous-time Markov process described by the transition rate matrix provides a way of obtaining the {alpha}-eigenvalue spectrum and kinetic modes. These are useful for the approximation of the time dependence of the system.

  6. Monte Carlo shielding calculations in the double null configuration of NET

    International Nuclear Information System (INIS)

    Multi-dimensional Monte Carlo shielding calculations have been performed for evaluating the shielding performance of the NET reactor components. Biased Monte Carlo techniques, that are available in the MCNP-code, have been applied for describing the neutron and photon transport through the shielding components. A realistic three-dimensional model of a NET torus sector has been used, that takes into account all relevant reactor components adequately. The poloidal variations of the physical quantities relevant for the radiation shielding, the shielding performance of the divertors, and the neutron streaming through toroidal segment gaps and its impact on the shielding performance of the vacuum vessel are the main objects of the analysis. Furthermore, the relations between idealized one-dimensional and realistic three-dimensional shielding calculations are analyzed. (orig.)

  7. Calculation of Gamma-ray Responses for HPGe Detectors with TRIPOLI-4 Monte Carlo Code

    Science.gov (United States)

    Lee, Yi-Kang; Garg, Ruchi

    2014-06-01

    The gamma-ray response calculation of HPGe (High Purity Germanium) detector is one of the most important topics of the Monte Carlo transport codes for nuclear instrumentation applications. In this study the new options of TRIPOLI-4 Monte Carlo transport code for gamma-ray spectrometry were investigated. Recent improvements include the gamma-rays modeling of the electron-position annihilation, the low energy electron transport modeling, and the low energy characteristic X-ray production. The impact of these improvements on the detector efficiency of the gamma-ray spectrometry calculations was verified. Four models of HPGe detectors and sample sources were studied. The germanium crystal, the dead layer of the crystal, the central hole, the beryllium window, and the metal housing are the essential parts in detector modeling. A point source, a disc source, and a cylindrical extended source containing a liquid radioactive solution were used to study the TRIPOLI-4 calculations for the gamma-ray energy deposition and the gamma-ray self-shielding. The calculations of full-energy-peak and total detector efficiencies for different sample-detector geometries were performed. Using TRIPOLI-4 code, different gamma-ray energies were applied in order to establish the efficiency curves of the HPGe gamma-ray detectors.

  8. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Highlights: • The performance of nuclear reactor Monte Carlo transport applications is examined. • A “proxy-application” (XSBench) is presented representing the key kernel. • In-depth performance analyses reveal the algorithm is bottlenecked by bandwidth. • Strategies are discussed to improve scalability on next generation HPC systems. - Abstract: We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm – the calculation of macroscopic cross sections – in an effort to expose bottlenecks within multi-core, shared memory architectures

  9. Use of MOSFET dosimeters to validate Monte Carlo radiation treatment calculation in an anthropomorphic phantom

    Science.gov (United States)

    Juste, Belén; Miró, R.; Abella, V.; Santos, A.; Verdú, Gumersindo

    2015-11-01

    Radiation therapy treatment planning based on Monte Carlo simulation provide a very accurate dose calculation compared to deterministic systems. Nowadays, Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy to verify the received dose by patients. In the present work, we have used the MCNP6 (Monte Carlo N-Particle transport code) to simulate the irradiation of an anthropomorphic phantom (RANDO) with a medical linear accelerator. The detailed model of the Elekta Precise multileaf collimator using a 6 MeV photon beam was designed and validated by means of different beam sizes and shapes in previous works. To include in the simulation the RANDO phantom geometry a set of Computer Tomography images of the phantom was obtained and formatted. The slices are input in PLUNC software, which performs the segmentation by defining anatomical structures and a Matlab algorithm writes the phantom information in MCNP6 input deck format. The simulation was verified and therefore the phantom model and irradiation was validated throughout the comparison of High-Sensitivity MOSFET dosimeter (Best medical Canada) measurements in different points inside the phantom with simulation results. On-line Wireless MOSFET provide dose estimation in the extremely thin sensitive volume, so a meticulous and accurate validation has been performed. The comparison show good agreement between the MOSFET measurements and the Monte Carlo calculations, confirming the validity of the developed procedure to include patients CT in simulations and approving the use of Monte Carlo simulations as an accurate therapy treatment plan.

  10. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation

    CERN Document Server

    Jia, Xun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B

    2011-01-01

    Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress towards the development a GPU-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original DPM code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. High performance random number generator and hardware linear interpolation are also utilized. We have also developed various components to hand...

  11. Applicability of deterministic and Monte Carlo neutron transport models coupled with thermo-fluiddynamics

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Forschungsinstitute

    2007-07-01

    An overview is given of the recent progress at GRS concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The development of the time-dependent 3D discrete ordinates transport code TORT-TD is described which has also been coupled with ATHLET. TORT-TD/ATHLET allows 3D pin-by-pin coupled analyses of transients using few energy groups and anisotropic scattering. As a step towards Monte Carlo steady-state calculations with nuclear point data and thermal-hydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. Results obtained for selected test cases demonstrate the applicability of deterministic and Monte Carlo neutron transport models coupled with thermo-fluiddynamics. (orig.)

  12. Quantum Monte Carlo Calculations Applied to Magnetic Molecules

    International Nuclear Information System (INIS)

    We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these

  13. Quantum Monte Carlo Calculations Applied to Magnetic Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Larry Engelhardt

    2006-08-09

    We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these

  14. MORSE Monte Carlo radiation transport code system

    International Nuclear Information System (INIS)

    This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected

  15. The application of Monte Carlo method to electron and photon beams transport

    International Nuclear Information System (INIS)

    The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs

  16. Review of dynamical models for external dose calculations based on Monte Carlo simulations in urbanised areas

    International Nuclear Information System (INIS)

    After an accidental release of radionuclides to the inhabited environment the external gamma irradiation from deposited radioactivity contributes significantly to the radiation exposure of the population for extended periods. For evaluating this exposure pathway, three main model requirements are needed: (i) to calculate the air kerma value per photon emitted per unit source area, based on Monte Carlo (MC) simulations; (ii) to describe the distribution and dynamics of radionuclides on the diverse urban surfaces; and (iii) to combine all these elements in a relevant urban model to calculate the resulting doses according to the actual scenario. This paper provides an overview about the different approaches to calculate photon transport in urban areas and about several dose calculation codes published. Two types of Monte Carlo simulations are presented using the global and the local approaches of photon transport. Moreover, two different philosophies of the dose calculation, the 'location factor method' and a combination of relative contamination of surfaces with air kerma values are described. The main features of six codes (ECOSYS, EDEM2M, EXPURT, PARATI, TEMAS, URGENT) are highlighted together with a short model-model features intercomparison

  17. Monte Carlo calculations of neutron and gamm-ray energy spectra for fusion-reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  18. Monte Carlo calculations of neutron and gamma-ray energy spectra for fusion reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Neutron and gamma-ray energy spectra resulting from the interactions of approx. 14 MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree witin 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra are also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  19. Titrating Polyelectrolytes - Variational Calculations and Monte Carlo Simulations

    CERN Document Server

    Jönsson, B; Peterson, C; Sommelius, O; Söderberg, B

    1995-01-01

    Variational methods are used to calculate structural and thermodynamical properties of a titrating polyelectrolyte in a discrete representation. The Coulomb interactions are emulated by harmonic repulsive forces, the force constants being used as variational parameters to minimize the free energy. For the titrating charges, a mean field approach is used. The accuracy is tested against Monte Carlo data for up to 1000 monomers. For an unscreened chain, excellent agreement is obtained for the end-to-end distance and the apparent dissociation constant. With screening, the thermodynamical properties are invariably well described, although the structural agreement deteriorates. A very simple rigid-rod approximation is also considered, giving surprisingly good results for certain properties.

  20. Global Monte Carlo Calculations for r-process Nucleosynthesis

    Science.gov (United States)

    Mumpower, Matthew; Surman, Rebecca; Aprahamian, Ani

    2015-10-01

    The rapid neutron capture process is believed to be responsible for the production of approximately half of the heavy elements above iron on the periodic table. Nuclear physics properties (e.g. nuclear masses, neutron capture rates, β-decay rates, and β-delayed neutron emission branching ratios) are critical inputs that go into theoretical calculations of this nucleosynthesis process. We highlight the current capabilities of nuclear models to reproduce the pattern of solar r-process residuals by performing global Monte Carlo variations of the uncertain nuclear physics inputs. We also explore the reduction in uncertainties that may arise from new measurements or improved modeling and discuss the implications for using abundance pattern details to constrain the site of the r process. This work was supported in part by the National Science Foundation through the Joint Institute for Nuclear Astrophysics Grant Numbers PHY0822648 and PHY1419765, and the Department of Energy under Contracts DE-SC0013039 (RS).

  1. Quantum Monte Carlo calculations with chiral effective field theory interactions

    International Nuclear Information System (INIS)

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  2. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  3. Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations

    Science.gov (United States)

    Hermes, Matthew; Hirata, So

    2015-06-01

    Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.

  4. A CNS calculation line based on a Monte-Carlo method

    International Nuclear Information System (INIS)

    The neutronic design of the moderator cell of a Cold Neutron Source (CNS) involves many different considerations regarding geometry, location, and materials. The decisions taken in this sense affect not only the neutron flux in the source neighbourhood, which can be evaluated by a standard deterministic method, but also the neutron flux values in experimental positions far away from the neutron source. At long distances from the CNS, very time consuming 3D deterministic methods or Monte Carlo transport methods are necessary in order to get accurate figures of standard and typical magnitudes such as average neutron flux, neutron current, angular flux, and luminosity. The Monte Carlo method is a unique and powerful tool to calculate the transport of neutrons and photons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of systems. The use of MCNP as the main neutronic design tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors, if the proper scheme is applied. The design goal is to evaluate the performance of the CNS, its beam tubes and neutron guides, at specific experimental locations in the reactor hall and in the neutron or experimental hall. In this work, the calculation methodology used to design a CNS and its associated Neutron Beam Transport Systems (NBTS), based on the use of the MCNP code, is presented. (author)

  5. Dose calculation of 6 MV Truebeam using Monte Carlo method

    International Nuclear Information System (INIS)

    The purpose of this work is to simulate 6 MV Varian Truebeam linac dosimeter characteristics using Monte Carlo method and to investigate the availability of phase space file and the accuracy of the simulation. With the phase space file at linac window supplied by Varian to be a source, the patient-dependent part was simulated. Dose distributions in a water phantom with a 10 cm × 10 cm field were calculated and compared with measured data for validation. Evident time reduction was obtained from 4-5 h which a whole simulation cost on the same computer to around 48 minutes. Good agreement between simulations and measurements in water was observed. Dose differences are less than 3% for depth doses in build-up region and also for dose profiles inside the 80% field size, and the effect in penumbra is good. It demonstrate that the simulation using existing phase space file as the EGSnrc source is efficient. Dose differences between calculated data and measured data could meet the requirements for dose calculation. (authors)

  6. FOTELP - Monte Carlo simulation of photons, electrons and positrons transport

    International Nuclear Information System (INIS)

    This paper reports the development of the algorithm and computer program FOTELP for photons, electrons and positrons transport by the Monte Carlo analog method. This program can be used in numerical experiments on the computer for dosimetry, radiation protection and radiation therapy. (author)

  7. Monteray Mark-I: Computer program (PC-version) for shielding calculation with Monte Carlo method

    International Nuclear Information System (INIS)

    A computer program for gamma ray shielding calculation using Monte Carlo method has been developed. The program is written in WATFOR77 language. The MONTERAY MARH-1 is originally developed by James Wood. The program was modified by the authors that the modified version is easily executed. Applying Monte Carlo method the program observe photon gamma transport in an infinity planar shielding with various thick. A photon gamma is observed till escape from the shielding or when its energy less than the cut off energy. Pair production process is treated as pure absorption process that annihilation photons generated in the process are neglected in the calculation. The out put data calculated by the program are total albedo, build-up factor, and photon spectra. The calculation result for build-up factor of a slab lead and water media with 6 MeV parallel beam gamma source shows that they are in agreement with published data. Hence the program is adequate as a shielding design tool for observing gamma radiation transport in various media

  8. Quantum Transport Calculations Using Periodic Boundary Conditions

    OpenAIRE

    Wang, Lin-Wang

    2004-01-01

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculations, thus is makes accurate quantum transport calculations for large systems possible.

  9. Monte Carlo calculations applied to NRU reactor and radiation physics analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.S.; Wilkin, G.B., E-mail: nguyens@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-12-15

    The statistical MCNP (Monte Carlo N-Particle) code has been satisfactorily used for reactor and radiation physics calculations to support NRU operation and analysis. MCNP enables 3D modeling of the reactor and its components in great detail, the transport calculation of photons (in addition to neutrons), and the capability to model all locations in space, which are beyond the capabilities of the deterministic neutronics methods used for NRU. While the simple single-cell model is efficient for local analysis in any site of NRU, the complex full-reactor model is required for calculations of the core physics and beyond-the-core radiation. By supplementing, adjusting or benchmarking the results from the existing NRU codes, the MCNP calculations provide greater confidence that NRU remains within the licence envelope. (author)

  10. Monte Carlo calculations applied to NRU reactor and radiation physics analyses

    International Nuclear Information System (INIS)

    The statistical MCNP (Monte Carlo N-Particle) code has been satisfactorily used for reactor and radiation physics calculations to support NRU operation and analysis. MCNP enables 3D modeling of the reactor and its components in great detail, the transport calculation of photons (in addition to neutrons), and the capability to model all locations in space, which are beyond the capabilities of the deterministic neutronics methods used for NRU. While the simple single-cell model is efficient for local analysis in any site of NRU, the complex full-reactor model is required for calculations of the core physics and beyond-the-core radiation. By supplementing, adjusting or benchmarking the results from the existing NRU codes, the MCNP calculations provide greater confidence that NRU remains within the licence envelope. (author)

  11. Pseudopotentials for quantum-Monte-Carlo-calculations; Pseudopotentiale fuer Quanten-Monte-Carlo-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Burkatzki, Mark Thomas

    2008-07-01

    The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)

  12. High accuracy modeling for advanced nuclear reactor core designs using Monte Carlo based coupled calculations

    Science.gov (United States)

    Espel, Federico Puente

    The main objective of this PhD research is to develop a high accuracy modeling tool using a Monte Carlo based coupled system. The presented research comprises the development of models to include the thermal-hydraulic feedback to the Monte Carlo method and speed-up mechanisms to accelerate the Monte Carlo criticality calculation. Presently, deterministic codes based on the diffusion approximation of the Boltzmann transport equation, coupled with channel-based (or sub-channel based) thermal-hydraulic codes, carry out the three-dimensional (3-D) reactor core calculations of the Light Water Reactors (LWRs). These deterministic codes utilize nuclear homogenized data (normally over large spatial zones, consisting of fuel assembly or parts of fuel assembly, and in the best case, over small spatial zones, consisting of pin cell), which is functionalized in terms of thermal-hydraulic feedback parameters (in the form of off-line pre-generated cross-section libraries). High accuracy modeling is required for advanced nuclear reactor core designs that present increased geometry complexity and material heterogeneity. Such high-fidelity methods take advantage of the recent progress in computation technology and coupled neutron transport solutions with thermal-hydraulic feedback models on pin or even on sub-pin level (in terms of spatial scale). The continuous energy Monte Carlo method is well suited for solving such core environments with the detailed representation of the complicated 3-D problem. The major advantages of the Monte Carlo method over the deterministic methods are the continuous energy treatment and the exact 3-D geometry modeling. However, the Monte Carlo method involves vast computational time. The interest in Monte Carlo methods has increased thanks to the improvements of the capabilities of high performance computers. Coupled Monte-Carlo calculations can serve as reference solutions for verifying high-fidelity coupled deterministic neutron transport methods

  13. Present status of vectorization for particle transport Monte Carlo

    International Nuclear Information System (INIS)

    The conventional particle transport Monte Carlo algorithm is ill-suited for modern vector supercomputers. This history-based algorithm is not amenable to vectorization due to the random nature of the particle transport process, which inhibits the construction of vectors that are necessary for efficient utilization of a vector (pipelined) processor. An alternative algorithm, the event-based algorithm, is suitable for vectorization and has been used by several researchers in recent years to achieve impressive gains (5-20) in performance on modern vector supercomputers. This paper describes the event-based algorithm in some detail and discusses several implementations of this algorithm for specific applications in particle transport, including photon transport in a nuclear fusion plasma and neutron transport in a nuclear reactor. A discussion of the relative merits of these alternative approaches is included. A short discussion of the implementation of Monte Carlo methods on parallel processors, in particular multiple vector processors such as the Cray X-MP/48 and the IBM 3090/400, is included. The paper concludes with some thoughts regarding the potential of massively parallel processors (vector and scalar) for Monte Carlo simulation

  14. Calculation of narrow beam γ ray mass attenuation coefficients of absorbing medium by Monte Carlo method

    International Nuclear Information System (INIS)

    The mathematics model of particle transportation was built, based on the sample of the impaction trace of the narrow beam γ photon in the medium according to the principle of interaction between γ photon and the material, and a computer procedure was organized to simulate the process of transportation for the γ photon in the medium and record the emission probability of γ photon and its corresponding thickness of medium with LabWindows/CVI, which was used to calculate narrow beam γ ray mass attenuation coefficients of absorbing medium. The results show that it is feasible for Monte Carlo method to calculate narrow beam γ ray mass attenuation coefficients of absorbing medium. (authors)

  15. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  16. Heterogeneous 3-D SN transport reactor calculations using Attila

    International Nuclear Information System (INIS)

    The Canadian Nuclear Safety Commission (CNSC) is preparing to license diverse reactor technologies (CANDU, LWR, small/research reactors). To this end, the CNSC has acquired the Attila SN transport code to serve as an independent tool in licensing reactor design evaluation. In this paper, we are presenting 3-D large scale parallel benchmark calculations of a small PWR with MOX using Attila SN transport code and their comparison to MCNP Monte Carlo. Our benchmark is that of Nam Zin Cho et al transformed into a new 3-D hexagonal geometry heterogeneous benchmark. It provides an evaluation of Attila code in complex calculations of power reactor core with MOX. In this benchmark, we computed using Attila the keff of the core with Control Rods and generated the assembly and pin powers choosing the pins placed in strong transport boundary layer effect zones. As a reference solution, the Monte Carlo MCNP calculations were obtained. The results show that the full core parallel heterogeneous 3-D SN transport calculations of a power reactor are feasible on a small workstation. Our keff results are within 0.8% (800 pcm) relative difference to MCNP reference result (0.9919) and assembly and pin power results are on the average about 2% and 3.6% different. These results validate the Attila code for nuclear design and licensing work. (author)

  17. Neutron batch size optimisation methodology for Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Highlights: • A method is suggested for improving efficiency of MC criticality calculations. • The method optimises the number of neutrons simulated per cycle. • The optimal number of neutrons per cycle depends on allocated computing time. - Abstract: We present a methodology that improves the efficiency of conventional power iteration based Monte Carlo criticality calculations by optimising the number of neutron histories simulated per criticality cycle (the so-called neutron batch size). The chosen neutron batch size affects both the rate of convergence (in computing time) and magnitude of bias in the fission source. Setting a small neutron batch size ensures a rapid simulation of criticality cycles, allowing the fission source to converge fast to its stationary state; however, at the same time, the small neutron batch size introduces a large systematic bias in the fission source. It follows that for a given allocated computing time, there is an optimal neutron batch size that balances these two effects. We approach this problem by studying the error in the cumulative fission source, i.e. the fission source combined over all simulated cycles, as all results are commonly combined over the simulated cycles. We have deduced a simplified formula for the error in the cumulative fission source, taking into account the neutron batch size, the dominance ratio of the system, the error in the initial fission source and the allocated computing time (in the form of the total number of simulated neutron histories). Knowing how the neutron batch size affects the error in the cumulative fission source allows us to find its optimal value. We demonstrate the benefits of the method on a number of numerical test calculations

  18. Monte Carlo methods for direct calculation of 3D dose distributions for photon fields in radiotherapy

    International Nuclear Information System (INIS)

    Even with state of the art treatment planning systems the photon dose calculation can be erroneous under certain circumstances. In these cases Monte Carlo methods promise a higher accuracy. We have used the photon transport code CHILD of the GSF-Forschungszentrum, which was developed to calculate dose in diagnostic radiation protection matters. The code was refined for application in radiotherapy for high energy photon irradiation and should serve for dose verification in individual cases. The irradiation phantom can be entered as any desired 3D matrix or be generated automatically from an individual CT database. The particle transport takes into account pair production, photo, and Compton effect with certain approximations. Efficiency is increased by the method of 'fractional photons'. The generated secondary electrons are followed by the unscattered continuous-slowing-down-approximation (CSDA). The developed Monte Carlo code Monaco Matrix was tested with simple homogeneous and heterogeneous phantoms through comparisons with simulations of the well known but slower EGS4 code. The use of a point source with a direction independent energy spectrum as simplest model of the radiation field from the accelerator head is shown to be sufficient for simulation of actual accelerator depth dose curves. Good agreement (<2%) was found for depth dose curves in water and in bone. With complex test phantoms and comparisons with EGS4 calculated dose profiles some drawbacks in the code were found. Thus, the implementation of the electron multiple-scattering should lead us to step by step improvement of the algorithm. (orig.)

  19. Implict Monte Carlo Radiation Transport Simulations of Four Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, N

    2007-08-01

    Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.

  20. Continuous-energy Monte Carlo methods for calculating generalized response sensitivities using TSUNAMI-3D

    International Nuclear Information System (INIS)

    This work introduces a new approach for calculating the sensitivity of generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The GEneralized Adjoint Responses in Monte Carlo (GEAR-MC) method has enabled the calculation of high resolution sensitivity coefficients for multiple, generalized neutronic responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here and proof of principle is demonstrated by calculating sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications. (author)

  1. Assessment of the Influence of Thermal Scattering Library on Monte-Carlo Calculation

    International Nuclear Information System (INIS)

    Monte-Carlo Neutron Transport Code uses continuous energy neutron libraries generally. Also thermal scattering libraries are used to represent a thermal neutron scattering by molecules and crystalline solids completely. Both neutron libraries and thermal scattering libraries are generated by NJOY based on ENDF data. While a neutron library can be generated for any specific temperature, a thermal scattering library can be generated for restricted temperatures when using ENDF data. However it is able to generate a thermal scattering for any specific temperature by using the LEAPR module in NJOY instead of using ENDF data. In this study, thermal scattering libraries of hydrogen bound in light water and carbon bound in graphite are generated by using the LEAPR module and ENDF data, and it is assessed the influence of each libraries on Monte-Carlo calculations. In addition, it is assessed the influence of a library temperature on Monte-Carlo calculations. In this study, thermal scattering libraries are generated by using LEAPR module in NJOY, and it is developed NIM program to do this work. It is compared above libraries with libraries generated from ENDF thermal scattering data. And the comparison carried out for H in H2O and C in graphite. As a result, similar results came out between libraries generated from LEAPR module and that generated from ENDF thermal scattering data. Hereby, it is conclude that the generation of thermal scattering libraries with LEAPR module is appropriate to use and it is able to generate a library with user-specific temperature. Also it is assessed how much a temperature in a thermal scattering library influences on Monte-Carlo calculations

  2. Assessment of the Influence of Thermal Scattering Library on Monte-Carlo Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanyoung; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    Monte-Carlo Neutron Transport Code uses continuous energy neutron libraries generally. Also thermal scattering libraries are used to represent a thermal neutron scattering by molecules and crystalline solids completely. Both neutron libraries and thermal scattering libraries are generated by NJOY based on ENDF data. While a neutron library can be generated for any specific temperature, a thermal scattering library can be generated for restricted temperatures when using ENDF data. However it is able to generate a thermal scattering for any specific temperature by using the LEAPR module in NJOY instead of using ENDF data. In this study, thermal scattering libraries of hydrogen bound in light water and carbon bound in graphite are generated by using the LEAPR module and ENDF data, and it is assessed the influence of each libraries on Monte-Carlo calculations. In addition, it is assessed the influence of a library temperature on Monte-Carlo calculations. In this study, thermal scattering libraries are generated by using LEAPR module in NJOY, and it is developed NIM program to do this work. It is compared above libraries with libraries generated from ENDF thermal scattering data. And the comparison carried out for H in H{sub 2}O and C in graphite. As a result, similar results came out between libraries generated from LEAPR module and that generated from ENDF thermal scattering data. Hereby, it is conclude that the generation of thermal scattering libraries with LEAPR module is appropriate to use and it is able to generate a library with user-specific temperature. Also it is assessed how much a temperature in a thermal scattering library influences on Monte-Carlo calculations.

  3. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  4. MCNP - transport calculations in ducts using multigroup albedo coefficients

    International Nuclear Information System (INIS)

    In this work, the use of multigroup albedo coefficients in Monte Carlo calculations of particle reflection and transmission by ducts is investigated. The procedure consists in modifying the MCNP code so that an albedo matrix computed previously by deterministic methods or Monte Carlo is introduced into the program to describe particle reflection by a surface. This way it becomes possible to avoid the need of considering particle transport in the duct wall explicitly, changing the problem to a problem of transport in the duct interior only and reducing significantly the difficulty of the real problem. The probability of particle reflection at the duct wall is given, for each group, as the sum of the albedo coefficients over the final groups. The calculation is started by sampling a source particle and simulating its reflection on the duct wall by sampling a group for the emerging particle. The particle weight is then reduced by the reflection probability. Next, a new direction and trajectory for the particle is selected. Numerical results obtained for the model are compared with results from a discrete ordinates code and results from Monte Carlo simulations that take particle transport in the wall into account. (author)

  5. Parallelization of MCATNP MONTE CARLO particle transport code by using MPI

    International Nuclear Information System (INIS)

    A Monte Carlo code for simulating Atmospheric Transport of Neutrons and Photons (MCATNP) is used to simulate the ionization effects caused by high altitude nuclear detonation (HAND) and it was parallelized in MPI by adopting the leap random number producer and modifying the original serial code. The parallel results and serial results are identical. The speedup increases almost linearly with the number of processors used. The parallel efficiency is up to to 97% while 16 processors are used, and 94% while 32 are used. The experimental results show that parallelization can obviously reduce the calculation time of Monte Carlo simulation of HAND ionization effects. (authors)

  6. A burnup credit calculation methodology for PWR spent fuel transportation

    International Nuclear Information System (INIS)

    A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)

  7. Lattice Monte Carlo calculations of finite temperature QCD

    International Nuclear Information System (INIS)

    The author discusses fairly generally the current status of the lattice description of the deconfinement transition and the properties of hadronic matter at high (and low) temperature T. An ultimate goal of these investigations is to learn whether or not QCD actually predicts the naive phase diagram. A more realistic goal, which is at present partially within our grasp, is to compute the static properties of QCD matter at T > 0 from first principles. These include the order of phase transitions, critical temperatures T/sub c/, critical exponents or latent heat, but not dynamical critical properties, such as the behavior of Green's functions near T/sub c/. The author knows of no first- principles discussions of non-equilibrium properties of QCD, which would be required for a description of the experiments. In fact, experimentalists should think of the world studied by lattice or Monte Carlo methods as a little crystal in an oven whose temperature is kept constant in time. The author begins by giving a short description of how we set up the finite-temperature field theory on a lattice to display the important parts of the calculation without going too much into details. Then the author discusses recent progress in our understanding of the glue world - pure gauge theories - and ends by discussing the physically relevant case of fermions and gauge fields

  8. Neutron point-flux calculation by Monte Carlo

    International Nuclear Information System (INIS)

    A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)

  9. MAMONT program for neutron field calculation by the Monte Carlo method

    International Nuclear Information System (INIS)

    The MAMONT program (MAthematical MOdelling of Neutron Trajectories) designed for three-dimensional calculation of neutron transport by analogue and nonanalogue Monte Carlo methods in the range of energies from 15 MeV to the thermal ones is described. The program is written in FORTRAN and is realized at the BESM-6 computer. Group constants of the library modulus are compiled of the ENDL-83, ENDF/B-4 and JENDL-2 files. The possibility of calculation for the layer spherical, cylindrical and rectangular configurations is envisaged. Accumulation and averaging of slowing-down kinetics functionals (averaged logarithmic losses of energy, time of slowing- down, free paths, the number of collisions, age), diffusion parameters, leakage spectra and fluxes as well as formation of separate isotopes over zones are realized in the process of calculation. 16 tabs

  10. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  11. Monte Carlo Calculations Supporting Patient Plan Verification in Proton Therapy.

    Science.gov (United States)

    Lima, Thiago V M; Dosanjh, Manjit; Ferrari, Alfredo; Molineli, Silvia; Ciocca, Mario; Mairani, Andrea

    2016-01-01

    Patient's treatment plan verification covers substantial amount of the quality assurance (QA) resources; this is especially true for Intensity-Modulated Proton Therapy (IMPT). The use of Monte Carlo (MC) simulations in supporting QA has been widely discussed, and several methods have been proposed. In this paper, we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO). We reanalyzed the previously published data (Molinelli et al. (1)), where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modeling (Treatment Planning Systems (TPS) vs. MC), limitations on dose delivery system, or detectors mispositioning was originally explored, but other factors, such as the geometric description of the detectors, were not ruled out. For the purpose of this work, we compared ionization chambers' measurements with different MC simulation results. It was also studied that some physical effects were introduced by this new approach, for example, inter-detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01) to most of the MC simulations used at CNAO (only inferior to the shift approach used). No real improvement was observed in reducing the current delta ray threshold used (100 keV), and no significant interference between ion chambers in the phantom were detected (p-value 0.81). In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases, position uncertainty represents the dominant uncertainty. The inter-chamber disturbance was not detected for the therapeutic protons energies, and the results from the current delta threshold

  12. Monte Carlo calculations supporting patient plan verification in proton therapy

    Directory of Open Access Journals (Sweden)

    Thiago Viana Miranda Lima

    2016-03-01

    Full Text Available Patient’s treatment plan verification covers substantial amount of the quality assurance (QA resources, this is especially true for Intensity Modulated Proton Therapy (IMPT. The use of Monte Carlo (MC simulations in supporting QA has been widely discussed and several methods have been proposed. In this paper we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO. We reanalysed the previously published data (Molinelli et al. 2013, where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modelling (Treatment Planning Systems (TPS vs MC, limitations on dose delivery system or detectors mispositioning was originally explored but other factors such as the geometric description of the detectors were not ruled out. For the purpose of this work we compared ionisation-chambers measurements with different MC simulations results. It was also studied some physical effects introduced by this new approach for example inter detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01 to most of the MC simulations used at CNAO (only inferior to the shift approach used. No real improvement were observed in reducing the current delta-ray threshold used (100 keV and no significant interference between ion chambers in the phantom were detected (p-value 0.81. In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases position uncertainty represents the dominant uncertainty. The inter chamber disturbance was not detected for the therapeutic protons energies and the results from the current delta threshold are

  13. Monte Carlo Calculations Supporting Patient Plan Verification in Proton Therapy

    Science.gov (United States)

    Lima, Thiago V. M.; Dosanjh, Manjit; Ferrari, Alfredo; Molineli, Silvia; Ciocca, Mario; Mairani, Andrea

    2016-01-01

    Patient’s treatment plan verification covers substantial amount of the quality assurance (QA) resources; this is especially true for Intensity-Modulated Proton Therapy (IMPT). The use of Monte Carlo (MC) simulations in supporting QA has been widely discussed, and several methods have been proposed. In this paper, we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO). We reanalyzed the previously published data (Molinelli et al. (1)), where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modeling (Treatment Planning Systems (TPS) vs. MC), limitations on dose delivery system, or detectors mispositioning was originally explored, but other factors, such as the geometric description of the detectors, were not ruled out. For the purpose of this work, we compared ionization chambers’ measurements with different MC simulation results. It was also studied that some physical effects were introduced by this new approach, for example, inter-detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference – p-value around 0.01) to most of the MC simulations used at CNAO (only inferior to the shift approach used). No real improvement was observed in reducing the current delta ray threshold used (100 keV), and no significant interference between ion chambers in the phantom were detected (p-value 0.81). In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases, position uncertainty represents the dominant uncertainty. The inter-chamber disturbance was not detected for the therapeutic protons energies, and the results from the current delta

  14. A ''local'' exponential transform method for global variance reduction in Monte Carlo transport problems

    International Nuclear Information System (INIS)

    Numerous variance reduction techniques, such as splitting/Russian roulette, weight windows, and the exponential transform exist for improving the efficiency of Monte Carlo transport calculations. Typically, however, these methods, while reducing the variance in the problem area of interest tend to increase the variance in other, presumably less important, regions. As such, these methods tend to be not as effective in Monte Carlo calculations which require the minimization of the variance everywhere. Recently, ''Local'' Exponential Transform (LET) methods have been developed as a means of approximating the zero-variance solution. A numerical solution to the adjoint diffusion equation is used, along with an exponential representation of the adjoint flux in each cell, to determine ''local'' biasing parameters. These parameters are then used to bias the forward Monte Carlo transport calculation in a manner similar to the conventional exponential transform, but such that the transform parameters are now local in space and energy, not global. Results have shown that the Local Exponential Transform often offers a significant improvement over conventional geometry splitting/Russian roulette with weight windows. Since the biasing parameters for the Local Exponential Transform were determined from a low-order solution to the adjoint transport problem, the LET has been applied in problems where it was desirable to minimize the variance in a detector region. The purpose of this paper is to show that by basing the LET method upon a low-order solution to the forward transport problem, one can instead obtain biasing parameters which will minimize the maximum variance in a Monte Carlo transport calculation

  15. Deterministic and Monte Carlo transport models with thermal-hydraulic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2008-07-01

    This paper gives an overview of recent developments concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The timedependent 3D discrete ordinates transport code TORT-TD allows pin-by-pin analyses of transients using few energy groups and anisotropic scattering by solving the timedependent transport equation using the unconditionally stable implicit method. To account for thermal-hydraulic feedback, TORT-TD has been coupled with the system code ATHLET. Applications to, e.g., a control rod ejection in a 2 x 2 PWR fuel assembly arrangement demonstrate the applicability of the coupled code TORT-TD/ATHLET for test cases. For Monte Carlo steady-state calculations with nuclear point data and thermalhydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. As test case has been chosen the uncontrolled steady state of the 2 x 2 PWR fuel assembly arrangement for which the thermal-hydraulic parameter distribution has been obtained from a preceding coupled TORT-TD/ATHLET analysis. The result demonstrates the applicability of MCNP to problems with spatial distributions of thermal-fluiddynamic parameters. The comparison with MCNP results confirms that the accuracy of deterministic transport calculations with pin-wise homogenised few-group cross sections is comparable to Monte Carlo simulations. The presented cases are considered as a pre-stage of performing calculations of larger configurations like a quarter core which is in preparation. (orig.)

  16. Deterministic and Monte Carlo transport models with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    This paper gives an overview of recent developments concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The timedependent 3D discrete ordinates transport code TORT-TD allows pin-by-pin analyses of transients using few energy groups and anisotropic scattering by solving the timedependent transport equation using the unconditionally stable implicit method. To account for thermal-hydraulic feedback, TORT-TD has been coupled with the system code ATHLET. Applications to, e.g., a control rod ejection in a 2 x 2 PWR fuel assembly arrangement demonstrate the applicability of the coupled code TORT-TD/ATHLET for test cases. For Monte Carlo steady-state calculations with nuclear point data and thermalhydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. As test case has been chosen the uncontrolled steady state of the 2 x 2 PWR fuel assembly arrangement for which the thermal-hydraulic parameter distribution has been obtained from a preceding coupled TORT-TD/ATHLET analysis. The result demonstrates the applicability of MCNP to problems with spatial distributions of thermal-fluiddynamic parameters. The comparison with MCNP results confirms that the accuracy of deterministic transport calculations with pin-wise homogenised few-group cross sections is comparable to Monte Carlo simulations. The presented cases are considered as a pre-stage of performing calculations of larger configurations like a quarter core which is in preparation. (orig.)

  17. Coupled Monte Carlo and burnup calculations for research and power reactors

    International Nuclear Information System (INIS)

    Reactor physics calculations require the solution of transport equation under consideration of complex energy structure of cross sections and spatial distribution of materials. Since the material composition changes during operation due to burn-up this changes have to be regarded in detail. An accurate method for reactor physics calculations is the continuous energy Monte Carlo method e.g. represented by the code MCNP(4C). The performance and quality of this code is demonstrated by own and world-wide applications. With the Monte Carlo method coupled with a program for the solution of the equations for nuclide build-up and decay not only the composition of fresh fuel but also the composition of irradiated fuel can be taken into account without external calculation of nuclide composition of irradiated materials. The coupled method represents at time the most accurate solution of criticality problems if the calculated parameters are determined with sufficient low statistical uncertainty. By this method important safety related parameters and reactivity conditions can be analysed for research reactors, standard LWR design as well as for innovative reactor or fuel designs or systems for actinide burning. (author)

  18. Recent transportation calculation code systems and their accuracy evaluation

    International Nuclear Information System (INIS)

    In the field of shielding design, many studies have been carried out for the development of radiation transportation calculation codes (transportation codes) including Monte Carlo codes. The present report outlines major transportation codes used in Japan for design of shielding. Major one-dimensional codes include ANISN (Sn), PALLAS-PL and SP-Br (direct integration) whili two-dimensional ones include DOT-3.5 and TWOTRAN-II. All these transportation codes have been developed on the basis of numerical solution to the Boltzmann's transportation equation. These codes are roughly divided into two groups: discrete ordinates type and Monte Carlo type. The former include Sn-type codes and direct integration type codes. Sn-type codes are currently used most widely. The accuracy and other features of a code should be tested before applysing it to practical shielding design. One of the techniques for this purpose is the benchmark method, which consists of benchmark tests and analysis of the test results. The possible overall error involved in calculations can be determined from the benchmark tests. (Nogami, K.)

  19. Multipurpose Monte Carlo simulator for photon transport in turbid media

    OpenAIRE

    Guerra, Pedro; Aguirre, Juan; Ortuño, Juan E.; María J Ledesma-Carbayo; Vaquero, Juan José; Desco, Manuel; Santos, Andrés

    2009-01-01

    Monte Carlo methods provide a flexible and rigorous solution to the problem of light transport in turbid media, which enable approaching complex geometries for a closed analytical solution is not feasible. The simulator implements local rules of propagation in the form of probability density functions that depend on the local optical properties of the tissue. This work presents a flexible simulator that can be applied in multiple applications related to optical tomography. In particular...

  20. The application of Monte Carlo method to electron and photon beams transport; Zastosowanie metody Monte Carlo do analizy transportu elektronow i fotonow

    Energy Technology Data Exchange (ETDEWEB)

    Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.

  1. Minimizing the cost of splitting in Monte Carlo radiation transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Juzaitis, R.J.

    1980-10-01

    A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma/sup 2//sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed (e.g., deep penetration calculations).

  2. Monte Carlo simulations of charge transport in heterogeneous organic semiconductors

    Science.gov (United States)

    Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta

    2015-03-01

    The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.

  3. Monte Carlo calculations of positron emitter yields in proton radiotherapy

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the β+-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced β+-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of β+-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. (authors)

  4. Application of the Moliere multiple scattering angle-lateral displacement function in Monte-Carlo calculations

    International Nuclear Information System (INIS)

    A two-dimensional approximation is found for the multiple scattering angle-lateral displacement correlation formula which satisfies two conditions: first, that it be close to the Moliere one (better than 10-3) and, second, that it be suitable for Monte Carlo calculations. These Monte Carlo calculations are made for relativistic particles. (orig.)

  5. Application of the Moliere multiple scattering angle-lateral displacement function in Monte-Carlo calculations

    International Nuclear Information System (INIS)

    A two-dimensional approximation is found for the multiple scattering angle-lateral displacement correlation formula. The formula satisfies two conditions: it is close to the Moliere one (better than 10-3) and suitable for Monte-Carlo calculations. These Monte-Carlo calculations are made for relativistic particles

  6. JCOGIN. A parallel programming infrastructure for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    The advantages of the Monte Carlo method for reactor analysis are well known, but the full-core reactor analysis challenges the computational time and computer memory. Meanwhile, the exponential growth of computer power in the last 10 years is now creating a great opportunity for large scale parallel computing on the Monte Carlo full-core reactor analysis. In this paper, a parallel programming infrastructure is introduced for Monte Carlo particle transport, named JCOGIN, which aims at accelerating the development of Monte Carlo codes for the large scale parallelism simulations of the full-core reactor. Now, JCOGIN implements the hybrid parallelism of the spatial decomposition and the traditional particle parallelism on MPI and OpenMP. Finally, JMCT code is developed on JCOGIN, which reaches the parallel efficiency of 70% on 20480 cores for fixed source problem. By the hybrid parallelism, the full-core pin-by-pin simulation of the Dayawan reactor was implemented, with the number of the cells up to 10 million and the tallies of the fluxes utilizing over 40GB of memory. (author)

  7. Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data

    International Nuclear Information System (INIS)

    The GEANT4 Monte Carlo code provides many powerful functions for conducting particle transport simulations with great reliability and flexibility. However, as a general purpose Monte Carlo code, not all the functions were specifically designed and fully optimized for applications in radiation therapy. One of the primary issues is the computational efficiency, which is especially critical when patient CT data have to be imported into the simulation model. In this paper we summarize the relevant aspects of the GEANT4 tracking and geometry algorithms and introduce our work on using the code to conduct dose calculations based on CT data. The emphasis is focused on modifications of the GEANT4 source code to meet the requirements for fast dose calculations. The major features include a quick voxel search algorithm, fast volume optimization, and the dynamic assignment of material density. These features are ready to be used for tracking the primary types of particles employed in radiation therapy such as photons, electrons, and heavy charged particles. Re-calculation of a proton therapy treatment plan generated by a commercial treatment planning program for a paranasal sinus case is presented as an example

  8. Effects of human model configuration in Monte Carlo calculations on organ doses from CT examinations

    International Nuclear Information System (INIS)

    A new dosimetry system, WAZA-ARI, is being developed to estimate radiation dose from Computed Tomography (CT) examination in Japan. The dose estimation in WAZA-ARI utilizes organ dose data, which have been derived by Monte Carlo calculations using Particle and Heavy Ion Transport code System, PHITS. A Japanese adult male phantom, JM phantom, is adapted as a reference human model in the calculations, because the physique and inner organ masses agree well with the average values for Japanese adult males. On the other hand, each patient has arbitrary physical characteristics. Thus, the effects of human body configuration on organ doses are studied by applying another Japanese male model and the reference phantom by the International Commission on Radiological Protection (ICRP) to PHITS. In addition, this paper describes computation conditions for the three human models, which are constructed in the format of voxel phantom with different resolutions. (author)

  9. Calculation and analysis of heat source of PWR assemblies based on Monte Carlo method

    International Nuclear Information System (INIS)

    When fission occurs in nuclear fuel in reactor core, it releases numerous neutron and γ radiation, which takes energy deposition in fuel components and yields many factors such as thermal stressing and radiation damage influencing the safe operation of a reactor. Using the three-dimensional Monte Carlo transport calculation program MCNP and continuous cross-section database based on ENDF/B series to calculate the heat rate of the heat source on reference assemblies of a PWR when loading with 18-month short refueling cycle mode, and get the precise values of the control rod, thimble plug and new burnable poison rod within Gd, so as to provide basis for reactor design and safety verification. (authors)

  10. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor

  11. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    Science.gov (United States)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  12. SR 97 - Radionuclide transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable

  13. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  14. SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Under the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD/NEA, an international collaboration benchmark was recently established on the neutronic analysis of four Sodium-cooled Fast Reactor (SFR) concepts of the Generation- IV nuclear energy systems. As the whole core Monte Carlo depletion calculation is one of the essential challenges of current reactor physics studies, the continuous-energy TRIPOLI-4 Monte Carlo transport code was firstly used in this study to perform whole core 3D neutronic calculations for these four SFR cores. Two medium size (1000 MWt) and two large size (3600 MWt) SFR of GEN-IV systems were analyzed. The medium size SFR concepts are from the Advanced Burner Reactors (ABR). The large size SFR concepts are from the self-breeding reactors. The TRIPOLI-4 depletion calculations were made with MOX and metallic U-Pu-Zr fuels for the ABR cores and with MOX and Carbide (U,Pu)C fuels for the self-breeding cores. The whole core reactor physics parameters calculations were performed for the BOEC and EOEC (Beginning and End of Equilibrium Cycle) conditions. This paper summarizes the TRIPOLI-4 calculation results of Keff, βeff, sodium void worth, Doppler constant, control rod worth, and core power distributions for the BOEC and EOEC conditions. The one-cycle depletion calculation results of the core inventory of U and TRU (Pu, Am, Cm, and Np) are also analyzed, after 328.5 days depletion irradiation for the ABR cores, 410 days for the large MOX core, and 500 days for the large carbide core. (author)

  15. CDFMC: a program that calculates the fixed neutron source distribution for a BWR using Monte Carlo

    International Nuclear Information System (INIS)

    The three-dimensional neutron flux calculation using the synthesis method, it requires of the determination of the neutron flux in two two-dimensional configurations as well as in an unidimensional one. Most of the standard guides for the neutron flux calculation or fluences in the vessel of a nuclear reactor, make special emphasis in the appropriate calculation of the fixed neutron source that should be provided to the used transport code, with the purpose of finding sufficiently approximated flux values. The reactor core assemblies configuration is based on X Y geometry, however the considered problem is solved in R θ geometry for what is necessary to make an appropriate mapping to find the source term associated to the R θ intervals starting from a source distribution in rectangular coordinates. To develop the CDFMC computer program (Source Distribution calculation using Monte Carlo), it was necessary to develop a theory of independent mapping to those that have been in the literature. The method of meshes overlapping here used, is based on a technique of random points generation, commonly well-known as Monte Carlo technique. Although the 'randomness' of this technique it implies considering errors in the calculations, it is well known that when increasing the number of points randomly generated to measure an area or some other quantity of interest, the precision of the method increases. In the particular case of the CDFMC computer program, the developed technique reaches a good general behavior when it is used a considerably high number of points (bigger or equal to a hundred thousand), with what makes sure errors in the calculations of the order of 1%. (Author)

  16. Analytical band Monte Carlo analysis of electron transport in silicene

    Science.gov (United States)

    Yeoh, K. H.; Ong, D. S.; Ooi, C. H. Raymond; Yong, T. K.; Lim, S. K.

    2016-06-01

    An analytical band Monte Carlo (AMC) with linear energy band dispersion has been developed to study the electron transport in suspended silicene and silicene on aluminium oxide (Al2O3) substrate. We have calibrated our model against the full band Monte Carlo (FMC) results by matching the velocity-field curve. Using this model, we discover that the collective effects of charge impurity scattering and surface optical phonon scattering can degrade the electron mobility down to about 400 cm2 V‑1 s‑1 and thereafter it is less sensitive to the changes of charge impurity in the substrate and surface optical phonon. We also found that further reduction of mobility to ∼100 cm2 V‑1 s‑1 as experimentally demonstrated by Tao et al (2015 Nat. Nanotechnol. 10 227) can only be explained by the renormalization of Fermi velocity due to interaction with Al2O3 substrate.

  17. Application of Monte Carlo code EGS4 to calculate gamma exposure buildup factors

    International Nuclear Information System (INIS)

    Exposure buildup factors up to 40 mean free paths ranging from 0.015 MeV to 15 MeV photon energy were calculated by using the Monte Carlo simulation code EGS4 for ordinary concrete. The calculation involves PHOTX cross section library, a point isotropic source, infinite uniform medium model and a particle splitting method and considers the Bremsstrahlung, fluorescent effect, correlative (Rayleigh) scatter. The results were compared with the relevant data. Results show that the data of the buildup factors calculated by the Monte Carlo code EGS4 was reliable. The Monte Carlo method can be used widely to calculate gamma-ray exposure buildup factors. (authors)

  18. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  19. Cross sections needed for investigations into track phenomena and Monte-Carlo calculations

    International Nuclear Information System (INIS)

    Investigations into basic radiation action mechanisms as well as into applied radiation transport problems (e.g. electron microscopy) greatly benefit from detailed computer simulations of charged particle track structures in matter. The first and in fact most important and most difficult step in any such calculation is the derivation of reliable cross sections for the most relevant interaction processes in the material(s) under consideration. The second step in radiation transport calculations is the testing of results or intermediate results for quantitative or qualitative consistency with other experimental or theoretical information (e.g. yields, backscatter factors). This paper discusses the types of the most important collision cross sections for studies on track phenomena by detailed Monte-Carlo calculations, the necessary accuracy of such data and various means of consistency checks of calculated results. This will be done mainly with examples taken from radiation physics as applied to dosimetric and biological problems (i.e. to gaseous and condensed targets). 12 references, 8 figures

  20. Comparison of the TEP method for neutral particle transport in the plasma edge with the Monte Carlo method

    International Nuclear Information System (INIS)

    The transmission/escape probability (TEP) method for neutral particle transport has recently been introduced and implemented for the calculation of 2-D neutral atom transport in the edge plasma and divertor regions of tokamaks. The results of an evaluation of the accuracy of the approximations made in the calculation of the basic TEP transport parameters are summarized. Comparisons of the TEP and Monte Carlo calculations for model problems using tokamak experimental geometries and for the analysis of measured neutral densities in DIII-D are presented. The TEP calculations are found to agree rather well with Monte Carlo results, for the most part, but the need for a few extensions of the basic TEP transport methodology and for inclusion of molecular effects and a better wall reflection model in the existing code is suggested by the study. (author)

  1. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources

    International Nuclear Information System (INIS)

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  2. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.

    Science.gov (United States)

    Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-06-21

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  3. Variational Monte Carlo Calculations of Energy per Particle Nuclear Matter

    OpenAIRE

    Manisa, K.

    2004-01-01

    In this paper, symmetrical nuclear matter has been investigated. Total, kinetic and potential energies per particle were obtained for nuclear matter by Variational Monte Carlo method. We have observed that the results are in good agreement with those obtained by various authors who used different potentials and techniques.

  4. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    International Nuclear Information System (INIS)

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character

  5. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo

    International Nuclear Information System (INIS)

    A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its application requires a large amount of computing time. (author)

  6. Improved Monte Carlo model for multiple scattering calculations

    Institute of Scientific and Technical Information of China (English)

    Weiwei Cai; Lin Ma

    2012-01-01

    The coupling between the Monte Carlo (MC) method and geometrical optics to improve accuracy is investigated.The results obtained show improved agreement with previous experimental data,demonstrating that the MC method,when coupled with simple geometrical optics,can simulate multiple scattering with enhanced fidelity.

  7. Path Integral Monte-Carlo Calculations for Relativistic Oscillator

    OpenAIRE

    Ivanov, Alexandr; Pavlovsky, Oleg

    2014-01-01

    The problem of Relativistic Oscillator has been studied in the framework of Path Integral Monte-Carlo(PIMC) approach. Ultra-relativistic and non-relativistic limits have been discussed. We show that PIMC method can be effectively used for investigation of relativistic systems.

  8. Graphical User Interface for Simplified Neutron Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  9. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources

    CERN Document Server

    Townson, Reid; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-01-01

    A novel phase-space source implementation has been designed for GPU-based Monte Carlo dose calculation engines. Due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel strategy to pre-process patient-independent phase-spaces and bin particles by type, energy and position. Position bins l...

  10. The impact of spatial variability of hydrogeological parameters - Monte Carlo calculations using SITE-94 data

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Broed, R. [AlbaNova Univ. Center, Stockholm (Sweden). Stockholm Center for Physics Astronomy and Biotechnology

    2002-03-01

    In this report, several issues related to the probabilistic methodology for performance assessments of repositories for high-level nuclear waste and spent fuel are addressed. Random Monte Carlo sampling is used to make uncertainty analyses for the migration of four nuclides and a decay chain in the geosphere. The nuclides studied are cesium, chlorine, iodine and carbon, and radium from a decay chain. A procedure is developed to take advantage of the information contained in the hydrogeological data obtained from a three-dimensional discrete fracture model as the input data for one-dimensional transport models for use in Monte Carlo calculations. This procedure retains the original correlations between parameters representing different physical entities, namely, between the groundwater flow rate and the hydrodynamic dispersion in fractured rock, in contrast with the approach commonly used that assumes that all parameters supplied for the Monte Carlo calculations are independent of each other. A small program is developed to allow the above-mentioned procedure to be used if the available three-dimensional data are scarce for Monte Carlo calculations. The program allows random sampling of data from the 3-D data distribution in the hydrogeological calculations. The impact of correlations between the groundwater flow and the hydrodynamic dispersion on the uncertainty associated with the output distribution of the radionuclides' peak releases is studied. It is shown that for the SITE-94 data, this impact can be disregarded. A global sensitivity analysis is also performed on the peak releases of the radionuclides studied. The results of these sensitivity analyses, using several known statistical methods, show discrepancies that are attributed to the limitations of these methods. The reason for the difficulties is to be found in the complexity of the models needed for the predictions of radionuclide migration, models that deliver results covering variation of several

  11. Condensed history Monte Carlo methods for photon transport problems

    International Nuclear Information System (INIS)

    We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions

  12. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  13. GPU-based fast Monte Carlo dose calculation for proton therapy

    Science.gov (United States)

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B.

    2012-12-01

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ˜1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.

  14. Minimizing the cost of splitting in Monte Carlo radiation transport simulation

    International Nuclear Information System (INIS)

    A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma2/sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed

  15. Monte Carlo simulations of neoclassical transport in toroidal plasmas

    International Nuclear Information System (INIS)

    FORTEC-3D code, which solves the drift-kinetic equation for torus plasmas and radial electric field using the δf Monte Carlo method, has developed to study the variety of issues relating to neoclassical transport phenomena in magnetic confinement plasmas. Here the numerical techniques used in FORTEC-3D are reviewed, and resent progress in the simulation method to simulate GAM oscillation is also explained. A band-limited white noise term is introduced in the equation of time evolution of radial electric field to excite GAM oscillation, which enables us to analyze GAM frequency using FORTEC-3D even in the case the collisionless GAM damping is fast. (author)

  16. Monte Carlo methods in electron transport problems. Pt. 1

    International Nuclear Information System (INIS)

    The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage

  17. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  18. Consistent comparison of Monte Carlo and whole-core transport solutions for cores with thermal feedback

    International Nuclear Information System (INIS)

    For systematic and consistent comparison of Monte Carlo and whole-core transport solutions in various core states including power generating conditions, a test problem set that spans from two-dimensional uniform temperature pin cell problems to three-dimensional core problems involving thermal feedback is solved by a continuous energy Monte Carlo code MCCARD and a multigroup whole-core transport code DeCART. The neutron spectra, k-effective, pin-wise power distribution, fuel temperature distribution, and Doppler coefficients obtained from the two solutions are compared taking the MCCARD solution as the reference. For the uniform temperature problems, excellent agreement between the two solutions is observed in every solution aspect. The pin power distribution error is less than 1% and the k-effective error is within 100 pcm in most cases. For the problems with thermal feedback, the discrepancy becomes larger, yet within the tolerable range. In the hot-full-power mini-core calculation, a maximum of 3.7% error in the radial pin power distribution and the k-effective error of about 260 pcm are observed. Through this comparison, it is demonstrated that accurate multigroup direct whole-core calculations are possible even at power generating conditions with a much less computing time than the corresponding Monte Carlo calculations. (authors)

  19. Method of tallying adjoint fluence and calculating kinetics parameters in Monte Carlo codes

    International Nuclear Information System (INIS)

    A method of using iterated fission probability to estimate the adjoint fluence during particles simulation, and using it as the weighting function to calculate kinetics parameters βeff and A in Monte Carlo codes, was introduced in this paper. Implements of this method in continuous energy Monte Carlo code MCNP and multi-group Monte Carlo code MCMG are both elaborated. Verification results show that, with regardless additional computing cost, using this method, the adjoint fluence accounted by MCMG matches well with the result computed by ANISN, and the kinetics parameters calculated by MCNP agree very well with benchmarks. This method is proved to be reliable, and the function of calculating kinetics parameters in Monte Carlo codes is carried out effectively, which could be the basement for Monte Carlo codes' utility in the analysis of nuclear reactors' transient behavior. (authors)

  20. Monte Carlo calculated stopping power ratio water/air for clinical proton therapy

    International Nuclear Information System (INIS)

    In order to compute stopping-power ratios water/air for use in clinical proton dosimetry a Monte Carlo code has been developed. The main difference between the present code and other codes for proton transport is the inclusion of the detailed production of secondary electrons along the proton track. For this purpose the code is a Class-II type, where single proton-electron collisions yielding energy losses larger than a specific cut-off are considered individually. Proton multiple scattering is sampled from the complete Moliere distribution. To take into account in an approximate way the effect of inelastic nuclear collisions the fraction of the incident energy that is converted to kinetic energy of charged particles in the interaction is deposited on the spot. The energy that goes to neutral particles is assumed to leave the scoring geometry without any energy deposition. Stopping-power ratios are calculated in-line, i.e. during the transport, thereby reducing the uncertainty of the calculated value. The production and transport of the secondary electrons is used to determine an additional contribution to the stopping-power ratios obtained using the proton spectra alone

  1. Monte Carlo neutron transport simulation of the Ghana Research Reactor-1

    International Nuclear Information System (INIS)

    Stochastic Monte Carlo neutron particle transport methods have been applied to successfully model in 3-D, the HEU-fueled Ghana Research Reactor-1 (GHARR-1), a commercial version of the Miniature Neutron Source Reactor (MNSR) using the MCNP version 4c3 particle transport code. The preliminary multigroup neutronic criticality calculations yielded a keff is contained in 1.00449 with a corresponding cold clean excess reactivity of 4.47mk (447pcm) compared with experimental values of keff is contained in 1.00402 and excess reactivity of 4.00mk (400pcm). The Monte Carlo simulations also show comparable results in the neutron fluxes in the HEU core and some regions of interest. The observed trends in the radial and axial flux distributions in the core, beryllium annular reflector and the water region in the top shim reflector tray were reproduced, indicating consistency of the results, accuracy of the model, precision of the MCNP transport code and the comparability of the Monte Carlo simulations. The results further illustrate the close agreement between stochastic transport theory and the experimental measurements conducted during off-site zero power cold tests. (author)

  2. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    Science.gov (United States)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  3. Point KENO V.a: A continuous-energy Monte Carlo code for transport applications

    International Nuclear Information System (INIS)

    KENO V.a is a multigroup Monte Carlo code that solves the Boltzmann transport equation and is used extensively in the criticality safety community to calculate the effective multiplication factor of systems with fissionable material. In this work, a continuous-energy or pointwise version of KENO V.a has been developed by first designing a new continuous-energy cross-section format and then by developing the appropriate Monte Carlo transport procedures to sample the new cross-section format. In order to generate pointwise cross sections for a test library, a series of cross-section processing modules were developed and used to process 50 ENDF/B-VI Release 7 nuclides for the test library. Once the cross-section processing procedures were in place, a continuous-energy version of KENO V.a was developed and tested by calculating 46 test cases that include critical and calculational benchmark problems. The Point KENO-calculated results for the test problems are in agreement with calculated results obtained with the multigroup version of KENO V.a and MCNP4C. Based on the calculated results with the prototypic cross-section library, a continuous-energy version of the KENO V.a code has been successfully developed and demonstrated for modeling systems with fissionable material. (authors)

  4. Monte Carlo validation of supercell model for BWR fuel assembly calculations

    International Nuclear Information System (INIS)

    The Monte Carlo method is used to validate a calculational model named as supercell model developed for the evaluation of LWR fuel box parameters. The TAPS reload-2 fuel box is chosen as a benchmark problem for the validation. The box parameters obtained using the supercell model and Monte Carlo method are compared. (auth.)

  5. Void transit time calculations by neutron noise of propagating perturbation using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    This paper focuses on the propagation of neutron noise induced by void formation in coolant/moderator moving upward in a reactor core within the limit of the first order perturbation. A new Monte Carlo method to solve the frequency domain transport equation of neutron noise observed by in-core neutron detectors has been proposed by adopting the complex-valued weight Monte Carlo technique. The technique has already been established by the author of the present paper to implement the B1 approximation method into the Monte Carlo method. The newly-developed Monte Carlo method is compared with the conventional method based on the diffusion theory for neutron noise analyses. The Monte Carlo method makes a significant difference in neutron noise distribution as compared to the diffusion theory, suggesting that the transport theory should be introduced for accurate estimation of neutron noise in a reactor core. A numerical test is conducted to simulate the measurement of void transit time or void velocity in a reactor core by calculating a cross power spectral density between two in-core detectors. (author)

  6. Sign problem and Monte Carlo calculations beyond Lefschetz thimbles

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo F; Ridgway, Gregory W; Warrington, Neill C

    2015-01-01

    We point out that Monte Carlo simulations of theories with severe sign problems can be profitably performed over manifolds in complex space different from the one with fixed imaginary part of the action. We describe a family of such manifolds that interpolate between the tangent space at one critical point, where the sign problem is milder compared to the real plane but in some cases still severe, and the union of relevant thimbles, where the sign problem is mild but a multimodal distribution function complicates the Monte Carlo sampling. We exemplify this approach using a simple 0 + 1 dimensional fermion model previously used on sign problem studies and show that it can solve the model for some parameter values where a solution using Lefshetz thimbles was elusive.

  7. Electron slowing down in solid targets: Monte-Carlo calculations

    International Nuclear Information System (INIS)

    We have performed Monte-Carlo simulations of slow electrons impinging on semi-infinite aluminium and copper in the energy range 0.5-4 keV. We present results for the backscattering coefficients, mean penetration depths and stopping profiles. Our results for the backscattering coefficients agree well with the experimental data within the limits of the statistical accuracy. The slight discrepancy between simulated and experimental results regarding the mean penetration depth is discussed. (authors)

  8. Monte Carlo calculations for r-process nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mumpower, Matthew Ryan [Los Alamos National Laboratory

    2015-11-12

    A Monte Carlo framework is developed for exploring the impact of nuclear model uncertainties on the formation of the heavy elements. Mass measurements tightly constrain the macroscopic sector of FRDM2012. For r-process nucleosynthesis, it is necessary to understand the microscopic physics of the nuclear model employed. A combined approach of measurements and a deeper understanding of the microphysics is thus warranted to elucidate the site of the r-process.

  9. Overview and applications of the Monte Carlo radiation transport kit at LLNL

    International Nuclear Information System (INIS)

    Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions

  10. Calculation of photon pulse height distribution using deterministic and Monte Carlo methods

    Science.gov (United States)

    Akhavan, Azadeh; Vosoughi, Naser

    2015-12-01

    Radiation transport techniques which are used in radiation detection systems comprise one of two categories namely probabilistic and deterministic. However, probabilistic methods are typically used in pulse height distribution simulation by recreating the behavior of each individual particle, the deterministic approach, which approximates the macroscopic behavior of particles by solution of Boltzmann transport equation, is being developed because of its potential advantages in computational efficiency for complex radiation detection problems. In current work linear transport equation is solved using two methods including collided components of the scalar flux algorithm which is applied by iterating on the scattering source and ANISN deterministic computer code. This approach is presented in one dimension with anisotropic scattering orders up to P8 and angular quadrature orders up to S16. Also, multi-group gamma cross-section library required for this numerical transport simulation is generated in a discrete appropriate form. Finally, photon pulse height distributions are indirectly calculated by deterministic methods that approvingly compare with those from Monte Carlo based codes namely MCNPX and FLUKA.

  11. Monte Carlo modelling of positron transport in real world applications

    International Nuclear Information System (INIS)

    Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.

  12. Monte Carlo solution of a semi-discrete transport equation

    International Nuclear Information System (INIS)

    The authors present the S∞ method, a hybrid neutron transport method in which Monte Carlo particles traverse discrete space. The goal of any deterministic/stochastic hybrid method is to couple selected characters from each of the methods in hopes of producing a better method. The S∞ method has the features of the lumped, linear-discontinuous (LLD) spatial discretization, yet it has no ray-effects because of the continuous angular variable. They derive the S∞ method for the solid-state, mono-energetic transport equation in one-dimensional slab geometry with isotropic scattering and an isotropic internal source. They demonstrate the viability of the S∞ method by comparing their results favorably to analytic and deterministic results

  13. Development of burnup calculation function in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)

  14. Large-scale Monte Carlo calculations with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    Monte Carlo based codes provide the most accurate solution of the particle transport problem. Individual particle trajectories are followed, and the interaction physics is simulated using detailed modeling of the physical reaction. The calculations are usually done using uniform temperature and density distributions. This is a significant approximation and leads to significantly distorted solution when applied to hot full power conditions. In this paper a method for introducing the thermal-hydraulic feedback by dynamic material distributions is introduced. The global variance reduction technique has been used to optimize the power tallying. The fission source convergence was accelerated by applying the Wielandt's acceleration method. Since the aim of this work is to solve coupled neutronic/thermal-hydraulic problems a convergence acceleration strategy based on stochastic approximation was proposed. The coupled system was applied to a quarter PWR core at pin and sub-channel level resolution. (author)

  15. A Monte Carlo calculation of subexcitation and vibrationally-relaxing electron spectra in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Frongillo, Y.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medecine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1992-12-01

    An energy spectrum of ''subexcitation electrons'' produced in liquid water by electrons with initial energies of a few keV is obtained by using a Monte Carlo transport simulation calculation. It is found that the introduction of vibrational-excitation cross sections leads to the appearance of a sharp peak in the probability density function near the electronic-excitation threshold. Electrons contributing to this peak are shown to be more naturally described if a novel energy spectrum, that we propose to name ''vibrationally-relaxing electron'' spectrum, is introduced. The corresponding distribution function is presented, and an empirical expression of it is given. (author).

  16. Verification of Monte Carlo transport codes by activation experiments

    International Nuclear Information System (INIS)

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

  17. Monte Carlo simulation of transport from an electrothermal vaporizer

    International Nuclear Information System (INIS)

    Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction

  18. Monte Carlo simulation of transport from an electrothermal vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, James A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: holcombe@mail.utexas.edu; Ertas, Gulay [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)

    2006-06-15

    Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction.

  19. Application of Monte Carlo method for dose calculation in thyroid follicle

    International Nuclear Information System (INIS)

    The Monte Carlo method is an important tool to simulate radioactive particles interaction with biologic medium. The principal advantage of the method when compared with deterministic methods is the ability to simulate a complex geometry. Several computational codes use the Monte Carlo method to simulate the particles transport and they have the capacity to simulate energy deposition in models of organs and/or tissues, as well models of cells of human body. Thus, the calculation of the absorbed dose to thyroid's follicles (compound of colloid and follicles' cells) have a fundamental importance to dosimetry, because these cells are radiosensitive due to ionizing radiation exposition, in particular, exposition due to radioisotopes of iodine, because a great amount of radioiodine may be released into the environment in case of a nuclear accidents. In this case, the goal of this work was use the code of particles transport MNCP4C to calculate absorbed doses in models of thyroid's follicles, for Auger electrons, internal conversion electrons and beta particles, by iodine-131 and short-lived iodines (131, 132, 133, 134 e 135), with diameters varying from 30 to 500 μm. The results obtained from simulation with the MCNP4C code shown an average percentage of the 25% of total absorbed dose by colloid to iodine- 131 and 75% to short-lived iodine's. For follicular cells, this percentage was of 13% to iodine-131 and 87% to short-lived iodine's. The contributions from particles with low energies, like Auger and internal conversion electrons should not be neglected, to assessment the absorbed dose in cellular level. Agglomerative hierarchical clustering was used to compare doses obtained by codes MCNP4C, EPOTRAN, EGS4 and by deterministic methods. (author)

  20. Verification of Monte Carlo calculations of the neutron flux in the carousel channels of the TRIGA Mark II reactor, Ljubljana

    International Nuclear Information System (INIS)

    In this work experimental verification of Monte Carlo neutron flux calculations in the carousel facility (CF) of the 250 kW TRIGA Mark II reactor at the Jozef Stefan Institute is presented. Simulations were carried out using the Monte Carlo radiation-transport code, MCNP4B. The objective of the work was to model and verify experimentally the azimuthal variation of neutron flux in the CF for core No. 176, set up in April 2002. '1'9'8Au activities of Al-Au(0.1%) disks irradiated in 11 channels of the CF covering 180'0 around the perimeter of the core were measured. The comparison between MCNP calculation and measurement shows relatively good agreement and demonstrates the overall accuracy with which the detailed spectral characteristics can be predicted by calculations.(author)

  1. Auger electron transport calculations in biological matter

    International Nuclear Information System (INIS)

    The talk briefly discussed physical, biophysical, and biological aspects of Auger emitters. A summary of radiationless transition data available in published literature and databases were presented. Data were presented for electron capture (EC), internal conversions (IC), binding energies of some commonly used radionuclides 123I, 124I, 125I, and 158Gd. For each of these Auger emitting radionuclides some examples of Monte Carlo calculated electron spectra of individual decays were presented. Because most Auger electrons emitted in the decay of radionuclides are short range low energy electrons below 1 keV, a brief discussion was presented on most recent development of physics models for energy loss of electrons in condensed phase and compared with other models and gas phase data. Accuracy of electron spectra calculated in the decay of electron shower by Auger emitting radionuclides depends on availability of accurate physics data. Currently, there are many gaps in physics data as input data to computer codes in need of new evaluation. In addition, comparison should be made between deterministic and Monte Carlo methods to access the accuracy and sensitivity of data to methods and the chosen parameters. It has long been recognized that Auger electron show a high-LET like characteristics when radionuclide is very closely bound to DNA. As most Auger electrons are short range low energy electrons and mostly absorbed with the DNA duplex when in close vicinity to DNA duplex, we believe the physical and biological dosimetry are best achieved by using Monte Carlo track structure simulations able to simulate tracks of low energy electrons below 1keV and in particular sub 100 eV in condensed phas

  2. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  3. Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air

    International Nuclear Information System (INIS)

    The Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air is reported. A formula is presented with which the relations of the albedo-doserate with some parameters are simulated and fitted

  4. Neutronic calculations for CANDU thorium systems using Monte Carlo techniques

    Science.gov (United States)

    Saldideh, M.; Shayesteh, M.; Eshghi, M.

    2014-08-01

    In this paper, we have investigated the prospects of exploiting the rich world thorium reserves using Canada Deuterium Uranium (CANDU) reactors. The analysis is performed using the Monte Carlo MCNP code in order to understand how much time the reactor is in criticality conduction. Four different fuel compositions have been selected for analysis. We have obtained the infinite multiplication factor, k∞, under full power operation of the reactor over 8 years. The neutronic flux distribution in the full core reactor has already been investigated.

  5. Monte Carlo calculations of fast effects in uranium graphite lattices

    International Nuclear Information System (INIS)

    Details are given of the results of a series of computations of fast neutron effects in natural uranium metal/graphite cells. The computations were performed using the Monte Carlo code SPEC. It is shown that neutron capture in U238 is conveniently discussed in terms of a capture escape probability ζ as well as the conventional probability p. The latter is associated with the slowing down flux and has the classical exponential dependence on fuel-to-moderator volume ratio whilst the former is identified with the component of neutron flux above 1/E. (author)

  6. Inconsistencies in widely used Monte Carlo methods for precise calculation of radial resonance captures in uranium fuel rods

    International Nuclear Information System (INIS)

    Although resonance neutron captures for 238U in water-moderated lattices are known to occur near moderator-fuel interfaces, the sharply attenuated spatial captures here have not been calculated by multigroup transport or Monte Carlo methods. Advances in computer speed and capacity have restored interest in applying Monte Carlo methods to evaluate spatial resonance captures in fueled lattices. Recently published studies have placed complete reliance on the ostensible precision of the Monte Carlo approach without auxiliary confirmation that resonance processes were followed adequately or that the Monte Carlo method was applied appropriately. Other methods of analysis that have evolved from early resonance integral theory have provided a basis for an alternative approach to determine radial resonance captures in fuel rods. A generalized method has been formulated and confirmed by comparison with published experiments of high spatial resolution for radial resonance captures in metallic uranium rods. The same analytical method has been applied to uranium-oxide fuels. The generalized method defined a spatial effective resonance cross section that is a continuous function of distance from the moderator-fuel interface and enables direct calculation of precise radial resonance capture distributions in fuel rods. This generalized method is used as a reference for comparison with two recent independent studies that have employed different Monte Carlo codes and cross-section libraries. Inconsistencies in the Monte Carlo application or in how pointwise cross-section libraries are sampled may exist. It is shown that refined Monte Carlo solutions with improved spatial resolution would not asymptotically approach the reference spatial capture distributions

  7. Radiation transport calculations for Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    The methods and data used to calculate the Hiroshima and Nagasaki prompt and delayed radiation fluences for the DS02 study represent a considerable improvement over the methods and data used for the DS86 study. During the intervening sixteen years, enhancements were made in the radiation transport codes and the nuclear data that are used to describe the migration of the neutrons and gamma rays from the bomb location through the intervening air and into, out of and off the surface of the ground. Increased computational capability permits better descriptions of the weapon source spectra and their extension to higher neutron and photon energies. The weapon leakage spectra were generated in the same neutron and gamma-ray energy structures that were used in the transport calculations. No interpolation or fitting of the leakage spectra was necessary, assuring consistent and accurate representations of the data were used in the transport calculations. (J.P.N.)

  8. Description of a stable scheme for steady-state coupled Monte Carlo-thermal-hydraulic calculations

    OpenAIRE

    Dufek, Jan; Eduard Hoogenboom, J.

    2014-01-01

    We provide a detailed description of a numerically stable and efficient coupling scheme for steady-state Monte Carlo neutronic calculations with thermal-hydraulic feedback. While we have previously derived and published the stochastic approximation based method for coupling the Monte Carlo criticality and thermal-hydraulic calculations, its possible implementation has not been described in a step-by-step manner. As the simple description of the coupling scheme was repeatedly requested from us...

  9. CPMC-Lab: A Matlab Package for Constrained Path Monte Carlo Calculations

    OpenAIRE

    Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei

    2014-01-01

    We describe CPMC-Lab, a Matlab program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in Matlab with a graphical interface, using the Hubbard model as an example. The package can perform calculations ...

  10. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2008-09-07

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical

  11. An energy transfer method for 4D Monte Carlo dose calculation.

    Science.gov (United States)

    Siebers, Jeffrey V; Zhong, Hualiang

    2008-09-01

    This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms. PMID:18841862

  12. Molecular transport calculations with Wannier functions

    OpenAIRE

    Thygesen, K. S.; Jacobsen, K. W.

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at ...

  13. The derivation of Particle Monte Carlo methods for plasma modeling from transport equations

    OpenAIRE

    Longo, Savino

    2008-01-01

    We analyze here in some detail, the derivation of the Particle and Monte Carlo methods of plasma simulation, such as Particle in Cell (PIC), Monte Carlo (MC) and Particle in Cell / Monte Carlo (PIC/MC) from formal manipulation of transport equations.

  14. Calculation of extended shields in the Monte Carlo method using importance function (BRAND and DD code systems)

    International Nuclear Information System (INIS)

    Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P1-approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs

  15. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    International Nuclear Information System (INIS)

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of: (1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain's replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  16. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  17. Monte Carlo sampling strategies for lattice gauge calculations

    International Nuclear Information System (INIS)

    We have sought to optimize the elements of the Monte Carlo processes for thermalizing and decorrelating sequences of lattice gauge configurations and for this purpose, to develop computational and theoretical diagnostics to compare alternative techniques. These have been applied to speed up generations of random matrices, compare heat bath and Metropolis stepping methods, and to study autocorrelations of sequences in terms of the classical moment problem. The efficient use of statistically correlated lattice data is an optimization problem depending on the relation between computer times to generate lattice sequences of sufficiently small correlation and times to analyze them. We can solve this problem with the aid of a representation of auto-correlation data for various step lags as moments of positive definite distributions, using methods known for the moment problem to put bounds on statistical variances, in place of estimating the variances by too-lengthy computer runs

  18. Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code

    International Nuclear Information System (INIS)

    A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were transported up to approximately 1 m before the region for benchmark calculation. Finally, the energy spectra of neutrons behind the very thick shield were calculated down to the thermal energy with good statistics, and typically agree well within a factor of two with the experimental data over a broad energy range. The 12C(n,2n)11C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem. In this report, the calculation conditions, geometry and the variance reduction techniques used in the deep-penetration calculation with the MARS14 code are clarified, and several subroutines of MARS14 which were used in our calculation are also given in the appendix. The numerical data of the calculated neutron energy spectra, reaction rates, dose rates and their C/E (Calculation/Experiment) values are also summarized. The

  19. Three dimensions transport calculations for PWR core

    International Nuclear Information System (INIS)

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  20. MCNP Perturbation Capability for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of keff in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward

  1. MCNP Perturbation Capability for Monte Carlo Criticality Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.S.; Carter, L.L.; McKinney, G.W.

    1999-09-20

    The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of k{sub eff} in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward.

  2. Monte Carlo calculation of chloride diffusion in concrete

    International Nuclear Information System (INIS)

    Coefficient of chloride diffusion is calculated by applying the Fick's second law of diffusion to a chloride concentration profile. Then from the signal strength for various chlorine gamma-ray energies was then calculated at the detector of the portable D-D neutron generator based PGNAA setup. (author)

  3. Evaluation of Monte Carlo Codes Regarding the Calculated Detector Response Function in NDP Method

    International Nuclear Information System (INIS)

    The basis of the NDP is the irradiation of a sample with a thermal or cold neutron beam and the subsequent release of charged particles due to neutron-induced exoergic charged particle reactions. Neutrons interact with the nuclei of elements and release mono-energetic charged particles, e.g. alpha particles or protons, and recoil atoms. Depth profile of the analyzed element can be obtained by making a linear transformation of the measured energy spectrum by using the stopping power of the sample material. A few micrometer of the material can be analyzed nondestructively, and on the order of 10nm depth resolution can be obtained depending on the material type with NDP method. In the NDP method, the one first steps of the analytical process is a channel-energy calibration. This calibration is normally made with the experimental measurement of NIST Standard Reference Material sample (SRM-93a). In this study, some Monte Carlo (MC) codes were tried to calculate the Si detector response function when this detector accounted the energy charges particles emitting from an analytical sample. In addition, these MC codes were also tried to calculate the depth distributions of some light elements (10B, 3He, 6Li, etc.) in SRM-93a and SRM-2137 samples. These calculated profiles were compared with the experimental profiles and SIMS profiles. In this study, some popular MC neutron transport codes are tried and tested to calculate the detector response function in the NDP method. The simulations were modeled based on the real CN-NDP system which is a part of Cold Neutron Activation Station (CONAS) at HANARO (KAERI). The MC simulations are very successful at predicting the alpha peaks in the measured energy spectrum. The net area difference between the measured and predicted alpha peaks are less than 1%. A possible explanation might be bad cross section data set usage in the MC codes for the transport of low energetic lithium atoms inside the silicon substrate

  4. Acceleration of a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  5. Verification of Monte Carlo transport codes FLUKA, Mars and Shield

    International Nuclear Information System (INIS)

    The present study is a continuation of the project 'Verification of Monte Carlo Transport Codes' which is running at GSI as a part of activation studies of FAIR relevant materials. It includes two parts: verification of stopping modules of FLUKA, MARS and SHIELD-A (with ATIMA stopping module) and verification of their isotope production modules. The first part is based on the measurements of energy deposition function of uranium ions in copper and stainless steel. The irradiation was done at 500 MeV/u and 950 MeV/u, the experiment was held at GSI from September 2004 until May 2005. The second part is based on gamma-activation studies of an aluminium target irradiated with an argon beam of 500 MeV/u in August 2009. Experimental depth profiling of the residual activity of the target is compared with the simulations. (authors)

  6. Methods Used in Criticality Calculations; Monte Carlo Method, Neutron Interaction, Programmes for IBM-7094

    International Nuclear Information System (INIS)

    Computer development has a bearing on the choice of methods and their possible uses. The authors discuss the possible uses of the diffusion and transport theories and their limitations. Most of the problems encountered in regard to criticality involve fissile materials in simple or multiple assemblies. These entail the use of methods of calculation based on different principles. There are approximate methods of calculation, but very often, for economic reasons or with a view to practical application, a high degree of accuracy is required in determining the reactivity of the assemblies in question, and the methods based on the Monte Carlo principle are then the most valid. When these methods are used, accuracy is linked with the calculation time, so that the usefulness of the codes derives from their speed. With a view to carrying out the work in the best conditions, depending on the geometry and the nature of the materials involved, various codes must be used. Four principal codes are described, as are their variants; some typical possibilities and certain fundamental results are presented. Finally the accuracies of the various methods are compared. (author)

  7. ORPHEE research reactor: 3D core depletion calculation using Monte-Carlo code TRIPOLI-4®

    Science.gov (United States)

    Damian, F.; Brun, E.

    2014-06-01

    ORPHEE is a research reactor located at CEA Saclay. It aims at producing neutron beams for experiments. This is a pool-type reactor (heavy water), and the core is cooled by light water. Its thermal power is 14 MW. ORPHEE core is 90 cm height and has a cross section of 27x27 cm2. It is loaded with eight fuel assemblies characterized by a various number of fuel plates. The fuel plate is composed of aluminium and High Enriched Uranium (HEU). It is a once through core with a fuel cycle length of approximately 100 Equivalent Full Power Days (EFPD) and with a maximum burnup of 40%. Various analyses under progress at CEA concern the determination of the core neutronic parameters during irradiation. Taking into consideration the geometrical complexity of the core and the quasi absence of thermal feedback for nominal operation, the 3D core depletion calculations are performed using the Monte-Carlo code TRIPOLI-4® [1,2,3]. A preliminary validation of the depletion calculation was performed on a 2D core configuration by comparison with the deterministic transport code APOLLO2 [4]. The analysis showed the reliability of TRIPOLI-4® to calculate a complex core configuration using a large number of depleting regions with a high level of confidence.

  8. Transport methods: general. 2. Monte Carlo Particle Transport in Media with Exponentially Varying Time-Dependent Cross Sections

    International Nuclear Information System (INIS)

    We have investigated Monte Carlo schemes for analyzing particle transport through media with exponentially varying time-dependent cross sections. For such media, the cross sections are represented in the form Σ(t) = Σ0 e-at (1) or equivalently as Σ(x) = Σ0 e-bx (2) where b = av and v is the particle speed. For the following discussion, the parameters a and b may be either positive, for exponentially decreasing cross sections, or negative, for exponentially increasing cross sections. For most time-dependent Monte Carlo applications, the time and spatial variations of the cross-section data are handled by means of a stepwise procedure, holding the cross sections constant for each region over a small time interval Δt, performing the Monte Carlo random walk over the interval Δt, updating the cross sections, and then repeating for a series of time intervals. Continuously varying spatial- or time-dependent cross sections can be treated in a rigorous Monte Carlo fashion using delta-tracking, but inefficiencies may arise if the range of cross-section variation is large. In this paper, we present a new method for sampling collision distances directly for cross sections that vary exponentially in space or time. The method is exact and efficient and has direct application to Monte Carlo radiation transport methods. To verify that the probability density function (PDF) is correct and that the random-sampling procedure yields correct results, numerical experiments were performed using a one-dimensional Monte Carlo code. The physical problem consisted of a beam source impinging on a purely absorbing infinite slab, with a slab thickness of 1 cm and Σ0 = 1 cm-1. Monte Carlo calculations with 10 000 particles were run for a range of the exponential parameter b from -5 to +20 cm-1. Two separate Monte Carlo calculations were run for each choice of b, a continuously varying case using the random-sampling procedures described earlier, and a 'conventional' case where the

  9. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    The interest in high fidelity modeling of nuclear reactor cores has increased over the last few years and has become computationally more feasible because of the dramatic improvements in processor speed and the availability of low cost parallel platforms. In the research here high fidelity, multi-physics analyses was performed by solving the neutron transport equation using Monte Carlo methods and by solving the thermal-hydraulics equations using computational fluid dynamics. A computation tool based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR' along with the verification and validation efforts. McSTAR is written in PERL programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STAR-CD for every region. Three different methods were investigated and two of them are implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. The necessary input file manipulation, data file generation, normalization and multi-processor calculation settings are all done through the program flow in McSTAR. Initial testing of the code was performed using a single pin cell and a 3X3 PWR pin-cell problem. The preliminary results of the single pin-cell problem are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code De

  10. A numerical analysis of antithetic variates in Monte Carlo radiation transport with geometrical surface splitting

    International Nuclear Information System (INIS)

    A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs

  11. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  12. KENO, Multigroup P1 Scattering Monte-Carlo Transport Calculation for Criticality, Keff, Flux in 3-D. KENO-5, SCALE-1 Module with Pn Scattering, Super-grouping, Diffusion Albedo Reflection

    International Nuclear Information System (INIS)

    1 - Description of problem or function: KENO is a multigroup, Monte Carlo criticality code containing a special geometry package which allows easy description of systems composed of cylinders, spheres, and cuboids (rectangular parallelepipeds) arranged in any order with only one restriction. They cannot be rotated or translated. Each geometrical region must be described as completely enclosing all regions interior to it. For systems not describable using this special geometry package, the program can use the generalized geometry package (GEOM) developed for the O5R Monte Carlo code. It allows any system that can be described by a collection of planes and/or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. The entire problem can be mocked up in generalized geometry, or one generalized geometry unit or box type can be used alone or in combination with standard KENO units or box types. Rectangular arrays of fissile units are allowed with or without external reflector regions. Output from KENO consists of keff for the system plus an estimate of its standard deviation and the leakage, absorption, and fissions for each energy group plus the totals for all groups. Flux as a function of energy group and region and fission densities as a function of region are optional output. KENO-4: Added features include a neutron balance edit, PICTURE routines to check the input geometry, and a random number sequencing subroutine written in FORTRAN-4. 2 - Method of solution: The scattering treatment used in KENO assumes that the differential neutron scattering cross section can be represented by a P1 Legendre polynomial. Absorption of neutrons in KENO is not allowed. Instead, at each collision point of a neutron tracking history the weight of the neutron is reduced by the absorption probability. When the neutron weight has been reduced below a specified point for the region in which the collision occurs, Russian roulette is played to determine if the

  13. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  14. The Moment Condensed History Algorithm for Monte Carlo Electron Transport Simulations

    International Nuclear Information System (INIS)

    We introduce a new Condensed History algorithm for the Monte Carlo simulation of electron transport. To obtain more accurate simulations, the new algorithm preserves the mean position and the variance in the mean position exactly for electrons that have traveled a given path length and are traveling in a given direction. This is accomplished by deriving the zeroth-, first-, and second-order spatial moments of the Spencer-Lewis equation and employing this information directly in the Condensed History process. Numerical calculations demonstrate the advantages of our method over standard Condensed History methods

  15. Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers

    CERN Document Server

    Richers, S; O'Connor, Evan; Fernandez, Rodrigo; Ott, Christian

    2015-01-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the case of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45 degrees from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentiall...

  16. The effect of statistical uncertainty on inverse treatment planning based on Monte Carlo dose calculation

    Science.gov (United States)

    Jeraj, Robert; Keall, Paul

    2000-12-01

    The effect of the statistical uncertainty, or noise, in inverse treatment planning for intensity modulated radiotherapy (IMRT) based on Monte Carlo dose calculation was studied. Sets of Monte Carlo beamlets were calculated to give uncertainties at Dmax ranging from 0.2% to 4% for a lung tumour plan. The weights of these beamlets were optimized using a previously described procedure based on a simulated annealing optimization algorithm. Several different objective functions were used. It was determined that the use of Monte Carlo dose calculation in inverse treatment planning introduces two errors in the calculated plan. In addition to the statistical error due to the statistical uncertainty of the Monte Carlo calculation, a noise convergence error also appears. For the statistical error it was determined that apparently successfully optimized plans with a noisy dose calculation (3% 1σ at Dmax ), which satisfied the required uniformity of the dose within the tumour, showed as much as 7% underdose when recalculated with a noise-free dose calculation. The statistical error is larger towards the tumour and is only weakly dependent on the choice of objective function. The noise convergence error appears because the optimum weights are determined using a noisy calculation, which is different from the optimum weights determined for a noise-free calculation. Unlike the statistical error, the noise convergence error is generally larger outside the tumour, is case dependent and strongly depends on the required objectives.

  17. A 'local' exponential transform method for global variance reduction in Monte Carlo transport problems

    International Nuclear Information System (INIS)

    We develop a 'Local' Exponential Transform method which distributes the particles nearly uniformly across the system in Monte Carlo transport calculations. An exponential approximation to the continuous transport equation is used in each mesh cell to formulate biasing parameters. The biasing parameters, which resemble those of the conventional exponential transform, tend to produce a uniform sampling of the problem geometry when applied to a forward Monte Carlo calculation, and thus they help to minimize the maximum variance of the flux. Unlike the conventional exponential transform, the biasing parameters are spatially dependent, and are automatically determined from a forward diffusion calculation. We develop two versions of the forward Local Exponential Transform method, one with spatial biasing only, and one with spatial and angular biasing. The method is compared to conventional geometry splitting/Russian roulette for several sample one-group problems in X-Y geometry. The forward Local Exponential Transform method with angular biasing is found to produce better results than geometry splitting/Russian roulette in terms of minimizing the maximum variance of the flux. (orig.)

  18. HEXANN-EVALU - a Monte Carlo program system for pressure vessel neutron irradiation calculation

    International Nuclear Information System (INIS)

    The Monte Carlo program HEXANN and the evaluation program EVALU are intended to calculate Monte Carlo estimates of reaction rates and currents in segments of concentric angular regions around a hexagonal reactor-core region. The report describes the theoretical basis, structure and activity of the programs. Input data preparation guides and a sample problem are also included. Theoretical considerations as well as numerical experimental results suggest the user a nearly optimum way of making use of the Monte Carlo efficiency increasing options included in the program

  19. Calculation of effective delayed neutron fraction with modified library of Monte Carlo code

    International Nuclear Information System (INIS)

    Highlights: ► We propose a new Monte Carlo method to calculate the effective delayed neutron fraction by changing the library. ► We study the stability of our method. When the particles and cycles are sufficiently great, the stability is very good. ► The final result is determined to make the deviation least. ► We verify our method on several benchmarks, and the results are very good. - Abstract: A new Monte Carlo method is proposed to calculate the effective delayed neutron fraction βeff. Based on perturbation theory, βeff is calculated with modified library of Monte Carlo code. To verify the proposed method, calculations are performed on several benchmarks. The error of the method is analyzed and the way to reduce error is proposed. The results are in good agreement with the reference data

  20. Bedload transport calculations for steep streams

    Science.gov (United States)

    Rickenmann, D.; Turowski, J. M.; Nitsche, M.; Badoux, A.; Raymond, M.

    2011-12-01

    Due to large flow resistance, bedload transport calculations for steep streams often result in a clear overestimation of observed bedload. This contribution discusses the importance of introducing a proper partitioning of flow resistance for bedload transport calculations for steep streams. Several approaches to account for additional flow resistance were tested. They were used with the same reference bedload transport equation, and the predictions were then compared with bedload observations for a number of mountain streams. To this end, we measured the streambed parameters required for these calculations for flood events in 7 mountain rivers and torrents and for long-term discharge and bedload data of 6 torrents. The streams have channel slopes from 2 to 19 %, catchment areas from 0.5 to 170 km2, and are all located in the Swiss Alps. Some approaches give better predictions for rougher streams and for the extreme flood events than for less rough streams and for the long-term data from the torrents (Nitsche et al., 2011). An example for this prediction pattern is the approach of Yager et al. (2007) which is the one mostly based on physical principles for flow resistance calculations. This approach requires additional field measurements regarding the key roughness parameters. On the other hand considering all the bedload data, the empirical approach of Rickenmann and Recking (2011) appears to give the best overall predictions. This approach has the advantage to be easy to apply. Further bedload transport calculations were made for steep streams upstream of water intakes in the Swiss Alps where information is available on both discharge and annual sediment yield. If no correction for high flow resistance is made, calculated bedload transport rates with many equations tend to result in elevated bedload concentrations which are expected for debris flood or debris flow conditions. Some observations from the widespread flood events of August 2005 in Switzerland

  1. Consideration of convergence judgment method with source acceleration in Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Theoretical consideration is made for possibility to accelerate and judge convergence of a conventional Monte Carlo iterative calculation when it is used for a weak neutron interaction problem. And the clue for this consideration is rendered with some application analyses using the OECD/NEA source convergence benchmark problems. Some practical procedures are proposed to realize these acceleration and judgment methods in practical application using a Monte Carlo code. (author)

  2. Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations

    OpenAIRE

    Belozerov, A. S.; Leonov, I.; Anisimov, V. I.

    2013-01-01

    We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationall...

  3. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  4. An Analysis on the Calculation Efficiency of the Responses Caused by the Biased Adjoint Fluxes in Hybrid Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Khuat, Quang Huy; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    This technique is known as Consistent Adjoint Driven Importance Sampling (CADIS) method and it is implemented in SCALE code system. In the CADIS method, adjoint transport equation has to be solved to determine deterministic importance functions. Using the CADIS method, a problem was noted that the biased adjoint flux estimated by deterministic methods can affect the calculation efficiency and error. The biases of adjoint function are caused by the methodology, calculation strategy, tolerance of result calculated by the deterministic method and inaccurate multi-group cross section libraries. In this paper, a study to analyze the influence of the biased adjoint functions into Monte Carlo computational efficiency is pursued. In this study, a method to estimate the calculation efficiency was proposed for applying the biased adjoint fluxes in the CADIS approach. For a benchmark problem, the responses and FOMs using SCALE code system were evaluated as applying the adjoint fluxes. The results show that the biased adjoint fluxes significantly affects the calculation efficiencies.

  5. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  6. Monte Carlo uncertainty propagation approaches in ADS burn-up calculations

    International Nuclear Information System (INIS)

    Highlights: ► Two Monte Carlo uncertainty propagation approaches are compared. ► How to make both approaches equivalent is presented and applied. ► ADS burn-up calculation is selected as the application of approaches. ► The cross-section uncertainties of 239Pu and 241Pu are propagated. ► Cross-correlations appear as a source of differences between approaches. - Abstract: In activation calculations, there are several approaches to quantify uncertainties: deterministic by means of sensitivity analysis, and stochastic by means of Monte Carlo. Here, two different Monte Carlo approaches for nuclear data uncertainty are presented: the first one is the Total Monte Carlo (TMC). The second one is by means of a Monte Carlo sampling of the covariance information included in the nuclear data libraries to propagate these uncertainties throughout the activation calculations. This last approach is what we named Covariance Uncertainty Propagation, CUP. This work presents both approaches and their differences. Also, they are compared by means of an activation calculation, where the cross-section uncertainties of 239Pu and 241Pu are propagated in an ADS activation calculation

  7. Progress on burnup calculation methods coupling Monte Carlo and depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, Francisco [Comision Nacional de Energia Atomica, San Carlos de Bariloche, RN (Argentina). Centro Atomico Bariloche]. E-mail: lesinki@cab.cnea.gob.ar

    2005-07-01

    Several methods of burnup calculations coupling Monte Carlo and depletion codes that were investigated and applied for the author last years are described. here. Some benchmark results and future possibilities are analyzed also. The methods are: depletion calculations at cell level with WIMS or other cell codes, and use of the resulting concentrations of fission products, poisons and actinides on Monte Carlo calculation for fixed burnup distributions obtained from diffusion codes; same as the first but using a method o coupling Monte Carlo (MCNP) and a depletion code (ORIGEN) at a cell level for obtaining the concentrations of nuclides, to be used on full reactor calculation with Monte Carlo code; and full calculation of the system with Monte Carlo and depletion codes, on several steps. All these methods were used for different problems for research reactors and some comparisons with experimental results of regular lattices were performed. On this work, a resume of all these works is presented and discussion of advantages and problems found are included. Also, a brief description of the methods adopted and MCQ system for coupling MCNP and ORIGEN codes is included. (author)

  8. Monte Carlo simulation for radiation transport. Applications in medical physics; Simulacion Monte Carlo del transporte de la radiacion. Aplicaciones en el campo de fisica medica

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, J. [Universitat Politecnica de Catalunya (Spain)

    2002-07-01

    Monte Carlo (MC) simulation is the most accurate technique currently available for solving problems related with the transport of radiation in complex geometries, such as those encountered in medical application. In this work we present a brief description of the basic features of the MC simulation of photons, electrons and positrons. Some of the most relevant applications of this technique in the field of medical physics are also discussed, namely, imaging in nuclear medicine, diagnostic radiology, calculations related with radiotherapy (i.e.,teletherapy, dose planning and brachytherapy) and microdosimetry. It is foreseen that this latter field will encompass the most challenging problems for the application of radiation physics to medicine during the 21 st century. (Author) 12 refs.

  9. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method is...

  10. Conversion coefficients for individual monitoring calculated with integrated tiger series, ITS3, Monte Carlo code

    International Nuclear Information System (INIS)

    The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included

  11. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    International Nuclear Information System (INIS)

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ∼40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry. (paper)

  12. Monte Carlo calculation for various enrichment lithium coolant using different data libraries in a hybrid reactor

    International Nuclear Information System (INIS)

    The main objective of this study is to compare the effect of the natural lithium and lithium with different enrichments between 10% and 90% on neutronic parameters; such as tritium breeding ratio (TBR), displacement per atom (DPA) and gas production using the different data libraries (ENDF/B.V, ENDF/B.VI and CLAW IV). Therefore, the natural lithium and different enrichment lithium were used as a moderator in an experimental hybrid reactor for the calculation of the nuclear parameters. Neutronic calculations were performed by recent Monte Carlo Neutron-Particle Transport code MCNP5 version 1.40 for a 14.1 MeV (D, T) fusion driver under a neutron wall load of 2.25 MW/m2 (1014 n/s). TBR values in the blanket for all investigated cases were obtained greater than the minimum requirement (TBR > 1.05). Considering radiation damage limits (100 DPA and 500 appm/FPY) for structural materials, the FW replacement will be needed every 2.1 and 3.5 years for DPA and He-production, respectively

  13. Monte Carlo calculation for various enrichment lithium coolant using different data libraries in a hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Haci Mehmet [Gazi Universitesi, Teknik Egitim Fakueltesi, Makina Egitimi Boeluemue, Teknikokullar, Ankara 06503 (Turkey)], E-mail: mesahin@gazi.edu.tr; Acir, Adem [Gazi Universitesi, Teknik Egitim Fakueltesi, Makina Egitimi Boeluemue, Teknikokullar, Ankara 06503 (Turkey); Altinok, Taner [Kara Harp Okulu, Savunma Bilimleri Enstituesue, Ankara 06654 (Turkey); Yalcin, Senay [Bahcesehir Universitesi, Muehendislik Fakueltesi, Besiktas, Istanbul (Turkey)

    2008-07-15

    The main objective of this study is to compare the effect of the natural lithium and lithium with different enrichments between 10% and 90% on neutronic parameters; such as tritium breeding ratio (TBR), displacement per atom (DPA) and gas production using the different data libraries (ENDF/B.V, ENDF/B.VI and CLAW IV). Therefore, the natural lithium and different enrichment lithium were used as a moderator in an experimental hybrid reactor for the calculation of the nuclear parameters. Neutronic calculations were performed by recent Monte Carlo Neutron-Particle Transport code MCNP5 version 1.40 for a 14.1 MeV (D, T) fusion driver under a neutron wall load of 2.25 MW/m{sup 2} (10{sup 14} n/s). TBR values in the blanket for all investigated cases were obtained greater than the minimum requirement (TBR > 1.05). Considering radiation damage limits (100 DPA and 500 appm/FPY) for structural materials, the FW replacement will be needed every 2.1 and 3.5 years for DPA and He-production, respectively.

  14. Recent R and D around the Monte-Carlo code Tripoli-4 for criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hugot, F.X.; Lee, Y.K.; Malvagi, F. [CEA - DEN/DANS/DM2S/SERMA/LTSD, Saclay (France)

    2008-07-01

    TRIPOLI-4 [1] is the fourth generation of the TRIPOLI family of Monte Carlo codes developed from the 60's by CEA. It simulates the 3D transport of neutrons, photons, electrons and positrons as well as coupled neutron-photon propagation and electron-photons cascade showers. The code addresses radiation protection and shielding problems, as well as criticality and reactor physics problems through both critical and subcritical neutronics calculations. It uses full pointwise as well as multigroup cross-sections. The code has been validated through several hundred benchmarks as well as measurement campaigns. It is used as a reference tool by CEA as well as its industrial and institutional partners, and in the NURESIM [2] European project. Section 2 reviews its main features, with emphasis on the latest developments. Section 3 presents some recent R and D for criticality calculations. Fission matrix, Eigen-values and eigenvectors computations will be exposed. Corrections on the standard deviation estimator in the case of correlations between generation steps will be detailed. Section 4 presents some preliminary results obtained by the new mesh tally feature. The last section presents the interest of using XML format output files. (authors)

  15. Quantum Monte Carlo calculations of neutron-alpha scattering

    OpenAIRE

    Nollett, Kenneth M.; Pieper, Steven C.; Wiringa, R. B.; Carlson, J; Hale, G M

    2006-01-01

    We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

  16. Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

    Directory of Open Access Journals (Sweden)

    Diego Ferraro

    2011-01-01

    Full Text Available Monte Carlo neutron transport codes are usually used to perform criticality calculations and to solve shielding problems due to their capability to model complex systems without major approximations. However, these codes demand high computational resources. The improvement in computer capabilities leads to several new applications of Monte Carlo neutron transport codes. An interesting one is to use this method to perform cell-level fuel assembly calculations in order to obtain few group constants to be used on core calculations. In the present work the VTT recently developed Serpent v.1.1.7 cell-oriented neutronic calculation code is used to perform cell calculations of a theoretical BWR lattice benchmark with burnable poisons, and the main results are compared to reported ones and with calculations performed with Condor v.2.61, the INVAP's neutronic collision probability cell code.

  17. Calculating Quantum Transports Using Periodic Boundary Conditions

    OpenAIRE

    Wang, Lin-Wang

    2004-01-01

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This new method is based on a method we developed previously, but with an essential change in solving the Schrodinger's equation. As a result of this change, the scattering states can be solved at any given energy. Compared to the previous method, the current method is faster and numerically more stable. The total computational time of the current method is similar to a conventional gr...

  18. Dosimetry for synchrotron stereotactic radiotherapy: Monte Carlo simulations and radiosensitive gels; Dosimetrie pour la radiotherapie stereotaxique en rayonnement synchrotron: calculs Monte-Carlo et gels radiosensibles

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, C

    2006-09-15

    High grade gliomas are extremely aggressive brain tumours. Specific techniques combining the presence of high atomic number elements within the tumour to an irradiation with a low x-rays (below 100 keV) beam from a synchrotron source were proposed. For the sake of clinical trials, the use of treatment planning system has to be foreseen as well as tailored dosimetry protocols. Objectives of this thesis work were (1) the development of a dose calculation tools based on Monte Carlo code for particles transport and (2) the implementation of an experimental method for the three dimensional verification of the dose delivered. The dosimetric tool is an interface between tomography images from patient or sample and the M.C.N.P.X. general purpose code. Besides, dose distributions were measured through a radiosensitive polymer gel, providing acceptable results compared to calculations.

  19. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV)

    International Nuclear Information System (INIS)

    Calculations of stopping power ratios, water to air, for the determination of absorbed dose to water in clinical proton beams using ionization chamber measurements have been undertaken using the Monte Carlo method. A computer code to simulate the transport of protons in water (PETRA) has been used to calculate Sw,air-data under different degrees of complexity, ranging from values based on primary protons only to data including secondary electrons and high-energy secondary protons produced in nonelastic nuclear collisions. All numerical data are based on ICRU 49 proton stopping powers. Calculations using primary protons have been compared to the simple continuous slowing-down approximation (c.s.d.a.) analytical technique used in proton dosimetry protocols, not finding significant differences that justify elaborate Monte Carlo simulations except beyond the mean range of the protons (the far side of the Bragg peak). The influence of nuclear nonelastic processes, through the detailed generation and transport of secondary protons, on the calculated stopping-power ratios has been found to be negligible. The effect of alpha particles has also been analysed, finding differences smaller than 0.1% from the results excluding them. Discrepancies of up to 0.6% in the plateau region have been found, however, when the production and transport of secondary electrons are taken into account. The large influence of nonelastic nuclear interactions on proton depth-dose distributions shows that the removal of primary protons from the incident beam decreases the peak-to-plateau ratio by a large factor, up to 40% at 250 MeV. It is therefore emphasized that nonelastic nuclear reactions should be included in Monte Carlo simulations of proton beam depth-dose distributions. (author)

  20. Using deterministic codes to accelerate continuous energy Monte-Carlo standards calculations

    International Nuclear Information System (INIS)

    Deterministic codes are usually used for critical parameters or one dimension geometry calculations. Advantages of the use of deterministic codes are speed of the calculation and the absence of standard deviation on the keff results. Nevertheless, the deterministic results are affected by several intrinsic uncertainties as energetic condensation or self-shielding. So the way to proceed at CEA expert criticality group (CEA/SERMA/CP2C) is to always check the main results (minimum critical or maximal permissible values and un-moderated values) with a punctual Monte Carlo calculation. These last years, in particular cases (pure actinide fissile media, exotic reflectors), large discrepancies have been observed between the keff calculated by the CRISTAL V1 route reference (continuous energy Monte Carlo code TRIPOLI-4) and the keff target (by the standard route APOLLO2-Sn). The problematic for these cases was how to transpose the keff discrepancies observed between standard and reference routes to the dimensions (mass, thickness...) or how to reduce the keff discrepancies using optimized options of the deterministic code. One solution to transpose discrepancies is to iterate on dimensions using a punctual Monte Carlo code to achieve the desired keff eigenvalue. But, the amount of time for obtaining a good standard deviation and also the desired keff eigenvalue inside the Monte Carlo calculation uncertainty can quickly increase. The principle of the method presented in this paper is that the discrepancy between deterministic code and Monte-Carlo code, calculated at the same dimension, is low variable with the dimension. Therefore, correcting the keff eigenvalue on which the deterministic code converge with the discrepancy observed, leads to a dimension nearer to the true dimension (i.e. the dimension where Monte-Carlo code keff calculation is close to the keff eigenvalue). If the keff eigenvalue is outside the Monte Carlo uncertainty, the discrepancy is recalculated and

  1. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF3 proportional counter

    International Nuclear Information System (INIS)

    The method to calculate the response function of spherical BF3 proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF3 proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within ±10%. (author)

  2. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    International Nuclear Information System (INIS)

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated

  3. ADSORPTION OF HARD SPHERE FLUID IN POROUS MATERIAL: A MONTE CARLO SIMULATION APPROACH FOR PRESSURE CALCULATION

    Directory of Open Access Journals (Sweden)

    P.Orea

    2003-01-01

    Full Text Available We have performed Monte Carlo simulations in the canonical ensemble of a hard-sphere fluid adsorbed in microporous media. The pressure of the adsorbed fluid is calculated by using an original procedure that includes the calculations of the pressure tensor components during the simulation. In order to confirm the equivalence of bulk and adsorbed fluid pressures, we have exploited the mechanical condition of equilibrium and performed additional canonical Monte Carlo simulations in a super system "bulk fluid + adsorbed fluid". When the configuration of a model porous media permits each of its particles to be in contact with adsorbed fluid particles, we found that these pressures are equal. Unlike the grand canonical Monte Carlo method, the proposed calculation approach can be used efficiently to obtain adsorption isotherms over a wide range of fluid densities and porosities of adsorbent.

  4. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  5. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hardiansyah, D.; Haryanto, F. [Nuclear Physics and Biophysics Research Laboratory, Physics Department, Institut Teknologi Bandung (ITB) (Indonesia); Male, S. [Radiotherapy Division, Research Hospital of Hassanudin University (Indonesia)

    2014-09-30

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.

  6. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    Science.gov (United States)

    Hardiansyah, D.; Male, S.; Haryanto, F.

    2014-09-01

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (Rp) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.

  7. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    International Nuclear Information System (INIS)

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (Rp) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue

  8. Improvement of the symbolic Monte-Carlo method for the transport equation: P1 extension and coupling with diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, J.F.; Samba, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)

  9. A meshless approach to radionuclide transport calculations

    International Nuclear Information System (INIS)

    Over the past thirty years numerical modelling has emerged as an interdisciplinary scientific discipline which has a significant impact in engineering and design. In the field of numerical modelling of transport phenomena in porous media, many commercial codes exist, based on different numerical methods. Some of them are widely used for performance assessment and safety analysis of radioactive waste repositories and groundwater modelling. Although they proved to be an accurate and reliable tool, they have certain limitations and drawbacks. Realistic problems often involve complex geometry which is difficult and time consuming to discretize. In recent years, meshless methods have attracted much attention due to their flexibility in solving engineering and scientific problems. In meshless methods the cumbersome polygonization of calculation domain is not necessary. By this the discretization time is reduced. In addition, the simulation is not as discretization density dependent as in traditional methods because of the lack of polygon interfaces. In this work fully meshless Diffuse Approximate Method (DAM) is used for calculation of radionuclide transport. Two cases are considered; First 1D comparison of 226Ra transport and decay solved by the commercial Finite Volume Method (FVM) and Finite Element Method (FEM) based packages and DAM. This case shows the level of discretization density dependence. And second realistic 2D case of near-field modelling of radionuclide transport from the radioactive waste repository. Comparison is made again between FVM based code and DAM simulation for two radionuclides: Long-lived 14C and short-lived 3H. Comparisons indicate great capability of meshless methods to simulate complex transport problems and show that they should be seriously considered in future commercial simulation tools. (author)

  10. Calculations of neutron penetration through graphite medium with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Experiments for fast neutron penetration through graphite are analysed with the continuous energy Monte Carlo code MCNP. Reaction rates and energy spectra obtained with the MCNP are compared with measured values and calculated ones with McBEND code. And validity of penetration calculation with the MCNP is comfirmed. In addition, it is revealed that the MCNP code using Weight-Window method is well applicable to calculations of neutron penetration through graphite up to 70 cm in depth. (author)

  11. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  12. Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2002-01-01

    Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.

  13. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  14. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    International Nuclear Information System (INIS)

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice. (author)

  15. Secondary electron emission yield calculation performed using two different Monte Carlo strategies

    Energy Technology Data Exchange (ETDEWEB)

    Dapor, Maurizio, E-mail: dapor@fbk.eu [Interdisciplinary Laboratory for Computational Science (LISC), FBK-CMM and University of Trento, via Sommarive 18, I-38123 Povo, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38123 Trento (Italy)

    2011-07-15

    The secondary electron emission yield in Al{sub 2}O{sub 3} and polymethylmethacrylate (PMMA) is calculated using two different Monte Carlo approaches, one based on the energy straggling strategy (ES), the other one on the continuous-slowing-down (CSD) approximation. This work is aimed at comparing the secondary electron emission yields calculated by these two Monte Carlo strategies with the available experimental data. The results of both methods are in good agreement with experimental data. The CSD strategy is about 10 times faster than the ES strategy.

  16. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code

    Science.gov (United States)

    Parodi, K.; Ferrari, A.; Sommerer, F.; Paganetti, H.

    2007-07-01

    Clinical investigations on post-irradiation PET/CT (positron emission tomography/computed tomography) imaging for in vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project, we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation-induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modelling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except a few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper, we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation

  17. Core calculation of 1MW PUSPATI TRIGA Reactor (RTP) using continuous energy method of Monte Carlo MVP code system

    International Nuclear Information System (INIS)

    The RTP is a light-water moderated and pool-type TRIGA MARK II reactor with power capacity of 1MWt. It was built in 1979 and attained the first criticality on 28 June 1982. The RTP was designed mainly for neutron activation analysis, small angle neutron scattering, neutron radiography, radioisotope production, education and training purposes. It uses standard TRIGA fuel developed by General Atomic in which the zirconium hydride moderator is homogeneously combined with enriched uranium. It has a cylindrical core with which possibility of locating 127 of fuel elements. Both of the coolant and moderator uses light water system and the reflector is made of high purity graphite. Because of its relatively small power, it uses natural convection for its cooling system. To ensure the integrity of the core, fuel shuffling have been carried out several times. Until now, there were 12 configurations of the core, the most recent change being in July 2006. This paper will describe the RTP core calculation using the Monte Carlo MVP code system. VP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation in order to have an accurate and fast Monte Carlo simulation of neutron and photon transport problems. The MVP Monte Carlo code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique. When compared to the conventional scalar method, this code could achieve higher computation speed by up to a factor of 10 on the vector super-computer. The RTP core has been modelled using cylinder geometry along the z-coordinate geometry with the MVP code system while its material cross section data is calculated beforehand. The JENDL3.3 data library was used in the whole calculation. The objectives of the calculation are to calculate the multiplication factor values (keff), fission density and flux distribution from the tally data. The calculation also

  18. Monte Carlo algorithm for calculating moments of atomic transition arrays

    International Nuclear Information System (INIS)

    A new method for calculating moments of atomic transition arrays is described. It is based on the collective vector method described in earlier publications. In this new approach a single collective state vector is generated from a single parent state vector encompassing the entire parent basis. The amplitudes of the basis vectors comprising the parent state vector are randomized. Thus it is representative of the entire parent manifold. We show that a statistical estimate of the transition moments of the array is given by a suitable combination of moments of the matrix element of the E1 (electric dipole) operator between the representative parent state vector and the collective state vector derived from it. Although the detailed characteristics of the dispersion in these statistical results are determined by the detailed characteristics of the Hamiltonian and the model space, we find that overall the dispersion decreases inversely as the square root of the dimension of the model space. This is in keeping with results obtained earlier for the Hamiltonian moments of nuclear systems and means, speaking broadly, the larger the problem the more accurate the method

  19. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case

  20. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  1. Verification of Three Dimensional Triangular Prismatic Discrete Ordinates Transport Code ENSEMBLE-TRIZ by Comparison with Monte Carlo Code GMVP

    Science.gov (United States)

    Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi

    2014-06-01

    This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.

  2. Confidence interval procedures for Monte Carlo transport simulations

    International Nuclear Information System (INIS)

    The problem of obtaining valid confidence intervals based on estimates from sampled distributions using Monte Carlo particle transport simulation codes such as MCNP is examined. Such intervals can cover the true parameter of interest at a lower than nominal rate if the sampled distribution is extremely right-skewed by large tallies. Modifications to the standard theory of confidence intervals are discussed and compared with some existing heuristics, including batched means normality tests. Two new types of diagnostics are introduced to assess whether the conditions of central limit theorem-type results are satisfied: the relative variance of the variance determines whether the sample size is sufficiently large, and estimators of the slope of the right tail of the distribution are used to indicate the number of moments that exist. A simulation study is conducted to quantify the relationship between various diagnostics and coverage rates and to find sample-based quantities useful in indicating when intervals are expected to be valid. Simulated tally distributions are chosen to emulate behavior seen in difficult particle transport problems. Measures of variation in the sample variance s2 are found to be much more effective than existing methods in predicting when coverage will be near nominal rates. Batched means tests are found to be overly conservative in this regard. A simple but pathological MCNP problem is presented as an example of false convergence using existing heuristics. The new methods readily detect the false convergence and show that the results of the problem, which are a factor of 4 too small, should not be used. Recommendations are made for applying these techniques in practice, using the statistical output currently produced by MCNP

  3. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  4. Concerned items on variance reduction method of monte carlo calculation written in published literatures. A logic of monte carlo calculation=from experience to science

    International Nuclear Information System (INIS)

    In the fixed source problem such as a neutron deep penetration calculation with the Monte Carlo method, the application of the variance reduction method is most important for a high figure of merit (FOM) and the most reliable calculation. But, MCNP calculation inputs written in published literature are not to be best solution. The most concerned items are setting method for the lower weight bound on the weight window method and the exclusion radius for a point estimator. In those literatures, the lower weight bound is estimated by engineering judge or weight window generator in the MCNP. In the latter case, the lower weight bound is used with no turning process. Because of abnormal large lower weight bounds, many neutron are killed in no meaning by the Russian Roulette. The adjoint flux method for setting of lower weight bound should be adapted as a standard variance reduction method. The Monte Carlo calculation should be turned from the experience such as engineering judge to science such as adjoint method. (author)

  5. Report of 'Monte Carlo calculation summer seminar'

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Kume, Etsuo; Yatabe, Shigeru; Maekawa, Fujio; Yamamoto, Toshihiro; Nagaya, Yasunobu; Mori, Takamasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ueki, Kohtaro [Ship Research Inst., Tokyo (Japan); Naito, Yoshitaka [Nippon Advanced Information Service, Tokai, Ibaraki (Japan)

    2001-02-01

    'Monte Carlo Calculation Summer Seminar', which was sponsored by Research Committee on Particle Simulation with Monte Carlo Method' in Atomic Energy Society of Japan, was held in 26-28 July 2000 at Tokai Research Establishment, Japan Atomic Energy Research Institute. The participator is 111 persons from universities, Research Institutes and Companies. In the beginner course, the lecture of fundamental theory of Monte Carlo Method and the installation to the note-type personal computer of MCNP- 4B2 and attached libraries, sample input were performed. As the seminar is first attempt in Japan, the general review and lecture, installation, exercise calculation were summarized in this report. (author)

  6. penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  7. Calculating iron transport in nuclear systems

    International Nuclear Information System (INIS)

    The presence of high levels of iron in the final feedwater of nuclear plants is undesirable and can have a significant contribution to plant operations and maintenance (O and M) costs. A number of options are available to reduce the iron concentration, but tend to be expensive. Recently a method was developed to quantitatively determine the contribution of each iron source, such that reduction options can be quantitatively compared. The method is based on industry experience that the majority of iron has been released by flow-accelerated corrosion (FAC). FAC is one of the most predictable forms of corrosion and a well-developed predictive model has been developed and also encoded in the CHECWORKS. A combination of CHECWORKS and supplemental calculations have been used to model the iron transport in a number of US BWRs and PWRs. The iron generated by FAC in all the normally operating piping systems has been calculated using the results of CHECWORKS predictions and a special post processor. The post processor accounts for the differences between the maximum corrosion rate calculated by CHECWORKS and the average corrosion (iron generation) rate for a pipe-fitting or length of pipe. It also calculates the amount of iron generated within the fitting or pipe. Supplemental calculations have been used to determine the iron generation from the major, in-line components - high and low pressure turbines, moisture separators, feedwater heaters and the condenser. All of the iron generation rates for the equipment and piping were appropriately summed and iron concentrations estimated throughout the steam-feedwater system. Predicted iron concentrations have agreed well with plant measurements. The availability of specific iron generation rates allows plant management to make reasoned decisions about the countermeasures to deal with iron generation and transport. The countermeasures that have been examined to reduce the amount of iron transport include installing additional water

  8. Evaluation of Monte Carlo Codes Regarding the Calculated Detector Response Function in NDP Method

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min; Park, Byung Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The basis of the NDP is the irradiation of a sample with a thermal or cold neutron beam and the subsequent release of charged particles due to neutron-induced exoergic charged particle reactions. Neutrons interact with the nuclei of elements and release mono-energetic charged particles, e.g. alpha particles or protons, and recoil atoms. Depth profile of the analyzed element can be obtained by making a linear transformation of the measured energy spectrum by using the stopping power of the sample material. A few micrometer of the material can be analyzed nondestructively, and on the order of 10nm depth resolution can be obtained depending on the material type with NDP method. In the NDP method, the one first steps of the analytical process is a channel-energy calibration. This calibration is normally made with the experimental measurement of NIST Standard Reference Material sample (SRM-93a). In this study, some Monte Carlo (MC) codes were tried to calculate the Si detector response function when this detector accounted the energy charges particles emitting from an analytical sample. In addition, these MC codes were also tried to calculate the depth distributions of some light elements ({sup 10}B, {sup 3}He, {sup 6}Li, etc.) in SRM-93a and SRM-2137 samples. These calculated profiles were compared with the experimental profiles and SIMS profiles. In this study, some popular MC neutron transport codes are tried and tested to calculate the detector response function in the NDP method. The simulations were modeled based on the real CN-NDP system which is a part of Cold Neutron Activation Station (CONAS) at HANARO (KAERI). The MC simulations are very successful at predicting the alpha peaks in the measured energy spectrum. The net area difference between the measured and predicted alpha peaks are less than 1%. A possible explanation might be bad cross section data set usage in the MC codes for the transport of low energetic lithium atoms inside the silicon substrate.

  9. Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning

    International Nuclear Information System (INIS)

    The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow's VMC++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6-20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000 histories/cm2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10 000 histories/cm2) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10x10 cm2 field size, incident on the phantom 15x15x10 cm3 consisting of 31 CT slices and voxels size of 3x3x3 mm3 (total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (>5%) occur when large voxel sizes interfere with the extensions of

  10. A general framework for implementing NLO calculations in shower Monte Carlo programs. The POWHEG BOX

    International Nuclear Information System (INIS)

    In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it. (orig.)

  11. Organ doses from medical x-ray examinations calculated using Monte Carlo techniques

    CERN Document Server

    Jones, D G

    1985-01-01

    Monte Carlo techniques were used to calculate the mean doses received by 20 organs during diagnostic X-ray examinations. Results are presented for 22 commonly used radiographic views and for 45 combinations of tube voltage and filtration ranging from 50 to 140 kVp and 1.5 to 4 mm of aluminium, respectively.

  12. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  13. Monte Carlo Calculation as an Aid to Teaching Solid-State Diffusion.

    Science.gov (United States)

    Murch, G. E.

    1979-01-01

    A simple Monte Carlo method is used to simulate an atomistic model of solid-state diffusion. This approach illustrates some of the principles of diffusion and in particular verifies a solution to Fick's second law. The role and calculation of the diffusion correlation factor is also discussed. (Author/BB)

  14. A general framework for implementing NLO calculations in shower Monte Carlo programs. The POWHEG BOX

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nason, Paolo [INFN, Milano-Bicocca (Italy); Oleari, Carlo [INFN, Milano-Bicocca (Italy); Milano-Bicocca Univ. (Italy); Re, Emanuele [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology

    2010-02-15

    In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it. (orig.)

  15. One group neutron flux at a point in a cylindrical reactor cell calculated by Monte Carlo

    International Nuclear Information System (INIS)

    Mean values of the neutron flux over material regions and the neutron flux at space points in a cylindrical annular cell (one group model) have been calculated by Monte Carlo. The results are compared with those obtained by an improved collision probability method (author)

  16. Monte Carlo calculation of efficiencies of whole-body counter, by microcomputer

    International Nuclear Information System (INIS)

    A computer programming using the Monte Carlo method for calculation of efficiencies of whole-body counting of body radiation distribution is presented. An analytical simulator (for man e for child) incorporated with99mTc, 131I and 42K is used. (M.A.C.)

  17. Monte Carlo calculation of received dose from ingestion and inhalation of natural uranium

    International Nuclear Information System (INIS)

    For the purpose of this study eighty samples are taken from the area Bela Crkva and Vrsac. The activity of radionuclide in the soil is determined by gamma- ray spectrometry. Monte Carlo method is used to calculate effective dose received by population resulting from the inhalation and ingestion of natural uranium. The estimated doses were compared with the legally prescribed levels. (author)

  18. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    International Nuclear Information System (INIS)

    The dose rate conversion factors dot DCF (absorbed dose rate in air per unit activity per unit of soil mass, nGy h-1 per Bq kg-1) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the dot DCF values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons

  19. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  20. Adaptation of the B1 leakage model to Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    This paper presents an attempt to consistently adapt the B1 homogeneous leakage model within Monte Carlo criticality calculations based on the power iteration method. Unlike deterministic lattice codes, most of Monte Carlo-based reactor physics codes perform lattice calculations without introducing leakage models. The critical flux is however required to accurately compute homogenized cross sections and diffusion coefficients in the context of lattice physics computation. In our proposed approach, a fundamental mode approximation is introduced in the Monte Carlo K-effective power iteration method. Similarly to the deterministic implementation of the lattice code DRAGON (typically the collision probability method), B1 equations are solved at each cycle, leading to Monte Carlo estimates for the critical buckling B2 and for the group-dependent leakage rates. These leakage reactions are then introduced in the neutron random walk. This approach is discussed on legacy PWR pin cell cases, by direct comparison with results obtained by the collision probability method. This approach leads to consistent results between the Monte Carlo and the deterministic computational ways of the DRAGON code. (author)

  1. Uncertainty analysis of neutron transport calculation

    International Nuclear Information System (INIS)

    A cross section sensitivity-uncertainty analysis code, SUSD was developed. The code calculates sensitivity coefficients for one and two-dimensional transport problems based on the first order perturbation theory. Variance and standard deviation of detector responses or design parameters can be obtained using cross section covariance matrix. The code is able to perform sensitivity-uncertainty analysis for secondary neutron angular distribution(SAD) and secondary neutron energy distribution(SED). Covariances of 6Li and 7Li neutron cross sections in JENDL-3PR1 were evaluated including SAD and SED. Covariances of Fe and Be were also evaluated. The uncertainty of tritium breeding ratio, fast neutron leakage flux and neutron heating was analysed on four types of blanket concepts for a commercial tokamak fusion reactor. The uncertainty of tritium breeding ratio was less than 6 percent. Contribution from SAD/SED uncertainties are significant for some parameters. Formulas to estimate the errors of numerical solution of the transport equation were derived based on the perturbation theory. This method enables us to deterministically estimate the numerical errors due to iterative solution, spacial discretization and Legendre polynomial expansion of transfer cross-sections. The calculational errors of the tritium breeding ratio and the fast neutron leakage flux of the fusion blankets were analysed. (author)

  2. Transport calculations for a 14.8 MeV neutron beam in a water phantom

    International Nuclear Information System (INIS)

    A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented

  3. Intercomparison of Monte Carlo and SN sensitivity calculations for a 14 MeV neutron benchmark

    International Nuclear Information System (INIS)

    An inter-comparison has been performed of probabilistic and deterministic sensitivity calculations with the objective to check and validate the Monte Carlo technique for calculating point detector sensitivities as being implemented in MCSEN, a local version of the MCNP4A code. A suitable 14 MeV neutron benchmark problem on an iron assembly has been considered to this end. Good agreement has been achieved for the calculated individual sensitivity profiles, the uncertainties and the neutron flux spectra as well. It is concluded that the Monte Carlo technique for calculating point detector sensitivities and related uncertainties as being implemented in MCSEN is well qualified for sensitivity and uncertainty analyses of fusion neutronics integral experiments. (orig.)

  4. Transportation channels calculation method in MATLAB

    International Nuclear Information System (INIS)

    Output devices and charged particles transport channels are necessary components of any modern particle accelerator. They differ both in sizes and in terms of focusing elements depending on particle accelerator type and its destination. A package of transport line designing codes for magnet optical channels in MATLAB environment is presented in this report. Charged particles dynamics in a focusing channel can be studied easily by means of the matrix technique. MATLAB usage is convenient because its information objects are matrixes. MATLAB allows the use the modular principle to build the software package. Program blocks are small in size and easy to use. They can be executed separately or commonly. A set of codes has a user-friendly interface. Transport channel construction consists of focusing lenses (doublets and triplets). The main of the magneto-optical channel parameters are total length and lens position and parameters of the output beam in the phase space (channel acceptance, beam emittance - beam transverse dimensions, particles divergence and image stigmaticity). Choice of the channel operation parameters is based on the conditions for satisfying mutually competing demands. And therefore the channel parameters calculation is carried out by using the search engine optimization techniques.

  5. Monte Carlo simulation and analytical calculation of coherent Bremsstrahlung and its polarisation

    Energy Technology Data Exchange (ETDEWEB)

    Natter, F.A.; Grabmayr, P. E-mail: grabmayr@uni-tuebingen.de; Hehl, T.; Owens, R.O.; Wunderlich, S

    2003-12-01

    Spectral distributions for coherent and incoherent Bremsstrahlung produced by electrons on thin diamond radiators are calculated accurately by a Monte Carlo procedure. Realistic descriptions of the electron beam and the physical processes within the radiator have been implemented. Results are compared to measured data. A faster calculation at only a slight loss of precision is possible using analytical expressions which can be derived after simplifying assumptions.

  6. Hydrogen dissociation on the Mg(0001) surface from quantum Monte Carlo calculations

    OpenAIRE

    Pozzo, M.; Alfe`, D.

    2008-01-01

    We have used diffusion Monte Carlo (DMC) simulations to calculate the energy barrier for H$_2$ dissociation on the Mg(0001) surface. The calculations employ pseudopotentials and systematically improvable B-spline basis sets to expand the single particle orbitals used to construct the trial wavefunctions. Extensive tests on system size, time step, and other sources of errors, performed on periodically repeated systems of up to 550 atoms, show that all these errors together can be reduced to $\\...

  7. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Martin, William R [University of Michigan; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  8. Intensity modulated irradiation of a thorax phantom: comparisons between measurements, Monte Carlo calculations and pencil beam calculations

    Science.gov (United States)

    Laub, Wolfram U.; Bakai, Annemarie; Nüsslin, Fridtjof

    2001-06-01

    The present study investigates the application of compensators for the intensity modulated irradiation of a thorax phantom. Measurements are compared with Monte Carlo and standard pencil beam algorithm dose calculations. Compensators were manufactured to produce the intensity profiles that were generated from the scientific version of the KonRad IMRT treatment-planning system for a given treatment plan. The comparison of dose distributions calculated with a pencil beam algorithm, with the Monte Carlo code EGS4 and with measurements is presented. By measurements in a water phantom it is demonstrated that the method used to manufacture the compensators reproduces the intensity profiles in a suitable manner. Monte Carlo simulations in a water phantom show that the accelerator head model used for simulations is sufficient. No significant overestimations of dose values inside the target volume by the pencil beam algorithm are found in the thorax phantom. An overestimation of dose values in lung by the pencil beam algorithm is also not found. Expected dose calculation errors of the pencil beam algorithm are suppressed, because the dose to the low density region lung is reduced by the use of a non-coplanar beam arrangement and by intensity modulation.

  9. High performance parallel Monte Carlo transport computations for ITER fusion neutronics applications

    International Nuclear Information System (INIS)

    Large scale neutronics calculations for radiation safety and machine reliability are required to support design activities for the ITER fusion reactor which is currently in phase of construction. Its large size and complexity of diagnostics, control and heating systems and ports, and also channel penetrations inside the thick blanket shielding surrounding the 14 MeV D-T neutron source are essential challenges for neutronics calculations. In the ITER tokamak geometry, the Monte Carlo (MC) method is the preferred one for radiation transport calculations. This method allows describing neutrons interactions with matter by tracking individual particle histories. The precision of the MC method depends on number of sampled particles according to statistical laws and on systematic uncertainties introduced by modeling assumptions. Due to the independence of particle histories, their tracks can be processed in parallel. Parallel computations on high performance cluster computers substantially increase number of sampled particles and therefore allow reaching the desired statistical precision of the MC results. Use of CAD-based approach with high spatial resolution improves systematic adequacy of the MC geometry modeling. These achievements are demonstrated on radiation transport calculations for designing the Blanket Shield Module and Auxiliary Shield of the ITER Electron Cyclotron Heating (ECH) upper launcher. (author)

  10. Hybrid two-dimensional Monte-Carlo electron transport in self-consistent electromagnetic fields

    International Nuclear Information System (INIS)

    The physics and numerics of the hybrid electron transport code ANTHEM are described. The need for the hybrid modeling of laser generated electron transport is outlined, and a general overview of the hybrid implementation in ANTHEM is provided. ANTHEM treats the background ions and electrons in a laser target as coupled fluid components moving relative to a fixed Eulerian mesh. The laser converts cold electrons to an additional hot electron component which evolves on the mesh as either a third coupled fluid or as a set of Monte Carlo PIC particles. The fluids and particles move in two-dimensions through electric and magnetic fields calculated via the Implicit Moment method. The hot electrons are coupled to the background thermal electrons by Coulomb drag, and both the hot and cold electrons undergo Rutherford scattering against the ion background. Subtleties of the implicit E- and B-field solutions, the coupled hydrodynamics, and large time step Monte Carlo particle scattering are discussed. Sample applications are presented

  11. Burnup calculation capability in the PSG2 / Serpent Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    The PSG continuous-energy Monte Carlo reactor physics code has been developed at VTT Technical Research Centre of Finland since 2004. The code is mainly intended for group constant generation for coupled reactor simulator calculations and other tasks traditionally handled using deterministic lattices physics codes. The name was recently changed from acronym PSG to 'Serpent', and the capabilities have been extended by implementing built-in burnup calculation routines that enable the code to be used for fuel cycle studies and the modelling of irradiated fuels. This paper presents the methodology used for burnup calculation. Serpent has two fundamentally different options for solving the Bateman depletion equations: 1) the Transmutation Trajectory Analysis method (TTA), based on the analytical solution of linearized depletion chains and 2) the Chebyshev Rational Approximation Method (CRAM), an advanced matrix exponential solution developed at VTT. The first validation results are compared to deterministic CASMO-4E calculations. It is also shown that the overall running time in Monte Carlo burnup calculation can be significantly reduced using specialized calculation techniques, and that the continuous-energy Monte Carlo method is becoming a viable alternative to deterministic assembly burnup codes. (authors)

  12. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  13. Mass attenuation coefficient calculations of different detector crystals by means of FLUKA Monte Carlo method

    Science.gov (United States)

    Ebru Ermis, Elif; Celiktas, Cuneyt

    2015-07-01

    Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals) were carried out by means of FLUKA Monte Carlo (MC) method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST) values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded from the study that FLUKA MC method can be an alternative way to calculate the gamma-ray mass attenuation coefficients of the detector materials.

  14. Monte Carlo calculation of the Born-Oppenheimer potential between two helium atoms

    International Nuclear Information System (INIS)

    Fully correlated Hylleraas-type electronic wave functions and a biased-selection Monte Carlo method have been used to find a rigorous upper bound to the Born-Oppenheimer potential between two helium atoms. The potential agrees with the experimental results of Burgmans, Farrar, and Lee (BFL) to within 1.4 Monte Carlo standard deviations for all nuclear separation distances calculated (4.5--15.0a/sub B/). At the potential minimum of 5.6a/sub B/ this bound (-7.10 +- 0.30 Ry) is slightly below the BFL value of -6.70 Ry

  15. Monte Carlo calculation of the Born-Oppenheimer potential between two helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lowther, R.E.; Coldwell, R.L.

    1980-07-01

    Fully correlated Hylleraas-type electronic wave functions and a biased-selection Monte Carlo method have been used to find a rigorous upper bound to the Born-Oppenheimer potential between two helium atoms. The potential agrees with the experimental results of Burgmans, Farrar, and Lee (BFL) to within 1.4 Monte Carlo standard deviations for all nuclear separation distances calculated (4.5--15.0a/sub B/). At the potential minimum of 5.6a/sub B/ this bound (-7.10 +- 0.30 Ry) is slightly below the BFL value of -6.70 Ry.

  16. Determination of scatter fractions of some materials by experimental studies and Monte Carlo calculations

    CERN Document Server

    Meric, N; Bor, D

    1999-01-01

    Scatter fractions have been determined experimentally for lucite, polyethylene, polypropylene, aluminium and copper of varying thicknesses using a polyenergetic broad X-ray beam of 67 kVp. Simulation of the experiment has been carried out by the Monte Carlo technique under the same input conditions. Comparison of the measured and predicted data with each other and with the previously reported values has been given. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer.

  17. Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@imperial.ac.uk; Foulkes, W. M. C. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-09-14

    We present a systematic and comprehensive study of finite-size effects in diffusion quantum Monte Carlo calculations of metals. Several previously introduced schemes for correcting finite-size errors are compared for accuracy and efficiency, and practical improvements are introduced. In particular, we test a simple but efficient method of finite-size correction based on an accurate combination of twist averaging and density functional theory. Our diffusion quantum Monte Carlo results for lithium and aluminum, as examples of metallic systems, demonstrate excellent agreement between all of the approaches considered.

  18. Automated-biasing approach to Monte Carlo shipping-cask calculations

    International Nuclear Information System (INIS)

    Computer Sciences at Oak Ridge National Laboratory, under a contract with the Nuclear Regulatory Commission, has developed the SCALE system for performing standardized criticality, shielding, and heat transfer analyses of nuclear systems. During the early phase of shielding development in SCALE, it was established that Monte Carlo calculations of radiation levels exterior to a spent fuel shipping cask would be extremely expensive. This cost can be substantially reduced by proper biasing of the Monte Carlo histories. The purpose of this study is to develop and test an automated biasing procedure for the MORSE-SGC/S module of the SCALE system

  19. Development and application of neutron transport methods and uncertainty analysis for reactor core calculations. Final report

    International Nuclear Information System (INIS)

    This report documents the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations''. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  20. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  1. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    Science.gov (United States)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system

  2. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  3. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75–2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  4. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; Shin, E H; Kim, J; Ahn, S H; Chung, K; Kim, D-H; Han, Y; Choi, D H [Samsung Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using the production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.

  5. Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples

    International Nuclear Information System (INIS)

    Highlights: • Gamma-ray mass attenuation coefficients of soils. • Radiation shielding properties of soil. • Comparison of calculated results with the theoretical and experimental ones. • The method can be applied to various media. - Abstract: We developed a simple Monte Carlo code to determine the mass attenuation coefficients of some soil samples at nine different gamma-ray energies (59.5, 80.9, 122.1, 159.0, 356.5, 511.0, 661.6, 1173.2 and 1332.5 keV). Results of the Monte Carlo calculations have been compared with tabulations based upon the results of photon cross section database (XCOM) and with experimental results by other researchers for the same samples. The calculated mass attenuation coefficients were found to be very close to the theoretical values and the experimental results

  6. Monte Carlo Calculation for Landmine Detection using Prompt Gamma Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seungil; Kim, Seong Bong; Yoo, Suk Jae [Plasma Technology Research Center, Gunsan (Korea, Republic of); Shin, Sung Gyun; Cho, Moohyun [POSTECH, Pohang (Korea, Republic of); Han, Seunghoon; Lim, Byeongok [Samsung Thales, Yongin (Korea, Republic of)

    2014-05-15

    Identification and demining of landmines are a very important issue for the safety of the people and the economic development. To solve the issue, several methods have been proposed in the past. In Korea, National Fusion Research Institute (NFRI) is developing a landmine detector using prompt gamma neutron activation analysis (PGNAA) as a part of the complex sensor-based landmine detection system. In this paper, the Monte Carlo calculation results for this system are presented. Monte Carlo calculation was carried out for the design of the landmine detector using PGNAA. To consider the soil effect, average soil composition is analyzed and applied to the calculation. This results has been used to determine the specification of the landmine detector.

  7. CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations

    Science.gov (United States)

    Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei

    2014-12-01

    We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.

  8. A Proposal on the Geometry Splitting Strategy to Enhance the Calculation Efficiency in Monte Carlo Simulation

    International Nuclear Information System (INIS)

    In this study, how the geometry splitting strategy affects the calculation efficiency was analyzed. In this study, a geometry splitting method was proposed to increase the calculation efficiency in Monte Carlo simulation. First, the analysis of the neutron distribution characteristics in a deep penetration problem was performed. Then, considering the neutron population distribution, a geometry splitting method was devised. Using the proposed method, the FOMs with benchmark problems were estimated and compared with the conventional geometry splitting strategy. The results show that the proposed method can considerably increase the calculation efficiency in using geometry splitting method. It is expected that the proposed method will contribute to optimizing the computational cost as well as reducing the human errors in Monte Carlo simulation. Geometry splitting in Monte Carlo (MC) calculation is one of the most popular variance reduction techniques due to its simplicity, reliability and efficiency. For the use of the geometry splitting, the user should determine locations of geometry splitting and assign the relative importance of each region. Generally, the splitting parameters are decided by the user's experience. However, in this process, the splitting parameters can ineffectively or erroneously be selected. In order to prevent it, there is a recommendation to help the user eliminate guesswork, which is to split the geometry evenly. And then, the importance is estimated by a few iterations for preserving population of particle penetrating each region. However, evenly geometry splitting method can make the calculation inefficient due to the change in mean free path (MFP) of particles

  9. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  10. SU-E-T-236: Monte Carlo Calculations for Radiosurgery of the Clivus

    International Nuclear Information System (INIS)

    Purpose: We sought to determine if dosimetric differences exist between Ray-Trace (RT) and Monte-Carlo (MC) calculation algorithms for radiosurgery for tumors of the clivus, given their proximity to air-tissue inhomogeneity. Methods: We retrospectively identified 10 patients with a tumor of the clivus where the target was located near an air-tissue interface. CyberKnife treatment was delivered in 1 to 5 fractions. Plans originally calculated with the RT algorithm were re-calculated with the same monitor units (MU) with the MC algorithm. Similarly, plans originally calculated with MC were recalculated with RT. MC calculations were performed using High Resolution with 2% uncertainty on the MultiPlan 4.6 planning system. If the RT plans were originally calculated using water-air density model, they were re-calculated with Body standard density model, and then compared with MC plans computed with Body standard density model. The maximum dose (Dmax) to the planning target volumes (PTV) and critical structures, minimum dose (Dmin) and coverage percentage for the PTV were calculated. Results: For 8 cases, MC PTV Dmin was a median 5% (range 0–10%) and Dmax a median 6% (range 3–9%) higher than for RT. For 2 cases, MC PTV Dmin was 6 and 2% and Dmax was 1 and 3% lower than for RT. MC PTV Dmin and Dmax maybe higher or lower than for RT even though the target coverage for MC was less than for RT (median 4%, range 0–13%) with the same MU used. The degree of differences depends on the location of the target relative to the air-tissue inhomogeneity. Examples are shown that the targets are underdosed near the air-tissue inhomogenity. Conclusion: Monte Carlo dose calculations are recommended for targets near tissue homogeneity such as the clivus. Assuming that Monte Carlo more closely approximates the true dosimetry, the use of Ray Trace could overestimate target coverage

  11. Monte Carlo calculation of the collision density of superthermal produced H atoms in thermal H2 gas

    CERN Document Server

    Panarese, A

    2011-01-01

    We propose a simple and reliable method to study the collision density of H atoms following their production by chemical mechanisms. The problem is relevant to PDR's, shocks, photospheres, atmospheric entry problems. We show that the thermalization of H atoms can be conveniently studied by a simple method and set the basis for further investigations. Besides our aims are also to review the theoretical basis, the limitation of simpler approaches and address the analogue problems in neutronics. The method adopted is Monte Carlo method including the thermal distri- bution of background molecules. The transport cross section is determined by the inversion of transport data. Plots of the collisions density of H atoms in H2 gas are calculated and discussed also in the context of simple theories. The application of the results to astrophysical problems is outlined.

  12. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    International Nuclear Information System (INIS)

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution

  13. Mass attenuation coefficient calculations of different detector crystals by means of FLUKA Monte Carlo method

    OpenAIRE

    Ermis Elif Ebru; Celiktas Cuneyt

    2015-01-01

    Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals) were carried out by means of FLUKA Monte Carlo (MC) method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST) values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded f...

  14. Propagation of nuclear data uncertainties in fuel cycle calculations using Monte-Carlo technique

    International Nuclear Information System (INIS)

    Nowadays, the knowledge of uncertainty propagation in depletion calculations is a critical issue because of the safety and economical performance of fuel cycles. Response magnitudes such as decay heat, radiotoxicity and isotopic inventory and their uncertainties should be known to handle spent fuel in present fuel cycles (e.g. high burnup fuel programme) and furthermore in new fuel cycles designs (e.g. fast breeder reactors and ADS). To deal with this task, there are different error propagation techniques, deterministic (adjoint/forward sensitivity analysis) and stochastic (Monte-Carlo technique) to evaluate the error in response magnitudes due to nuclear data uncertainties. In our previous works, cross-section uncertainties were propagated using a Monte-Carlo technique to calculate the uncertainty of response magnitudes such as decay heat and neutron emission. Also, the propagation of decay data, fission yield and cross-section uncertainties was performed, but only isotopic composition was the response magnitude calculated. Following the previous technique, the nuclear data uncertainties are taken into account and propagated to response magnitudes, decay heat and radiotoxicity. These uncertainties are assessed during cooling time. To evaluate this Monte-Carlo technique, two different applications are performed. First, a fission pulse decay heat calculation is carried out to check the Monte-Carlo technique, using decay data and fission yields uncertainties. Then, the results, experimental data and reference calculation (JEFF Report20), are compared. Second, we assess the impact of basic nuclear data (activation cross-section, decay data and fission yields) uncertainties on relevant fuel cycle parameters (decay heat and radiotoxicity) for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) fuel cycle. After identifying which time steps have higher uncertainties, an assessment of which uncertainties have more relevance is performed

  15. MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners

    International Nuclear Information System (INIS)

    MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)

  16. Application of ENDF nuclear data for testing a Monte-Carlo neutron and photon transport code

    International Nuclear Information System (INIS)

    A Monte-Carlo photon and neutron transport code was developed at OAEP. The code was written in C and C++ languages in an object-oriented programming style. Constructive solid geometry (CSG), rather than combinatorial, was used such that making its input file more readable and recognizable. As the first stage of code validation, data from some ENDF files, in the MCNP's specific format, were used and compared with experimental data. The neutron (from a 300 mCi Am/Be source) attenuation by water was chosen to compare the results. The agreement of the quantity 1/Σ among the calculation from SIPHON and MCNP, and the experiment - which are 10.39 cm, 9.71 cm and 10.25 cm respectively - was satisfactorily well within the experimental uncertainties. These results also agree with the 10.8 cm result of N.M., Mirza, et al. (author)

  17. Towards scalable parellelism in Monte Carlo particle transport codes using remote memory access

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Forget, Benoit [MIT

    2010-01-01

    One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, they investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.

  18. Construction of Monte Carlo operators in collisional transport theory

    International Nuclear Information System (INIS)

    A Monte Carlo approach for investigating the dynamics of quiescent collisional magnetoplasmas is presented, based on the discretization of the gyrokinetic equation. The theory applies to a strongly rotating multispecies plasma, in a toroidally axisymmetric configuration. Expressions of the Monte Carlo collision operators are obtained for general v-space nonorthogonal coordinates systems, in terms of approximate solutions of the discretized gyrokinetic equation. Basic features of the Monte Carlo operators are that they fullfill all the required conservation laws, i.e., linear momentum and kinetic energy conservation, and in addition that they take into account correctly also off-diagonal diffusion coefficients. The present operators are thus potentially useful for describing the dynamics of a multispecies toroidal magnetoplasma. In particular, strict ambipolarity of particle fluxes is ensured automatically in the limit of small departures of the unperturbed particle trajectories from some initial axisymmetric toroidal magnetic surfaces

  19. Recent advances in the microscopic calculations of level densities by the shell model Monte Carlo method

    International Nuclear Information System (INIS)

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (1) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (2) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes 59-64Ni and of a heavy deformed rare-earth nucleus 162Dy and found them to be in close agreement with various experimental data sets. (author)

  20. Quantum Monte Carlo calculation of the binding energy of the beryllium dimer

    International Nuclear Information System (INIS)

    The accurate calculation of the binding energy of the beryllium dimer is a challenging theoretical problem. In this study, the binding energy of Be2 is calculated using the diffusion Monte Carlo (DMC) method, using single Slater determinant and multiconfigurational trial functions. DMC calculations using single-determinant trial wave functions of orbitals obtained from density functional theory calculations overestimate the binding energy, while DMC calculations using Hartree-Fock or CAS(4,8), complete active space trial functions significantly underestimate the binding energy. In order to obtain an accurate value of the binding energy of Be2 from DMC calculations, it is necessary to employ trial functions that include excitations outside the valence space. Our best estimate DMC result for the binding energy of Be2, obtained by using configuration interaction trial functions and extrapolating in the threshold for the configurations retained in the trial function, is 908 cm−1, only slightly below the 935 cm−1 value derived from experiment

  1. Recent Advances in the Microscopic Calculations of Level Densities by the Shell Model Monte Carlo Method

    CERN Document Server

    Alhassid, Y; Liu, S; Mukherjee, A; Nakada, H

    2014-01-01

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (i) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (ii) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes $^{59-64}$Ni and of a heavy deformed rare-earth nucleus $^{162}$Dy and found them to be in close agreement with various experimental data sets.

  2. BOOK REVIEW: Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    Science.gov (United States)

    Coulot, J.

    2003-08-01

    H Zaidi and G Sgouros (eds) Bristol: Institute of Physics Publishing (2002) £70.00, ISBN: 0750308168 Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with `therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique

  3. Stabilizing Canonical-Ensemble Calculations in the Auxiliary-Field Monte Carlo Method

    CERN Document Server

    Gilbreth, C N

    2014-01-01

    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  4. Mean-field and Monte Carlo calculations of the equilibrium magnetic properties of uniaxial ferromagnetic particles

    International Nuclear Information System (INIS)

    The low field magnetic properties of small uniaxial ferromagnetic particles are studied. We assume spherical particles, whose shells are inscribed into a simple cubic lattice. Each site of the sphere harbours a spin of the particle, which is represented by continuous vectors of unitary magnitude. The model is described by a classical Heisenberg model, where only nearest-neighbor interactions are taken into account. We employ mean-field calculations and Monte Carlo simulations to determine the magnetic properties of particles of different sizes, with radii ranging from three up to twelve lattice spacings. We consider the cases where the external magnetic field is applied along and perpendicularly to the easy axis of the particle. We determine the critical temperature as a function of the anisotropy and size of the particle. Monte Carlo calculations at low temperatures recover the Bloch law, showing that the magnetization decreases with a T3/2 law for isotropic particles larger than three spherical shells

  5. Shielding evaluation for e-Linac - Inter-comparison of Monte Carlo codes and analytical calculations

    International Nuclear Information System (INIS)

    Estimation of optimum shielding thickness is an important aspect in radiation protection as well as in assessment of cost effectiveness of any upcoming accelerator facility. Analytical calculations for shielding estimates are fast and being frequently used even though they are very approximate. Estimates by Monte Carlo codes, on the other hand is accurate, provided used in a judicious manner, but they are very time consuming and require high end computational hardware. The purpose of this work is to compare the results from various available Monte Carlo codes, such as FLUKA and EGSmc. The estimated output was also compared with the analytical techniques. For the work, an e-Linac facility of 50 MeV electron beam was used and calculations were carried out with 1 mA beam current. (author)

  6. Adjoint Monte Carlo calculation of charged plasma particle flux to wall

    CERN Document Server

    Äkäslompolo, Simppa

    2015-01-01

    This manuscript describes an adjoint/reverse Monte Carlo method to calculate the flux of charged plasma particles to the wall of e.g. a tokamak. Two applications are described: a fusion product activation probe and a neutral beam injection prompt loss measurement with a fast ion loss diagnostic. In both cases, the collisions of the particles with the background plasma can be omitted.

  7. Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN

    Science.gov (United States)

    Kolník, Ján; Oǧuzman, Ismail H.; Brennan, Kevin F.; Wang, Rongping; Ruden, P. Paul

    1997-01-01

    Calculations of the high-field electronic transport properties of bulk zinc-blende and wurtzite phase gallium nitride are presented focusing particularly on the electron initiated impact ionization rate. The calculations are performed using ensemble Monte Carlo simulations, which include the full details of the band structure derived from an empirical pseudopotential method. The model also includes the numerically generated electron impact ionization transition rate, calculated based on the pseudopotential band structures for both crystallographic phases. The electron initiated impact ionization coefficients are calculated as a function of the applied electric field. The electron distribution is found to be cooler and the ionization coefficients are calculated to be lower in the wurtzite phase as compared to zinc-blende gallium nitride at compatable electric-field strengths. The higher electron energies and the resulting larger impact ionization coefficients in zinc-blende gallium nitride are believed to result from the combined effects of a lower density of states and phonon scattering rate for energies near and below 3 eV above the conduction-band minimum, and a somewhat higher ionization transition rate compared to the wurtzite phase. The nature of the impact ionization threshold in both phases of gallium nitride is predicted to be soft. Although there is considerable uncertainty in the knowledge of the scattering rates and the band structure at high energies which lead to uncertainty in the Monte Carlo calculations, the results presented provide a first estimate of what the electron initiated impact ionization rate in GaN can be expected to be.

  8. Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvio, A.; Bedwani, S.; Carrier, J-F. [Centre hospitalier de l' Université de Montréal (Canada); Bouchard, H. [National Physics Laboratory, Teddington (United Kingdom)

    2014-08-15

    Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization from single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.

  9. Charge transport in a-Si:H detectors: Comparison of analytical and Monte Carlo simulations

    International Nuclear Information System (INIS)

    To understand the signal formation in hydrogenated amorphous silicon (a-Si:H) p-i-n detectors, dispersive charge transport due to multiple trapping in a-Si:H tail states is studied both analytically and by Monte Carlo simulations. An analytical solution is found for the free electron and hole distributions n(x,t) and the transient current I(t) due to an initial electron-hole pair generated at an arbitrary depth in the detector for the case of exponential band tails and linear field profiles; integrating over all e-h pairs produced along the particle's trajectory yields the actual distributions and current; the induced charge Q(t) is obtained by numerically integrating the current. This generalizes previous models used to analyze time-of-flight experiments. The Monte Carlo simulation provides the same information but can be applied to arbitrary field profiles, field dependent mobilities and localized state distributions. A comparison of both calculations is made in a simple case to show that identical results are obtained over a large time domain. A comparison with measured signals confirms that the total induced charge depends on the applied bias voltage. The applicability of the same approach to other semiconductors is discussed

  10. Monte Carlo calculation of spectral lines for use in the Italian Protocol for dosimetry in Brachytherapy

    International Nuclear Information System (INIS)

    The Italian Committee for Dosimetry in Radiotherapy is about to produce a protocol for the dosimetry of brachytherapy sources that defines methods to measure the quantity 'air kerma rate in free air in a reference point' using ionisation chambers. Several parameters and quantities necessary to apply the protocol have to be calculated. In this presentation we show the methods used to calculate two of them: Pair, that account for the attenuation and scattering of photons in air; Nk(source), the calibration factor for each dosimeter and source type. Both quantities have been calculated by means of Monte Carlo simulations. To calculate Pair we score the photon fluence in the detector area, separately for 'primary photons', i.e. photons coming directly from the source without interacting in air; 'scattered photons', i.e. photons that are diffused from the air towards the scoring region; 'attenuated photons', i.e. primary photons directed towards the scoring region that are subtracted from the primary fluence by interactions in air. Pair is calculated as a combination of those fluences. Nk(source) is calculated starting from the air kerma rates due to spectral lines emitted by the source and from the corresponding calibration factors. The Monte Carlo code EGS4 is used, in a version modified in order to take into account the characteristics X-ray production. Results are shown for some of the sources most used in Italy

  11. Measured and Monte Carlo calculated k{sub Q} factors: Accuracy and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Ottawa Medical Physics Institute (OMPI), Ottawa Carleton Institute for Physics, Carleton University Campus, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Ottawa Medical Physics Institute (OMPI), Ottawa Carleton Institute for Physics, Carleton University Campus, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2011-08-15

    Purpose: The journal Medical Physics recently published two papers that determine beam quality conversion factors, k{sub Q}, for large sets of ion chambers. In the first paper [McEwen Med. Phys. 37, 2179-2193 (2010)], k{sub Q} was determined experimentally, while the second paper [Muir and Rogers Med. Phys. 37, 5939-5950 (2010)] provides k{sub Q} factors calculated using Monte Carlo simulations. This work investigates a variety of additional consistency checks to verify the accuracy of the k{sub Q} factors determined in each publication and a comparison of the two data sets. Uncertainty introduced in calculated k{sub Q} factors by possible variation of W/e with beam energy is investigated further. Methods: The validity of the experimental set of k{sub Q} factors relies on the accuracy of the NE2571 reference chamber measurements to which k{sub Q} factors for all other ion chambers are correlated. The stability of NE2571 absorbed dose to water calibration coefficients is determined and comparison to other experimental k{sub Q} factors is analyzed. Reliability of Monte Carlo calculated k{sub Q} factors is assessed through comparison to other publications that provide Monte Carlo calculations of k{sub Q} as well as an analysis of the sleeve effect, the effect of cavity length and self-consistencies between graphite-walled Farmer-chambers. Comparison between the two data sets is given in terms of the percent difference between the k{sub Q} factors presented in both publications. Results: Monitoring of the absorbed dose calibration coefficients for the NE2571 chambers over a period of more than 15 yrs exhibit consistency at a level better than 0.1%. Agreement of the NE2571 k{sub Q} factors with a quadratic fit to all other experimental data from standards labs for the same chamber is observed within 0.3%. Monte Carlo calculated k{sub Q} factors are in good agreement with most other Monte Carlo calculated k{sub Q} factors. Expected results are observed for the sleeve

  12. GPUMCD: a new GPU-oriented Monte Carlo dose calculation platform

    CERN Document Server

    Hissoiny, Sami; Ozell, Benoît; Després, Philippe

    2011-01-01

    Purpose: Monte Carlo methods are considered the gold standard for dosimetric computations in radiotherapy. Their execution time is however still an obstacle to the routine use of Monte Carlo packages in a clinical setting. To address this problem, a completely new, and designed from the ground up for the GPU, Monte Carlo dose calculation package for voxelized geometries is proposed: GPUMCD. Method : GPUMCD implements a coupled photon-electron Monte Carlo simulation for energies in the range 0.01 MeV to 20 MeV. An analogue simulation of photon interactions is used and a Class II condensed history method has been implemented for the simulation of electrons. A new GPU random number generator, some divergence reduction methods as well as other optimization strategies are also described. GPUMCD was run on a NVIDIA GTX480 while single threaded implementations of EGSnrc and DPM were run on an Intel Core i7 860. Results : Dosimetric results obtained with GPUMCD were compared to EGSnrc. In all but one test case, 98% o...

  13. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  14. FOCUS, Neutron Transport System for Complex Geometry Reactor Core and Shielding Problems by Monte-Carlo

    International Nuclear Information System (INIS)

    1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can

  15. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    Science.gov (United States)

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. PMID:26720262

  16. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    CERN Document Server

    Ilic, R D; Stankovic, S J

    2002-01-01

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...

  17. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, C.; Martin, W. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States); Rearden, B.; Williams, M. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Div., Bldg. 5700, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  18. Monte Carlo calculations for design of An accelerator based PGNAA facility

    International Nuclear Information System (INIS)

    Monte Carlo calculations were carried out for design of a set up for Prompt Gamma Ray Neutron Activation Analysis (PGNAA) by 14 MeV neutrons to analyze cement raw material samples. The calculations were carried out using code the MCNP4B2. Various geometry parameters of the PGNAA experimental setup such as sample thickness, moderator geometry and detector shielding etc were optimized by maximizing the prompt gamma ray yield of different elements of sample material. Finally calibration curve of the PGNAA setup were generated for various concentrations of calcium in the material sample. Results of this simulation are presented. (author)

  19. Monte Carlo calculations for design of An accelerator based PGNAA facility

    Energy Technology Data Exchange (ETDEWEB)

    Nagadi, M.M.; Naqvi, A.A. [King Fahd University of Petroleum and Minerals, Center for Applied Physical Sciences, Dhahran (Saudi Arabia); Rehman, Khateeb-ur; Kidwai, S. [King Fahd University of Petroleum and Minerals, Department of Physics, Dhahran (Saudi Arabia)

    2002-08-01

    Monte Carlo calculations were carried out for design of a set up for Prompt Gamma Ray Neutron Activation Analysis (PGNAA) by 14 MeV neutrons to analyze cement raw material samples. The calculations were carried out using code the MCNP4B2. Various geometry parameters of the PGNAA experimental setup such as sample thickness, moderator geometry and detector shielding etc were optimized by maximizing the prompt gamma ray yield of different elements of sample material. Finally calibration curve of the PGNAA setup were generated for various concentrations of calcium in the material sample. Results of this simulation are presented. (author)

  20. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria México, D.F. 04520, México (Mexico); Vázquez-López, C. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN Ave. IPN 2508, Col. San Pedro Zacatenco, México 07360, DF, México (Mexico)

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  1. The Monte Carlo calculation of gamma-ray backscattering from various materials

    International Nuclear Information System (INIS)

    The question is discussed of gamma backscattering on different materials. For coaxial geometry with a point source placed next to the material surface, using the Monte Carlo method the number of backscattered photons in variation with atomic number Z of the scatterer is calculated. A multiple scattering calculation is performed for 60Co and 137Cs. The obtained results are plotted in graphs showing the minima in each period of the periodic system, this for gases. For other elements the number of backscattered photons is dependent on the atomic number Z, primary gamma radiation energy, density, and the geometry of the experiment. (author)

  2. Full-core pin-power calculations using Monte Carlo codes

    International Nuclear Information System (INIS)

    Pin wise calculations of core power distribution have been performed for a criticality mock up installation that models a WWER-1000 reactor. Two Monte Carlo codes have been applied for solving of this problem: the MCNP4B code and the KENO-VI code from the SCALE 4.4 system. The codes use different kinds of neutron cross section data: pointwise continuous-energy ENDF/B-VI data and multigroup ENDF/B-V data. Comparisons of calculated results show that the MCNP4B and KENO-VI results are in good agreement. (authors)

  3. Monte Carlo criticality calculation for Pebble-type HTR-PROTEUS core

    International Nuclear Information System (INIS)

    These days, pebble-bed and other High-Temperature Gas-cooled Reactor (HTGR) designs are once again in vogue in connection with hydrogen production. In this study, as a part of establishing Monte Carlo computation system for HTGR core analysis, some criticality calculations for pebble-type HTGR were carried out using MCNP code. Firstly, the pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model, and, after the detailed MCNP modeling of the whole facility, criticality calculations were performed. It was also investigated the homogenization effect of TRISO fuel on criticality

  4. Monte Carlo Calculation Of Thermal And Epithermal Neutron Self-Shielding Factors

    International Nuclear Information System (INIS)

    Neutron activation measurement is often performed in a reactor neutron spectrum. When the size of the irradiation sample is not small enough and resonance peaks present in the cross section of the sample nuclide, the thermal and resonance self-shielding effects of neutron flux in the sample must be considered for correction. In this work, the Monte Carlo code MCNP-5 has been applied for calculation of the self-shielding factors for several standard samples and neutron monitors that are often used in measurements of thermal neutron capture cross sections and resonance integrals. The results of calculation are tabulated with different sample thickness and different irradiation geometries. (author)

  5. Calculation of neutron detection efficiency for the thick lithium glass using Monte Carlo method

    International Nuclear Information System (INIS)

    The neutron detector efficiencies of a NE912 (45mm in diameter, 9.55 mm in thickness) and 2 pieces of ST601 (40mm in diameter, 3 and 10 mm in thickness respectively) lithium glasses have been calculated with a Monte Carlo computer code. The energy range in the calculation is 10 keV to 2.0 MeV. The effect of time delayed caused by neutron multiple scattering in the detectors (prompt neutron detection efficiency) has been considered

  6. Applying graphics processor units to Monte Carlo dose calculation in radiation therapy

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-01-01

    Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.

  7. Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport

    International Nuclear Information System (INIS)

    Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations

  8. A half century of Monte Carlo, from slide rule and mechanical desk calculator to the laptop supercomputer

    International Nuclear Information System (INIS)

    Some early examples of Monte Carlo simulations of radiation transport, prior to the general availability of automatic electronic computers, are recalled. In particular, some results and details are presented of a gamma ray albedo calculation in the early 1950s by Hayward and Hubbell using mechanical desk calculators (+, -, x, / only), in which 67 trajectories were determined using the RAND book of random numbers, with three random numbers at each collision being used to determine (1) the Compton scatter energy loss (and thus the deflection angle), (2) the azimuthal angle and (3) the path length since the previous collision. Successive angles were compounded in three dimensions using a two-dimensional grid with a rotating arm with a slider on it, the device being dubbed an ''Ouija Board''. Survival probabilities along each path segment were determined analytically according to photoelectric absorption exponential attenuation in each of five materials, using a slide rule. For the five substances, H2O, Al, Cu, Sn and Pb, useful number and energy albedo values were obtained for 1 MeV photons incident at 0 (normal), 45 and 80 angles of incidence. Advances in the Monte Carlo method following this and other early-1950s computations, up to the present time with high-speed all-function automatic computers, are briefly reviewed. A brief review of advances in the input cross section data, particularly for photon interactions, over that same period, is included. (orig.)

  9. Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method

    CERN Document Server

    Wollaeger, Ryan T; Graziani, Carlo; Couch, Sean M; Jordan, George C; Lamb, Donald Q; Moses, Gregory A

    2013-01-01

    We explore the application of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) to radiation transport in strong fluid outflows with structured opacity. The IMC method of Fleck & Cummings is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking Monte Carlo particles through optically thick materials. The DDMC method of Densmore accelerates an IMC computation where the domain is diffusive. Recently, Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent neutrino transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally grey DDMC method. In this article we rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. The method described is suitable for a large variety of non-mono...

  10. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations

    Science.gov (United States)

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun

    2015-10-01

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  11. Improvements in the 2D TEP neutral particle transport calculation in Edge plasmas

    International Nuclear Information System (INIS)

    Extensions of the 2D Transmission and Escape Probability neutral particle transport method in treating the spatial non-uniformity of collision sources and neutral energy effects are presented. These extensions have been tested by benchmarks against Monte Carlo calculations for specially designed models and for realistic DIII-D discharges. The comparisons indicate these extensions improve accuracy of the TEP method. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Monte Carlo Studies of Charge Transport Below the Mobility Edge

    OpenAIRE

    Jakobsson, Mattias

    2012-01-01

    Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of h...

  13. Efficient Monte Carlo methods for light transport in scattering media

    OpenAIRE

    Jarosz, Wojciech

    2008-01-01

    In this dissertation we focus on developing accurate and efficient Monte Carlo methods for synthesizing images containing general participating media. Participating media such as clouds, smoke, and fog are ubiquitous in the world and are responsible for many important visual phenomena which are of interest to computer graphics as well as related fields. When present, the medium participates in lighting interactions by scattering or absorbing photons as they travel through the scene. Though th...

  14. New Physics Data Libraries for Monte Carlo Transport

    CERN Document Server

    Augelli, M; Kuster, M; Han, M; Kim, C H; Pia, M G; Quintieri, L; Seo, H; Saracco, P; Weidenspointner, G; Zoglauer, A

    2010-01-01

    The role of data libraries as a collaborative tool across Monte Carlo codes is discussed. Some new contributions in this domain are presented; they concern a data library of proton and alpha ionization cross sections, the development in progress of a data library of electron ionization cross sections and proposed improvements to the EADL (Evaluated Atomic Data Library), the latter resulting from an extensive data validation process.

  15. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables

  16. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Institute of Scientific and Technical Information of China (English)

    Chen Chaobin; Huang Qunying; Wu Yican

    2005-01-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of X-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  17. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Science.gov (United States)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  18. Burnup calculations of TR-2 Research Reactor with Monteburns Monte Carlo Code

    International Nuclear Information System (INIS)

    Full text: In this study, some neutronic calculations of first and second core cycles of 5 MW pool type TR-2 Research Reactor have been performed using Multi-Step Monte Carlo Burnup Code System MONTEBURNS and the results were compared with the values of experiments and other codes. Time dependent keff distribution and burnup ratios belong to first and second core cycles of TR-2 Research Reactor were compared and quite good consistence in the results were observed. After modeling the first and second core cycles of TR-2 with MCNP5 Monte Carlo code, MCNP5 used in MONTEBURNS code has been parallelized in 8 HP ProLiant BL680C G5 systems with 4 quad-core Intel Xeon E7330 CPU, utilizing the MPI parallel protocol and simulations were performed on the 128 cores Linux parallel computing machine system. The computation time was reduced by parallelization of MONTEBURNS which uses MCNP in many steps. (authors)

  19. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    CERN Document Server

    Bourva, L C A

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...

  20. Explicitly correlated trial wavefunctions in quantum Monte Carlo calculations of excited states of Be and Be-

    International Nuclear Information System (INIS)

    We present a new form of explicitly correlated wavefunction whose parameters are mainly linear, to circumvent the problem of the optimization of a large number of nonlinear parameters usually encountered with basis sets of explicitly correlated wavefunctions. With this trial wavefunction we have succeeded in minimizing the energy instead of the variance of the local energy, as is more common in quantum Monte Carlo methods. We have applied this wavefunction to the calculation of the energies of Be 3P (1s22p2) and Be-4So (1s22p3) by variational and diffusion Monte Carlo methods. The results compare favourably with those obtained by different types of explicitly correlated trial wavefunction already described in the literature. The energies obtained are improved with respect to the best variational ones found in the literature, and within one standard deviation of the estimated non-relativistic limits. (author)

  1. Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Although polygonal-surface computational human phantoms can address several critical limitations of conventional voxel phantoms, their Monte Carlo simulation speeds are much slower than those of voxel phantoms. In this study, we sought to overcome this problem by developing a new type of computational human phantom, a tetrahedral mesh phantom, by converting a polygonal surface phantom to a tetrahedral mesh geometry. The constructed phantom was implemented in the Geant4 Monte Carlo code to calculate organ doses as well as to measure computation speed, the values were then compared with those for the original polygonal surface phantom. It was found that using the tetrahedral mesh phantom significantly improved the computation speed by factors of between 150 and 832 considering all of the particles and simulated energies other than the low-energy neutrons (0.01 and 1 MeV), for which the improvement was less significant (17.2 and 8.8 times, respectively). (paper)

  2. Multireference X-Ray Emission and Absorption Spectroscopy calculations from Monte Carlo Configuration Interaction

    CERN Document Server

    Coe, J P

    2015-01-01

    We adapt the method of Monte Carlo configuration interaction to calculate core-hole states and use this for the computation of X-ray emission and absorption values. We consider CO, CH$_{4}$, NH$_{3}$, H$_{2}$O, HF, HCN, CH$_{3}$OH, CH$_{3}$F, HCl and NO using a 6-311G** basis. We also look at carbon monoxide with a stretched geometry and discuss the dependence of its results on the cutoff used. The Monte Carlo configuration interaction results are compared with EOM-CCSD values for X-ray emission and with experiment for X-ray absorption. Oscillator strengths are also computed and we quantify the multireference nature of the wavefunctions to suggest when approaches based on a single reference would be expected to be successful.

  3. Hard-sphere fluids inside spherical, hard pores. Grand canonical ensemble Monte Carlo calculations and integral equation approximations

    DEFF Research Database (Denmark)

    Sloth, Peter

    1990-01-01

    Density profiles and partition coefficients are obtained for hard-sphere fluids inside hard, spherical pores of different sizes by grand canonical ensemble Monte Carlo calculations. The Monte Carlo results are compared to the results obtained by application of different kinds of integral equation...

  4. Development of PC based Monte Carlo simulations for the calculation of scanner-specific normalized organ doses from CT

    International Nuclear Information System (INIS)

    This paper discusses the simulation of contemporary computed tomography (CT) scanners using Monte Carlo calculation methods to derive normalized organ doses, which enable hospital physicists to estimate typical organ and effective doses for CT examinations. The hardware used in a small PC-cluster at the Health Protection Agency (HPA) for these calculations is described. Investigations concerning optimization of software, including the radiation transport codes MCNP5 and MCNPX, and the Intel and PGI FORTRAN compilers, are presented in relation to results and calculation speed. Differences in approach for modelling the X-ray source are described and their influences are analysed. Comparisons with previously published calculations at HPA from the early 1990's proved satisfactory for the purposes of quality assurance and are presented in terms of organ dose ratios for whole body exposure and differences in organ location. Influences on normalized effective dose are discussed in relation to choice of cross section library, CT scanner technology (contemporary multi slice versus single slice), definition for effective dose (1990 and 2007 versions) and anthropomorphic phantom (mathematical and voxel). The results illustrate the practical need for the updated scanner-specific dose coefficients presently being calculated at HPA, in order to facilitate improved dosimetry for contemporary CT practice. (authors)

  5. A benchmark comparison of Monte Carlo particle transport algorithms for binary stochastic mixtures

    International Nuclear Information System (INIS)

    We numerically investigate the accuracy of two Monte Carlo algorithms originally proposed by Zimmerman and Zimmerman and Adams for particle transport through binary stochastic mixtures. We assess the accuracy of these algorithms using a standard suite of planar geometry incident angular flux benchmark problems and a new suite of interior source benchmark problems. In addition to comparisons of the ensemble-averaged leakage values, we compare the ensemble-averaged material scalar flux distributions. Both Monte Carlo transport algorithms robustly produce physically realistic scalar flux distributions for the benchmark transport problems examined. The base Monte Carlo algorithm reproduces the standard Levermore-Pomraning model results. The improved Monte Carlo algorithm generally produces significantly more accurate leakage values and also significantly more accurate material scalar flux distributions. We also present deterministic atomic mix solutions of the benchmark problems for comparison with the benchmark and the Monte Carlo solutions. Both Monte Carlo algorithms are generally significantly more accurate than the atomic mix approximation for the benchmark suites examined.

  6. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Iandola, F N; O' Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  7. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  8. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of non-elastic interactions

    CERN Document Server

    Tseung, H Wan Chan; Beltran, C

    2014-01-01

    Purpose: Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on GPUs. However, these usually use simplified models for non-elastic (NE) proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and NE collisions. Methods: Using CUDA, we implemented GPU kernels for these tasks: (1) Simulation of spots from our scanning nozzle configurations, (2) Proton propagation through CT geometry, considering nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) Modeling of the intranuclear cascade stage of NE interactions, (4) Nuclear evaporation simulation, and (5) Statistical error estimates on the dose. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions, (2) Dose calculations in homogeneous phantoms, (3) Re-calculations of head and neck plans from a commercial treatment planning system (TPS), and compared with Geant4.9.6p2/TOPAS. Results: Yields, en...

  9. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    International Nuclear Information System (INIS)

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning. (paper)

  10. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    Science.gov (United States)

    Zhang, M.; Zou, W.; Chen, T.; Kim, L.; Khan, A.; Haffty, B.; Yue, N. J.

    2014-01-01

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning.

  11. Fission source convergence of Monte Carlo criticality calculations in weakly coupled fissile arrays

    International Nuclear Information System (INIS)

    Anomalous fission source convergence in a Monte Carlo criticality calculation for a weakly coupled array of two fissile material units are demonstrated. Introducing coupling coefficients among array units, it is quantitatively explained that this anomaly is caused by an insufficient restoring force to the true distribution and its large statistical uncertainty, especially, in a symmetric system. A new approach for estimating the fission source intensity ratio in an array is proposed by obtaining the eigenvector of a coupling coefficient matrix. This method also gives the uncertainty of the ratio as well as the ratio, which is available for evaluating the accuracy of the obtained ratio. The correlation between a calculated keff and the fission source intensity ratio is formulated. It is illustrated theoretically and empirically that there is no significant correlation in a symmetric two-unit array system. In general, care should be taken that a calculated keff may be biased by an incorrect fission source distribution, especially, in a slightly asymmetric system. A regionwise weight adjustment method is developed such that the fission source intensity ratio is forced to converge to a predetermined ratio. Using this method, a satisfactory convergence can be achieved. A larger number of neutrons per generation is recommended for a Monte Carlo criticality calculation of a weakly coupled array of units. (author)

  12. Raystation Monte Carlo application: evaluation of electron calculations with entry obliquity.

    Science.gov (United States)

    Archibald-Heeren, Ben; Liu, Guilin

    2016-06-01

    To evaluate the accuracy of Raystation's implementation for Monte Carlo VMC ++ with electrons at varying angles of incidence for low and medium energy electron beams. Thirty-two profile and percentage depth dose scans were taken at 5° incident angle intervals for 6 and 12 MeV and compared to extracted fluences from Raystation calculations using gamma analysis with 2 %/2 mm criteria. Point dose measurements were compared to calculated doses to determine output accuracy. Electron profile and percentage depth dose curves for both energies show good agreement between 0° and 20° with 29/30 scans above 90 % pass rate. Average variation between calculated and measured point doses was -0.73 % with all measurements falling within ±2 % of calculated dose. Raystation's application of VMC ++ Monte Carlo algorithm provides clinically acceptable accuracy for low and medium energy electron dosimetry at incident angles up to 20° for Varian Clinac iX models. PMID:27052438

  13. Calculating Probability Tables for the Unresolved-Resonance Region Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    A new module, Probability tables for the Unresolved Region using Monte Carlo (PURM), has been developed for the AMPX-2000 cross-section-processing system. PURM uses a Monte Carlo approach to calculate probability tables on an evaluator-defined energy grid in the unresolved-resonance region. For each probability table, PURM samples a Wigner spacing distribution for pairs of resonances surrounding the reference energy (i.e., energy specified in the cross-section evaluation). The resonance distribution is sampled for each spin sequence (i.e., l-J pair), and PURM uses the δ3-statistics test to determine the number of resonances to sample for each spin sequence. For each resonance, PURM samples the resonance widths from a chi-square distribution for a specified number of degrees of freedom. Once the resonance parameters are sampled, PURM calculates the total, capture, fission, and scatter cross sections at the reference energy using the single-level Breit-Wigner formalism with appropriate treatment for temperature effects. Probability tables have been calculated and compared with NJOY. The probability tables and cross-section values that are calculated by PURM and NJOY are in agreement, and the verification studies with NJOY establish the computational capability for generating probability tables using the new AMPX module PURM

  14. EGS-Ray, a program for the visualization of Monte-Carlo calculations in the radiation physics

    International Nuclear Information System (INIS)

    A Windows program is introduced which allows a relatively easy and interactive access to Monte Carlo techniques in clinical radiation physics. Furthermore, this serves as a visualization tool of the methodology and the results of Monte Carlo simulations. The program requires only little effort to formulate and calculate a Monte Carlo problem. The Monte Carlo module of the program is based on the well-known EGS4/PRESTA code. The didactic features of the program are presented using several examples common to the routine of the clinical radiation physicist. (orig.)

  15. The Monte Carlo method for shielding calculations analysis by MORSE code of a streaming case in the CAORSO BWR power reactor shielding (Italy)

    International Nuclear Information System (INIS)

    In the field of shielding, the requirement of radiation transport calculations in severe conditions, characterized by irreducible three-dimensional geometries has increased the use of the Monte Carlo method. The latter has proved to be the only rigorous and appropriate calculational method in such conditions. However, further efforts at optimization are still necessary to render the technique practically efficient, despite recent improvements in the Monte Carlo codes, the progress made in the field of computers and the availability of accurate nuclear data. Moreover, the personal experience acquired in the field and the control of sophisticated calculation procedures are of the utmost importance. The aim of the work which has been carried out is the gathering of all the necessary elements and features that would lead to an efficient utilization of the Monte Carlo method used in connection with shielding problems. The study of the general aspects of the method and the exploitation techniques of the MORSE code, which has proved to be one of the most comprehensive of the Monte Carlo codes, lead to a successful analysis of an actual case. In fact, the severe conditions and difficulties met have been overcome using such a stochastic simulation code. Finally, a critical comparison between calculated and high-accuracy experimental results has allowed the final confirmation of the methodology used by us

  16. Calculation of the external effective dose from a radioactive plume by using Monte Carlo dose kernel integration

    CERN Document Server

    Vojtyla, P

    2005-01-01

    The radiological impact of emissions of radioactive substances from accelerator facilities is characterized by a dominant contribution of the external exposure from short-lived radionuclides in the plume. Ventilation outlets of accelerator facilities are often at low emission heights and receptors reside very close to stacks. Simplified exposure models are not appropriate and integration of the dose kernel over the radioactive plume is required. By using Monte Carlo integration with certain biasing, the integrand can be simplified substantially and an optimum spatial resolution can be achieved. Moreover, long-term releases can be modeled by sampling real weather situations. The mathematical formulation does not depend on any particular atmospheric dispersion model and the applicable code parts can be designed separately, which is another advantage. The obtained results agree within ±10% with results calculated for the semi-infinite cloud model by using detailed particle transport codes and human phantoms.

  17. A new Monte Carlo program for calculations of dose distributions within tissue equivalent phantoms irradiated from π--meson beams

    International Nuclear Information System (INIS)

    The present paper reports on the structure and first results from a new Monte Carlo programme for calculations of energy distributions within tissue equivalent phantoms irradiated from π--beams. Each pion or generated secondary particle is transported until to the complete loss of its kinetic energy taking into account pion processes like multiple Coulomb scattering, pion reactions in flight and absorption of stopped pions. The code uses mainly data from experiments, and physical models have been added only in cases of lacking data. Depth dose curves for a pensil beam of 170 MeV/c within a water phantom are discussed as a function of various parameters. Isodose contours are plotted resulting from a convolution of an extended beam profile and the dose distribution of a pencil beams. (orig.)

  18. Vectorization techniques for neutron transport Monte Carlo codes

    International Nuclear Information System (INIS)

    Four Monte Carlo codes, KENO IV, MORSE-DD, MCNP and VIM, have been vectorized already at JAERI Computing Center aiming at an increase in clculation performance, and speed-up ratios of vectorized codes to the original ones were found to be low values between 1.3 and 1.5. In this report the vectorization processes for these four codes are reviewed comprehensively, and methods of analysis for vectorization, modification of control structures of codes and debugging techniques are discussed. The reason for low speed-up ratios is also discussed. (author)

  19. New electron multiple scattering distributions for Monte Carlo transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))

    1994-10-01

    New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))

  20. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)