Polarization Properties of Ferroelectric Superlattice Studied by Monte Carlo Simulation
Institute of Scientific and Technical Information of China (English)
Guiwu LU; Hairui XIA; Pijun LIU
2001-01-01
The polarization property of a ferroelectric superlattice formed from two alternating materials was studied using Monte Carlo computer simulation. Our study has been developed in a framework of the transverse Ising model with nearest-neighbor interactions. Both the effect of the transverse field and interface coupling strength have been taken into consideration. In view of our results which is in good agreement with previous theoretical results, it is concluded that the Curie temperature of the superlattice increases with the increase of the interface coupling strength JAB.The remanent polarization and saturation coercive force of the superlattice are also presented.
Monte Carlo simulations and dosimetric studies of an irradiation facility
Belchior, A.; Botelho, M. L.; Vaz, P.
2007-09-01
There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool—MCNPX—in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.
Local dose enhancement in radiation therapy: Monte Carlo simulation study
International Nuclear Information System (INIS)
The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)
Domain-growth kinetics and aspects of pinning: A Monte Carlo simulation study
DEFF Research Database (Denmark)
Castán, T.; Lindgård, Per-Anker
1991-01-01
By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic transformati......By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic...... transformations, surface reconstructions, and magnetic transitions. No external impurities are introduced, but the model has a number of intrinsic, annealable pinning mechanisms, which strongly influences the growth kinetics. It allows a study of pinning effects of three kinds: (a) pinning of domain walls...
International Nuclear Information System (INIS)
Monte Carlo simulation has been used to study the critical behaviors and the magnetic properties of a ferromagnetic thin Ising film with a plaquette four spin interaction. The effects of the ratio rs=Js/J of the surface exchange interaction to the bulk one and the four spin interaction on phase diagrams are investigated. A number of characteristic behaviors have been found, which include the first- and second-order phase transitions, thus also the tricritical points, triple point and isolated critical point. - Highlights: ► The magnetic behavior of an Ising ferromagnetic film has been studied using Monte Carlo simulation. ► The effects of the four spin interaction on the phase diagrams have been examined. ► The thermal variations of magnetizations have been investigated. ► The dependence of the total susceptibility on the temperature is investigated
M. Valiskó; D. Boda
2005-01-01
A systematic Monte Carlo (MC) simulation and perturbation theoretical (PT) study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS) fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the diele...
The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS
Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih
2015-07-01
To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.
Optimization of Monte Carlo simulations
Bryskhe, Henrik
2009-01-01
This thesis considers several different techniques for optimizing Monte Carlo simulations. The Monte Carlo system used is Penelope but most of the techniques are applicable to other systems. The two mayor techniques are the usage of the graphics card to do geometry calculations, and raytracing. Using graphics card provides a very efficient way to do fast ray and triangle intersections. Raytracing provides an approximation of Monte Carlo simulation but is much faster to perform. A program was ...
Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study
Energy Technology Data Exchange (ETDEWEB)
Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)
2015-06-15
Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical
International Nuclear Information System (INIS)
The resulting neutron captures in 10B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image analysis was
Institute of Scientific and Technical Information of China (English)
WANG Mao-Xiang
2009-01-01
We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.
International Nuclear Information System (INIS)
The main goal of this work is focused on testing the applicability of Geant4 electromagnetic models for studying mass attenuations for different types of composite materials at 59.5, 80, 356, 661.6, 1173.2 and 1332.5 keV photon energies. The simulated results of mass attenuation coefficients were compared with the experimental and theoretical data for the same samples and a good agreement has been observed. The results indicate that this process can be followed to determine the data on the attenuation of gamma-rays with the several energies in different materials. - Highlights: • We measure mass attenuation of gamma rays through different materials. • We model a design of a simple model using Geant-4 Monte Carlo Simulation for calculating mass attenuation of different composite materials. • We compare the model with the theoretical calculation of NIST XCOM code
Kadoura, Ahmad
2011-06-06
Lennard‐Jones (L‐J) and Buckingham exponential‐6 (exp‐6) potential models were used to produce isotherms for methane at temperatures below and above critical one. Molecular simulation approach, particularly Monte Carlo simulations, were employed to create these isotherms working with both canonical and Gibbs ensembles. Experiments in canonical ensemble with each model were conducted to estimate pressures at a range of temperatures above methane critical temperature. Results were collected and compared to experimental data existing in literature; both models showed an elegant agreement with the experimental data. In parallel, experiments below critical temperature were run in Gibbs ensemble using L‐J model only. Upon comparing results with experimental ones, a good fit was obtained with small deviations. The work was further developed by adding some statistical studies in order to achieve better understanding and interpretation to the estimated quantities by the simulation. Methane phase diagrams were successfully reproduced by an efficient molecular simulation technique with different potential models. This relatively simple demonstration shows how powerful molecular simulation methods could be, hence further applications on more complicated systems are considered. Prediction of phase behavior of elemental sulfur in sour natural gases has been an interesting and challenging field in oil and gas industry. Determination of elemental sulfur solubility conditions helps avoiding all kinds of problems caused by its dissolution in gas production and transportation processes. For this purpose, further enhancement to the methods used is to be considered in order to successfully simulate elemental sulfur phase behavior in sour natural gases mixtures.
Solvent effect on Rb+ to K+ ion mutation: Monte Carlo simulation study
International Nuclear Information System (INIS)
The solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for Rb+ to K+ mutation in several solvents have been investigated using Monte Carlo simulation (MCS) of statistical perturbation theory (SPT). In comparing the relative free energies for interconversion of one ion pair, Rb+ to K+, in H2O (TIP4P) in this study with the relative free energies of the computer simulations and the experimental, we found that the figure in this study is -5.00 ± 0.11 kcal/mol. There is good agreement among various studies, taking into account both methods used to obtain the hydration free energies and standard deviations. There is also good agreement between the calculated structural properties of this study and the simulations, ab initio and the experimental results. We have explained the deviation of the relationship between the free energy difference and the Onsager dielectric function of solvents by the electron pair donor properties of the solvents. For the Rb+ and K+ ion pair, the Onsager dielectric function of solvents (or solvent permittivity), donor number of solvent and the differences in solvation dominate the differences in the relative free energies of solvation and partition coefficients
Proton Upset Monte Carlo Simulation
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Computed tomography with a low-intensity proton flux: results of a Monte Carlo simulation study
Schulte, Reinhard W.; Klock, Margio C. L.; Bashkirov, Vladimir; Evseev, Ivan G.; de Assis, Joaquim T.; Yevseyeva, Olga; Lopes, Ricardo T.; Li, Tianfang; Williams, David C.; Wroe, Andrew J.; Schelin, Hugo R.
2004-10-01
Conformal proton radiation therapy requires accurate prediction of the Bragg peak position. This problem may be solved by using protons rather than conventional x-rays to determine the relative electron density distribution via proton computed tomography (proton CT). However, proton CT has its own limitations, which need to be carefully studied before this technique can be introduced into routine clinical practice. In this work, we have used analytical relationships as well as the Monte Carlo simulation tool GEANT4 to study the principal resolution limits of proton CT. The GEANT4 simulations were validated by comparing them to predictions of the Bethe Bloch theory and Tschalar's theory of energy loss straggling, and were found to be in good agreement. The relationship between phantom thickness, initial energy, and the relative electron density uncertainty was systematically investigated to estimate the number of protons and dose needed to obtain a given density resolution. The predictions of this study were verified by simulating the performance of a hypothetical proton CT scanner when imaging a cylindrical water phantom with embedded density inhomogeneities. We show that a reasonable density resolution can be achieved with a relatively small number of protons, thus providing a possible dose advantage over x-ray CT.
Monte Carlo simulation study of melittin: Protein folding and temperature dependence
Monajjemi, M.; Ketabi, S.; Amiri, A.
2006-11-01
The tetramerization of melittin, a 26-amino-acid peptide, is considered as a model for protein folding. The Monte Carlo simulation was used to study the folding arrangement of melittin, and the results are compared with the experiment. An acceptance rate of 50% for new configurations is achieved by using ranges of ±0.001 Å for the translations and ±15°C for the rotations. Around 311 K, the folded structure of the protein has the greatest stability; the range from -40 to -80 shows the best ϕ angles for melittin. The final optimized structure of melittin strongly depends on the temperature. The melittin tetramer is found to have a temperature of maximum stability ranging from 35.5 to 43°C.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pengfei; Wang, Qiang, E-mail: q.wang@colostate.edu [Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523-1370 (United States)
2014-01-28
Using fast lattice Monte Carlo (FLMC) simulations [Q. Wang, Soft Matter 5, 4564 (2009)] and the corresponding lattice self-consistent field (LSCF) calculations, we studied a model system of grafted homopolymers, in both the brush and mushroom regimes, in an explicit solvent compressed by an impenetrable surface. Direct comparisons between FLMC and LSCF results, both of which are based on the same Hamiltonian (thus without any parameter-fitting between them), unambiguously and quantitatively reveal the fluctuations/correlations neglected by the latter. We studied both the structure (including the canonical-ensemble averages of the height and the mean-square end-to-end distances of grafted polymers) and thermodynamics (including the ensemble-averaged reduced energy density and the related internal energy per chain, the differences in the Helmholtz free energy and entropy per chain from the uncompressed state, and the pressure due to compression) of the system. In particular, we generalized the method for calculating pressure in lattice Monte Carlo simulations proposed by Dickman [J. Chem. Phys. 87, 2246 (1987)], and combined it with the Wang-Landau–Optimized Ensemble sampling [S. Trebst, D. A. Huse, and M. Troyer, Phys. Rev. E 70, 046701 (2004)] to efficiently and accurately calculate the free energy difference and the pressure due to compression. While we mainly examined the effects of the degree of compression, the distance between the nearest-neighbor grafting points, the reduced number of chains grafted at each grafting point, and the system fluctuations/correlations in an athermal solvent, the θ-solvent is also considered in some cases.
Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations
Hu, W.; Mathot, V.B.F.; Frenkel, D.
2003-01-01
We report a numerical study of crystallization and melting in bulk statistical homogeneous (random), homogeneous (slightly alternating), and heterogeneous (produced in a batch reaction) copolymers formed by crystallizable monomers and noncrystallizable comonomers. In our dynamic Monte Carlo simulati
Directory of Open Access Journals (Sweden)
M.Valiskó
2005-01-01
Full Text Available A systematic Monte Carlo (MC simulation and perturbation theoretical (PT study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the dielectric constant of the polarizable fluid is obtained from the Kirkwood-Fröhlich equation. In the molecular approach, the polarizability is built into the model on the molecular level, which makes the interactions non-pairwise additive. Here we use Wertheim's renormalized PT method to calculate the induced dipole moment, while the dielectric constant is calculated from our recently introduced formula. We also apply a series expansion for the dielectric constant both in the continuum and the molecular approach. These series expansions ensure a better agreement with simulation results. The agreement between our MC data and the PT results in the molecular approach is excellent for low to moderate dipole moments and polarizabilities. At stronger dipolar interactions ergodicity problems and anizotropic behaviour appear where simulation results become uncertain and the theoretical approach becomes invalid.
Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.
2016-02-01
The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.
Directory of Open Access Journals (Sweden)
Amharrak H.
2016-01-01
Full Text Available The nuclear heating measurements in Material Testing Reactors (MTRs are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.
Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study
M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.
2015-11-01
The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”
Hysteresis loop behaviors of ferroelectric thin films:A Monte Carlo simulation study
Institute of Scientific and Technical Information of China (English)
C. M. Bedoya-Hincapi´e; H. H. Ortiz-´Alvarez; E. Restrepo-Parra; J. J. Olaya-Fl´orez; J. E. Alfonso
2015-01-01
The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole–dipole interaction in the transversal (x–y) direction, and the nearest dipole–dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response.
Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study
Luettmer-Strathmann, Jutta; Mantina, Manjeera
2005-01-01
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond-fluctuation model, where differences in the interaction energies between non-bonded nearest neighbors distin...
Monte Carlo simulation in proton computed tomography: a study of image reconstruction technique
Energy Technology Data Exchange (ETDEWEB)
Inocente, Guilherme Franco; Stenico, Gabriela V.; Hormaza, Joel Mesa [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Fisica e Biofisica
2012-07-01
Full text: The radiation method is one of the most used for cancer treatment. In this context arises therapy with proton beams in front of conventional radiotherapy. It is known that with proton therapy there are more advantages to the patient treated when compared with more conventional methods. The dose distributed along the path, especially in healthy tissues - neighbor the tumor, is smaller and the accuracy of treatment is much better. To carry out the treatment, the patient undergoes a plan through images for visualization and location of the target volume. The main method for obtaining these images is computed tomography X-ray (XCT). For treatment with proton beam this imaging technique can to generate some uncertainties. The purpose of this project is to study the feasibility of reconstructing images generated from the irradiation with proton beams, thereby reducing some inaccuracies, as it will be the same type of radiation as treatment planning, and also to drastically reduce some errors location, since the planning can be done at the same place and just before where the patient is treated. This study aims to obtain a relationship between the intrinsic property of the interaction of photons and protons with matter. For this we use computational simulation based on Monte Carlo method with the code SRIM 2008 and MCNPX v.2.5.0, to reconstruct images using the technique used in conventional computed tomography. (author)
Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation
Cot, A.; Sempau, J.; Pareto, D.; Bullich, S.; Pavía, J.; Calviño, F.; Ros, D.
2004-07-01
The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with 123I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a 18F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.
Energy Technology Data Exchange (ETDEWEB)
Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)
2014-05-28
In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Energy Technology Data Exchange (ETDEWEB)
Zevallos-Chavez, Juan Y.; Pires, Carlos Augusto; Zahn, Guilherme Soares [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: juan@if.usp.br; Genezini, Frederico Antonio [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)). E-mail: Cruz, Manoel Tiago F. da (Sao Paulo Univ., SP (Brazil). Inst. de Fisica
2005-07-01
The detection efficiency of a Germanium detector was measured in the energy range of 80 keV up to 1 MeV. A model function to fit the efficiency data was used, containing an absorbing window factor. The results were compared with a Monte Carlo simulation of the photon interactions where, the nominal dimensions were varied in order to check the low-energy behavior of the efficiency curve. The Monte Carlo results showed to be in good agreement with the experimental ones when the nominal dimensions of the crystal, except for its dead layer thickness, were used. This difference in the dead layer was attributed to its non-uniformity. (author)
Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations
Malliori, A.; Bliznakova, K.; Sechopoulos, I.; Kamarianakis, Z.; Fei, B.; Pallikarakis, N.
2014-08-01
The aim of this study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28 kVp and a monochromatic one at 19 keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4 cm thick computational breast models, in a compressed state, were used: one simple homogeneous and one heterogeneous based on CT breast images, with compositions of 50% glandular-50% adipose and 40% glandular-60% adipose tissues by weight, respectively. Modeled lesions, representing masses and calcifications, were inserted within these breast phantoms. X-ray transport in the breast models was simulated with previously developed and validated Monte Carlo application. Results showed that, for the same incident photon fluence, the use of the monochromatic beam in BT resulted in higher image quality compared to the one using polychromatic acquisition, especially in terms of contrast. For the homogenous phantom, the improvement ranged between 15% and 22% for calcifications and masses, respectively, while for the heterogeneous one this improvement was in the order of 33% for the masses and 17% for the calcifications. For different exposures, comparable image quality in terms of signal-difference-to-noise ratio and higher contrast for all features was obtained when using a monochromatic 19 keV beam at a lower mean glandular dose, compared to the polychromatic one. Monochromatic images also provide better detail and, in combination with BT, can lead to substantial improvement in visualization of features, and particularly better edge detection of low-contrast masses.
Energy Technology Data Exchange (ETDEWEB)
Vera Sanchez, J. A.; Ruiz Morales, C.; Tobarra Gonzalez, B. M.
2013-07-01
The majority of current planning in brachytherapy systems don't count the composition of materials they form applicators, or the characteristics of the main interfaces present in the treatments. The objective of this study It is to compare the dosimetry distributions obtained by Monte Carlo simulations in geometric mannequins that they represent general features of the treatments that we find in our clinical practice, with results calculated according to the TG-43 formalism based on the existing consensus data for Ir-192 mHDR-v2 source. (Author)
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation
International Nuclear Information System (INIS)
The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm3, the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately
International Nuclear Information System (INIS)
Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)
The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS
Chung, Kwangzoo; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih
2015-01-01
To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles using TOPAS. At SMC proton therapy center, we have two gantry rooms with different types of nozzles; a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, novel features of TOPAS, such as the time feature or the ridge filter class, have been used. And the appropriate physics models for proton nozzle simulation were defined. Dosimetric properties, like percent depth dose curve, spread-out Bragg peak (SOBP), beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported RT plan data from the TPS has been interpreted by th...
Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung
2014-08-01
In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the
MONTE CARLO SIMULATION STUDY OF SURFACE ELECTRONIC EXCITATION OF NOBLE METALS
Institute of Scientific and Technical Information of China (English)
H.M. Li; Z.J. Ding; Q.R. Pu; Z.M. Zhang
2002-01-01
In this work we present a numerical simulation of REELS-spectrum for noble metals,Au and Ag. The calculation is based on an electron-surface inelastic scattering modelpreviously developed. The differential inelastic cross section is obtained fron an inho-mogeneous electron self-energy in the surface region, which provides full informationof the dependency of the total and differential cross section on the kinetic energy,the distance from the surface and the moving direction of electrons, accommodatingthe formulation to the practical situation in surface electron spectroscopes. A novelMonte Carlo simulation code of electron interaction with a surface incorporating thelocal scattering mean free path has been developed. The comparison of the simulatedREELS-spectra with the experimental measurements shows a remarkable agreement onthe spectrum shape, which then confirms that the present model for electron-surfaceinelastic .scattering is quite reasonable. The simulation has further shown the compo.nent to surface excitation due to the individual scattering processes along trajectorypart, i.e., the loss in vacuum before reflection, the loss in vacuum after reflection andloss in metal events.
International Nuclear Information System (INIS)
Channel capacity of ocean water is limited by propagation distance and optical properties. Previous studies on this problem are based on water-tank experiments with different amounts of Maalox antacid. However, propagation distance is limited by the experimental set-up and the optical properties are different from ocean water. Therefore, the experiment result is not accurate for the physical design of underwater wireless communications links. This letter developed a Monte Carlo model to study channel capacity of underwater optical communications. Moreover, this model can flexibly configure various parameters of transmitter, receiver and channel, and is suitable for physical underwater optical communications links design. (paper)
Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons
Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki
2016-08-01
Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.
Dynamic Value at Risk: A Comparative Study Between Heteroscedastic Models and Monte Carlo Simulation
Directory of Open Access Journals (Sweden)
José Lamartine Távora Junior
2006-12-01
Full Text Available The objective of this paper was to analyze the risk management of a portfolio composed by Petrobras PN, Telemar PN and Vale do Rio Doce PNA stocks. It was verified if the modeling of Value-at-Risk (VaR through the place Monte Carlo simulation with volatility of GARCH family is supported by hypothesis of efficient market. The results have shown that the statistic evaluation in inferior to dynamics, evidencing that the dynamic analysis supplies support to the hypothesis of efficient market of the Brazilian share holding market, in opposition of some empirical evidences. Also, it was verified that the GARCH models of volatility is enough to accommodate the variations of the shareholding Brazilian market, since the model is capable to accommodate the great dynamic of the Brazilian market.
International Nuclear Information System (INIS)
Monte-Carlo simulation is one of the most essential computational tools to study the particle transport and interaction of radiation with matter as well as radiation protection and dosimetry. In this paper it was used to calculate percent depth doses in the water phantom for two Co-60 beam irradiation cases with using the MCNP-4C2 code. The simulation results was validated by comparison with those of measurements. Application of the MCNP-4C2 code for dose calculations in Co-60 beam treatment planning was recommended. (author)
Monte Carlo simulations of fluid vesicles
Sreeja, K. K.; Ipsen, John H.; Kumar, P. B. Sunil
2015-07-01
Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Turos, A., E-mail: turos@fuw.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Jozwik, P. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Nowicki, L. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Sathish, N. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO{sub 3}) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Interactions between ring polymers in dilute solution studied by Monte Carlo simulation
Suzuki, Jiro; Takano, Atsushi; Matsushita, Yushu
2015-01-01
The second virial coefficient, A2, for trivial-ring polymers in dilute condition was estimated from a Metropolis Monte Carlo (MC) simulation, and the temperature dependence of A2 has been discussed with their Flory's scaling exponent, ν, in Rg ∝ Nν, where Rg is radius of gyration of a polymer molecule. A limited but not too small number of polymer molecules were employed in the simulation, and the A2 values at various temperatures were calculated from the molecular density fluctuation in the solution. In the simulation, the topology of ring polymers was kept, since chain crossing was prohibited. The excluded volume effects can be screened by the attractive force between segments, which depends on the temperature, Tα, defined in the Metropolis MC method. Linear and trivial-ring polymers have the ν value of 1/2 at Tα = 10.605 and 10.504. At Tα = 10.504, the excluded volume effects are screened by the attractive force generated between segments in a ring polymer, but the A2 value for ring polymers is positive. Thus, the temperature at A2 = 0 for a ring polymer is lower than that at ν = 1/2, and this fact can be explained with the following two reasons. (a) Rg value for a ring polymer is much smaller than that for a linear polymer at the same temperature and molecular weight, where interpenetration of a ring polymer chain into neighboring chains is apparently less than a linear chain. (b) The conformation of trivial rings can be statistically described as a closed random walk at ν = 1/2, but their topologies are kept, being produced topological constraints, which strongly relate not only to the long-distance interaction between segments in a molecule but also the inter-molecular interaction.
Energy Technology Data Exchange (ETDEWEB)
Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E. [J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131 (United States); National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892-1502 (United States); J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131 (United States); Department of Radiology, University of Florida, Gainesville, Florida 32610-0374 (United States); J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131 (United States)
2013-01-15
Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
Energy Technology Data Exchange (ETDEWEB)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 (Korea, Republic of)
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
Monte carlo simulation study of the square lattice S=1/2 quantum heisenberg antiferromagnet
Kim, J K
1999-01-01
For the two dimensional S= 1/2 isotopic quantum Heisenberg antiferromagnet on a square lattice, we report our results of an extensive quantum Monte Carlo simulation for various physical observables such as the correlation length xi, the staggered magnetic susceptibility chi sub S sub T , the structure factor peak value S(Q), the internal energy epsilon, and the uniform susceptibility chi sub u. We find that chi sub S sub T approx chi sup 2 T and S(Q) approx xi sup 2 T sup 2 , in agreement with the predictions of the conventional theory but in disagreement with recent experiments. Our estimate of the spin stiffness constant rho sub s and spin wave velocity c, from the low temperature behavior of the chi sub u is shown to be consistent with the theoretical prediction of the low temperature behavior of the epsilon, and of the xi provided an additional correction up to T sup 2. However, our data are definitely inconsistent with the scenario of the crossover for the xi.
Neutronics studies of solid targets for spallation neutron source using Monte Carlo simulation
Institute of Scientific and Technical Information of China (English)
殷雯; 梁九卿
2003-01-01
Neutronics studies for a solid target have been done with Monte Carlo high-energy particle transport code NMTC/JAM,when the proton beam with high kinetic energy bombards the target.The effect of the main parameters of the target on the neutron flux is discussed to optimize the target,which will be used for the concept design of the target of spallation neutron source.A target with its aspect ratio 1.5:1 or 2:1 gives the highest neutron flux.Tungsten is the most acceptable material from the technical and economical points of view.Beryllium as a moderating reflector can increase the neutron flux effectively.
International Nuclear Information System (INIS)
Application of Monte Carlo method to build spectra library is useful to reduce experiment workload in Prompt Gamma Neutron Activation Analysis (PGNAA). The new Monte Carlo Code MOCA was used to simulate the response spectra of BGO detector for gamma rays from 137Cs, 60Co and neutron induced gamma rays from S and Ti. The results were compared with general code MCNP, show that the agreement of MOCA between simulation and experiment is better than MCNP. This research indicates that building spectra library by Monte Carlo method is feasible. (authors)
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Energy Technology Data Exchange (ETDEWEB)
Lakshmanan, Manu N. [Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University Medical Center, Durham, NC (United States); Kapadia, Anuj J., E-mail: anuj.kapadia@duke.edu [Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University Medical Center, Durham, NC (United States); Sahbaee, Pooyan [Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University Medical Center, Durham, NC (United States); Dept. of Physics, NC State University, Raleigh, NC (United States); Wolter, Scott D. [Dept. of Physics, Elon University, Elon, NC (United States); Harrawood, Brian P. [Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University Medical Center, Durham, NC (United States); Brady, David [Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Samei, Ehsan [Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University Medical Center, Durham, NC (United States); Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States)
2014-09-15
The analysis of X-ray scatter patterns has been demonstrated as an effective method of identifying specific materials in mixed object environments, for both biological and non-biological applications. Here we describe an X-ray scatter imaging system for material identification in cluttered objects and investigate its performance using a large-scale Monte Carlo simulation study of one-thousand objects containing a broad array of materials. The GEANT4 Monte Carlo source code for Rayleigh scatter physics was modified to model coherent scatter diffraction in bulk materials based on experimentally measured form factors for 33 materials. The simulation was then used to model coherent scatter signals from a variety of targets and clutter (background) materials in one thousand randomized objects. The resulting scatter images were used to characterize four parameters of the imaging system that affected its ability to identify target materials: (a) the arrangement of materials in the object, (b) clutter attenuation, (c) type of target material, and (d) the X-ray tube current. We found that the positioning of target materials within the object did not significantly affect their detectability; however, a strong negative correlation was observed between the target detectability and the clutter attenuation of the object. The imaging signal was also found to be relatively invariant to increases in X-ray tube current above 1 mAs for most materials considered in the study. This work is the first Monte Carlo study to our knowledge of a large population of cluttered object of an X-ray scatter imaging system for material identification and lays the foundation for large-scale studies of the effectiveness of X-ray scatter imaging systems for material identification in complex samples.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
International Nuclear Information System (INIS)
In radiotherapy, it is essential to have a precise knowledge of the dose delivered in the target volume and the neighbouring critical organs. To be usable clinically, the models of calculation must take into account the exact characteristics of the beams used and the densities of fabrics. Today we can use sophisticated irradiation techniques and get a more precise assessment of the dose and with a better knowledge of its distribution. Thus in this report, will be detailed a simulation of the head of irradiation of accelerator SL-ELEKTA-20 in electrons mode and a dosimetric study of a water phantom. This study is carried out with the code of simulation Monte Carlo GATE adapted for applications of medical physics; the results are compared with the data obtained by the anticancer center 'Jean Perrin' on a similar accelerator. (author)
Energy Technology Data Exchange (ETDEWEB)
Hardiansyah, D.; Haryanto, F. [Nuclear Physics and Biophysics Research Laboratory, Physics Department, Institut Teknologi Bandung (ITB) (Indonesia); Male, S. [Radiotherapy Division, Research Hospital of Hassanudin University (Indonesia)
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.
Hardiansyah, D.; Male, S.; Haryanto, F.
2014-09-01
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (Rp) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.
International Nuclear Information System (INIS)
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (Rp) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue
International Nuclear Information System (INIS)
The risk assessment case study presented in this paper evaluates the potential human health risk to residential receptors exposed to benzene, toluene, ethylbenzene, and xylene from a JP-4 fuel spill. The eight residential scenario exposure pathways quantitatively assessed for carcinogenic and non-carcinogenic toxicological effects are: ingestion of groundwater, ingestion of soil, inhalation of volatiles (outdoors), inhalation of fugitive dust, dermal exposure to soil, dermal exposure while showering, inhalation of volatiles while showering, and ingestion of fruits and vegetables. Human health risks were calculated following EPA guidance documents which recommend determining a point estimate for potential risk in a baseline risk assessment (BRA) and a quantified uncertainty in that point estimate by a probabilistic risk assessment (PRA). BRAs typically use conservative estimates for exposure parameters, and consequently, the calculated risk represents an upper-bound or worst scenario that is beyond the reasonable maximum exposure (RME) without an associated quantified uncertainty. PRAs employing Monte Carlo techniques incorporate distributions for exposure parameters into the risk analysis to calculate a distribution for risk with each value in the risk distribution having a corresponding quantified uncertainty. The results of the assessment presented in this paper are examined to show the usefulness of the PRA in quantifying the uncertainty in the BRA
Energy Technology Data Exchange (ETDEWEB)
Shin, Han-Back; Yoon, Do-Kun; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)
2015-05-15
In the case of the multi.leaf collimator (MLC), the operation of a moving leaf has been used for field shaping to pass radiation for radiotherapy. The MLC leaf could be positioned by connecting a stepping motor to the leaf's terminal. If the radiation therapy plan data is read as an input to a processing computer, an applied electronic signal can be used to command several leaves to move in a pattern simultaneously. The collimation method for a pixel unit that is used in this research is the method of a grid-type pixel collimator (GTPC). Basically, the grid frame, which is used to hang the attenuation cover, is arranged on a layer. The pixel cover's geometry is determined by using calculations based on Monte Carlo simulations. The basic pixel cover is a flat panel with a square pattern and is composed of a tungsten material to attenuate the radiation gradually. In addition, the attenuation can be controlled electronically by opening and closing the cover. In this study, to determine the possibility of field applications and to evaluate the intrinsic performance of the GTPC, which is different from the MLC, we used Monte Carlo simulation for MLC modeling. The GTPC could simultaneously provide momentary radiation intensity modulation with target guidance, and it was constructed to realize a complex geometry for tumor tracking with pixel unit attenuation.
International Nuclear Information System (INIS)
The possibility of using silica-gold nanoshells with 150 nm silica core size and 25 nm thick gold shell as contrasting agents for optical coherence tomography (OCT) is analyzed. Experiments on agar biotissue phantoms showed that the penetration of nanoshells into the phantoms increases the intensity of the optical coherence tomography (OCT) signal and the brightness of the corresponding areas of the OCT image. In vivo experiments on rabbit skin demonstrated that the application of nanoshells onto the skin provides significant contrasting of the borders between the areas containing nanoshells and those without. This effect of nanoshells on skin in vivo is manifested by the increase in intensity of the OCT signal in superficial parts of the skin, boundary contrast between superficial and deep dermis and contrast of hair follicles and glands. The presence of nanoshells in the skin was confirmed by electron microscopy. Monte Carlo simulations of OCT images confirmed the possibility of contrasting skin-layer borders and structures by the application of gold nanoshells. The Monte Carlo simulations were performed for two skin models and exhibit effects of nanoparticles similar to those obtained in the experimental part of the study, thus proving that the effects originate exactly from the presence of nanoparticles
International Nuclear Information System (INIS)
In the case of the multi.leaf collimator (MLC), the operation of a moving leaf has been used for field shaping to pass radiation for radiotherapy. The MLC leaf could be positioned by connecting a stepping motor to the leaf's terminal. If the radiation therapy plan data is read as an input to a processing computer, an applied electronic signal can be used to command several leaves to move in a pattern simultaneously. The collimation method for a pixel unit that is used in this research is the method of a grid-type pixel collimator (GTPC). Basically, the grid frame, which is used to hang the attenuation cover, is arranged on a layer. The pixel cover's geometry is determined by using calculations based on Monte Carlo simulations. The basic pixel cover is a flat panel with a square pattern and is composed of a tungsten material to attenuate the radiation gradually. In addition, the attenuation can be controlled electronically by opening and closing the cover. In this study, to determine the possibility of field applications and to evaluate the intrinsic performance of the GTPC, which is different from the MLC, we used Monte Carlo simulation for MLC modeling. The GTPC could simultaneously provide momentary radiation intensity modulation with target guidance, and it was constructed to realize a complex geometry for tumor tracking with pixel unit attenuation
Monte Carlo simulation of granular fluids
Montanero, J. M.
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for bot...
International Nuclear Information System (INIS)
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of ∼5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a 60Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg. and 75 deg. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.
Energy Technology Data Exchange (ETDEWEB)
Carvajal, M A; Palma, A J [Departamento de Electronica y Tecnologia de Computadores, Universidad de Granada, E-18071 Granada (Spain); Garcia-Pareja, S [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda Carlos Haya, s/n, E-29010 Malaga (Spain); Guirado, D [Servicio de RadiofIsica, Hospital Universitario ' San Cecilio' , Avda Dr Oloriz, 16, E-18012 Granada (Spain); Vilches, M [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda Fuerzas Armadas, 2, E-18014 Granada (Spain); Anguiano, M; Lallena, A M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)], E-mail: carvajal@ugr.es, E-mail: garciapareja@gmail.com, E-mail: dguirado@ugr.es, E-mail: mvilches@ugr.es, E-mail: mangui@ugr.es, E-mail: ajpalma@ugr.es, E-mail: lallena@ugr.es
2009-10-21
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of {approx}5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a {sup 60}Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg. and 75 deg. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.
Carvajal, M A; García-Pareja, S; Guirado, D; Vilches, M; Anguiano, M; Palma, A J; Lallena, A M
2009-10-21
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered. PMID:19794247
Institute of Scientific and Technical Information of China (English)
PENG,Chang-Jun(彭昌军); LI,Jian-Kang(李健康); LIU,Hong-Lai(刘洪来); HU,Ying(胡英)
2004-01-01
The adsorption of asymmetrical triblock copolymers from a non-selective solvent on solid surface has been studied by using Scheutjens-Fleer mean-field theory and Monte Carlo simulation method on lattice model. The main aim of this paper is to provide detailed computer simulation data, taking As-kB20Ak as a key example, to study the influence of the structure of copolymer on adsorption behavior and make a comparison between MC and SF results. The simulated results show that the size distribution of various configurations and density-profile are dependent on molecular structure and adsorption energy. The molecular structure will lead to diversity of adsorption behavior. This discrepancy between different structures would be enlarged for the surface coverage and adsorption amount with increasing of the adsorption energy. The surface coverage and the adsorption amount as well as the bound fraction will become larger as symmetry of the molecular structure becomes gradually worse. The adsorption layer becomes thicker with increasing of symmetry of the molecule when adsorption energy is smaller but it becomes thinner when adsorption energy is higher. It is shown that SF theory can reproduce the adsorption behavior of asymmetrical triblock copolymers. However, systematic discrepancy between the theory and simulation still exists.The approximations inherited in the mean-filed theory such as random mixing and the allowance of direct back folding may be responsible for those deviations.
International Nuclear Information System (INIS)
We report on the development of a Monte Carlo application, based on the GEANT4 toolkit, for the characterization and optimization of electron beams for clinical applications produced by a laser-driven plasma source. The GEANT4 application is conceived so as to represent in the most general way the physical and geometrical features of a typical laser-driven accelerator. It is designed to provide standard dosimetric figures such as percentage dose depth curves, two-dimensional dose distributions and 3D dose profiles at different positions both inside and outside the interaction chamber. The application was validated by comparing its predictions to experimental measurements carried out on a real laser-driven accelerator. The work is aimed at optimizing the source, by using this novel application, for radiobiological studies and, in perspective, for medical applications. - Highlights: • Development of a Monte Carlo application based on GEANT4 toolkit. • Experimental measurements carried out with a laser-driven acceleration system. • Validation of Geant4 application comparing experimental data with the simulated ones. • Dosimetric characterization of the acceleration system
Energy Technology Data Exchange (ETDEWEB)
Lamia, D., E-mail: debora.lamia@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Russo, G., E-mail: giorgio.russo@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Casarino, C.; Gagliano, L.; Candiano, G.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Labate, L. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Baffigi, F.; Fulgentini, L.; Giulietti, A.; Koester, P.; Palla, D. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); Gizzi, L.A. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Gilardi, M.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR, Segrate (Italy); University of Milano-Bicocca, Milano (Italy)
2015-06-21
We report on the development of a Monte Carlo application, based on the GEANT4 toolkit, for the characterization and optimization of electron beams for clinical applications produced by a laser-driven plasma source. The GEANT4 application is conceived so as to represent in the most general way the physical and geometrical features of a typical laser-driven accelerator. It is designed to provide standard dosimetric figures such as percentage dose depth curves, two-dimensional dose distributions and 3D dose profiles at different positions both inside and outside the interaction chamber. The application was validated by comparing its predictions to experimental measurements carried out on a real laser-driven accelerator. The work is aimed at optimizing the source, by using this novel application, for radiobiological studies and, in perspective, for medical applications. - Highlights: • Development of a Monte Carlo application based on GEANT4 toolkit. • Experimental measurements carried out with a laser-driven acceleration system. • Validation of Geant4 application comparing experimental data with the simulated ones. • Dosimetric characterization of the acceleration system.
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations
Malliori, A; Bliznakova, K.; Sechopoulos, I; Kamarianakis, Z; Fei, B; Pallikarakis, N
2014-01-01
The aim of the study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28kVp and a monochromatic at 19keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4cm thick computational breast models in a compressed state were used: one simple homogeneous and one heterogeneou...
Medhat, M. E.
2015-02-01
The main goal of this work is focused on testing the applicability of Geant4 electromagnetic models for studying mass attenuations for different types of composite materials at 59.5, 80, 356, 661.6, 1173.2 and 1332.5 keV photon energies. The simulated results of mass attenuation coefficients were compared with the experimental and theoretical data for the same samples and a good agreement has been observed. The results indicate that this process can be followed to determine the data on the attenuation of gamma-rays with the several energies in different materials.
Chen, Dongsheng; Zeng, Nan; Wang, Yunfei; He, Honghui; Tuchin, Valery V; Ma, Hui
2016-08-01
We conducted Monte Carlo simulations based on anisotropic sclera-mimicking models to examine the polarization features in Mueller matrix polar decomposition (MMPD) parameters during the refractive index matching process, which is one of the major mechanisms of optical clearing. In a preliminary attempt, by changing the parameters of the models, wavelengths, and detection geometries, we demonstrate how the depolarization coefficient and retardance vary during the refractive index matching process and explain the polarization features using the average value and standard deviation of scattering numbers of the detected photons. We also study the depth-resolved polarization features during the gradual progression of the refractive index matching process. The results above indicate that the refractive index matching process increases the depth of polarization measurements and may lead to higher contrast between tissues of different anisotropies in deeper layers. MMPD-derived polarization parameters can characterize the refractive index matching process qualitatively. PMID:27240298
Mars14 Monte Carlo simulation for the shielding studies of the J-PARC 3 GeV ring.
Nakao, Noriaki; Mokhov, Nikolai; Yamamoto, Kazami; Irie, Yoshiro; Drozhdin, Alexander
2005-01-01
MARS14 Monte Carlo simulations were performed for collimation and shielding studies of the J-PARC 3 GeV synchrotron ring. The beam line module locations in the 348.3 m ring and the curved tunnel sections were described by the 'MAD-MARS beam line builder' tool. A 400 MeV proton beam loss distribution, calculated with the STRUCT code, was used as a 4 kW source term in the collimator region, with 1 kW source terms in the injection and extraction regions at 400 MeV and 3 GeV, respectively. Deep penetration calculations were carried out with good statistics using a newly developed three-dimensional multi-layer technique. Prompt dose-rate distributions were calculated inside and outside the concrete and soil shield up to the ground level. Using the calculation results obtained thus, an effective shielding design was made.
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
International Nuclear Information System (INIS)
Prostate Brachytherapy is a radiotherapy technique, which consists in inserting a number of radioactive seeds (containing, usually, the following radionuclides 125 l, 241Am or 103Pd ) surrounding or in the vicinity of, prostate tumor tissue . The main objective of this technique is to maximize the radiation dose to the tumor and minimize it in other tissues and organs healthy, in order to reduce its morbidity. The absorbed dose distribution in the prostate, using this technique is usually non-homogeneous and time dependent. Various parameters such as the type of seed, the attenuation interactions between them, their geometrical arrangement within the prostate, the actual geometry of the seeds,and further swelling of the prostate gland after implantation greatly influence the course of absorbed dose in the prostate and surrounding areas. Quantification of these parameters is therefore extremely important for dose optimization and improvement of their plans conventional treatment, which in many cases not fully take into account. The Monte Carlo techniques allow to study these parameters quickly and effectively. In this work, we use the program MCNPX and generic voxel phantom (GOLEM) where simulated different geometric arrangements of seeds containing 125I, Amersham Health model of type 6711 in prostates of different sizes, in order to try to quantify some of the parameters. The computational model was validated using a phantom prostate cubic RW3 type , consisting of tissue equivalent, and thermoluminescent dosimeters. Finally, to have a term of comparison with a treatment real plan it was simulate a treatment plan used in a hospital of Rio de Janeiro, with exactly the same parameters, and our computational model. The results obtained in our study seem to indicate that the parameters described above may be a source of uncertainty in the correct evaluation of the dose required for actual treatment plans. The use of Monte Carlo techniques can serve as a complementary
Kooi, BJ
2006-01-01
An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is
Oxygen-ordering phenomena in YBa2Cu3O6+x studied by Monte Carlo simulation
DEFF Research Database (Denmark)
Fiig, T.; Andersen, J.V.; Andersen, N.H.;
1993-01-01
The oxygen order in YBa2Cu3O6+x has been investigated by Monte Carlo simulation with the two-dimensional anisotropic next-nearest-neighbor lattice gas model, the ASYNNNI model. For a specific set of interaction parameters we have calculated the structural phase diagram, the chemical potential, an...
Comment on "A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation".
Fang, Qianqian
2011-01-01
The Monte Carlo (MC) method is a popular approach to modeling photon propagation inside general turbid media, such as human tissue. Progress had been made in the past year with the independent proposals of two mesh-based Monte Carlo methods employing ray-tracing techniques. Both methods have shown improvements in accuracy and efficiency in modeling complex domains. A recent paper by Shen and Wang [Biomed. Opt. Express 2, 44 (2011)] reported preliminary results towards the cross-validation of the two mesh-based MC algorithms and software implementations, showing a 3-6 fold speed difference between the two software packages. In this comment, we share our views on unbiased software comparisons and discuss additional issues such as the use of pre-computed data, interpolation strategies, impact of compiler settings, use of Russian roulette, memory cost and potential pitfalls in measuring algorithm performance. Despite key differences between the two algorithms in handling of non-tetrahedral meshes, we found that they share similar structure and performance for tetrahedral meshes. A significant fraction of the observed speed differences in the mentioned article was the result of inconsistent use of compilers and libraries. PMID:21559136
Comment on "A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation".
Fang, Qianqian
2011-04-19
The Monte Carlo (MC) method is a popular approach to modeling photon propagation inside general turbid media, such as human tissue. Progress had been made in the past year with the independent proposals of two mesh-based Monte Carlo methods employing ray-tracing techniques. Both methods have shown improvements in accuracy and efficiency in modeling complex domains. A recent paper by Shen and Wang [Biomed. Opt. Express 2, 44 (2011)] reported preliminary results towards the cross-validation of the two mesh-based MC algorithms and software implementations, showing a 3-6 fold speed difference between the two software packages. In this comment, we share our views on unbiased software comparisons and discuss additional issues such as the use of pre-computed data, interpolation strategies, impact of compiler settings, use of Russian roulette, memory cost and potential pitfalls in measuring algorithm performance. Despite key differences between the two algorithms in handling of non-tetrahedral meshes, we found that they share similar structure and performance for tetrahedral meshes. A significant fraction of the observed speed differences in the mentioned article was the result of inconsistent use of compilers and libraries.
Monte Carlo simulation of granular fluids
Montanero, J M
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for both cases. The shear viscosity characterizing the momentum transport in the thermostatted case is calculated as well. The simulation results are compared with analytical predictions showing an excellent agreement.
Kooi, BJ
2006-01-01
An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is generally anisotropic, leads to hard impingement, and obtains strong deviations from the traditional Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. Within the MC simulations 1D growth can occur wit...
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Kyu; Seo, Hee; Won, Byung Hee; Lee, Hyun Su; Park, Se-Hwan; Kim, Ho-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
The XRF technique compares the measured pulse height of U and Pu peaks which are self-induced characteristic xray emitted from U and Pu to quantify the elemental U and Pu. The measurement of the U and Pu x-ray peak ratio provides information on the relative concentration of U and Pu elements. Photon measurements of spent nuclear fuel using high resolution spectrometers show a large background continuum in the low energy x-ray region in large part from Compton scattering of energetic gamma-rays. The high Compton continuum can make measurements of plutonium x-rays difficult because the relatively small signal to background ratio produced. In pressurized water reactor (PWR) spent fuels with low plutonium contents (-1%), the signal to background ratio may be too low to get an accurate plutonium x-ray measurement. The Compton suppression system has been proposed to reduce the Compton continuum background. In the present study, the feasibility of a Compton suppression system for XRF was evaluated by Monte Carlo simulations and measurements of the radiation source. In this study, the feasibility of a Compton suppression system for XRF was evaluated by MCNP simulations and measurements of the radiation source. Experiments using a standard gamma-ray source showed that the peak-to-total ratios were improved by a factor of three when the Compton suppression system was used.
Monte carlo simulations of organic photovoltaics.
Groves, Chris; Greenham, Neil C
2014-01-01
Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.
A percolation study of RTS noise in deep sub-micron MOSFET by Monte Carlo simulation
Institute of Scientific and Technical Information of China (English)
Ma Zhong-Fa; Zhuang Yi-Qi; Du Lei; Wei Shan
2005-01-01
Based on percolation theory and random telegraph signal (RTS) noise generation mechanism, a numerical model for RTS in deep submicron metal-oxide-semiconductor field-effect transistor (MOSFET) was presented, with which the dependence of τc/τe (where τc=capture time, τe=emission period ) on energy levels and trap depth with respect to the interface of traps can be simulated. Compared with experimental results, the simulated ones showed a good qualitative agreement.
Energy Technology Data Exchange (ETDEWEB)
Rojas C, E.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Al-Dweri, F.M.O.; Lallena R, A.M. [Universidad de Granada, Granada (Spain)]. e-mail: elrc@nuclear.inin.mx
2005-07-01
In this work they are studied, by means of Monte Carlo simulation, the effects that take place in the dose profiles that are obtained with the Leksell Gamma Knife (R), when they are kept in account heterogeneities. The considered heterogeneities simulate the skull and the spaces of air that are in the head, like they can be the nasal breasts or the auditory conduits. The calculations were made using the Monte Carlo Penelope simulation code (v. 2003). The geometry of each one of the 201 sources that this instrument is composed, as well as of the corresponding channels of collimation of the Gamma Knife (R), it was described by means of a simplified model of geometry that has been recently studied. The obtained results when they are kept in mind the heterogeneities they present non worthless differences regarding those obtained when those are not considered. These differences are maximum in the proximities of the interfaces among different materials. (Author)
Boukezzata, M.; Ait-Kaki, A.; Temple-Boyer, P.; Scheid, E.
2003-03-01
This work presents a Monte Carlo simulation study of boron profiles obtained from as-implanted ions into thin films nitrogen doped silicon (NiDoS) thin films. These films are performed by LPCVD technique from Si2H6 and NH3 gas sources, four values deliberately chosen, of the ratio NH3/Si2H6 to obtain samples, differently in situ nitrogen-doped. Taking into account the effect of the codoping case, and the structure specificity of these films, an accurate Monte Carlo model based on binary collisions in a multi-atomic target was performed. Nitrogen atoms present in the target is shown to affect the boron profiles and confirms clearly a reduction penetration effect which becomes more significant at high nitrogen concentrations. Whereas, the fine-grained polysilicon structure, and thus the presence of grains (G) and grain boundaries (GB), is known to enhance the opposite phenomenon by assuming an effective role played by GB's in the scattering calculation process of the incident ions. This role is represented by the change in direction of the incident ion after interaction with GB without corresponding loss in its energy. The results obtained show an enhancement of the stopping parameter when nitrogen concentration increases, while the GB interaction remains very important. This behavior is due to a great number of GB's interactions with boron atoms which gave low deflection angles. So that, the average positions described by the sequences of trajectories took place farther than what expected with channeling effect in crystal silicon materials.
Cerenkov luminescence imaging of human breast cancer: a Monte Carlo simulations study
International Nuclear Information System (INIS)
Cerenkov luminescence imaging (CLI) is a novel molecular imaging technique based on the detection of Cerenkov light produced by beta particles traveling through biological tissues. In this paper we simulated using 18F and 90Y the possibility of detecting Cerenkov luminescence in human breast tissues, in order to evaluate the potential of the CLI technique in a clinical setting. A human breast digital phantom was obtained from an 18F-FDG CT-PET scan. The spectral features of the breast surface emission were obtained as well as the simulated images obtainable by a cooled CCD detector. The simulated images revealed a signal to noise ratio equal to 6 for a 300 s of acquisition time. We concluded that a dedicated human Cerenkov imaging detector can be designed in order to offer a valid low cost alternative to diagnostic techniques in nuclear medicine, in particular allowing the detection of beta-minus emitters used in radiotherapy
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Monte Carlo Simulations of the Photospheric Process
Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan
2015-01-01
We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...
Modulated pulse bathymetric lidar Monte Carlo simulation
Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia
2015-10-01
A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.
Advances in Monte Carlo computer simulation
Swendsen, Robert H.
2011-03-01
Since the invention of the Metropolis method in 1953, Monte Carlo methods have been shown to provide an efficient, practical approach to the calculation of physical properties in a wide variety of systems. In this talk, I will discuss some of the advances in the MC simulation of thermodynamics systems, with an emphasis on optimization to obtain a maximum of useful information.
Autocorrelations in hybrid Monte Carlo simulations
International Nuclear Information System (INIS)
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Simulated Annealing using Hybrid Monte Carlo
Salazar, Rafael; Toral, Raúl
1997-01-01
We propose a variant of the simulated annealing method for optimization in the multivariate analysis of differentiable functions. The method uses global actualizations via the hybrid Monte Carlo algorithm in their generalized version for the proposal of new configurations. We show how this choice can improve upon the performance of simulated annealing methods (mainly when the number of variables is large) by allowing a more effective searching scheme and a faster annealing schedule.
Monte Carlo Simulations of Star Clusters
Giersz, M
2000-01-01
A revision of Stod\\'o{\\l}kiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The survey on the evolution of multi-mass N-body systems influenced by the tidal field of a parent galaxy and by stellar evolution is discussed. For the first time, the simulation on the "star-by-star" bases of evolution of 1,000,000 body star cluster is presented. \\
Huang, Chen-Hsi; Marian, Jaime
2016-10-01
We derive an Ising Hamiltonian for kinetic simulations involving interstitial and vacancy defects in binary alloys. Our model, which we term ‘ABVI’, incorporates solute transport by both interstitial defects and vacancies into a mathematically-consistent framework, and thus represents a generalization to the widely-used ABV model for alloy evolution simulations. The Hamiltonian captures the three possible interstitial configurations in a binary alloy: A-A, A-B, and B-B, which makes it particularly useful for irradiation damage simulations. All the constants of the Hamiltonian are expressed in terms of bond energies that can be computed using first-principles calculations. We implement our ABVI model in kinetic Monte Carlo simulations and perform a verification exercise by comparing our results to published irradiation damage simulations in simple binary systems with Frenkel pair defect production and several microstructural scenarios, with matching agreement found.
Monte Carlo simulation code modernization
CERN. Geneva
2015-01-01
The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...
Directory of Open Access Journals (Sweden)
Mondal Nagendra
2009-01-01
Full Text Available This study presents Monte Carlo Simulation (MCS results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu 2 SiO 5 : Ce in short LSO, Barium Fluoride (BaF 2 and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr 3 scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF 2 and LaBr 3 , although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom.
Izadi, Arman; Kimiagari, Ali Mohammad
2014-05-01
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.
Monte Carlo Simulation of Optical Properties of Wake Bubbles
Institute of Scientific and Technical Information of China (English)
CAO Jing; WANG Jiang-An; JIANG Xing-Zhou; SHI Sheng-Wei
2007-01-01
Based on Mie scattering theory and the theory of multiple light scattering, the light scattering properties of air bubbles in a wake are analysed by Monte Carlo simulation. The results show that backscattering is enhanced obviously due to the existence of bubbles, especially with the increase of bubble density, and that it is feasible to use the Monte Carlo method to study the properties of light scattering by air bubbles.
Xu, Wenhao; Yang, Jichu; Hu, Yinyu
2009-04-01
Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble using the TraPPE-UA force field were performed to study the microscopic structures and molecular interactions of mixtures containing supercritical carbon dioxide (scCO(2)) and ethanol (EtOH). The binary vapor-liquid coexisting curves were calculated at 298.17, 333.2, and 353.2 K and are in excellent agreement with experimental results. For the first time, three important interactions, i.e., EtOH-EtOH hydrogen bonding, EtOH-CO(2) hydrogen bonding, and EtOH-CO(2) electron donor-acceptor (EDA) bonding, in the mixtures were fully analyzed and compared. The EtOH mole fraction, temperature, and pressure effect on the three interactions was investigated and then explained by the competition of interactions between EtOH and CO(2) molecules. Analysis of the microscopic structures indicates a strong preference for the formation of EtOH-CO(2) hydrogen-bonded tetramers and pentamers at higher EtOH compositions. The distribution of aggregation sizes and types shows that a very large EtOH-EtOH hydrogen-bonded network exists in the mixtures, while only linear EtOH-CO(2) hydrogen-bonded and EDA-bonded dimers and trimers are present. Further analysis shows that EtOH-CO(2) EDA complex is more stable than the hydrogen-bonded one.
International Nuclear Information System (INIS)
A spectral computed tomography (CT) system based on an energy-resolved photon-counting Cadmium Zinc Telluride (CZT) detector with a dual energy technique can provide spectral information and can possibly distinguish between two or more materials with a single X-ray exposure using energy thresholds. This work provides the potential for three-material decomposition of vulnerable plaques using two inverse fitting functions. Additionally, there exists the possibility of using gold nanoparticles as a contrast agent for the spectral CT system in conjunction with a CZT photon-counting detector. In this simulation study, we used fan beam CT geometry that consisted of a 90 kVp X-ray spectrum and performed calculations by using the SpekCal program (REAL Software, Inc.) with Monte Carlo simulations. A basic test phantom was imaged with the spectral CT system for the calibration and decomposition process. This phantom contained three different materials, including lipid, iodine and gold nanoparticles, with six holes 3 mm in diameter. In addition to reducing pile-up and charge sharing effect, the photon counting detector was considered an ideal detector. Then, the accuracy of material decomposition techniques with two inverse fitting functions were evaluated between decomposed images and reference images in terms of root mean square error (RMSE). The results showed that decomposed images had a good volumetric fraction for each material, and the RMSE between the measured and true volumes of lipid, iodine and gold nanoparticle fractions varied from 12.51% to 1.29% for inverse fitting functions. The study indicated that spectral CT in conjunction with a CZT photon-counting detector in conjunction with a dual energy technique can be used to identifying materials and may be a promising modality for quantifying material properties of vulnerable plaques
Substrate influence on two-dimensional solids and liquids: A Monte Carlo simulation study
DEFF Research Database (Denmark)
Vives, E.; Lindgård, Per-Anker
1991-01-01
solid and liquid phase for all the cases studied. We have in particular investigated the contribution from the two-dimensional liquid to the Bragg peaks corresponding to the substrate structure. Reiter and Moss and their collaborators have demonstrated that this gives valuable information about the...
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation
Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei
2014-01-01
Background The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC alg...
International Nuclear Information System (INIS)
International Commission on Radiological Protection (ICRP) reported comprehensive dose conversion coefficients for adult population, which is exposed to external photon sources in the Publication 74. However, those quantities were calculated from so-called stylized (or mathematical) phantoms composed of simplified mathematical surface equations so that the discrepancy between the phantoms and real human anatomy has been investigated by several authors using Caucasian-based voxel phantoms. To address anatomical and racial limitations of the stylized phantoms, several Asian-based voxel phantoms have been developed by Korean and Japanese investigators, independently. In the current study, photon dose conversion coefficients of ICRP 74 were compared with those from a total of five Asian-based male voxel phantoms, whose body dimensions were almost identical. Those of representative radio-sensitive organs (testes, red bone marrow, colon, lungs, and stomach), and effective dose conversion coefficients were obtained for comparison. Even though organ doses for testes, colon and lungs, and effective doses from ICRP 74 agreed well with those from Asian voxel phantoms within 10%, absorbed doses for red bone marrow and stomach showed significant discrepancies up to 30% which was mainly attributed to difference of phantom description between stylized and voxel phantoms. This study showed that the ICRP 74 dosimetry data, which have been reported to be unrealistic compared to those from Caucasian-based voxel phantoms, are also not appropriate for Asian population
Debbarma, Rousan; Malani, Ateeque
2016-02-01
Clay minerals are used in variety of applications ranging from composites to electronic devices. For their efficient use in such areas, understanding the effect of surface-active agents on interfacial properties is essential. We investigated the role of surface ions in the adsorption of water molecules by using a muscovite mica surface populated with two different, H(+) and K(+), surface ions. A series of grand canonical Monte Carlo (GCMC) simulations at various relative vapor pressures (p/p0) were performed to obtain the water structure and adsorption isotherm on the H(+)-exposed mica (H-mica) surface. The obtained results were compared to the recent simulation data of water adsorption on the K(+)-exposed mica (K-mica) surface reported by Malani and Ayyappa (Malani, A.; Ayappa, K. G. J. Phys. Chem. B 2009, 113, 1058-1067). Water molecules formed two prominent layers adjacent to the H-mica surface, whereas molecular layering was observed adjacent to the K-mica surface. The adsorption isotherm of water on the K-mica surface was characterized by three stages that corresponded to rapid adsorption in the initial regime below p/p0 = 0.1, followed by a linear development regime for p/p0 = 0.1-0.7 and rapid film thickening for p/p0 ≥ 0.7, whereas only latter two regimes were observed in the H-mica system. In addition, the film thickness of adsorbed water molecules for p/p0 mica surface and comparable beyond. The film thickness obtained from the MC simulations was in excellent agreement with the interferometry experimental data of Balmer et al. (Balmer, T. E.; Christenson, H. K.; Spencer, N. D.; Heuberger, M. Langmuir 2008, 24, 1566-1569). It was observed that the hydration behaviors of the two ions were completely different and depended on the size of their hydration shell and their ability to form hydrogen bonds. The behavior of water adsorption between these two cases was illustrated using the water density distribution, orientational distributions, hydrogen bonding
Hammermann, M; Brun, N; Klenin, K V; May, R.; Tóth, K; Langowski, J.
1998-01-01
Using small angle neutron scattering we have measured the static form factor of two different superhelical DNAs, p1868 (1868 bp) and pUC18 (2686 bp), in dilute aqueous solution at salt concentrations between 0 and 1.5 M Na+ in 10 mM Tris at 0% and 100% D2O. For both DNA molecules, the theoretical static form factor was also calculated from an ensemble of Monte Carlo configurations generated by a previously described model. Simulated and measured form factors of both DNAs showed the same behav...
Yokohama, Noriya
2013-07-01
This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.
International Nuclear Information System (INIS)
This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost. (author)
Direct Monte Carlo simulation of nanoscale mixed gas bearings
Directory of Open Access Journals (Sweden)
Kyaw Sett Myo
2015-06-01
Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.
Chow, James C. L.
2012-10-01
This study investigated radiation dose variations in pre-clinical irradiation due to the photon beam energy and presence of tissue heterogeneity. Based on the same mouse computed tomography image dataset, three phantoms namely, heterogeneous, homogeneous and bone homogeneous were used. These phantoms were generated by overriding the relative electron density of no voxel (heterogeneous), all voxel (homogeneous) and the bone voxel (bone homogeneous) to one. 360° photon arcs with beam energies of 50 - 1250 keV were used in mouse irradiations. Doses in the above phantoms were calculated using the EGSnrc-based DOSXYZnrc code through the DOSCTP. Monte Carlo simulations were carried out in parallel using multiple nodes in a high-performance computing cluster. It was found that the dose conformity increased with the increase of the photon beam energy from the keV to MeV range. For the heterogeneous mouse phantom, increasing the photon beam energy from 50 keV to 1250 keV increased seven times the dose deposited at the isocenter. For the bone dose enhancement, the mean dose was 2.7 times higher when the bone heterogeneity was not neglected using the 50 keV photon beams in the mouse irradiation. Bone dose enhancement affecting the mean dose was found in the photon beams with energy range of 50 - 200 keV and the dose enhancement decreased with an increase of the beam energy. Moreover, the MeV photon beam had a higher dose at the isocenter, and a better dose conformity compared to the keV beam.
Institute of Scientific and Technical Information of China (English)
Wang Yang; Cheng Tianle; Xia Yuanming; Jiang Dazhi
2001-01-01
In this paper, the fracture process of a unidirectional CF/SiC single edge-notched beam (SENB) under three-point bending (TPB) is studied by means of macro/micro-statistical Monte Carlo simulation. The simulated p-△ curves are in agreement with the experimental results before the peaks of curves, and the simulated microevolution patterns are in agreement with the patterns of the crack surfaces, which have verified this method. It is preliminarily demonstrated that the second turning point in the compliance changing rate curve corresponds to the fracture initiation for experiments on SENB under TPB of unidirectional CF/SiC composites.
Energy Technology Data Exchange (ETDEWEB)
Shin, J; Park, S; Jeong, J; Jeong, C [National Cancer Center, Goyang, Gyeonggi-do (Korea, Republic of); Lim, Y; Lee, S [National Cancer Center in Korea, Goyang, Gyeonggi-do (Korea, Republic of); SHIN, D [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Incerti, S [Universite Bordeaux 1, CNRS.IN2P3, Centres d’Etudes Nucleaires de Bordeau, Gradignan, Gradignan (France)
2014-06-01
Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage using a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4
Hybrid Monte Carlo simulation of polymer chains
Irbäck, A
1993-01-01
We develop the hybrid Monte Carlo method for simulations of single off-lattice polymer chains. We discuss implementation and choice of simulation parameters in some detail. The performance of the algorithm is tested on models for homopolymers with short- or long-range self-repulsion, using chains with $16\\le N\\le 512$ monomers. Without excessive fine tuning, we find that the computational cost grows as $N^{2+z^\\prime}$ with $0.64
Monte Carlo Simulation of River Meander Modelling
Posner, A. J.; Duan, J. G.
2010-12-01
This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.
Lattice Monte Carlo simulations of polymer melts
Hsu, Hsiao-Ping
2014-12-01
We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.
Monte Carlo simulation of magnetic nanostructured thin films
Institute of Scientific and Technical Information of China (English)
Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu
2004-01-01
@@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata
2016-01-01
We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Monte Carlo Simulation on Glueball Search at BESⅢ
Institute of Scientific and Technical Information of China (English)
QIN Hu; SHEN Xiao-Yan
2007-01-01
The J/ψ radiative decays are suggested as promising modes for glueball search. A full Monte Carlo simulation of J/ψ→γηη and γηη', based on the design of BESⅢ detector, is performed to study the sensitivity of searching for a possible tensor glueball at BESⅢ.
International Nuclear Information System (INIS)
-Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18F radioactivity concentration of 1.86x105 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Jones, Andrew Osler
There is an increasing interest in the use of inhomogeneity corrections for lung, air, and bone in radiotherapy treatment planning. Traditionally, corrections based on physical density have been used. Modern algorithms use the electron density derived from CT images. Small fields are used in both conformal radiotherapy and IMRT, however their beam characteristics in inhomogeneous media have not been extensively studied. This work compares traditional and modern treatment planning algorithms to Monte Carlo simulations in and near low-density inhomogeneities. Field sizes ranging from 0.5 cm to 5 cm in diameter are projected onto a phantom containing inhomogeneities and depth dose curves are compared. Comparisons of the Dose Perturbation Factors (DPF) are presented as functions of density and field size. Dose Correction Factors (DCF), which scale the algorithms to the Monte Carlo data, are compared for each algorithm. Physical scaling algorithms such as Batho and Equivalent Pathlength (EPL) predict an increase in dose for small fields passing through lung tissue, where Monte Carlo simulations show a sharp dose drop. The physical model-based collapsed cone convolution (CCC) algorithm correctly predicts the dose drop, but does not accurately predict the magnitude. Because the model-based algorithms do not correctly account for the change in backscatter, the dose drop predicted by CCC occurs further downstream compared to that predicted by the Monte Carlo simulations. Beyond the tissue inhomogeneity all of the algorithms studied predict dose distributions in close agreement with Monte Carlo simulations. Dose-volume relationships are important in understanding the effects of radiation to the lung. Dose within the lung is affected by a complex function of beam energy, lung tissue density, and field size. Dose algorithms vary in their abilities to correctly predict the dose to the lung tissue. A thorough analysis of the effects of density, and field size on dose to the lung
Monte Carlo Simulation of an American Option
Directory of Open Access Journals (Sweden)
Gikiri Thuo
2007-04-01
Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
Monte Carlo simulations for heavy ion dosimetry
Geithner, Oksana
2006-01-01
Water-to-air stopping power ratio ( ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variabl...
Monte Carlo simulation of tomography techniques using the platform Gate
International Nuclear Information System (INIS)
Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs
International Nuclear Information System (INIS)
Radiotherapy computational simulation procedures using Monte Carlo (MC) methods have shown to be increasingly important to the improvement of cancer fighting strategies. One of the biases in this practice is the discretization of the radioactive source in brachytherapy simulations, which often do not match with a real situation. This study had the aim to identify and to measure the influence of radioactive sources discretization in brachytherapy MC simulations when compared to those that do not present discretization, using prostate brachytherapy with Iodine-125 radionuclide as model. Simulations were carried out with 108 events with both types of sources to compare them using EGSnrc code associated to MASH phantom in orthostatic and supine positions with some anatomic adaptations. Significant alterations were found, especially regarding bladder, rectum and the prostate itself. It can be concluded that there is a need to discretized sources in brachytherapy simulations to ensure its representativeness. (author)
The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature
Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V
2010-01-01
A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.
Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios
Energy Technology Data Exchange (ETDEWEB)
Hostikka, S.; Keski-Rahkonen, O. [VTT Building and Transport, Espoo (Finland)
2002-11-01
Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)
Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo
Energy Technology Data Exchange (ETDEWEB)
Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)
2011-07-01
This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Miguel; Sempau, Josep [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-duisburg-essen.de [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, Essen D-45122 (Germany)
2015-06-15
Purpose: The Monte Carlo simulation of electron transport in Linac targets using the condensed history technique is known to be problematic owing to a potential dependence of absorbed dose distributions on the electron step length. In the PENELOPE code, the step length is partially determined by the transport parameters C1 and C2. The authors have investigated the effect on the absorbed dose distribution of the values given to these parameters in the target. Methods: A monoenergetic 6.26 MeV electron pencil beam from a point source was simulated impinging normally on a cylindrical tungsten target. Electrons leaving the tungsten were discarded. Radial absorbed dose profiles were obtained at 1.5 cm of depth in a water phantom located at 100 cm for values of C1 and C2 in the target both equal to 0.1, 0.01, or 0.001. A detailed simulation case was also considered and taken as the reference. Additionally, lateral dose profiles were estimated and compared with experimental measurements for a 6 MV photon beam of a Varian Clinac 2100 for the cases of C1 and C2 both set to 0.1 or 0.001 in the target. Results: On the central axis, the dose obtained for the case C1 = C2 = 0.1 shows a deviation of (17.2% ± 1.2%) with respect to the detailed simulation. This difference decreases to (3.7% ± 1.2%) for the case C1 = C2 = 0.01. The case C1 = C2 = 0.001 produces a radial dose profile that is equivalent to that of the detailed simulation within the reached statistical uncertainty of 1%. The effect is also appreciable in the crossline dose profiles estimated for the realistic geometry of the Linac. In another simulation, it was shown that the error made by choosing inappropriate transport parameters can be masked by tuning the energy and focal spot size of the initial beam. Conclusions: The use of large path lengths for the condensed simulation of electrons in a Linac target with PENELOPE conducts to deviations of the dose in the patient or phantom. Based on the results obtained in
Energy Technology Data Exchange (ETDEWEB)
Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein
2015-05-01
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.
International Nuclear Information System (INIS)
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO2 (rutile and anatase), ZnO and ZrO2. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
DEFF Research Database (Denmark)
Xie, Haiyan; Liu, Haichun; Svenmarker, Pontus;
2010-01-01
Fluorescence imaging is used for quantitative in vivo assessment of drug concentration. Light attenuation in tissue is compensated for through Monte-Carlo simulations. The intrinsic fluorescence intensity, directly proportional to the drug concentration, could be obtained....
Liao, Y.; Su, C. C.; Marschall, R.; Wu, J. S.; Rubin, M.; Lai, I. L.; Ip, W. H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Skorov, Y. V.; Thomas, N.
2016-03-01
Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The pipe holdup measurement is very important for decommissioning nuclear facilities and nuclear-material control and accounting. The absolute detection efficiencies (εsp) of full-energy γ rays peak under different source density distribution function have been simulated using the Monte Carlo (MC) software, and the counting rates (n0) of the characteristic γ rays have been measured using the γ spectrometer followed by the calculation of the holdup. The holdup is affected by the energy of γ rays, distance at which they are detected, pipe material, thickness,and source distribution of pipe, especially source distribution at a short distance. The comparative test of 235U reference materials on the inner wall of Fe and A1 pipes (the total mass of 235U is 44.6 mg and 222.8 mg, respectively) have been accomplished using this method. The determined result of 235U is 43.2mg (U0.95rel=5.4%) and 216.2mg (U0.95rel= 3.2%), respectively, which are in accordance with the reference values.
Jayaraman, Arthi; Nair, Nitish
2011-03-01
Significant interest has grown around the ability to create hybrid materials with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the grafted polymers one can tailor the inter-particle interactions and control the assembly/dispersion of the particles in the polymer matrix. In our recent work using self-consistent Polymer Reference Interaction Site Model (PRISM) theory- Monte Carlo simulations we have shown that tailoring the monomer sequences in the grafted copolymers provides a novel route to tuning the effective inter-particle interactions between the functionalized nanoparticles in a polymer matrix. In this talk I will present how monomer sequence and molecular weights (with and without polydispersity) of the grafted polymers, compatibility of the graft and matrix polymers, and nanoparticle size affect the chain conformations of the grafted polymers and the potential of mean force between the grafted nanoparticles in the matrix.
Energy Technology Data Exchange (ETDEWEB)
Tamulaitis, G.; Kazlauskas, K.; Zukauskas, A. [Institute of Materials Science and Applied Research, Vilnius University (Lithuania); Mickevicius, J.; Shur, M.S. [Department of ECE and CIE, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Fareed, R.S.Qhalid; Zhang, J.P.; Gaska, R. [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, SC 29209 (United States)
2006-06-15
Monte Carlo simulation of exciton hopping reveals the features of the potential profile in AlGaN (with Al content of {proportional_to}26%) responsible for S-shaped and W-shaped temperature dependences of photoluminescence band peak position and bandwidth, respectively. One of the samples was grown using the conventional metal-organic chemical vapor deposition (MOCVD), while the second one was grown with the insertion of a buffer layer grown by migration enhanced MOCVD (MEMOCVD trademark) technique. The potential profile is shown to be double-scaled in both Al{sub 0.26}Ga{sub 0.74}N epilayers, and the exciton hopping occurs through random potential fluctuations within isolated low-potential regions with the average energy of the localized states dispersed on the second scale. Both energy fluctuation scales were found to be in the range of 18-20 meV and were independent of the growth technique used. Meanwhile, the carrier lifetime was 30 ps in the sample grown by conventional MOCVD and 190 ps in the sample grown using the MEMOCVD trademark technique. We conclude that the difference in the lifetimes is caused by the density of nonradiative recombination centers rather than by the potential fluctuations affecting the carrier motion. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
Paro, Autumn D; Hossain, Mainul; Webster, Thomas J; Su, Ming
2016-01-01
Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy.
Setiani, Tia Dwi; Suprijadi, Haryanto, Freddy
2016-03-01
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic images and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 - 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 108 and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.
Non-analogue Monte Carlo method, application to neutron simulation
International Nuclear Information System (INIS)
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Nowadays, only the Monte Carlo method offers such possibilities. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette
Directory of Open Access Journals (Sweden)
Veres Vincentiu
2013-07-01
Full Text Available Decisions are a result of choices made between several alternatives and will affect all participants in the decision-making process. In this paper we analyze the Monte Carlo simulation as an important management tool in evaluating decisions under risk. The method is particularly useful in simulating decision problems. For example, the profit that could be achieved if a company launches a new product may depend on a number of factors (market share, advertising, production costs, launch costs, the lifetime of the product, etc. The company manager should identify all factors that could affect profit and then to consider the large number of ways in which these factors may interrelate. In such situations it is recommended company manager to divide the problem into smaller parts, asking him to estimate the probability distribution for market share, for advertising, for the cost of launch. Once they were obtained it can be determined their combined effect in order to obtain the probability distribution of profit. Through computer can generate a large number of possible combinations of situations where you choose a particular course of action. Upon completion of the simulation possible combination will be generated mostly while the least possible combination will be generated less frequently. For exemplification we selected a company producing shoes in Cluj market who wants to launch a new model for autumn-winter 2013-2014. In the current period the company has limited production capacity, has a number of additional contracts honored and general economic crisis situation makes money availability to be extremely limited. Accordingly, the company will have to choose a single product to be launched next season. The company will have to decide which of the two new products to be launched on the market: a model of boots for men in business class or a new model of women\\'s boots of the same class business. The company is not sure either production costs or
Monte Carlo simulation of hydrogen adsorption on Ni surfaces
Institute of Scientific and Technical Information of China (English)
WANG Rui; DENG Hui-qiu; YUAN Xiao-jian; HU Wang-yu
2007-01-01
In the present paper the adsorption kinetics of the hydrogen molecule on the(111)and(100)surfaces have been studied with the model proposed by Panczyk and the grand canonical Monte Carlo simulation method.The equilibrium adsorption isotherms are calculated at five different temperatures ranging from 314 K to 376 K and compared with the experimental equilibrium adsorption isotherms.The effects of temperature and pressure on coverage are also analyzed.
Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications
Raedt, H. De
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Energy Technology Data Exchange (ETDEWEB)
Bieda, Bogusław
2014-05-01
The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. - Highlights: • The benefits of Monte Carlo simulation are examined. • The normal probability distribution is studied. • LCI data on Mittal Steel Poland (MSP) complex in Kraków, Poland dates back to 2005. • This is the first assessment of the LCI uncertainties in the Polish steel industry.
Monte Carlo simulations for focusing elliptical guides
Energy Technology Data Exchange (ETDEWEB)
Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)
2009-07-01
The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Energy Technology Data Exchange (ETDEWEB)
Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir
2015-01-11
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Heidary, Saeed; Setayeshi, Saeed
2015-01-01
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Monte Carlo simulations in small animal PET imaging
Energy Technology Data Exchange (ETDEWEB)
Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)
2007-10-01
This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.
Monte Carlo simulations in small animal PET imaging
International Nuclear Information System (INIS)
This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using -F and [18F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies
Monte Carlo simulations for heavy ion dosimetry
Energy Technology Data Exchange (ETDEWEB)
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Leroch, Sabine; Wendland, Martin
2013-10-01
Adhesion forces between nanoparticles strongly depend on the amount of adsorbed condensed water from ambient atmosphere. Liquid water forms bridges in the cavities separating the particles, giving rise to the so-called capillary forces which in most cases dominate the van der Waals and long-range electrostatic interactions. Capillary forces promote the undesirable agglomeration of particles to large clusters, thereby hindering the flowability of dry powders in process containers. In process engineering macroscopic theories based on the Laplace pressures are used to estimate the strength of the capillary forces. However, especially for low relative humidity and when the wetting of rough or small nanoparticles is studied, those theories can fail. Molecular dynamic simulations can help to give better insight into the water-particle interface. The simulated force versus distance curve as well as adhesion forces and the adsorption isotherm for silica nanoparticles at varying relative humidity will be discussed in comparison to experiments, theories, and simulations. PMID:24015790
Monte Carlo study of real time dynamics
Alexandru, Andrei; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C
2016-01-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and in principle applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Energy Technology Data Exchange (ETDEWEB)
Silva, Laura E. da; Nicolucci, Patricia, E-mail: laura.emilia.fm@gmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras
2014-04-15
The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)
Zagorska, A.; Bliznakova, K.; Buchakliev, Z.
2015-09-01
In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Identification of Logical Errors through Monte-Carlo Simulation
Emmett, Hilary L
2010-01-01
The primary focus of Monte Carlo simulation is to identify and quantify risk related to uncertainty and variability in spreadsheet model inputs. The stress of Monte Carlo simulation often reveals logical errors in the underlying spreadsheet model that might be overlooked during day-to-day use or traditional "what-if" testing. This secondary benefit of simulation requires a trained eye to recognize warning signs of poor model construction.
Sarstedt, Marko
2006-01-01
As mixture regression models increasingly receive attention from both theory and practice, the question of selecting the correct number of segments gains urgency. A misspecification can lead to an under- or oversegmentation, thus resulting in flawed management decisions on customer targeting or product positioning. This paper presents the results of an extensive simulation study that examines the performance of commonly used information criteria in a mixture regression context with normal dat...
Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization
Shao, Jing
2015-10-27
Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
Energy Technology Data Exchange (ETDEWEB)
Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.
Monte Carlo simulation of transition radiation and δ electrons
International Nuclear Information System (INIS)
This paper employs Monte Carlo simulations of the performance of a transition radiation detector (TRD). The program has been written for the TRD in the ZEUS spectrometer, which separates electrons from hadrons in the momentum range between 1 GeV/c and 30 GeV/c. Both, total charge method and cluster counting method were simulated taking into account various experimental parameters. In particular, it was found that the cluster counting method relies on a quantitative understanding of the background originating from the production of δ-electrons by charged particles. The results of the Monte Carlo calculations are in agreement with experimental data obtained with prototypes within a systematic uncertainty of 20%. We applied our Monte Carlo program to studies in order to find an optimum layout for the TRD within available space in the ZEUS spectrometer. In this context, the performance of TRD layouts with different geometries and materials has been evaluated comprehensively. The geometry found by optimization promises an improvement on hadron suppression by a factor of about two for both methods compared with present results from test measurements. Applying algorithms for a detailed analysis of the energy and space distributions of the clusters in the TRD, hadrons in the momentum range from 1 to 30 GeV/c can be suppressed to a level of less than 2%. This method of cluster analysing improves the suppression of hadrons by a factor of about two compared to the total charge method. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yoriyaz, Helio; Siqueira, Paulo T.D.; Zevallos-Chavez, Juan Y. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear]. E-mail: hyoriyaz@ipen.br; Furnari, Laura; Poli, Maria Esmeralda R. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Hospital das Clinicas
2005-07-01
Radial dose distributions have been obtained for several electron beam field sizes through the Monte Carlo simulation. Measurements were performed by an ionization chamber in a 50x50x50 cm{sup 3} water phantom which is routinely used for calibration. Calculated and measured values were compared to adjust the input energy spectra used for the Monte Carlo simulation. The methodology presented here is part of the 'tuning procedure' for the construction of electron beam sources typically used for radiotherapy. (author)
On Monte Carlo Simulation and Analysis of Electricity Markets
International Nuclear Information System (INIS)
This dissertation is about how Monte Carlo simulation can be used to analyse electricity markets. There are a wide range of applications for simulation; for example, players in the electricity market can use simulation to decide whether or not an investment can be expected to be profitable, and authorities can by means of simulation find out which consequences a certain market design can be expected to have on electricity prices, environmental impact, etc. In the first part of the dissertation, the focus is which electricity market models are suitable for Monte Carlo simulation. The starting point is a definition of an ideal electricity market. Such an electricity market is partly practical from a mathematical point of view (it is simple to formulate and does not require too complex calculations) and partly it is a representation of the best possible resource utilisation. The definition of the ideal electricity market is followed by analysis how the reality differs from the ideal model, what consequences the differences have on the rules of the electricity market and the strategies of the players, as well as how non-ideal properties can be included in a mathematical model. Particularly, questions about environmental impact, forecast uncertainty and grid costs are studied. The second part of the dissertation treats the Monte Carlo technique itself. To reduce the number of samples necessary to obtain accurate results, variance reduction techniques can be used. Here, six different variance reduction techniques are studied and possible applications are pointed out. The conclusions of these studies are turned into a method for efficient simulation of basic electricity markets. The method is applied to some test systems and the results show that the chosen variance reduction techniques can produce equal or better results using 99% fewer samples compared to when the same system is simulated without any variance reduction technique. More complex electricity market models
Monte Carlo simulation of large electron fields
Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto
2008-03-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
Bieda, Bogusław
2014-05-15
The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. PMID:24290145
Kurudirek, Murat
2015-09-01
Some gel dosimeters, water, human tissues and water phantoms were investigated with respect to their radiological properties in the energy region 10 keV-10 MeV. The effective atomic numbers (Zeff) and electron densities (Ne) for some heavy charged particles such as protons, He ions, B ions and C ions have been calculated for the first time for Fricke, MAGIC, MAGAT, PAGAT, PRESAGE, water, adipose tissue, muscle skeletal (ICRP), muscle striated (ICRU), plastic water, WT1 and RW3 using mass stopping powers from SRIM Monte Carlo software. The ranges and straggling were also calculated for the given materials. Two different set of mass stopping powers were used to calculate Zeff for comparison. The water equivalence of the given materials was also determined based on the results obtained. The Monte Carlo simulation of the charged particle transport was also done using SRIM code. The heavy ion distribution along with its parameters were shown for the given materials for different heavy ions. Also the energy loss and damage events in water when irradiated with 100 keV heavy ions were studied in detail.
Public Infrastructure for Monte Carlo Simulation: publicMC@BATAN
Waskita, A A; Akbar, Z; Handoko, L T; 10.1063/1.3462759
2010-01-01
The first cluster-based public computing for Monte Carlo simulation in Indonesia is introduced. The system has been developed to enable public to perform Monte Carlo simulation on a parallel computer through an integrated and user friendly dynamic web interface. The beta version, so called publicMC@BATAN, has been released and implemented for internal users at the National Nuclear Energy Agency (BATAN). In this paper the concept and architecture of publicMC@BATAN are presented.
Schiavon, Nick; de Palmas, Anna; Bulla, Claudio; Piga, Giampaolo; Brunetti, Antonio
2016-09-01
A spectrometric protocol combining Energy Dispersive X-Ray Fluorescence Spectrometry with Monte Carlo simulations of experimental spectra using the XRMC code package has been applied for the first time to characterize the elemental composition of a series of famous Iron Age small scale archaeological bronze replicas of ships (known as the "Navicelle") from the Nuragic civilization in Sardinia, Italy. The proposed protocol is a useful, nondestructive and fast analytical tool for Cultural Heritage sample. In Monte Carlo simulations, each sample was modeled as a multilayered object composed by two or three layers depending on the sample: when all present, the three layers are the original bronze substrate, the surface corrosion patina and an outermost protective layer (Paraloid) applied during past restorations. Monte Carlo simulations were able to account for the presence of the patina/corrosion layer as well as the presence of the Paraloid protective layer. It also accounted for the roughness effect commonly found at the surface of corroded metal archaeological artifacts. In this respect, the Monte Carlo simulation approach adopted here was, to the best of our knowledge, unique and enabled to determine the bronze alloy composition together with the thickness of the surface layers without the need for previously removing the surface patinas, a process potentially threatening preservation of precious archaeological/artistic artifacts for future generations.
Optimization of a high-resolution collimator for a CdTe detector: Monte Carlo simulation studies
International Nuclear Information System (INIS)
Photon counting detectors using cadmium zinc telluride (CZT) or cadmium telluride (CdTe) have benefits compared to conventional scintillation detectors, and CZT and CdTe have advantageous physical characteristics for nuclear medicine imaging. Recently, many studies have been conducted using these materials to improve the sensitivity and the spatial resolution of the photon counting detector. By using a pixelated parallel-hole collimator, we may be able to improve the sensitivity and the spatial resolution. The purpose of this study was to optimize the design of a collimator to achieve excellent resolution and high sensitivity for a gamma camera system based on the CdTe detector. In this study we simulated a gamma camera system with a photon counting detector based on CdTe and evaluated the system's performance. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE) simulation. This detector consists of small pixels (0.35 x 0.35 mm2). We designed two parallel-hole collimators with different shapes and verified their usefulness. One was the proposed pixelated parallel-hole collimator in which the hole size and the pixel size are the same, and the other was the hexagonal parallel-hole collimator, which had a hole size similar to that of the pixelated parallel-hole collimator. We evaluated the sensitivity, spatial resolution, and contrast resolution to determine which parallel-hole collimator was best for the PID 350 CdTe detector. The average sensitivity was 22.65% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator. Also, the pixelated parallel-hole collimator provided 10.7% better spatial resolution than the hexagonal parallel-hole collimator, and the contrast resolution was improved by 8.93%. These results reflect an improvement in sensitivity and spatial resolution, and indicate that the imaging performance of the pixelated
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Monte-Carlo Simulation on Neutron Instruments at CARR
Institute of Scientific and Technical Information of China (English)
2001-01-01
The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
International Nuclear Information System (INIS)
A Monte Carlo study of the energy response of an aluminium oxide (Al2O3) detector in kilo-voltage and mega-voltage photon beams relative to 60Co gamma rays has been performed using EGSnrc Monte Carlo simulations. The sensitive volume of the Al2O3 detector was simulated as a disc of diameter 2.85 mm and thickness 1 mm. The phantom material was water and the irradiation depth chosen was 2.0 cm in kilo-voltage photon beams and 5.0 cm in mega-voltage photon beams. The results show that the energy response of the Al2O3 detector is constant within 3% for photon beam energies in the energy range of 60 Co gamma rays to 25 MV X-rays. However, the Al2O3 detector shows an enhanced energy response for kilo-voltage photon beams, which in the case of 50 kV X-rays is 3.2 times higher than that for 60Co gamma rays. There is essentially no difference in the energy responses of LiF and Al2O3 detectors irradiated in mega-voltage photon beams when these Al2O3 results are compared with literature data for LiF thermoluminescence detectors. However, the Al2O3 detector has a much higher enhanced response compared with LiF detectors in kilo-voltage X-ray beams, more than twice as much for the case of 50 kV X-rays. (authors)
Monte Carlo Simulation Tool Installation and Operation Guide
Energy Technology Data Exchange (ETDEWEB)
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
Directory of Open Access Journals (Sweden)
Paro AD
2016-09-01
Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray
Monte Carlo simulation experiments on box-type radon dosimeter
Energy Technology Data Exchange (ETDEWEB)
Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-11
Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper
Monte Carlo simulation experiments on box-type radon dosimeter
Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-01
Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the
Energy Technology Data Exchange (ETDEWEB)
Choi, Yu-Na; Kim, Hee-Joung; Park, Hye-Suk; Lee, Chang-Lae; Cho, Hyo-Min; Lee, Seung-Wan; Ryu, Hyun-Ju [Yonsei University, Wonju (Korea, Republic of)
2010-09-15
There have been many efforts to advance the technology of X-ray digital mammography in order to enhance the early detection of breast pathology. The purpose of this study was to evaluate image quality and the radiation dose after magnifying X-ray digital mammography using the Geant4 Application for Tomographic Emission (GATE). In this study, we simulated a Monte Carlo model of an X-ray digital mammographic system, and we present a technique for magnification and discuss how it affects the image quality. The simulated X-ray digital mammographic system with GATE consists of an X-ray source, a compression paddle, a supporting plate, and an imaging plate (IP) of computed radiography (CR). The degree of magnification ranged from 1.0 to 2.0. We designed a semi-cylindrical phantom with a thickness of 45-mm and a radius of 50-mm in order to evaluate the image quality after magnification. The phantom was made of poly methyl methacrylate (PMMA) and contained four spherical specks with diameters of 750, 500, 250, and 100-{mu}m to simulate microcalcifications. The simulation studies were performed with an X-ray energy spectrum calculated using the spectrum processor SRS-78. A combination of a molybdenum anode and a molybdenum filter (Mo/Mo) was used for the mammographic X-ray tubes. The effects of the degree of magnification were investigated in terms of both the contrast-to-noise ratio (CNR) and the average glandular dose (AGD). The results show that the CNR increased as the degree of magnification increased and decreased as breast glandularity increased. The AGD showed only a minor increase with magnification. Based on the results, magnification of mammographic images can be used to obtain high image quality with an increased CNR. Our X-ray digital mammographic system model with GATE may be used as a basis for future studies on X-ray imaging characteristics.
Monte Carlo simulations of cold atom ratchets.
Brown, M.
2008-01-01
This thesis reports the theoretical study of several cold atom ratchet systems. In particular the focus of the work is the determination of the ratchet current as a function of the ratchet parameters through analysis of the system symmetries and through numerical simulation. Ratchets are devices that exhibit directed motion in the absence of net forces. It is necessary to drive them away from thermal equilibrium so as to not violate the second law of thermodynamics. Currents are generated whe...
Lattice Monte Carlo simulation of Galilei variant anomalous diffusion
International Nuclear Information System (INIS)
The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well
Lattice Monte Carlo simulation of Galilei variant anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Guo, Gang, E-mail: hndzgg@aliyun.com [School of Information System and Management, National University of Defense Technology, Changsha, 410073 (China); Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Bittig, Arne, E-mail: arne.bittig@uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Uhrmacher, Adelinde, E-mail: lin@informatik.uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany)
2015-05-01
The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well.
Energy Technology Data Exchange (ETDEWEB)
Mahdizadeh, Sayyed Jalil, E-mail: saja.mahdizadeh@gmail.com; Goharshadi, Elaheh K. [Ferdowsi University of Mashhad, Department of Chemistry (Iran, Islamic Republic of)
2013-01-15
Grand canonical Monte Carlo (GCMC) simulation combined with ab initio quantum mechanics calculations were employed to study methane storage in homogeneous armchair open-ended single-walled silicon nanotubes (SWSiNTs), single-walled carbon nanotubes (SWCNTs), and single-walled silicon carbide nanotubes (SWSiCNTs) in triangular arrays. Two different groups of nanotubes were studied: the first were (12,12) SiNTs, (19,19) CNTs, and (15,15) SiCNTs and the second were (7,7) SiNTs, (11,11) CNTs, and (9,9) SiCNTs with the diameters of 26 and 15 A for the first and second groups, respectively. The simulations were carried out at different thermodynamic states. The potential energy functions were calculated using ab initio quantum mechanics and then fitted with (12,6) Lennard-Jones potential model as a bridge between first-principles calculations and GCMC simulations. The absolute, excess, and delivery adsorption isotherms of methane were calculated for two groups of nanotubes. The specific surface area and the isosteric heat of adsorption were computed. The radial distribution functions for the adsorbed molecules on different nanotubes were also calculated. Different isotherm models were fitted with the simulation adsorption data. According to the results, the excess uptake value of methane adsorption in (11,11) CNT array exceeded the US Department of Energy target (180 V/V at 298 K and 35 bar). The results also indicate that SiNTs and SiCNTs are not desirable materials compared with corresponding CNTs for natural gas storage.
Kowalczyk, Piotr; Tanaka, Hideki; Kaneko, Katsumi; Terzyk, Artur P; Do, Duong D
2005-06-01
Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slit-like micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slit-like pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slit-like micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.
Methods for variance reduction in Monte Carlo simulations
Bixler, Joel N.; Hokr, Brett H.; Winblad, Aidan; Elpers, Gabriel; Zollars, Byron; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, due to the probabilistic nature of these simulations, large numbers of photons are often required in order to generate relevant results. Here, we present methods for reduction in the variance of dose distribution in a computational volume. Dose distribution is computed via tracing of a large number of rays, and tracking the absorption and scattering of the rays within discrete voxels that comprise the volume. Variance reduction is shown here using quasi-random sampling, interaction forcing for weakly scattering media, and dose smoothing via bi-lateral filtering. These methods, along with the corresponding performance enhancements are detailed here.
Monte Carlo simulations of phosphate polyhedron connectivity in glasses
Energy Technology Data Exchange (ETDEWEB)
ALAM,TODD M.
2000-01-01
Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Energy Technology Data Exchange (ETDEWEB)
Fonseca, T.C.F.; Bastos, F.M.; Figueiredo, M.T.T.; Souza, L.S.; Guimaraes, M.C.; Silva, C.R.E.; Mello, O.A.; Castelo e Silva, L.A.; Paixao, L., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Benavente, J.A.; Paiva, F.G. [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnicas Nucleares
2015-07-01
Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)
Research of Monte Carlo Simulation in Commercial Bank Risk Management
Institute of Scientific and Technical Information of China (English)
BeimingXiao
2004-01-01
Simulation method is an important-tool in financial risk management. It can simulate financial variable or economic wriable and deal with non-linear or non-nominal issue. This paper analyzes the usage of "Monte Carlo" approach in commercial bank risk management.
Energy Technology Data Exchange (ETDEWEB)
Papadimitroulas, P; Kostou, T; Kagadis, G [University of Patras, Rion, Ahaia (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attika (Greece)
2015-06-15
Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm{sup 3}. The impact of the motion on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared in the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction
International Nuclear Information System (INIS)
Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm3. The impact of the motion on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared in the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction
International Nuclear Information System (INIS)
We have investigated the solvent effects on Δlog Ks (the difference of stability constant of binding) and the relative free energies of binding of La3+ to Nd3+ ions to 18-crown-6 by a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. We compared relative binding Gibbs free energies and the differences in stability constant (Δlog Ks) of binding of La3+ and Nd3+ ions to 18-crown-6 in CH3OH in this study with the experimental. There is a good agreement between our study and the experimental. We noted that Borns function of the solvents,the electron pair donor properties of the solvent, the radii of host and guest and the differences in solvation dominate the differences in the stability constant (Δlog Ks) as well as the relative free energies of binding of La3+ to Nd3+ ions to 18-crown-6. The results of this study appear promising for providing the association properties of crown ethers with alkaline earth metals among polar solvents and the less polar or non-polar solvents
Energy Technology Data Exchange (ETDEWEB)
Han, Eun Young [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205 (United States); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Mcguire, Lynn; Brown, Tracy L. Y. [Department of Radiology, Division of Nuclear Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205 (United States); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2013-08-15
the newborn and 1-yr-old phantoms for a hyperthyroid-patient source are higher than values for a DTC-patient source.Conclusions: The authors performed realistic assessments of {sup 131}I organ S values and effective dose per time-integrated activity from adult patients treated for hyperthyroidism and DTC to family members. In addition, the authors’ studies consider Monte Carlo simulated “mother and baby/child” exposure scenarios for the first time. Based on these results, the authors reconfirm the strong conservatism underlying the point source method recommended by the US NRC. The authors recommend that various factors such as the type of the patient's disease, the age of family members, and the distance/posture between the patient and family members must be carefully considered to provide realistic dose estimates for patient-to-family exposures.
Monte Carlo Simulation in Statistical Physics An Introduction
Binder, Kurt
2010-01-01
Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies LMPHE-URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies LMPHE-URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies LMPHE-URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-12-01
The magnetic properties of Fe- and FeO-modified Graphene-nano-ribbon: C{sub 32}H{sub 2}Fe{sub 2} and C{sub 32}H{sub 2}Fe{sub 2}O{sub 2} are studied using Monte Carlo simulations. The thermal magnetization and magnetic susceptibility with different values of exchange interactions, zero crystal field and zero magnetic field are established. The transition temperature is deduced for different values of exchange interactions. The internal energy, magnetization with a fixed value of exchange interactions, zero crystal field and external magnetic field are given. The magnetization versus the exchange interaction with different values of temperature, different values of crystal field and external magnetic field of are obtained. The magnetic hysteresis cycles have been deduced. - Highlights: • The magnetic properties of C{sub 32}H{sub 2}Fe{sub 2} and C{sub 32}H{sub 2}Fe{sub 2}O{sub 2} are studied by MCS. • The transition temperature of C{sub 32}H{sub 2}Fe{sub 2} and C{sub 32}H{sub 2}Fe{sub 2}O{sub 2} is deduced. • The magnetic hysteresis cycles are deduced for two graphene nano-ribbon.
Suppression of the initial transient in Monte Carlo criticality simulations
International Nuclear Information System (INIS)
Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)
Utilising Monte Carlo Simulation for the Valuation of Mining Concessions
Directory of Open Access Journals (Sweden)
Rosli Said
2005-12-01
Full Text Available Valuation involves the analyses of various input data to produce an estimated value. Since each input is itself often an estimate, there is an element of uncertainty in the input. This leads to uncertainty in the resultant output value. It is argued that a valuation must also convey information on the uncertainty, so as to be more meaningful and informative to the user. The Monte Carlo simulation technique can generate the information on uncertainty and is therefore potentially useful to valuation. This paper reports on the investigation that has been conducted to apply Monte Carlo simulation technique in mineral valuation, more specifically, in the valuation of a quarry concession.
Monte Carlo simulation of electrons in dense gases
Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron
2014-10-01
We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.
Two Approaches to Accelerated Monte Carlo Simulation of Coulomb Collisions
Ricketson, Lee
2014-01-01
In plasma physics, the direct simulation of inter-particle Coulomb collisions is often necessary to capture the relevant physics, but presents a computational bottleneck because of the complexity of the process. In this thesis, we derive, test and discuss two methods for accelerating the simulation of collisions in plasmas in certain scenarios. The first is a hybrid fluid-Monte Carlo scheme that reduces the number of collisions that must be simulated. Coupling between the fluid and particl...
Simulate the progress of PGNAA with Monte Carlo
International Nuclear Information System (INIS)
A kind of model to simulate bulk coal PGNAA process was set up, and some problems in PGNAA experiments was solved using the MOCA -Monte Carlo software. Analysis of the relationship between the thermal neutron field and the source distance, and the relationship curve with MOCA was obtained, and can be used to design measurement object bucket; simulated bulk coal PGNAA process, and analyzed activated γ spectrum. Through simulating PGNAA process, provide a theoretical basis for a bulk coal PGNAA experiments. (authors)
Brunetti, Antonio; Fabian, Julio; La Torre, Carlos Wester; Schiavon, Nick
2016-06-01
An innovative methodological approach based on XRF measurements using a polychromatic X-ray beam combined with simulation tests based on an ultra-fast custom-made Monte Carlo code has been used to characterize the bulk chemical composition of restored (i.e., cleaned) and unrestored multilayered Peruvian metallic artifacts belonging to the twelfth- and thirteenth-century AD funerary complex of Chornancap-Chotuna in northern Peru. The multilayered structure was represented by a metal substrate covered by surface corrosion patinas and/or a layer from past protective treatments. The aim of the study was to assess whether this new approach could be used to overcome some of the limitations highlighted in previous research performed using monochromatic X-ray beam on patina-free and protective treatment-free metal artifacts in obtaining reliable data both on the composition on the bulk metals and on surface layers thickness. Results from the analytical campaign have led to a reformulation of previous hypotheses about the structure and composition of the metal used to create the Peruvian artifacts under investigation.
Energy Technology Data Exchange (ETDEWEB)
Crespo, Cristina; Aguiar, Pablo [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Gallego, Judith [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Institut de Bioenginyeria de Catalunya, Barcelona (Spain); Cot, Albert [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Falcon, Carles; Ros, Domenec [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Bullich, Santiago [Hospital del Mar, Center for Imaging in Psychiatry, CRC-MAR, Barcelona (Spain); Pareto, Deborah [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); PRBB, Institut d' Alta Tecnologia, Barcelona (Spain); Sempau, Josep [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Lomena, Francisco [IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Calvino, Francisco [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Pavia, Javier [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain)
2008-07-15
{sup 123}I-labelled radioligands are commonly used for single-photon emission computed tomography (SPECT) imaging of the dopaminergic system to study the dopamine transporter binding. The aim of this work was to compare the quantitative capabilities of two different SPECT systems through Monte Carlo (MC) simulation. The SimSET MC code was employed to generate simulated projections of a numerical phantom for two gamma cameras equipped with a parallel and a fan-beam collimator, respectively. A fully 3D iterative reconstruction algorithm was used to compensate for attenuation, the spatially variant point spread function (PSF) and scatter. A post-reconstruction partial volume effect (PVE) compensation was also developed. For both systems, the correction for all degradations and PVE compensation resulted in recovery factors of the theoretical specific uptake ratio (SUR) close to 100%. For a SUR value of 4, the recovered SUR for the parallel imaging system was 33% for a reconstruction without corrections (OSEM), 45% for a reconstruction with attenuation correction (OSEM-A), 56% for a 3D reconstruction with attenuation and PSF corrections (OSEM-AP), 68% for OSEM-AP with scatter correction (OSEM-APS) and 97% for OSEM-APS plus PVE compensation (OSEM-APSV). For the fan-beam imaging system, the recovered SUR was 41% without corrections, 55% for OSEM-A, 65% for OSEM-AP, 75% for OSEM-APS and 102% for OSEM-APSV. Our findings indicate that the correction for degradations increases the quantification accuracy, with PVE compensation playing a major role in the SUR quantification. The proposed methodology allows us to reach similar SUR values for different SPECT systems, thereby allowing a reliable standardisation in multicentric studies. (orig.)
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Radiotherapy Monte Carlo simulation using cloud computing technology
International Nuclear Information System (INIS)
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
Energy Technology Data Exchange (ETDEWEB)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); Mueller, Jonathon W. [United States Air Force, Keesler Air Force Base, Biloxi, Mississippi 39534 (United States); Cody, Dianna D. [University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); DeMarco, John J. [Departments of Biomedical Physics and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States)
2015-02-15
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Energy and structure of copper clusters(n=70-150)studied by the Monte Carlo computer simulation
Institute of Scientific and Technical Information of China (English)
Pan Xiao-Dong; Gai Zhi-Gang; Li Gong-Ping
2008-01-01
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method.The stability of the structure of the clusters was studied by calculating the average binding energy per atom,first difference energy and second difference energy of copper cluster.Most of the copper clusters of the size n=70-150 adopt an icosahedral structure.The results show that the trends are in agreement with theoretic prediction for copper clusters.The most stable structures for copper clusters are found at n=77,90,95,131,139.
International Nuclear Information System (INIS)
Xenon gas proportional-scintillation counters (GPSC) have many applications in the detection of soft x rays where their energy resolution, R, is comparable to solid-state detectors when large window areas are required. However, R is known to deteriorate for energies Exr below 2 - 3 keV due to electron loss to the entrance window. Since the addition of a lighter noble gas increases the absorption depth, we have investigated the use of Xe - Ne gas mixtures at atmospheric pressure as detector fillings. The results of a Monte Carlo simulation study of the Fano factor, F, the w value, and the intrinsic energy resolution, R=2.36(Fw/Exr)1/2, are presented for Xe - Ne mixtures and pure Xe and Ne. The results show that the addition of Ne to Xe reduces the intrinsic energy resolution R but this never compensates for the reduction in scintillation yield in GPSC applications, implying that the instrumental energy resolution R will only improve with the addition of Ne when electron loss to the window in pure Xe is significant. The simulation reproduces the photoionization process of the Xe and Ne atoms, the vacancy cascade decay of the residual ions, and the elastic and inelastic scattering of electrons by the gas atoms. The contribution of energy and charge transfer mechanisms such as Penning, associative, and transfer ionization is discussed in detail. It is shown that Penning and associative ionization are the crucial indirect ionization processes which determine the behavior of F and w at low concentrations of Xe. The importance of the nonmetastable Ne states is also assessed. [copyright] 2001 American Institute of Physics
Effect of doping of graphene structure: A Monte Carlo simulations
Masrour, R.; Jabar, A.
2016-10-01
In this work, we have studied the effect of magnetic atom doping of graphene structure using Monte Carlo simulation. The reduced critical temperature with the magnetic atom doping x has been deduced from the thermal variation of magnetization and magnetic susceptibility. The variation of magnetization versus the crystal field of grapheme structure for different x and for different reduced temperatures has been established. We also have measured the coercive field (hC) as a function x in grapheme structure, finding that hC increases with increasing x concentration as predicted experimentally. The doping-induced magnetism in graphene. Magnetically atom doping in graphene systems are potential candidates for application in future spintronic devices, magnetometry requires macroscopic quantities of graphene to detect magnetic moments directly.
Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-01-01
The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations. PMID:26295223
Directory of Open Access Journals (Sweden)
Ambrish Singh
2015-08-01
Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.
Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-08-18
The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.
Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber
Institute of Scientific and Technical Information of China (English)
ZHENG; Yu-lai; WANG; Qiang; YANG; Lu
2013-01-01
The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation
Silver, N. Clayton; Hittner, James B.; May, Kim
2004-01-01
The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…
Monte Carlo Simulations of Impact Ionization Feedback in MOSFET Structures
Bude, Jeff D.
1998-01-01
Although impact ionization feedback is recognized as an important current multiplication mechanism, its importance as a carrier heating mechanism has been largely overlooked. This work emphasizes the inclusion of impact ionization feedback in Monte Carlo device simulations, and its implications for carrier heating in sub-micron CMOS and EEPROM technologies.
Microbial contamination in poultry chillers estimated by Monte Carlo simulations
The risk of microbial contamination during poultry processing may be reduced by the operating characteristics of the chiller. The performance of air chillers and immersion chillers were compared in terms of pre-chill and post-chill contamination using Monte Carlo simulations. Three parameters were u...
Radio emission from cosmic ray air showers : Monte Carlo simulations
Huege, T.; Falcke, H.D.E.
2005-01-01
We present time-domain Monte Carlo simulations of radio emission from cosmic ray air showers in the scheme of coherent geosynchrotron radiation. Our model takes into account the important air shower characteristics such as the lateral and longitudinal particle distributions, the particle track lengt
Monte Carlo simulation with the Gate software using grid computing
International Nuclear Information System (INIS)
Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)
Monte Carlo simulations of plutonium gamma-ray spectra
International Nuclear Information System (INIS)
Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum
Monte Carlo simulation of ICRF discharge initiation in ITER
Tripský, M.; Wauters, T.; Lyssoivan, A.; Křivská, A.; Louche, F.; Van Schoor, M.; Noterdaeme, J.-M.
2015-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH&CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H2, H2+ and H+. The code also includes Coulomb collisions between electrons and ions (e - e, e - H2+ , e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H2) for two antenna phasing (monopole [0000]-phasing and small dipole [0π0π]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (ω = ωLHR) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR.
Assessing Excel VBA Suitability for Monte Carlo Simulation
Botchkarev, Alexei
2015-01-01
Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not complet...
Monte Carlo simulation of photon migration path in turbid media
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium.The most probable trajectory of photons at an instant can be obtained with this method.How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed.It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.
Multipurpose Monte Carlo simulator for photon transport in turbid media
Guerra, Pedro; Aguirre, Juan; Ortuño, Juan E.; María J Ledesma-Carbayo; Vaquero, Juan José; Desco, Manuel; Santos, Andrés
2009-01-01
Monte Carlo methods provide a flexible and rigorous solution to the problem of light transport in turbid media, which enable approaching complex geometries for a closed analytical solution is not feasible. The simulator implements local rules of propagation in the form of probability density functions that depend on the local optical properties of the tissue. This work presents a flexible simulator that can be applied in multiple applications related to optical tomography. In particular...
Monte Carlo simulation of virtual Compton scattering below pion threshold
International Nuclear Information System (INIS)
This paper describes the Monte Carlo simulation developed specifically for the Virtual Compton Scattering (VCS) experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross-section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the 'effective' solid angle for the various experimental settings which are used for the precise determination of the photon electroproduction absolute cross-section
Monte Carlo Simulation of Argon in Nano-Space
Institute of Scientific and Technical Information of China (English)
CHEN Min; YANG Chun; GUO Zeng-Yuan
2000-01-01
Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.
Cosmological Markov Chain Monte Carlo simulation with Cmbeasy
Müller, C M
2004-01-01
We introduce a Markov Chain Monte Carlo simulation and data analysis package for the cosmological computation package Cmbeasy. We have taken special care in implementing an adaptive step algorithm for the Markov Chain Monte Carlo in order to improve convergence. Data analysis routines are provided which allow to test models of the Universe against up-to-date measurements of the Cosmic Microwave Background, Supernovae Ia and Large Scale Structure. The observational data is provided with the software for convenient usage. The package is publicly available as part of the Cmbeasy software at www.cmbeasy.org.
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Comparing statistical data to Monte Carlo simulation - parameter fitting and unfolding
International Nuclear Information System (INIS)
The author presents an introduction to the statistical analysis of experimental data by means of Monte Carlo simulations. After a description of the χ2 test of a hypothesis the least-square and maximum-likelihood fits to Monte Carlo distributions are described. Then unfolding is described. Finally confidence intervals are studied, and the computation of upper and lower limits is discussed from a Bayesian point of view. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Thiam, Ch. O
2003-06-01
In radiotherapy, it is essential to have a precise knowledge of the dose delivered in the target volume and the neighbouring critical organs. To be usable clinically, the models of calculation must take into account the exact characteristics of the beams used and the densities of fabrics. Today we can use sophisticated irradiation techniques and get a more precise assessment of the dose and with a better knowledge of its distribution. Thus in this report, will be detailed a simulation of the head of irradiation of accelerator SL-ELEKTA-20 in electrons mode and a dosimetric study of a water phantom. This study is carried out with the code of simulation Monte Carlo GATE adapted for applications of medical physics; the results are compared with the data obtained by the anticancer center 'Jean Perrin' on a similar accelerator. (author)
Grain-boundary melting: A Monte Carlo study
DEFF Research Database (Denmark)
Besold, Gerhard; Mouritsen, Ole G.
1994-01-01
Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...
Martini - Monte Carlo Simulation of Jet Evolution
International Nuclear Information System (INIS)
We present the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI), an event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions. The simulation consists of a time evolution model for the soft background, such as hydrodynamics, PYTHIA 8.1 to generate and hadronize the hard partons after the medium evolution, which is based on the McGill-AMY formalism and includes both radiative and elastic processes. MARTINI allows for the generation of full event configurations in the high pT region. We present results for the neutral pion and photon nuclear modification factor in Au + Au collisions at RHIC. (authors)
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Meaningful timescales from Monte Carlo simulations of molecular systems
Costa, Liborio I
2016-01-01
A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Saraiva, A; Oliveira, C; Reis, M; Portugal, L; Paiva, I; Cruz, C
2016-07-01
A model of an n-type ORTEC GMX45 HPGe detector was created using the MCNPX and the MCNP-CP codes. In order to validate the model, experimental efficiency was compared with the Monte Carlo simulations results. The reference source is a NIST traceable multi-gamma volume source in a water-equivalent epoxy resin matrix (1.15gcm(-3) density) containing several radionuclides: (210)Pb, (241)Am, (137)Cs and (60)Co in a cylinder shape container. Two distances of source bottom to end cap front surface of the detector have been considered. The efficiency for the nearest distance is higher than for longer distance. The relative difference between the measured and the simulated full-energy peak efficiency is less than 4.0% except for the 46.5keV energy peak of (210)Pb for the longer distance (6.5%) allowing to consider the model validated. In the absence of adequate standard calibration sources, efficiency and efficiency transfer factors for geometry deviations and matrix effects can be accurately computed by using Monte Carlo methods even if true coincidence could occur as is the case when the (60)Co radioisotope is present in the source. PMID:27131096
Monte Carlo Simulations of Neutron Oil well Logging Tools
International Nuclear Information System (INIS)
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
Monte Carlo Simulations of Neutron Oil well Logging Tools
Azcurra, M
2002-01-01
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2014-01-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...
A new lattice Monte Carlo method for simulating dielectric inhomogeneity
Duan, Xiaozheng; Wang, Zhen-Gang; Nakamura, Issei
We present a new lattice Monte Carlo method for simulating systems involving dielectric contrast between different species by modifying an algorithm originally proposed by Maggs et al. The original algorithm is known to generate attractive interactions between particles that have different dielectric constant than the solvent. Here we show that such attractive force is spurious, arising from incorrectly biased statistical weight caused by the particle motion during the Monte Carlo moves. We propose a new, simple algorithm to resolve this erroneous sampling. We demonstrate the application of our algorithm by simulating an uncharged polymer in a solvent with different dielectric constant. Further, we show that the electrostatic fields in ionic crystals obtained from our simulations with a relatively small simulation box correspond well with results from the analytical solution. Thus, our Monte Carlo method avoids the need for the Ewald summation in conventional simulation methods for charged systems. This work was supported by the National Natural Science Foundation of China (21474112 and 21404103). We are grateful to Computing Center of Jilin Province for essential support.
Monte Carlo Simulations of Necrotic Cell Targeted Alpha Therapy
International Nuclear Information System (INIS)
Full text: Hypoxic tumour cells are radioresistant and are significant contributors to the locoregional recurrences and distant metastases that mark treatment failure. Due to restricted circulatory supply, hypoxic tumor cells frequently become necrotic and thus necrotic areas often lie near hypoxic tumour areas. In this study we investigate the feasibility of binding an alpha-emitting conjugate to necrotic cells located in the proximity of hypoxic, viable tumour cells. Monte Carlo radiation transport simulations were performed to investigate the dose distribution resulting from the thorium 227 (Th227) decay chain in a representative tumour geometry. The Geant4 software toolkit was used to simulate the decay and interactions of the Th227 decay chain. The distribution of Th227 was based on a study by Thomlinson and Gray of human lung cancer histological samples (Thomlinson RH, Gray LH. Br J Cancer 1955; 9:539). The normalized dose distribution obtained with Geant4 from a cylindrical Th227 source in water is illustrated in Fig. I. The relative contribution of the different decay channels is displayed, together with a profile through the centre of the accumulated dose map. The results support the hypothesis that significant α-particle doses will be deposited in the hypoxic tumor tissue immediately surrounding the necrotic core (where the majority of Th227 will be located). As an internal a-particle generator, the Th227-radioimmunoconjugate shows potential as an efficient hypoxic tumour sterilizer.
Monte Carlo Simulation of HERD Calorimeter
Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N
2014-01-01
The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...
Energy Technology Data Exchange (ETDEWEB)
Ahmad, I.; Back, B.B.; Betts, R.R. [and others
1995-08-01
An essential component in the assessment of the significance of the results from APEX is a demonstrated understanding of the acceptance and response of the apparatus. This requires detailed simulations which can be compared to the results of various source and in-beam measurements. These simulations were carried out using the computer codes EGS and GEANT, both specifically designed for this purpose. As far as is possible, all details of the geometry of APEX were included. We compared the results of these simulations with measurements using electron conversion sources, positron sources and pair sources. The overall agreement is quite acceptable and some of the details are still being worked on. The simulation codes were also used to compare the results of measurements of in-beam positron and conversion electrons with expectations based on known physics or other methods. Again, satisfactory agreement is achieved. We are currently working on the simulation of various pair-producing scenarios such as the decay of a neutral object in the mass range 1.5-2.0 MeV and also the emission of internal pairs from nuclear transitions in the colliding ions. These results are essential input to the final results from APEX on cross section limits for various, previously proposed, sharp-line producing scenarios.
Monte Carlo simulation for dual head gamma camera
International Nuclear Information System (INIS)
Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The
Monte Carlo simulations in theoretical physic; Simulations Monte Carlo en physique theorique
Energy Technology Data Exchange (ETDEWEB)
Billoire, A.
1991-12-31
After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs.
Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung
2012-08-01
The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is
Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung
2016-09-01
Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on
Monte Carlo simulation of the Neutrino-4 experiment
Energy Technology Data Exchange (ETDEWEB)
Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2015-12-15
Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.
Monte Carlo simulation of a prototype photodetector used in radiotherapy
Kausch, C; Albers, D; Schmidt, R; Schreiber, B
2000-01-01
The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.
Monte Carlo study of nanowire magnetic properties
Institute of Scientific and Technical Information of China (English)
R.Masrour; L.Bahmad; A.Benyoussef
2013-01-01
In this work,we use Monte Carlo simulations to study the magnetic properties of a nanowire system based on a honeycomb lattice,in the absence as well as in the presence of both an external magnetic field and crystal field.The system is formed with NL layers having spins that can take the values σ =+1/2 and S =+1,0.The blocking temperature is deduced,for each spin configuration,depending on the crystal field A.The effect of the exchange interaction coupling Jp between the spin configurations σ and S is studied for different values of temperature at fixed crystal field.The established ground-state phase diagram,in the plane (Jp,A),shows that the only stable configurations are:(1/2,0),(1/2,+1),and (1/2,-1).The thermal magnetization and susceptibility are investigated for the two spin configurations,in the absence as well as in the presence of a crystal field.Finally,we establish the hysteresis cycle for different temperature values,showing that there is almost no remaining magnetization in the absence of the external magnetic field,and that the studied system exhibits a super-paramagnetic behavior.
Monte Carlo simulation of electron swarms in H2
International Nuclear Information System (INIS)
A Monte-Carlo simulation of the motion of an electron swarm in molecular hydrogen was studied in the range E/N = 1.4-170 Td (1 Td = 10-17V/cms2). The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high values of E/N. The longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy epsilon, and the ionization and excitation production coefficients were obtained and compared with experimental results where these are available. It was found that the results obtained differ significantly from the experimental values and this is attributed to the isotopic scattering model used in this work. However, the results lend support to the experimental technique reported by Blevin et al used to determine these transport parameters, and in particular confirm their result that Dsub(L) > D at high values of E/N. (author)
Monte Carlo simulation of the PEMFC catalyst layer
Institute of Scientific and Technical Information of China (English)
WANG Hongxing; CAO Pengzhen; WANG Yuxin
2007-01-01
The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
International Nuclear Information System (INIS)
Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation. As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt
Nonlinear Condition Tolerancing Using Monte Carlo Simulation
Directory of Open Access Journals (Sweden)
JOUILEL Naima
2016-05-01
Full Text Available To ensure accuracy and performance of the products, designers tend to hug the tolerances. While, manufacturers prefer to increase them in order to reduce costs and ensure competition. The analysis and synthesis of tolerances aim on studying their influence on conformity with functional requirements. This study may be conducted in the case of the most unfavorable configurations with the "worst case" method, or "in all cases" using the statistical approach. However, having a nonlinear condition make it difficult to analyse the influence of parameters on the functional condition. In this work, we are interested in the tolerance analysis of a mechanism presenting a nonlinear functional condition (slider crank mechanism. To do this we'll develop an approach of tolerances analysis combining the worst case and the statistical methods.
Application of Monte Carlo Simulations to Improve Basketball Shooting Strategy
Min, Byeong June
2016-01-01
The underlying physics of basketball shooting seems to be a straightforward example of the Newtonian mechanics that can easily be traced by numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court positions and height. The phase space volume that belongs to the successful launch velocities generated by Monte Carlo simulations are then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but human factors as well.
Radio emission from cosmic ray air showers: Monte Carlo simulations
Huege, T; Huege, Tim; Falcke, Heino
2004-01-01
We present time-domain Monte Carlo simulations of radio emission from cosmic ray air showers in the scheme of coherent geosynchrotron radiation. Our model takes into account the important air shower characteristics such as the lateral and longitudinal particle distributions, the particle track length and energy distributions, a realistic magnetic field geometry and the shower evolution as a whole. The Monte Carlo approach allows us to retain the full polarisation information and to carry out the calculations without the need for any far-field approximations. We demonstrate the strategies developed to tackle the computational effort associated with the simulation of a huge number of particles for a great number of observer bins and illustrate the robustness and accuracy of these techniques. We predict the emission pattern, the radial and the spectral dependence of the radiation from a prototypical 10^17 eV vertical air shower and find good agreement with our analytical results (Huege & Falcke 2003) and the...
Monte Carlo studies of domain growth in two dimensions
International Nuclear Information System (INIS)
Monte Carlo simulations have been carried out to study the effect of temperature on the kinetics of domain growth. The concept of ''spatial entropy'' is introduced. It is shown that ''spatial entropy'' of the domain can be used to give a measure of the roughening of the domain. Most of the roughening is achieved during the initial time (t< or approx. 10 Monte Carlo cycles), the rate of roughening being greater for higher temperatures. For later times the roughening of the domain for different temperatures proceeds at essentially the same rate. (author)
Calculating Variable Annuity Liability 'Greeks' Using Monte Carlo Simulation
Cathcart, Mark J.; Steven Morrison; McNeil, Alexander J.
2011-01-01
Hedging methods to mitigate the exposure of variable annuity products to market risks require the calculation of market risk sensitivities (or "Greeks"). The complex, path-dependent nature of these products means these sensitivities typically must be estimated by Monte Carlo simulation. Standard market practice is to measure such sensitivities using a "bump and revalue" method. As well as requiring multiple valuations, such approaches can be unreliable for higher order Greeks, e.g., gamma. In...
Monte Carlo Simulation as a Research Management Tool
Energy Technology Data Exchange (ETDEWEB)
Douglas, L. J.
1986-06-01
Monte Carlo simulation provides a research manager with a performance monitoring tool to supplement the standard schedule- and resource-based tools such as the Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM). The value of the Monte Carlo simulation in a research environment is that it 1) provides a method for ranking competing processes, 2) couples technical improvements to the process economics, and 3) provides a mechanism to determine the value of research dollars. In this paper the Monte Carlo simulation approach is developed and applied to the evaluation of three competing processes for converting lignocellulosic biomass to ethanol. The technique is shown to be useful for ranking the processes and illustrating the importance of the timeframe of the analysis on the decision process. The results show that acid hydrolysis processes have higher potential for near-term application (2-5 years), while the enzymatic hydrolysis approach has an equal chance to be competitive in the long term (beyond 10 years).
Directory of Open Access Journals (Sweden)
Biniam Tesfamicael
2016-03-01
Full Text Available Purpose: The main purpose of this study was to monitor the secondary dose distribution originating from a water phantom during proton therapy of prostate cancer using scintillating fibers.Methods: The Geant4 Monte Carlo toolkit version 9.6.p02 was used to simulate a proton therapy of prostate cancer. Two cases were studied. In the first case, 8 × 8 = 64 equally spaced fibers inside three 4 × 4 × 2.54 cm3 Delrin® blocks were used to monitor the emission of secondary particles in the transverse (left and right and distal regions relative to the beam direction. In the second case, a scintillating block with a thickness of 2.54 cm and equal vertical and longitudinal dimensions as the water phantom was used. Geometrical cuts were implemented to extract the energy deposited in each fiber and inside the scintillating block.Results: The transverse dose distributions from the detected secondary particles in both cases are symmetric and agree to within <3.6%. The energy deposited gradually increases as one moves from the peripheral row of fibers towards the center of the block (aligned with the center of the prostate by a factor of approximately 5. The energy deposited was also observed to decrease as one goes from the frontal to distal region of the block. The ratio of the energy deposited in the prostate to the energy deposited in the middle two rows of fibers showed a linear relationship with a slope of (-3.55±2.26 × 10-5 MeV per treatment Gy delivered. The distal detectors recorded a negligible amount of energy deposited due to higher attenuation of the secondary particles by the water in that direction.Conclusion: With a good calibration and with the ability to define a good correlation between the radiation flux recorded by the external fibers and the dose delivered to the prostate, such fibers can be used for real time dose verification to the target. The system was also observed to respond to the series of Bragg Peaks used to generate the
A Monte Carlo simulation technique to determine the optimal portfolio
Directory of Open Access Journals (Sweden)
Hassan Ghodrati
2014-03-01
Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.
A Monte Carlo simulation approach for flood risk assessment
Agili, Hachem; Chokmani, Karem; Oubennaceur, Khalid; Poulin, Jimmy; Marceau, Pascal
2016-04-01
Floods are the most frequent natural disaster and the most damaging in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which hit the region in 2011 causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects of buildings has been developed. This approach integrates three main components namely hydrological modeling through flow-probability functions, hydraulic modeling using flow-submersion height functions and the study of buildings damage based on damage functions adapted to the Quebec habitat. The application of this approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for local authorities to support their decisions on risk management and prevention against this disaster.
In silico radiobiology: Have we reached the limit of Monte Carlo simulations?
International Nuclear Information System (INIS)
Monte Carlo radiation transport models are increasingly being used to simulate biological damage. However, such radiation biophysics simulations require realistic molecular models for water, whereas existing Monte Carlo models are limited by their use of atomic cross-sections, which become inadequate for accurately modelling interactions of the very low-energy electrons that are responsible for biological damage. In this study, we borrow theoretical methods commonly employed in molecular dynamics simulations to model the molecular wavefunction of the water molecule as the first step towards deriving new molecular cross-sections. We calculate electron charge distributions for molecular water and find non-negligible differences between the vapor and liquid phases that can be attributed to intermolecular bonding in the condensed phase. We propose that a hybrid Monte Carlo – Molecular Dynamics (MC-MD) approach to modelling radiation biophysics will provide new insights into radiation damage and new opportunities to develop targeted molecular therapy strategies.
In silico radiobiology: Have we reached the limit of Monte Carlo simulations?
Gholami, Y.; Toghyani, M.; Champion, C.; Kuncic, Z.
2014-03-01
Monte Carlo radiation transport models are increasingly being used to simulate biological damage. However, such radiation biophysics simulations require realistic molecular models for water, whereas existing Monte Carlo models are limited by their use of atomic cross-sections, which become inadequate for accurately modelling interactions of the very low-energy electrons that are responsible for biological damage. In this study, we borrow theoretical methods commonly employed in molecular dynamics simulations to model the molecular wavefunction of the water molecule as the first step towards deriving new molecular cross-sections. We calculate electron charge distributions for molecular water and find non-negligible differences between the vapor and liquid phases that can be attributed to intermolecular bonding in the condensed phase. We propose that a hybrid Monte Carlo - Molecular Dynamics (MC-MD) approach to modelling radiation biophysics will provide new insights into radiation damage and new opportunities to develop targeted molecular therapy strategies.
International Nuclear Information System (INIS)
The two alloy systems: namely, Ni-Mo-based alloys and Al-Ti alloys, share some common features in that the ordered structures and the ordering processes in these two systems can be described in terms of three types of superlattice tiles: squares and fat or lean rhombi. In Ni- Mo-based alloys these represent one-molecule clusters of three fcc superlattice structures: Ni4Mo (D1a), Ni3Mo (D022) and Ni2Mo (Pt2Mo-type), while in Al-Ti these represent two dimensional Ti4AI, Ti3Al and Ti2Al derivatives on Ti-rich (002) planes of the off stoichiometric TiAl (L10) phase. Evolution of short range order (SRO): 11/20 special point SRO in the case of Ni-Mo and the incommensurate SRO in the case of the Al-rich TiAl intermetallic alloys and evolution of LRO phases from these have been followed using both conventional and high resolution TEM. Corroborative evidence from Monte Carlo simulations will also be presented in order to explain the observed experimental results. Occurrence of antiphase boundaries (APBs) and their energies, as we will see, play an important role in these transformations. Predominantly two types of APBs occur in the Al5Ti3 phase in Al-rich TiAl. Monte Carlo Simulations and the experimental observations reveal both of these. These play a synergistic role in the formation of Al5Ti3 antiphase domains
Monte Carlo simulation of AB-copolymers with saturating bonds
Chertovich, A V; Khokhlov, A R; Bohr, J
2003-01-01
Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A-and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions of the base pairs in helixes. We introduce the notation of RNA-like copolymers and discuss in what sense the sequences studie...
Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)
2014-12-01
Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.
Multi-Level Monte Carlo Simulations with Importance Sampling
Przemyslaw S. Stilger and Ser-Huang Poon
2013-01-01
We present an application of importance sampling to multi-asset options under the Heston and the Bates models as well as to the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models. Moreover, we provide an efficient importance sampling scheme in a Multi-Level Monte Carlo simulation. In all cases, we explain how the Greeks can be computed in the different simulation schemes using the Likelihood Ratio Method, and how combining it with importance sampling leads to a significant variance re...
Yoshizumi, Maíra T; Yoriyaz, Hélio; Caldas, Linda V E
2010-01-01
Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.
Pattern Recognition for a Flight Dynamics Monte Carlo Simulation
Restrepo, Carolina; Hurtado, John E.
2011-01-01
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
Monte Carlo simulation algorithm for B-DNA.
Howell, Steven C; Qiu, Xiangyun; Curtis, Joseph E
2016-11-01
Understanding the structure-function relationship of biomolecules containing DNA has motivated experiments aimed at determining molecular structure using methods such as small-angle X-ray and neutron scattering (SAXS and SANS). SAXS and SANS are useful for determining macromolecular shape in solution, a process which benefits by using atomistic models that reproduce the scattering data. The variety of algorithms available for creating and modifying model DNA structures lack the ability to rapidly modify all-atom models to generate structure ensembles. This article describes a Monte Carlo algorithm for simulating DNA, not with the goal of predicting an equilibrium structure, but rather to generate an ensemble of plausible structures which can be filtered using experimental results to identify a sub-ensemble of conformations that reproduce the solution scattering of DNA macromolecules. The algorithm generates an ensemble of atomic structures through an iterative cycle in which B-DNA is represented using a wormlike bead-rod model, new configurations are generated by sampling bend and twist moves, then atomic detail is recovered by back mapping from the final coarse-grained configuration. Using this algorithm on commodity computing hardware, one can rapidly generate an ensemble of atomic level models, each model representing a physically realistic configuration that could be further studied using molecular dynamics. © 2016 Wiley Periodicals, Inc. PMID:27671358
Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers
Institute of Scientific and Technical Information of China (English)
彭昌军; 李健康; 刘洪来; 胡英
2004-01-01
The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.
Monte Carlo computer simulation of sedimentation of charged hard spherocylinders.
Viveros-Méndez, P X; Gil-Villegas, Alejandro; Aranda-Espinoza, S
2014-07-28
In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e(2)/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions Lx ≈ Ly and Lz = 5Lx, where Lx, Ly, and Lz are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface. PMID:25084954
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
CloudMC: a cloud computing application for Monte Carlo simulation
International Nuclear Information System (INIS)
This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Huang, Li
2016-01-01
Despite their exceptional flexibility and popularity, the Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feedforward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine for efficient Monte Carlo updates and to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate improved acceptance ratio and autocorrelation time near the phase transition point.
Monte Carlo simulation of positronium thermalization in gases
Directory of Open Access Journals (Sweden)
Marjanović Srđan D.
2010-01-01
Full Text Available In this paper we present the results of Monte Carlo simulations of positronium (Ps swarm thermalization in helium (He and water vapour. We have investigated the temporal evolution of energy and spatial parameters of the swarm and their sensitivity to the shape of the cross-section and the initial energy distribution. Positron anihilation spectroscopy (PAS and positron emission tomography (PET are techniques that depend on anihilation of positronium in materials and tissue. The results obtained point that the Monte Carlo technique shows good agreement with experimental results and is capable of accurately describing the behaviour of Ps particles including the energy, particle lifetime and the moment and location of the anihilation.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Antonio Konrado de Santana; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Costa, Kleber Souza Silva [Faculdade Integrada de Pernambuco (FACIPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2011-07-01
Radiotherapy computational simulation procedures using Monte Carlo (MC) methods have shown to be increasingly important to the improvement of cancer fighting strategies. One of the biases in this practice is the discretization of the radioactive source in brachytherapy simulations, which often do not match with a real situation. This study had the aim to identify and to measure the influence of radioactive sources discretization in brachytherapy MC simulations when compared to those that do not present discretization, using prostate brachytherapy with Iodine-125 radionuclide as model. Simulations were carried out with 108 events with both types of sources to compare them using EGSnrc code associated to MASH phantom in orthostatic and supine positions with some anatomic adaptations. Significant alterations were found, especially regarding bladder, rectum and the prostate itself. It can be concluded that there is a need to discretized sources in brachytherapy simulations to ensure its representativeness. (author)
Energy Technology Data Exchange (ETDEWEB)
Morillon, B.
1996-12-31
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Only the Monte Carlo method offers such a possibility. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette technique.
Hashikin, N. A. A.; Yeong, C. H.; Guatelli, S.; Abdullah, B. J. J.; Ng, K. H.; Malaroda, A.; Rosenfeld, A. B.; Perkins, A. C.
2016-03-01
90Y-radioembolization is a palliative treatment for liver cancer. 90Y decays via beta emission, making imaging difficult due to absence of gamma radiation. Since post-procedure imaging is crucial, several theranostic radionuclides have been explored as alternatives. However, exposures to gamma radiation throughout the treatment caused concern for the organs near the liver. Geant4 Monte Carlo simulation using MIRD Pamphlet 5 reference phantom was carried out. A spherical tumour with 4.3cm radius was modelled within the liver. 1.82GBq of 90Y sources were isotropically distributed within the tumour, with no extrahepatic shunting. The simulation was repeated with 153Sm, 166Ho and 177Lu. The estimated tumour doses for all radionuclides were 262.9Gy. Tumour dose equivalent to 1.82GBq 90Y can be achieved with 8.32, 5.83, and 4.44GBq for 153Sm, 166Ho and 177Lu, respectively. Normal liver doses by the other radionuclides were lower than 90Y, hence beneficial for normal tissue sparing. The organ doses from 153Sm and 177Lu were relatively higher due to higher gamma energy, but were still well below 1Gy. 166Ho, 177Lu and 153Sm offer useful gamma emission for post-procedure imaging. They show potential as 90Y substitutes, delivering comparable tumour doses, lower normal liver doses and other organs doses far below the tolerance limit.
Jung, Joo-Young; Lu, Bo; Yoon, Do-Kun; Hong, Key Jo; Jang, HongSeok; Liu, Chihray; Suh, Tae Suk
2016-04-01
We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code. The acquired images were quantitatively analyzed. Based on the receiver operating characteristic (ROC) curves in the five boron regions, A, B, C, D, and E, the PET and single-photon images were 10.2%, 11.7%, 8.2% (center region), 12.6%, and 10.5%, respectively. We were able to acquire simultaneously PET and single prompt photon images for tumor regions monitoring by using an insertable collimator without any additional isotopes. PMID:26970679
Monte Carlo simulation of the neutron monitor yield function
Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Madlee, S.; Nutaro, T.
2016-08-01
Neutron monitors (NMs) are ground-based detectors that measure variations of the Galactic cosmic ray flux at GV range rigidities. Differences in configuration, electronics, surroundings, and location induce systematic effects on the calculation of the yield functions of NMs worldwide. Different estimates of NM yield functions can differ by a factor of 2 or more. In this work, we present new Monte Carlo simulations to calculate NM yield functions and perform an absolute (not relative) comparison with the count rate of the Princess Sirindhorn Neutron Monitor (PSNM) at Doi Inthanon, Thailand, both for the entire monitor and for individual counter tubes. We model the atmosphere using profiles from the Global Data Assimilation System database and the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended model. Using FLUKA software and the detailed geometry of PSNM, we calculated the PSNM yield functions for protons and alpha particles. An agreement better than 9% was achieved between the PSNM observations and the simulated count rate during the solar minimum of December 2009. The systematic effect from the electronic dead time was studied as a function of primary cosmic ray rigidity at the top of the atmosphere up to 1 TV. We show that the effect is not negligible and can reach 35% at high rigidity for a dead time >1 ms. We analyzed the response function of each counter tube at PSNM using its actual dead time, and we provide normalization coefficients between count rates for various tube configurations in the standard NM64 design that are valid to within ˜1% for such stations worldwide.
Review of neutron noise analysis theory by Monte Carlo simulation
International Nuclear Information System (INIS)
Some debates on the theory of neutron noise analysis for reactor kinetic parameter measurement were found before 1970 but a report firmly clearing these debates has not been found, and a question was raised when neutron noise experiments for the TRIGA and HANARO reactors in Korea were performed. In order to clarify this question, the neutron noise experiment is simulated by the Monte Carlo method. This simulation confirms that the widely used equation is approximately valid and that the confusion was caused from the explanation on the derivation of the equation. Rossi-α technique is one of the representative methods of noise analyses for the reactor kinetic parameter measurement, but different opinions were raised for the chain reaction related term in the equation. The equation originally derived at the Los Alamos National Laboratory (LANL) has been widely accepted. However, the others were supported by strict mathematics and experiments as well, and the reason of discrepancy has not been clarified. Since it is the problem of basic concept before the effect of neutron energy or geometry is included, the Monte Carlo simulation for the simplest reactor model could clarify it. For this purpose, the experiment measuring the neutron noise is simulated, and it results that the original equation is approximately valid. However, it is judged that the explanation on the equation by the authors derived it for the first time is not so correct, but Orndoff who made the first experiment by the Ross-α technique explained it rather correctly
Neutron stimulated emission computed tomography: a Monte Carlo simulation approach
Energy Technology Data Exchange (ETDEWEB)
Sharma, A C [Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708 (United States); Harrawood, B P [Duke Advance Imaging Labs, Department of Radiology, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (United States); Bender, J E [Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708 (United States); Tourassi, G D [Duke Advance Imaging Labs, Department of Radiology, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (United States); Kapadia, A J [Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708 (United States)
2007-10-21
A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in
Quantum Monte Carlo Simulations of Adulteration Effect on Bond Alternating Spin=1/2 Chain
Zhang, Peng; Xu, Zhaoxin; Ying, Heping; Dai, Jianhui; Crompton, Peter
The S=1/2 Heisenberg chain with bond alternation and randomness of antiferromagnetic (AFM) and ferromagnetic (FM) interactions is investigated by quantum Monte Carlo simulations of loop/cluster algorithm. Our results have shown interesting finite temperature magnetic properties of this model. The relevance of our study to former investigation results is discussed.
Blom, H.A.P.; Krystul, J.; Bakker, G.J.
2006-01-01
We study the problem of estimating small reachability probabilities for large scale stochastic hybrid processes through Sequential Monte Carlo (SMC) simulation. Recently, [Cerou et al., 2002, 2005] developed an SMC approach for diffusion processes, and referred to the resulting SMC algorithm as an I
Monte Carlo Simulation for Moderator of Compact D-T Neutron Generator
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In order to study the neutron moderation of D-T neutron generator, moderators with diffident materials and structures are predicted by Monte Carlo simulations. Neutron generator is simplified as the diameter 20 cm, length 25 cm cylinder. The target is very
Colloidal nanoparticles trapped by liquid-crystal defect lines: A lattice Monte Carlo simulation
Jose, Regina; Skačej, Gregor; Sastry, V. S. S.; Žumer, Slobodan
2014-09-01
Lattice-based Monte Carlo simulations are performed to study a confined liquid crystal system with a topological disclination line entangling a colloidal nanoparticle. In our microscopic study the disclination line is stretched by moving the colloid, as in laser tweezing experiments, which results in a restoring force attempting to minimize the disclination length. From constant-force simulations we extract the corresponding disclination line tension, estimated as ˜50 pN, and observe its decrease with increasing temperature.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
International Nuclear Information System (INIS)
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study
Zhang, P; Wang, H Y; Li, Y G; Mao, S F; Ding, Z J
2012-01-01
Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.
A Monte Carlo simulation model for stationary non-Gaussian processes
DEFF Research Database (Denmark)
Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.
2003-01-01
includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls).
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo Simulation for Statistical Decay of Compound Nucleus
Directory of Open Access Journals (Sweden)
Chadwick M.B.
2012-02-01
Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.
Monte Carlo simulations for design of the KFUPM PGNAA facility
Naqvi, A A; Maslehuddin, M; Kidwai, S
2003-01-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Monte Carlo simulation for simultaneous particle coagulation and deposition
Institute of Scientific and Technical Information of China (English)
ZHAO; Haibo; ZHENG; Chuguang
2006-01-01
The process of dynamic evolution in dispersed systems due to simultaneous particle coagulation and deposition is described mathematically by general dynamic equation (GDE). Monte Carlo (MC) method is an important approach of numerical solutions of GDE. However, constant-volume MC method exhibits the contradictory of low computation cost and high computation precision owing to the fluctuation of the number of simulation particles; constant-number MC method can hardly be applied to engineering application and general scientific quantitative analysis due to the continual contraction or expansion of computation domain. In addition, the two MC methods depend closely on the "subsystem" hypothesis, which constraints their expansibility and the scope of application. A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simultaneous particle coagulation and deposition. MMC method introduces the concept of "weighted fictitious particle" and is based on the "time-driven" technique. Furthermore MMC method maintains synchronously the computational domain and the total number of fictitious particles, which results in the latent expansibility of simulation for boundary condition, the space evolution of particle size distribution and even particle dynamics. The simulation results of MMC method for two special cases in which analytical solutions exist agree with analytical solutions well, which proves that MMC method has high and stable computational precision and low computation cost because of the constant and limited number of fictitious particles. Lastly the source of numerical error and the relative error of MMC method are analyzed, respectively.
Monte Carlo simulations of the Galileo energetic particle detector
International Nuclear Information System (INIS)
Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study
Proceedings of the first symposium on Monte Carlo simulation
International Nuclear Information System (INIS)
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Monte Carlo simulation on backward steps of single kinesin molecule
Institute of Scientific and Technical Information of China (English)
Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye
2008-01-01
Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
A fitter use of Monte Carlo simulations in regression models
Directory of Open Access Journals (Sweden)
Alessandro Ferrarini
2011-12-01
Full Text Available In this article, I focus on the use of Monte Carlo simulations (MCS within regression models, being this application very frequent in biology, ecology and economy as well. I'm interested in enhancing a typical fault in this application of MCS, i.e. the inner correlations among independent variables are not used when generating random numbers that fit their distributions. By means of an illustrative example, I provide proof that the misuse of MCS in regression models produces misleading results. Furthermore, I also provide a solution for this topic.
Proceedings of the first symposium on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Energy Technology Data Exchange (ETDEWEB)
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
New electron multiple scattering distributions for Monte Carlo transport simulation
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Vilches, M.; García-Pareja, S.; Guerrero, R.; Anguiano, M.; Lallena, A. M.
2007-09-01
When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used.
International Nuclear Information System (INIS)
This paper presents results of the application Monte Carlo method to analyze data from the interaction of deuteron beams with metallic targets saturated with deuterium. The SRIM software was used to generate energy spectrum of ions passing the target. These spectra were used to calculate the neutron yields from dd reactions in energy range 7–12 keV of incident deuteron beams. The calculated outputs were compared with the experimental data for the determination of the electron screening potential for dd reactions. The calculations were performed using two different values of the beam energy spread (FWHM) equal 1% and 16%. It was shown that plasma beams with a relatively high spread (16%) were almost as good a tool as the traditional accelerator with mono-energy beam related to the study of the reaction within an ultra-low energy region. (author)
Monte Carlo simulation of a single detector unit for the neutron detector array NEDA
Jaworski, G.; Palacz, M.; Nyberg, Johan; De Angelis, G.; de France, G; Nitto, A. Di; Egea, J.; Erduran, M. N.; Ertürk, S.; Farnea, E.; Gadea, A.; V González; Gottardo, A.(Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, I-35020, Italy); Hüyük, T.; Kownacki, J.
2012-01-01
A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental m...
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
A Monte Carlo simulation of ion transport at finite temperatures
International Nuclear Information System (INIS)
We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. Special attention has been paid to properly treating the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulae for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics. (paper)
Quantifying the Effect of Undersampling in Monte Carlo Simulations Using SCALE
Energy Technology Data Exchange (ETDEWEB)
Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL
2014-01-01
This study explores the effect of undersampling in Monte Carlo calculations on tally estimates and tally variance estimates for burnup credit applications. Steady-state Monte Carlo simulations were performed for models of several critical systems with varying degrees of spatial and isotopic complexity and the impact of undersampling on eigenvalue and flux estimates was examined. Using an inadequate number of particle histories in each generation was found to produce an approximately 100 pcm bias in the eigenvalue estimates, and biases that exceeded 10% in fuel pin flux estimates.
Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
Timilsina, Rajendra; Rack, Philip D
2013-12-13
A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.
Treatment planning in radiosurgery: parallel Monte Carlo simulation software
Energy Technology Data Exchange (ETDEWEB)
Scielzo, G. [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F. [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M.; Felici, R. [Electronic Data System, Rome (Italy); Surridge, M. [University of South Hampton (United Kingdom). Parallel Apllication Centre
1995-12-01
The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.
Monte Carlo simulation of electrical corona discharge in air
Energy Technology Data Exchange (ETDEWEB)
Settaouti, A.; Settaouti, L. [Electrotechnic Department, University of Sciences and Technology, P.O. Box 1505, El-M' naouar, Oran (Algeria)
2011-01-15
Electrical discharges play a key role in technologies; there are many industrial applications where the corona discharge is used. Air as insulator is probably the best compromise solution for many applications. All of this reflects on the great importance of the evaluation of the corona performance characteristics. Numerical simulation of the corona discharge helps to better understand the involved phenomena and optimize the corona devices. This paper is aimed at calculating the corona discharge in negative point-plane air gaps. To describe the non-equilibrium behavior of the electronic avalanches and to simulate the development of corona discharge the method of Monte Carlo has been used. This model provides the spatial-temporal local field and particles charged densities variations as well as the ionization front velocity. (author)
Quantitative application of Monte Carlo simulation in Fire-PSA
Energy Technology Data Exchange (ETDEWEB)
Mangs, J.; Hostikka, S.; Korhonen, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland); Keski-Rahkonen, O.
2007-05-15
In a power plant a fire cell forms the basic subunit. Since the fire is initially located there, the full-scale time dependent fire simulation and estimation of target response must be performed within the fire cell. Conditional, time dependent damage probabilities in a fire cell can now be calculated for arbitrary targets (component or a subsystem) combining probabilistic (Monte Carlo) and deterministic simulation. For the latter a spectrum from simple correlations up to latest computational fluid dynamics models is available. Selection of the code is made according to the requirements form the target cell. Although calculations are numerically heavy, it is now economically possible and feasible to carry out quantitative fire-PSA for a complete plant iteratively with the main PSA. From real applications examples are shown on assessment of fire spread possibility in a relay room, and potential of fire spread on cables in a tunnel. (orig.)
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Monte Carlo computer simulation of sedimentation of charged hard spherocylinders
Energy Technology Data Exchange (ETDEWEB)
Viveros-Méndez, P. X., E-mail: xviveros@fisica.uaz.edu.mx; Aranda-Espinoza, S. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo, La Bufa s/n, 98060 Zacatecas, Zacatecas, México (Mexico); Gil-Villegas, Alejandro [Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, México (Mexico)
2014-07-28
In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e{sup 2}/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions L{sub x} ≈ L{sub y} and L{sub z} = 5L{sub x}, where L{sub x}, L{sub y}, and L{sub z} are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.
Monte Carlo Simulation of Solar Reflectances for Cloudy Atmospheres.
Barker, H. W.; Goldstein, R. K.; Stevens, D. E.
2003-08-01
Monte Carlo simulations of solar radiative transfer were performed for a well-resolved, large, three-dimensional (3D) domain of boundary layer cloud simulated by a cloud-resolving model. In order to represent 3D distributions of optical properties for 2 × 106 cloudy cells, attenuation by droplets was handled by assigning each cell a cumulative distribution of extinction derived from either a model or an assumed discrete droplet size spectrum. This minimizes the required number of detailed phase functions. Likewise, to simulate statistically significant, high-resolution imagery, it was necessary to apply variance reduction techniques. Three techniques were developed for use with the local estimation method of computing reflectance . First, small fractions of come from numerous, small contributions of computed at each scattering event. Terminating calculation of when it falls below min 103 was found to impact estimates of minimally but reduced computation time by 10%. Second, large fractions of come from infrequent realizations of large . When sampled poorly, they boost Monte Carlo noise significantly. Removing max, storing them in a domainwide reservoir, adding max to local estimates of , and, at simulation's end, distributing the reservoir across the domain in proportion to local , tends to reduce variance much. This regionalization technique works well when the number of photons per unit area is small (nominally 50 000). A value of max 100 reduces variance of greatly with little impact on estimates of . Third, if are computed using exact (e.g., Mie) phase functions for the first N scattering events, and thereafter a blunt-nosed corresponding phase function (e.g., Henyey-Greenstein) is used, production of large is thwarted resulting in reduced variance and time required to achieve accurate estimates of .
Landry, Guillaume; Granton, Patrick V.; Reniers, Brigitte; Öllers, Michel C.; Beaulieu, Luc; Wildberger, Joachim E.; Verhaegen, Frank
2011-10-01
This work compares Monte Carlo (MC) dose calculations for 125I and 103Pd low-dose rate (LDR) brachytherapy sources performed in virtual phantoms containing a series of human soft tissues of interest for brachytherapy. The geometries are segmented (tissue type and density assignment) based on simulated single energy computed tomography (SECT) and dual energy (DECT) images, as well as the all-water TG-43 approach. Accuracy is evaluated by comparison to a reference MC dose calculation performed in the same phantoms, where each voxel's material properties are assigned with exactly known values. The objective is to assess potential dose calculation accuracy gains from DECT. A CT imaging simulation package, ImaSim, is used to generate CT images of calibration and dose calculation phantoms at 80, 120, and 140 kVp. From the high and low energy images electron density ρe and atomic number Z are obtained using a DECT algorithm. Following a correction derived from scans of the calibration phantom, accuracy on Z and ρe of ±1% is obtained for all soft tissues with atomic number Z in [6,8] except lung. GEANT4 MC dose calculations based on DECT segmentation agreed with the reference within ±4% for 103Pd, the most sensitive source to tissue misassignments. SECT segmentation with three tissue bins as well as the TG-43 approach showed inferior accuracy with errors of up to 20%. Using seven tissue bins in our SECT segmentation brought errors within ±10% for 103Pd. In general 125I dose calculations showed higher accuracy than 103Pd. Simulated image noise was found to decrease DECT accuracy by 3-4%. Our findings suggest that DECT-based segmentation yields improved accuracy when compared to SECT segmentation with seven tissue bins in LDR brachytherapy dose calculation for the specific case of our non-anthropomorphic phantom. The validity of our conclusions for clinical geometry as well as the importance of image noise in the tissue segmentation procedure deserves further
Monte Carlo simulation of gamma ray tomography for image reconstruction
International Nuclear Information System (INIS)
The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)
Monte Carlo simulation of x-ray spectra in mammography
Energy Technology Data Exchange (ETDEWEB)
Ng, K.P. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China). E-mail: benngkp at netvigator.com; Kwok, C.S.; Ng, K.P.; Tang, F.H. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
2000-05-01
A model for generating x-ray spectra in mammography is presented. This model used the ITS version 3 Monte Carlo code for simulating the radiation transport. Various target/filter combinations such as tungsten/aluminium, molybdenum/molybdenum, molybdenum/rhodium and rhodium/rhodium were used in the simulation. Both bremsstrahlung and characteristic x-ray production were included in the model. The simulated x-ray emission spectra were compared with two sets of spectra, those of Boone et al (1997 Med. Phys. 24 1863-74) and IPEM report 78. The {chi}{sup 2} test was used for the overall goodness of fit of the spectral data. There is good agreement between the simulated x-ray spectra and the comparison spectra as the test yielded a probability value of nearly 1. When the transmitted x-ray spectra for specific target/filter combinations were generated and compared with a measured molybdenum/rhodium spectrum and spectra generated in IPEM report 78, close agreement is also observed. This was demonstrated by the probability value for the {chi}{sup 2} test being almost 1 for all the cases. However, minor differences between the simulated spectra and the 'standard' ones are observed. (author)
Monte Carlo simulation of gamma ray tomography for image reconstruction
Energy Technology Data Exchange (ETDEWEB)
Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)
2015-07-01
The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)
Monte Carlo Molecular Simulation with Isobaric-Isothermal and Gibbs-NPT Ensembles
Du, Shouhong
2012-05-01
This thesis presents Monte Carlo methods for simulations of phase behaviors of Lennard-Jones fluids. The isobaric-isothermal (NPT) ensemble and Gibbs-NPT ensemble are introduced in detail. NPT ensemble is employed to determine the phase diagram of pure component. The reduced simulation results are verified by comparison with the equation of state by by Johnson et al. and results with L-J parameters of methane agree considerably with the experiment measurements. We adopt the blocking method for variance estimation and error analysis of the simulation results. The relationship between variance and number of Monte Carlo cycles, error propagation and Random Number Generator performance are also investigated. We review the Gibbs-NPT ensemble employed for phase equilibrium of binary mixture. The phase equilibrium is achieved by performing three types of trial move: particle displacement, volume rearrangement and particle transfer. The simulation models and the simulation details are introduced. The simulation results of phase coexistence for methane and ethane are reported with comparison of the experimental data. Good agreement is found for a wide range of pressures. The contribution of this thesis work lies in the study of the error analysis with respect to the Monte Carlo cycles and number of particles in some interesting aspects.
PhyloSim - Monte Carlo simulation of sequence evolution in the R statistical computing environment
Directory of Open Access Journals (Sweden)
Massingham Tim
2011-04-01
Full Text Available Abstract Background The Monte Carlo simulation of sequence evolution is routinely used to assess the performance of phylogenetic inference methods and sequence alignment algorithms. Progress in the field of molecular evolution fuels the need for more realistic and hence more complex simulations, adapted to particular situations, yet current software makes unreasonable assumptions such as homogeneous substitution dynamics or a uniform distribution of indels across the simulated sequences. This calls for an extensible simulation framework written in a high-level functional language, offering new functionality and making it easy to incorporate further complexity. Results PhyloSim is an extensible framework for the Monte Carlo simulation of sequence evolution, written in R, using the Gillespie algorithm to integrate the actions of many concurrent processes such as substitutions, insertions and deletions. Uniquely among sequence simulation tools, PhyloSim can simulate arbitrarily complex patterns of rate variation and multiple indel processes, and allows for the incorporation of selective constraints on indel events. User-defined complex patterns of mutation and selection can be easily integrated into simulations, allowing PhyloSim to be adapted to specific needs. Conclusions Close integration with R and the wide range of features implemented offer unmatched flexibility, making it possible to simulate sequence evolution under a wide range of realistic settings. We believe that PhyloSim will be useful to future studies involving simulated alignments.
Energy Technology Data Exchange (ETDEWEB)
Menezes, Claudio J.M.; Lima, Ricardo de A.; Peixoto, Joao E. [Centro Regional de Ciencias Nucleares (CRCN/CNEN-PE), Recife, PE (Brazil)]. E-mails: cjmm@cnen.gov.br; ralima@cnen.gov.br; joao.e.peixoto@uol.com.br; Vieira, Jose W. [Centro Federal de Educacao Tecnologica de Pernambuco (CEFETPE), Recife, PE (Brazil)]. E-mail: jwvieira@br.inter.net
2007-07-01
The development of fast and more powerful computers, combined with techniques for data processing, makes the Monte Carlo methods one of the most widely used tools in the radiation transport area. For applications in radiodiagnostic, these methods generally use anthropomorphic phantoms for to evaluate the absorbed dose to patients during exposure. This work used an exposure computational model CDO/EGS4 for a testing device designed for intra-oral X-ray equipment performance evaluation. The developed model was utilized for studying the positioning, dimensions and materials used in the manufacture of the testing device. The Odontologic Dosimetric Card (CDO) will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS no. 453/98 MS 'Diretrizes de Protecao Radiologica em Radiodiagnostico Medico e Odontologico'. The results obtained for the study of the absorbing medium and copper filters dimension used in the determination of the kVp did not they show significant differences. (author)
Monte Carlo simulation of the TRIGA mark 2 criticality experiment
International Nuclear Information System (INIS)
The criticality analysis of the TRIGA-2 bench-mark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuel and control rods as well as vicinity of the core were precisely modeled. Core multiplication factors (Keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated Keff overestimated the experimental data by 1.0% for both the initial core and the several fuel-loading arrangements (fuel or graphite element was added only to the outer-ring), but the discrepancy increased to 1.8% for the some fuel-loading patterns (graphite element was positioned in the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. Al in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-2 reactor. (author)
Monte Carlo simulation of the spear reflectometer at LANSCE
International Nuclear Information System (INIS)
The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, Β(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy
Kinetic Monte Carlo simulations of void lattice formation during irradiation
Heinisch, H. L.; Singh, B. N.
2003-11-01
Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.
Learning About Ares I from Monte Carlo Simulation
Hanson, John M.; Hall, Charlie E.
2008-01-01
This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.
A generic algorithm for Monte Carlo simulation of proton transport
Salvat, Francesc
2013-12-01
A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.
Modelling laser light propagation in thermoplastics using Monte Carlo simulations
Parkinson, Alexander
Laser welding has great potential as a fast, non-contact joining method for thermoplastic parts. In the laser transmission welding of thermoplastics, light passes through a semi-transparent part to reach the weld interface. There, it is absorbed as heat, which causes melting and subsequent welding. The distribution and quantity of light reaching the interface are important for predicting the quality of a weld, but are experimentally difficult to estimate. A model for simulating the path of this laser light through these light-scattering plastic parts has been developed. The technique uses a Monte-Carlo approach to generate photon paths through the material, accounting for absorption, scattering and reflection between boundaries in the transparent polymer. It was assumed that any light escaping the bottom surface contributed to welding. The photon paths are then scaled according to the input beam profile in order to simulate non-Gaussian beam profiles. A method for determining the 3 independent optical parameters to accurately predict transmission and beam power distribution at the interface was established using experimental data for polycarbonate at 4 different glass fibre concentrations and polyamide-6 reinforced with 20% long glass fibres. Exit beam profiles and transmissions predicted by the simulation were found to be in generally good agreement (R2>0.90) with experimental measurements. The simulations allowed the prediction of transmission and power distributions at other thicknesses as well as information on reflection, energy absorption and power distributions at other thicknesses for these materials.
Measurement and Monte Carlo simulation of 6 MV X-rays for small radiation fields
International Nuclear Information System (INIS)
In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement. Monte Carlo simulations were performed using the EGS4 code with the input data prepared for the energy distribution of 6MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 2.0 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of 10cm in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated penumbra radii were 0.1cm shorter than measured values. The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification
Synchrotron stereotactic radiotherapy: dosimetry by Fricke gel and Monte Carlo simulations.
Boudou, Caroline; Biston, Marie-Claude; Corde, Stéphanie; Adam, Jean-François; Ferrero, Claudio; Estève, François; Elleaume, Hélène
2004-11-21
Synchrotron stereotactic radiotherapy (SSR) consists in loading the tumour with a high atomic number element (Z), and exposing it to monochromatic x-rays from a synchrotron source (50-100 keV), in stereotactic conditions. The dose distribution results from both the stereotactic monochromatic x-ray irradiation and the presence of the high Z element. The purpose of this preliminary study was to evaluate the two-dimensional dose distribution resulting solely from the irradiation geometry, using Monte Carlo simulations and a Fricke gel dosimeter. The verification of a Monte Carlo-based dosimetry was first assessed by depth dose measurements in a water tank. We thereafter used a Fricke dosimeter to compare Monte Carlo simulations with dose measurements. The Fricke dosimeter is a solution containing ferrous ions which are oxidized to ferric ions under ionizing radiation, proportionally to the absorbed dose. A cylindrical phantom filled with Fricke gel was irradiated in stereotactic conditions over several slices with a continuous beam (beam section = 0.1 x 1 cm2). The phantom and calibration vessels were then imaged by nuclear magnetic resonance. The measured doses were fairly consistent with those predicted by Monte Carlo simulations. However, the measured maximum absolute dose was 10% underestimated regarding calculation. The loss of information in the higher region of dose is explained by the diffusion of ferric ions. Monte Carlo simulation is the most accurate tool for dosimetry including complex geometries made of heterogeneous materials. Although the technique requires improvements, gel dosimetry remains an essential tool for the experimental verification of dose distribution in SSR with millimetre precision.
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
DEFF Research Database (Denmark)
Kamran, Faisal; Andersen, Peter E.
2015-01-01
Oblique incidence reflectometry has developed into an effective, noncontact, and noninvasive measurement technology for the quantification of both the reduced scattering and absorption coefficients of a sample. The optical properties are deduced by analyzing only the shape of the reflectance...... profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...... properties in which system demands vary to be able to detect subtle changes in the structure of the medium, translated as measured optical properties. Effects of variation in anisotropy are discussed and results presented. Finally, experimental data of milk products with different fat content are considered...
Monte Carlo simulations of medium-scale CMB anisotropy
Kogut, A J
1996-01-01
Recent detections of cosmic microwave background (CMB) anisotropy at half-degree angular scales show considerable scatter in the reported amplitude even at similar angular resolution. We use Monte Carlo techniques to simulate the current set of medium-scale CMB observations, including all relevant aspects of sky coverage and measurement technique. The scatter in the reported amplitudes is well within the range expected for the standard cold dark matter (CDM) cosmological model, and results primarily from the restricted sky coverage of each experiment. Within the context of standard CDM current observations of CMB anisotropy support the detection of a ``Doppler peak'' in the CMB power spectrum consistent with baryon density 0.01 < Omega_b < 0.13 (95% confidence) for Hubble constant H_0 = 50 km/s/Mpc. The uncertainties are approximately evenly divided between instrument noise and cosmic variance arising from the limited sky coverage.
Monte Carlo simulations of air showers in atmospheric electric fields
Buitink, S; Falcke, H; Heck, D; Kuijpers, J
2009-01-01
The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic component of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.
Monte Carlo simulations of ABC stacked kagome lattice films
Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.
2016-05-01
Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.
Monte Carlo simulations of landmine detection using neutron backscattering imaging
Energy Technology Data Exchange (ETDEWEB)
Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van
2003-11-01
Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.
Monte Carlo simulations for optimization of neutron shielding concrete
Piotrowski, Tomasz; Tefelski, Dariusz; Polański, Aleksander; Skubalski, Janusz
2012-06-01
Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.
Monte Carlo Simulation of Diamond Deposition at Low Temperature
Institute of Scientific and Technical Information of China (English)
董丽芳; 张玉红
2001-01-01
Diamond deposition at low temperatures is investigated and the relationship between substrate temperature for diamond growth and the energy of the carbonaceous species is given. The electron energy distribution and velocity distribution during the electron assisted chemical vapour deposition have been obtained by using Monte Carlo simulation. The main results obtained are as follows. (1) The substrate temperature for diamond growth will be lower than 800 C when the carbonaceous species on the substrate have mobility energy. For example, if the energy of the carbonaceous species is 0. 75 eV, the substrate temperature will be 380℃-600℃. (2) The greatnumber of atomic H on the substrate is of importance to the growth of diamond films.
Quantum Monte Carlo study of the protonated water dimer
Dagrada, Mario; Saitta, Antonino M; Sorella, Sandro; Mauri, Francesco
2013-01-01
We report an extensive theoretical study of the protonated water dimer (Zundel ion) by means of the highly correlated variational Monte Carlo and lattice regularized Monte Carlo approaches. This system represents the simplest model for proton transfer (PT) and a correct description of its properties is essential in order to understand the PT mechanism in more complex acqueous systems. Our Jastrow correlated AGP wave function ensures an accurate treatment of electron correlations. Exploiting the advantages of contracting the primitive basis set over atomic hybrid orbitals, we are able to limit dramatically the number of variational parameters with a systematic control on the numerical precision, crucial in order to simulate larger systems. We investigate energetics and geometrical properties of the Zundel ion as a function of the oxygen-oxygen distance, taken as reaction coordinate. In both cases, our QMC results are found in excellent agreement with coupled cluster CCSD(T) technique, the quantum chemistry "go...
Monte Carlo Study of Real Time Dynamics on the Lattice
Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.
2016-08-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Characterization of parallel-hole collimator using Monte Carlo Simulation
International Nuclear Information System (INIS)
Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator
Monte Carlo simulation by GEANT 4 and GESPECOR of in situ gamma-ray spectrometry measurements.
Chirosca, Alecsandru; Suvaila, Rares; Sima, Octavian
2013-11-01
The application of GEANT 4 and GESPECOR Monte Carlo simulation codes for efficiency calibration of in situ gamma-ray spectrometry was studied. The long computing time required by GEANT 4 prevents its use in routine simulations. Due to the application of variance reduction techniques, GESPECOR is much faster. In this code specific procedures for incorporating the depth profile of the activity were implemented. In addition procedures for evaluating the effect of non-homogeneity of the source were developed. The code was validated by comparison with test simulations carried out with GEANT 4 and by comparison with published results. PMID:23566809
Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
Chow, James C L; Leung, Michael K K
2008-06-01
The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger
Monte Carlo simulation of transport from an electrothermal vaporizer
Energy Technology Data Exchange (ETDEWEB)
Holcombe, James A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: holcombe@mail.utexas.edu; Ertas, Gulay [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)
2006-06-15
Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction.
Scalable Metropolis Monte Carlo for simulation of hard shapes
Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
2016-07-01
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.
Monte Carlo simulations for design of the KFUPM PGNAA facility
Energy Technology Data Exchange (ETDEWEB)
Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M.; Khateeb-ur-Rehman; Maslehuddin, M.; Kidwai, S
2003-02-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement sample, using a pulsed beam of 2.8 MeV neutrons. Prompt gamma ray peaks due to the calcium, silicon and iron content of the Portland cement were detected.
Monte Carlo simulations for design of the KFUPM PGNAA facility
International Nuclear Information System (INIS)
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement sample, using a pulsed beam of 2.8 MeV neutrons. Prompt gamma ray peaks due to the calcium, silicon and iron content of the Portland cement were detected
Monte Carlo simulations of intensity profiles for energetic particle propagation
Tautz, R. C.; Bolte, J.; Shalchi, A.
2016-02-01
Aims: Numerical test-particle simulations are a reliable and frequently used tool for testing analytical transport theories and predicting mean-free paths. The comparison between solutions of the diffusion equation and the particle flux is used to critically judge the applicability of diffusion to the stochastic transport of energetic particles in magnetized turbulence. Methods: A Monte Carlo simulation code is extended to allow for the generation of intensity profiles and anisotropy-time profiles. Because of the relatively low number density of computational particles, a kernel function has to be used to describe the spatial extent of each particle. Results: The obtained intensity profiles are interpreted as solutions of the diffusion equation by inserting the diffusion coefficients that have been directly determined from the mean-square displacements. The comparison shows that the time dependence of the diffusion coefficients needs to be considered, in particular the initial ballistic phase and the often subdiffusive perpendicular coefficient. Conclusions: It is argued that the perpendicular component of the distribution function is essential if agreement between the diffusion solution and the simulated flux is to be obtained. In addition, time-dependent diffusion can provide a better description than the classic diffusion equation only after the initial ballistic phase.
Maria Grazia PiaINFN Sezione di Genova; Marcia BegalliState University Rio de Janeiro; Anton LechnerVienna University of Technology; Lina QuintieriINFN Laboratori Nazionali di Frascati; Paolo SaraccoINFN Sezione di Genova
2014-01-01
The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.
Pia, Maria Grazia; Lechner, Anton; Quintieri, Lina; Saracco, Paolo
2010-01-01
The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.
Complete Monte Carlo Simulation of Neutron Scattering Experiments
International Nuclear Information System (INIS)
The majority of experiments investigating the elastic scattering of fast neutrons were done some 30 years ago. At that time it was not possible to obtain valid corrections for the finite geometry and the finite sample size of the experimental set up, not even having the main frame computers of the Los Alamos National Laboratory at one’s disposal. The reason was not only the limited calculation capacity of those ancient computers but also, to an even higher degree, the lack of powerful Monte Carlo codes and the very limited data base for the isotope in question. The computing power of a present day PC is about ten thousand times that of a super computer of the1970ies. Moreover, most PCs are idle over-night so that using a powerful Monte Carlo program, like MCNPX from Los Alamos, corrections of important scattering experiments can be determined reliably at practically no computer cost. Surely one of the most important experiments is neutron scattering from liquid helium-3, especially considering the expensive and complicated cryogenic target. A complete documentation of such an experiment as performed in the year 1971 at the Los Alamos National Laboratory is available. Therefore it is now possible to perform a thorough simulation of the experiment: starting from the production of mono-energetic neutrons in a gas target, followed by the interaction in the ambient air, and the interaction with the cryostat structure, and finally the scattering medium itself. Another simulation deals with the scattering from hydrogen as a reference measurement. As two thirds of all available differential scattering cross sections of that reaction depend on these measurements the newly arrived at corrections prove to be highly significant because they are smaller by a factor of five. Moreover, it was necessary to simulate another experiment on this reaction, using a white neutron source. This way it was possible to convert the corresponding relative yield excitation functions to
Lucena, Sebastião M P; Mileo, Paulo G M; Silvino, Pedro F G; Cavalcante, Célio L
2011-12-01
The adsorption equilibrium of methane in PCN-14 was simulated by the Monte Carlo technique in the grand canonical ensemble. A new force field was proposed for the methane/PCN-14 system, and the temperature dependence of the molecular siting was investigated. A detailed study of the statistics of the center of mass and potential energy showed a surprising site behavior with no energy barriers between weak and strong sites, allowing open metal sites to guide methane molecules to other neighboring sites. Moreover, this study showed that a model assuming weakly adsorbing open metal clusters in PCN-14, densely populated only at low temperatures (below 150 K), can explain published experimental data. These results also explain previously observed discrepancies between neutron diffraction experiments and Monte Carlo simulations.
The effect of variability in body segment parameters on joint moment using Monte Carlo simulations.
Nguyen, Tam C; Reynolds, Karen J
2014-01-01
This study used Monte Carlo methods to simulate the effects of variability and uncertainty in inertial body segment parameters (BSPs) on joint torques calculated using inverse dynamics. The average and standard deviation values of BSPs from previously published studies were used as inputs into the Monte Carlo simulation. Data from five groups were evaluated: cadaveric subjects; living subjects (Caucasian only); female living subjects (Caucasian only); male living subjects (Caucasian only); and living subjects (non-Caucasian). The differences in BSPs observed between the different groups were statistically significant; however, using BSP variability data from these groups made little difference to the calculated joint torques. This suggests that for slow and repeatable movement such as walking, BSPs have little effect on joint moments, except for the swing phase. Even then, the magnitude of difference in the swing phase due to variability in BSPs is not much greater than the inter-trial variability. As expected, distal BSPs have little effect on proximal joint moment.
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
Rodriguez, Manuel Jairo; Sempau Roma, Josep; Brualla, Lorenzo
2013-01-01
Background: The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. Methods: PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron appli...
Monte Carlo study for γ+N→π+N at a new compound target
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
An inbuilt compound target composed of carbon and tungsten is designed,and optimized by realistic GEANT4 Monte Carlo simulation.Also,we do a Monte Carlo study for single-pion photoproduction at the target.The results are presented from the simulation of pion yield,angular distribution and spectrum (at θ1ab,θcm=41°).These efforts are important to the coming measurement of the differential cross section for γ+N→π+N.
Monte Carlo study for γ + N→π+N at a new compound target
International Nuclear Information System (INIS)
An inbuilt compound target composed of carbon and tungsten is designed, and optimized by realistic GEANT4 Monte Carlo simulation. Also, we do a Monte Carlo study for single-pion photoproduction at the target. The results are presented from the simulation of pion yield, angular distribution and spectrum (at θlab, θcm=41 degree). These efforts are important to the coming measurement of the differential cross section for γ + N→π+N. (authors)
Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study
Directory of Open Access Journals (Sweden)
Chun He
2016-07-01
Full Text Available This study investigated the DNA damage due to the dose enhancement of using gold nanoparticles (GNPs as a radiation sensitizer in radiotherapy. Nanodosimetry of a photon irradiated GNP was performed with Monte Carlo simulations using Geant4-DNA (ver. 10.2 in the nanometer scale. In the simulation model, GNP spheres (with diameters of 30, 50, and 100 nm and a DNA model were placed in a water cube (1 µm3. The GNPs were irradiated by photon beams with varying energies (50, 100, and 150 keV, which produced secondary electrons, enhancing the dose to the DNA. To investigate the dose enhancement effect at the DNA level, energy deposition to the DNA with and without the GNP were determined in simulations for calculation of the dose enhancement ratio (DER. The distance between the GNP and the DNA molecule was varied to determine its effect on the DER. Monte Carlo results were collected for three variables; GNP size, distances between the GNP and DNA molecule, and the photon beam energy. The DER was found to increase with the size of GNP and decrease with the distance between the GNP and DNA molecule. The largest DER was found to be 3.7 when a GNP (100 nm diameter was irradiated by a 150 keV photon beam set at 30 nm from the DNA molecule. We conclude that there is significant dependency of the DER on GNP size, distance to the DNA and photon energy and have simulated those relationships.
Theory and Monte-Carlo simulation of adsorbates on corrugated surfaces
DEFF Research Database (Denmark)
Vives, E.; Lindgård, P.-A.
1993-01-01
Phase transitions in systems of adsorbed molecules on corrugated surfaces are studied by means of Monte Carlo simulation. Particularly, we have studied the phase diagram of D2 on graphite as a function of coverage and temperature. We have demonstrated the existence of an intermediate gamma......-phase between the commensurate and incommensurate phase stabilized by defects. Special attention has been given to the study of the epitaxial rotation angles of the different phases. Available experimental data is in agreement with the simulations and with a general theory for the epitaxial rotation which takes...
Energy Technology Data Exchange (ETDEWEB)
Tholomier, M.; Vicario, E.; Doghmane, N.
1987-10-01
The contribution of backscattered electrons to Auger electrons yield was studied with a multiple scattering Monte-Carlo simulation. The Auger backscattering factor has been calculated in the 5 keV-60 keV energy range. The dependence of the Auger backscattering factor on the primary energy and the beam incidence angle were determined. Spatial distributions of backscattered electrons and Auger electrons are presented for a point incident beam. Correlations between these distributions are briefly investigated.
REX: A Monte Carlo simulation of thick gas target resonant scattering reactions
Energy Technology Data Exchange (ETDEWEB)
Curtis, N., E-mail: n.curtis@bham.ac.uk; Walshe, J.
2015-10-11
A Monte Carlo code has been developed to simulate resonant scattering reactions using the thick gas target technique in inverse kinematics. Results are presented for the {sup 4}He({sup 20}Ne,α){sup 20}Ne reaction at 70 MeV, and compared to an experimental measurement which utilised an array of segmented silicon strip detectors. In the case studied, angular straggling in the chamber window is found to dominate the excitation energy resolution.
Nagata, H; Žukovič, M.; Idogaki, T.
2013-01-01
The three-dimensional XY model with bilinear-biquadratic exchange interactions $J$ and $J'$, respectively, has been studied by Monte Carlo simulations. From the detailed analysis of the thermal variation of various physical quantities, as well as the order parameter and energy histogram analysis, the phase diagram including two different ordered phases has been determined. There is a single phase boundary from a paramagnetic to a dipole-quadrupole ordered phase, which is of second order in a ...
Risk Analysis of Tilapia Recirculating Aquaculture Systems: A Monte Carlo Simulation Approach
Kodra, Bledar
2007-01-01
Risk Analysis of Tilapia Recirculating Aquaculture Systems: A Monte Carlo Simulation Approach Bledar Kodra (ABSTRACT) The purpose of this study is to modify an existing static analytical model developed for a Re-circulating Aquaculture Systems through incorporation of risk considerations to evaluate the economic viability of the system. In addition the objective of this analysis is to provide a well documented risk based analytical system so that individuals (investors/lenders) c...
The use of Monte Carlo simulations for seismic hazard assessment in the U.K.
R. M. W. Musson
2000-01-01
The input required for a seismic hazard study using conventional Probabilistic Seismic Hazard assessment (PSHA) methods can also be used for probabilistic analysis of hazard using Monte Carlo simulation methods. This technique is very flexible, and seems to be under-represented in the literature. It is very easy to modify the form of the seismicity model used, for example, to introduce non-Poissonian behaviour, without extensive reprogramming. Uncertainty in input parameters can also be model...
Risk analysis and Monte Carlo simulation applied to the generation of drilling AFE estimates
International Nuclear Information System (INIS)
This paper presents a method for developing an authorization-for-expenditure (AFE)-generating model and illustrates the technique with a specific offshore field development case study. The model combines Monte Carlo simulation and statistical analysis of historical drilling data to generate more accurate, risked, AFE estimates. In addition to the general method, two examples of making AFE time estimates for North Sea wells with the presented techniques are given
Modeling weight variability in a pan coating process using Monte Carlo simulations.
Pandey, Preetanshu; Katakdaunde, Manoj; Turton, Richard
2006-10-06
The primary objective of the current study was to investigate process variables affecting weight gain mass coating variability (CV(m) ) in pan coating devices using novel video-imaging techniques and Monte Carlo simulations. Experimental information such as the tablet location, circulation time distribution, velocity distribution, projected surface area, and spray dynamics was the main input to the simulations. The data on the dynamics of tablet movement were obtained using novel video-imaging methods. The effects of pan speed, pan loading, tablet size, coating time, spray flux distribution, and spray area and shape were investigated. CV(m) was found to be inversely proportional to the square root of coating time. The spray shape was not found to affect the CV(m) of the process significantly, but an increase in the spray area led to lower CV(m) s. Coating experiments were conducted to verify the predictions from the Monte Carlo simulations, and the trends predicted from the model were in good agreement. It was observed that the Monte Carlo simulations underpredicted CV(m) s in comparison to the experiments. The model developed can provide a basis for adjustments in process parameters required during scale-up operations and can be useful in predicting the process changes that are needed to achieve the same CV(m) when a variable is altered.
Hybrid Monte Carlo studies of high temperature superconductors
International Nuclear Information System (INIS)
In this thesis we have developed a Hybrid Monte Carlo simulation of the vortex state in layered high-temperature superconductors. A set of potentials that govern vortex behaviour are derived from the Lawrence-Doniach free-energy functional which incorporate (i) intra-layer coupling (ii) inter-layer Josephson and electromagnetic interactions. We develop an extensive set of system observables that enable detailed studies of the structural properties of the vortex state. Naive truncation of the long-range intra-layer potential is shown to cause incorrect physical behaviour. We present two methods to overcome the problem. The first smoothes the potential and the second performs an in-plane infinite lattice summation for the intra-layer interactions, which provides a minimum 20,000 speed-up over previous methods. We present results of the numerical B-T phase diagram in the pure and pinned system and obtain good agreement with available experimental and theoretical results. Significant hysteresis is observed in the melting properties of the system and we implement the Hybrid Monte Carlo (HMC) method for the first time in such a system to overcome this. The correlation time in the system and the rate of transitions between solid and liquid states are both shown to improve by a factor of 5 over the Monte Carlo (MC) method. We perform HMC simulations on a simple, well-studied model (Ryu, 1996b) and show that the HMC method accurately simulates the system. Finally we investigate the effects of a phenomenological pinning surface upon the melting properties of this system, and demonstrate that the effects of introducing disorder into the system are consistent with experimental and other numerical studies. (author)
Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera
Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L
2007-01-01
The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.
On the inclusion of macroscopic theory in Monte Carlo simulation using game theory
International Nuclear Information System (INIS)
This paper presents the inclusion of macroscopic damage theory into Monte Carlo particle-range simulation using game theory. A new computer code called RADDI was developed on the basis of this inclusion. Results of Monte Carlo damage simulation after 6.3 MeV proton bombardment of silicon are compared with experimental data of Bulgakov et al. (orig.)
Institute of Scientific and Technical Information of China (English)
万文应; 夏庆
2015-01-01
With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors’ effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.
Monte Carlo Simulations of Cosmic Rays Hadronic Interactions
Energy Technology Data Exchange (ETDEWEB)
Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.
2011-04-01
This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Claudio; Costa, Artur; Bittencourt, Euclides [TRANSPETRO - PETROBRAS Transporte, Rio de Janeiro, RJ (Brazil)
2005-07-01
Due to the growing relevance of safety and environmental protection policies in PETROBRAS and its subsidiaries, as well as official regulatory agencies and population requirements, integrity management of oil and gas pipelines became a priority activity in TRANSPETRO, involving several sectors of the company's Support Management Department. Inspection activities using intelligent PIGs, field correlations and replacement of pipeline segments are known as high cost operations and request complex logistics. Thus, it is imperative the adoption of management tools that optimize the available resources. This study presents Monte Carlo simulation method as an additional tool for evaluation and management of pipeline structural integrity. The method consists in foreseeing future physical conditions of most significant defects found in intelligent PIG In Line Inspections based on a probabilistic approach. Through Monte Carlo simulation, probability functions of failure for each defect are produced, helping managers to decide which repairs should be executed in order to reach the desired or accepted risk level. The case that illustrates this study refers to the reconditioning of ORSOL 14'' (35,56 mm) pipeline. This pipeline was constructed to transfer petroleum from Urucu's production fields to Solimoes port, in Coari, city in Brazilian Amazon Region. The result of this analysis indicated critical points for repair, in addition to the results obtained by the conventional evaluation (deterministic ASME B-31G method). Due to the difficulties to mobilize staff and execute necessary repairs in remote areas like Amazon forest, the probabilistic tool was extremely useful, improving pipeline integrity level and avoiding future additional costs. (author)
MONTE CARLO SIMULATION OF SPIN-POLARIZED SECONDARY ELECTRONS FROM IRON
Institute of Scientific and Technical Information of China (English)
X. Sun; Z.J. Ding; H.M Li; K. Salma; Z.M. Zhang; W.S. Tan
2005-01-01
A Monte Carlo model considering the electron spin direction and spin asymmetry has been developed. The energy distribution of the secondary electron polarization and the primary energy dependence of the polarization from Fe are studied. The simulation results show that:(1) the intensity of the spin-up secondary electrons is larger thanvthat of thevspin-down secondary electrons, suggesting the secondary electrons are spin polarized; (2) the spin polarization of secondary electrons with nearly zero kinetic energy is higher than the average valance spin polarization, Pb=27% for Fe. With increasing kinetic energy, the spin polarization of the secondary electrons decreases to the value of Pb remaining constant at higher kinetic energies;(3) the spin polarization increases with an increase in the primary energy and reaches a saturation value at higher primary energy in both the Monte Carlo simulation and experimental results.
Spatial distribution of reflected gamma rays by Monte Carlo simulation
International Nuclear Information System (INIS)
In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511* MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.
Spatial distribution of reflected gamma rays by Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Jehouani, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)], E-mail: jehouani@ucam.ac.ma; Merzouki, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco); Remote Sensing and Geomatics of the Environment Laboratory, Ottawa-Carleton Geoscience Centre, Marion Hall, 140 Louis Pasteur, Ottawa, ON, KIN 6N5 (Canada); Boutadghart, F.; Ghassoun, J. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)
2007-10-15
In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511{sup *} MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique. ].
Spatial distribution of reflected gamma rays by Monte Carlo simulation
Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.
2007-10-01
In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511∗ MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinśetique à Trois dimensions, CEA Rapport, Commissariat à l'Energie Atomique. [1
Urbic, T.; Holovko, M. F.
2011-10-01
Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.
Urbic, T.; Holovko, M. F.
2011-01-01
Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334
Finsy, Vincent; Calero, Sofia; García-Pérez, Elena; Merkling, Patrick J; Vedts, Gill; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M
2009-05-14
Low-coverage adsorption properties of the metal-organic framework MIL-47 were determined by a combined experimental and simulation study. Henry constants and low coverage adsorption enthalpies of C5-C8 linear and branched alkanes, cyclohexane and benzene were measured from 120 to 240 degrees C using pulse gas chromatography. An adapted force field for linear and branched alkanes in MIL-47 was used to compute the adsorption properties of those molecules. A new set of charges was developed for simulations with benzene in MIL-47. The adsorption enthalpy of linear alkanes increases with about 7.6 kJ mol(-1) per additional -CH2- group. Henry adsorption constants of iso-alkanes are slightly lower than those of the linear chains but the MIL-47 framework is not imposing steric constraints on the branched chains. Benzene and cyclohexane are adsorbed less strongly than n-hexane as they have less hydrogen atoms. For the studied non-polar molecules, the adsorption energies are dominated by van der Waals interactions and benzene adsorption is additionally influenced by Coulombic interactions. The simulated tendencies are in good agreement with the experiments. PMID:19421556
Energy Technology Data Exchange (ETDEWEB)
Thiam, Ch.O
2007-10-15
Accurate radiotherapy treatment requires the delivery of a precise dose to the tumour volume and a good knowledge of the dose deposit to the neighbouring zones. Computation of the treatments is usually carried out by a Treatment Planning System (T.P.S.) which needs to be precise and fast. The G.A.T.E. platform for Monte-Carlo simulation based on G.E.A.N.T.4 is an emerging tool for nuclear medicine application that provides functionalities for fast and reliable dosimetric calculations. In this thesis, we studied in parallel a validation of the G.A.T.E. platform for the modelling of electrons and photons low energy sources and the optimized use of grid infrastructures to reduce simulations computing time. G.A.T.E. was validated for the dose calculation of point kernels for mono-energetic electrons and compared with the results of other Monte-Carlo studies. A detailed study was made on the energy deposit during electrons transport in G.E.A.N.T.4. In order to validate G.A.T.E. for very low energy photons (<35 keV), three models of radioactive sources used in brachytherapy and containing iodine 125 (2301 of Best Medical International; Symmetra of Uro- Med/Bebig and 6711 of Amersham) were simulated. Our results were analyzed according to the recommendations of task group No43 of American Association of Physicists in Medicine (A.A.P.M.). They show a good agreement between G.A.T.E., the reference studies and A.A.P.M. recommended values. The use of Monte-Carlo simulations for a better definition of the dose deposited in the tumour volumes requires long computing time. In order to reduce it, we exploited E.G.E.E. grid infrastructure where simulations are distributed using innovative technologies taking into account the grid status. Time necessary for the computing of a radiotherapy planning simulation using electrons was reduced by a factor 30. A Web platform based on G.E.N.I.U.S. portal was developed to make easily available all the methods to submit and manage G
Monte Carlo studies for medical imaging detector optimization
Fois, G. R.; Cisbani, E.; Garibaldi, F.
2016-02-01
This work reports on the Monte Carlo optimization studies of detection systems for Molecular Breast Imaging with radionuclides and Bremsstrahlung Imaging in nuclear medicine. Molecular Breast Imaging requires competing performances of the detectors: high efficiency and high spatial resolutions; in this direction, it has been proposed an innovative device which combines images from two different, and somehow complementary, detectors at the opposite sides of the breast. The dual detector design allows for spot compression and improves significantly the performance of the overall system if all components are well tuned, layout and processing carefully optimized; in this direction the Monte Carlo simulation represents a valuable tools. In recent years, Bremsstrahlung Imaging potentiality in internal radiotherapy (with beta-radiopharmaceuticals) has been clearly emerged; Bremsstrahlung Imaging is currently performed with existing detector generally used for single photon radioisotopes. We are evaluating the possibility to adapt an existing compact gamma camera and optimize by Monte Carlo its performance for Bremsstrahlung imaging with photons emitted by the beta- from 90 Y.
Patient-specific CT dose determination from CT images using Monte Carlo simulations
Liang, Qing
Radiation dose from computed tomography (CT) has become a public concern with the increasing application of CT as a diagnostic modality, which has generated a demand for patient-specific CT dose determinations. This thesis work aims to provide a clinically applicable Monte-Carlo-based CT dose calculation tool based on patient CT images. The source spectrum was simulated based on half-value layer measurements. Analytical calculations along with the measured flux distribution were used to estimate the bowtie-filter geometry. Relative source output at different points in a cylindrical phantom was measured and compared with Monte Carlo simulations to verify the determined spectrum and bowtie-filter geometry. Sensitivity tests were designed with four spectra with the same kVp and different half-value layers, and showed that the relative output at different locations in a phantom is sensitive to different beam qualities. An mAs-to-dose conversion factor was determined with in-air measurements using an Exradin A1SL ionization chamber. Longitudinal dose profiles were measured with thermoluminescent dosimeters (TLDs) and compared with the Monte-Carlo-simulated dose profiles to verify the mAs-to-dose conversion factor. Using only the CT images to perform Monte Carlo simulations would cause dose underestimation due to the lack of a scatter region. This scenario was demonstrated with a cylindrical phantom study. Four different image extrapolation methods from the existing CT images and the Scout images were proposed. The results show that performing image extrapolation beyond the scan region improves the dose calculation accuracy under both step-shoot scan mode and helical scan mode. Two clinical studies were designed and comparisons were performed between the current CT dose metrics and the Monte-Carlo-based organ dose determination techniques proposed in this work. The results showed that the current CT dosimetry failed to show dose differences between patients with the same
Numerical simulations of blast-impact problems using the direct simulation Monte Carlo method
Sharma, Anupam
There is an increasing need to design protective structures that can withstand or mitigate the impulsive loading due to the impact of a blast or a shock wave. A preliminary step in designing such structures is the prediction of the pressure loading on the structure. This is called the "load definition." This thesis is focused on a numerical approach to predict the load definition on arbitrary geometries for a given strength of the incident blast/shock wave. A particle approach, namely the Direct Simulation Monte Carlo (DSMC) method, is used as the numerical model. A three-dimensional, time-accurate DSMC flow solver is developed as a part of this study. Embedded surfaces, modeled as triangulations, are used to represent arbitrary-shaped structures. Several techniques to improve the computational efficiency of the algorithm of particle-structure interaction are presented. The code is designed using the Object Oriented Programming (OOP) paradigm. Domain decomposition with message passing is used to solve large problems in parallel. The solver is extensively validated against analytical results and against experiments. Two kinds of geometries, a box and an I-shaped beam are investigated for blast impact. These simulations are performed in both two- and three-dimensions. A major portion of the thesis is dedicated to studying the uncoupled fluid dynamics problem where the structure is assumed to remain stationary and intact during the simulation. A coupled, fluid-structure dynamics problem is solved in one spatial dimension using a simple, spring-mass-damper system to model the dynamics of the structure. A parametric study, by varying the mass, spring constant, and the damping coefficient, to study their effect on the loading and the displacement of the structure is also performed. Finally, the parallel performance of the solver is reported for three sample-size problems on two Beowulf clusters.
Directory of Open Access Journals (Sweden)
UDOANYA RAYMOND MANUEL
2014-04-01
Full Text Available This paper presents the importance of applying queuing theory to the Automated Teller Machine (ATM using Monte Carlo Simulation in order to determine, control and manage the level of queuing congestion found within the Automated Teller Machine (ATM centre in Nigeria and also it contains the empirical data analysis of the queuing systems obtained at the Automated Teller Machine (ATM located within the Bank premises for a period of three (3 months. Monte Carlo Simulation is applied to this study in order to review the queuing congestion and queuing discipline at the Automated Teller Machine facilities or Automated Teller Machine service centers, and also estimate the arrival time, waiting time and service time of each customer found during the peak hours and off peak hours. An experiment was been carried out with the aid of a stop watch, recording material, etc on order to obtain the time in which every customer spends at the Automated Teller Machine (ATM service centre from the time of arrival to the time of departure. The model contains five servers which are heavily congested during the peak hours and during the off peak hours, servers are found being idle. Policy recommendations that could be use to manage and control the high level of queuing congestion at Automated Teller Machine (ATM centers were made using the statistical results presented by Monte Carlo simulation software attached to this work, such results include having not more than 15 customers within 1 hour, etc.
Rapid Monte Carlo simulation of detector DQE(f)
Energy Technology Data Exchange (ETDEWEB)
Star-Lack, Josh, E-mail: josh.starlack@varian.com; Sun, Mingshan; Abel, Eric [Varian Medical Systems, Palo Alto, California 94304-1030 (United States); Meyer, Andre; Morf, Daniel [Varian Medical Systems, CH-5405, Baden-Dattwil (Switzerland); Constantin, Dragos; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)
2014-03-15
Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 10{sup 7} − 10{sup 9} detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published
Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator
Energy Technology Data Exchange (ETDEWEB)
Custidiano, E.R., E-mail: ernesto7661@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Valenzuela, M.R., E-mail: meraqval@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Dumont, J.L., E-mail: Joseluis.Dumont@elekta.com [Elekta CMS Software, St.Louis, MO (United States); McDonnell, J., E-mail: josemc@express.com.ar [Cumbres Institute, Riobamba 1745, C.P.2000, Rosario, Santa Fe (Argentina); Rene, L, E-mail: luismrene@gmail.com [Radiotherapy Center, Crespo 953, C.P.2000, Rosario, Santa Fe (Argentina); Rodriguez Aguirre, J.M., E-mail: juakcho@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina)
2011-06-15
Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.
Energy Technology Data Exchange (ETDEWEB)
Datema, C.P. E-mail: c.datema@iri.tudelft.nl; Bom, V.R.; Eijk, C.W.E. van
2002-08-01
Experiments were carried out to investigate the possible use of neutron backscattering for the detection of landmines buried in the soil. Several landmines, buried in a sand-pit, were positively identified. A series of Monte Carlo simulations were performed to study the complexity of the neutron backscattering process and to optimize the geometry of a future prototype. The results of these simulations indicate that this method shows great potential for the detection of non-metallic landmines (with a plastic casing), for which so far no reliable method has been found.
Kinetic Monte Carlo simulation of formation of microstructures in liquid droplets
Energy Technology Data Exchange (ETDEWEB)
Block, M [Institut fuer Theoretische Physik, Technische Universitaet Berlin, D-10623 Berlin (Germany); Kunert, R [Institut fuer Theoretische Physik, Technische Universitaet Berlin, D-10623 Berlin (Germany); Schoell, E [Institut fuer Theoretische Physik, Technische Universitaet Berlin, D-10623 Berlin (Germany); Boeck, T [Institut fuer Kristallzuechtung Berlin, D-12489 Berlin (Germany); Teubner, Th [Institut fuer Kristallzuechtung Berlin, D-12489 Berlin (Germany)
2004-11-01
We study the deposition of indium droplets on a glass surface and the subsequent formation of silicon microcrystals inside these droplets. Kinetic Monte Carlo methods are used to analyse the influence of growth temperature, flux of incoming particles, surface coverage, and in particular an energy parameter simulating the surface tension, upon the morphology of growth. According to the experimental conditions of crystallization, a temperature gradient and diffusion in spherical droplets are included. The simulations explain the formation of silicon crystal structures in good agreement with the experiment. The dependence of their shape and the conditions of formation on the growth parameters are investigated in detail.
Grand canonical Monte Carlo simulations of hydrogen adsorption in carbon cones
International Nuclear Information System (INIS)
The Monte Carlo method in its grand ensemble variant (GCMC) is used in order to study the hydrogen adsorption (77 K) characteristics of novel carbon structures, namely Carbon Cones (CCs). CCs are conical shaped curved graphitic sheets, with five different apex angles. CC structures with correct bonding topology were developed via atomistic-molecular simulations, while GCMC simulations of hydrogen adsorption were carried out on the five different apex angle structures. Emphasis has been given on the adsorption properties inside the cones and it was found that cone tips are characterized by enhanced adsorbability. The results were also compared with similar calculations on carbon nanotubes.
Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water
Institute of Scientific and Technical Information of China (English)
TAN Zhen-Yu; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; HUANG Bo-Da; LI Feng; JI Yan-Ju
2005-01-01
@@ A Monte Carlo approach to simulate the transport and energy deposition of low energy electrons (E0 ≤ 10 keV) in liquid water is presented. The elastic scattering of electrons is described by Mott cross section, which is derivedfrom the relativistic wave equation of Dirac. The inelastic scattering model of electrons is b~ed on the dielectric response theory with exchange effect included. A new method of sampling various inelaltic scattering events is proposed in the simulation. Using the approach stated, the spatial distribution of inel~tic scattering events and energy deposition of electrons in liquid water are computed and the results are compared with other theoretical studies.
A new Monte-Carlo based simulation for the CryoEDM experiment
Raso-Barnett, Matthew
2015-01-01
This thesis presents a new Monte-Carlo based simulation of the physics of ultra-cold neutrons (UCN) in complex geometries and its application to the CryoEDM experiment. It includes a detailed description of the design and performance of this simulation along with its use in a project to study the magnetic depolarisation time of UCN within the apparatus due to magnetic impurities in the measurement cell, which is a crucial parameter in the sensitivity of a neutron electricdipole-moment (nEDM) ...
Algorithm and application of Monte Carlo simulation for multi-dispersive copolymerization system
Institute of Scientific and Technical Information of China (English)
凌君; 沈之荃; 陈万里
2002-01-01
A Monte Carlo algorithm has been established for multi-dispersive copolymerization system, based on the experimental data of copolymer molecular weight and dispersion via GPC measurement. The program simulates the insertion of every monomer unit and records the structure and microscopical sequence of every chain in various lengths. It has been applied successfully for the ring-opening copolymerization of 2,2-dimethyltrimethylene carbonate (DTC) with (-caprolactone (ε-CL). The simulation coincides with the experimental results and provides microscopical data of triad fractions, lengths of homopolymer segments, etc., which are difficult to obtain by experiments. The algorithm presents also a uniform frame for copolymerization studies under other complicated mechanisms.
Monte Carlo Simulations of the Response of the MARIE Instrument
Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Turner, R.; Zeitlin, C.
2003-01-01
The MARIE instrument aboard Mars Odyssey functions as a telescope for the detection of charged, energetic, nuclei. The directionality that leads to the telescope description is achieved by requiring coincident signals in two designated detectors in MARIE s silicon detector stack for the instrument to trigger. Because of this, MARIE is actually a bi directional telescope. Triggering particles can enter the detector stack by passing through the lightly shielded front of the instrument, but can also enter the back of the instrument by passing through the bulk of Odyssey. Because of this, understanding how to relate the signals recorded by MARIE to astrophysically important quantities such as particle fluxes or spectra exterior to the spacecraft clearly requires detailed modeling of the physical interactions that occur as the particles pass through the spacecraft and the instrument itself. In order to facilitate in the calibration of the MARIE data, we have begun a program to simulate the response of MARIE using the FLUKA [1] [2] Monte Carlo radiation transport code.
Monte Carlo simulations of ionization potential depression in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)
2016-01-15
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.
Monte Carlo simulation of inelastic neutrino scattering in DUMAND
International Nuclear Information System (INIS)
Detailed Monte Carlo calculations simulating the detection in the DUMAND 1-km3 optical detector of inelastic neutrino scattering by nucleons at 2 TeV and above show that the measurement of the y distribution is subject to systematic errors due to experimental errors and intrinsic fluctuations which produce errors in the energy determinations of hadronic cascade and muon; uncertainty in the exact amount of antineutrino fraction in the cosmic-ray neutrino flux. The nature of these errors is explored, and methods for removing them from the data developed. The remaining uncertainties are those in the evaluation of the errors in energy determination, and in the antineutrino contamination. It appears that these errors, not statistical ones, will eventually govern the accuracy of the y distributions obtained. Nonetheless, the effect of the boson propagator on the y distribution is so marked that no plausible scenario can be found in which the residual errors cast doubt on whether or not the propagator effect is present
Monte Carlo Simulation of SATs in 2D
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In this paper we use Monte Carlo simulation method to deal with SATs on a square lattice and a triangular lattice in two dimensions in the T→∞ limit.Besides that,the SAT model has been generalized in the coordination number q→∞ limit.The characteristics of SATs in the two limits q=3 and q→∞ have been qualitatively discussed.The obtained results reveal that the SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs are monotonous functions of q.With different q,SATs correspondingly belong to different universality classes.For example,on a hexagonal lattice,SATs and SAWs belong to the same universality class;in the limiting situation q→∞,SATs and RWs belong to the same universality class;when q=4 or q=6,SATs and SAWs or RWs belong to the different universality class.
Monte Carlo simulation of electron beam air plasma characteristics
Institute of Scientific and Technical Information of China (English)
Deng Yong-Feng; Han Xian-Wei; Tan Chang
2009-01-01
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
Catastrophic rupture of lunar rocks - A Monte Carlo simulation
Hoerz, F.; Schneider, E.; Gault, D. E.; Hartung, J. B.; Brownlee, D. E.
1975-01-01
A computer model based on Monte Carlo techniques was developed to simulate the destruction of lunar rocks by 'catastrophic rupture' due to meteoroid impact. Energies necessary to accomplish catastrophic rupture were derived from laboratory experiments. A crater-production rate derived from lunar rocks was utilized to calculate absolute time scales. Calculated median survival times for crystalline lunar rocks are 1.9, 4.6, 10.3, and 22 m.y. for rock masses of 10, 100, 1000, and 10,000 g, respectively. Corresponding times of 6, 14.5, 32, and 68 million years are required before the probability of destruction reaches 0.99. These results are consistent with absolute exposure ages measured on returned rocks. Some results also substantiate previous conclusions that the catastrophic-rupture process is significantly more effective in obliterating lunar rocks than mass wasting by single-particle abrasion. The view is also corroborated that most rocks presently on the lunar surface either are exhumed from the regolith or are fragments of much larger boulders rather than primary ejecta excavated from pristine bedrock.
Monte Carlo simulations of ionization potential depression in dense plasmas
International Nuclear Information System (INIS)
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model
Fluid Simulations with Localized Boltzmann Upscaling by Direct Simulation Monte-Carlo
Degond, Pierre; Dimarco, Giacomo
2010-01-01
In the present work, we present a novel numerical algorithm to couple the Direct Simulation Monte Carlo method (DSMC) for the solution of the Boltzmann equation with a finite volume like method for the solution of the Euler equations. Recently we presented in [14],[16],[17] different methodologies which permit to solve fluid dynamics problems with localized regions of departure from thermodynamical equilibrium. The methods rely on the introduction of buffer zones which realize a smooth transi...
Temperature variance study in Monte-Carlo photon transport theory
International Nuclear Information System (INIS)
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case
Monte Carlo-based simulation of dynamic jaws tomotherapy
International Nuclear Information System (INIS)
Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
Dirgayussa, I. Gde Eka; Yani, Sitti; Rhani, M. Fahdillah; Haryanto, Freddy
2015-09-01
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
International Nuclear Information System (INIS)
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id [Institut Teknologi Bandung, Jl. Ganesha 10, 40132 (Indonesia); Rhani, M. Fahdillah [Tang Tock Seng Hospital (Singapore)
2015-09-30
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good
Monte Carlo simulation to investigate the formation of molecular hydrogen and its deuterated forms
Sahu, DIpen; Majumdar, Liton; Chakrabarti, Sandip K
2015-01-01
$H_2$ is the most abundant interstellar species. Its deuterated forms ($HD$ and $D_2$) are also significantly abundant. Huge abundances of these molecules could be explained by considering the chemistry occurring on the interstellar dust. Because of its simplicity, Rate equation method is widely used to study the formation of grain-surface species. However, since recombination efficiency of formation of any surface species are heavily dependent on various physical and chemical parameters, Monte Carlo method would be best method suited to take care of randomness of the processes. We perform Monte Carlo simulation to study the formation of $H_2$, $HD$ and $D_2$ on interstellar ices. Adsorption energies of surface species are the key inputs for the formation of any species on interstellar dusts but binding energies of deuterated species are yet to known with certainty. A zero point energy correction exists between hydrogenated and deuterated species which should be considered while modeling the chemistry on the ...
External individual monitoring: experiments and simulations using Monte Carlo Method
International Nuclear Information System (INIS)
In this work, we have evaluated the possibility of applying the Monte Carlo simulation technique in photon dosimetry of external individual monitoring. The GEANT4 toolkit was employed to simulate experiments with radiation monitors containing TLD-100 and CaF2:NaCl thermoluminescent detectors. As a first step, X ray spectra were generated impinging electrons on a tungsten target. Then, the produced photon beam was filtered in a beryllium window and additional filters to obtain the radiation with desired qualities. This procedure, used to simulate radiation fields produced by a X ray tube, was validated by comparing characteristics such as half value layer, which was also experimentally measured, mean photon energy and the spectral resolution of simulated spectra with that of reference spectra established by international standards. In the construction of thermoluminescent dosimeter, two approaches for improvements have. been introduced. The first one was the inclusion of 6% of air in the composition of the CaF2:NaCl detector due to the difference between measured and calculated values of its density. Also, comparison between simulated and experimental results showed that the self-attenuation of emitted light in the readout process of the fluorite dosimeter must be taken into account. Then, in the second approach, the light attenuation coefficient of CaF2:NaCl compound estimated by simulation to be 2,20(25) mm-1 was introduced. Conversion coefficients Cp from air kerma to personal dose equivalent were calculated using a slab water phantom with polymethyl-metacrilate (PMMA) walls, for reference narrow and wide X ray spectrum series [ISO 4037-1], and also for the wide spectra implanted and used in routine at Laboratorio de Dosimetria. Simulations of backscattered radiations by PMMA slab water phantom and slab phantom of ICRU tissue-equivalent material produced very similar results. Therefore, the PMMA slab water phantom that can be easily constructed with low price can
Wieslander, Elinore; Knöös, Tommy
2003-10-01
An increasing number of patients receiving radiation therapy have metallic implants such as hip prostheses. Therefore, beams are normally set up to avoid irradiation through the implant; however, this cannot always be accomplished. In such situations, knowledge of the accuracy of the used treatment planning system (TPS) is required. Two algorithms, the pencil beam (PB) and the collapsed cone (CC), are implemented in the studied TPS. Comparisons are made with Monte Carlo simulations for 6 and 18 MV. The studied materials are steel, CoCrMo, Orthinox® (a stainless steel alloy and registered trademark of Stryker Corporation), TiAlV and Ti. Monte Carlo simulated depth dose curves and dose profiles are compared to CC and PB calculated data. The CC algorithm shows overall a better agreement with Monte Carlo than the PB algorithm. Thus, it is recommended to use the CC algorithm to get the most accurate dose calculation both for the planning target volume and for tissues adjacent to the implants when beams are set up to pass through implants.
International Nuclear Information System (INIS)
According to the International Electro-technical Commission, manufacturers of X-ray equipment should indicate the number of radiation doses to which a patient can be exposed. Dose-area product (DAP) meters are readily available devices that provide dose indices. Collimators are the most commonly employed radiation beam restrictors in X-ray equipment. DAP meters are attached to the lower surface of a collimator. A DAP meter consists of a chamber and electronics. This separation makes it difficult for operators to maintain the accuracy of a DAP meter. Developing a comprehensive system that has a DAP meter in place of a mirror in the collimator would be effective for measuring, recording the dose and maintaining the quality of the DAP meter. This study was conducted through experimental measurements and a simulation. A DAP meter built into a collimator was found to be feasible when its reading was multiplied by a correction factor. (authors)
A Fortran-77 program for Monte Carlo simulation of upwelling light from the sea
Digital Repository Service at National Institute of Oceanography (India)
Sathe, P.V.; Sathyendranath, S.
two media separ- ated by a nonflat boundary such as a wind-ruffled sea surface, the Monte Carlo simulation is more effective. The Monte Carlo method is a direct simulation of the actual process of radiation transfer in which a large number... it begins the simulation of radiation transfer. The following are the input parameters which the user controls in every run. (!) Maximum number of photons to be run (2) Solar elevation (3) Fraction of diffuse light present (4) Spectral composition...
Monte Carlo study of double exchange interaction in manganese oxide
Energy Technology Data Exchange (ETDEWEB)
Naa, Christian Fredy, E-mail: chris@cphys.fi.itb.ac.id [Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung (Indonesia); Unité de Dynamique et Structure des Matérioux Moléculaires, Université Littoral Côte d’Opale, Maison de la Reserche Blaise Pascal 50, rue Ferdinand Buisson, Calais, France email (France); Suprijadi,, E-mail: supri@fi.itb.ac.id; Viridi, Sparisoma, E-mail: dudung@fi.itb.ac.id; Djamal, Mitra, E-mail: mitra@fi.itb.ac.id [Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung (Indonesia); Fasquelle, Didier, E-mail: didier.fasquelle@univ-littoral.fr [Unité de Dynamique et Structure des Matérioux Moléculaires, Université Littoral Côte d’Opale, Maison de la Reserche Blaise Pascal 50, rue Ferdinand Buisson, Calais, France email (France)
2015-09-30
In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn{sup 3+} and Mn{sup 4+} on the general system of Re{sub 2/3}Ae{sub 1/3}MnO{sub 3} in two dimensional system. The conduction mechanism is based on probability of e{sub g} electrons hopping from Mn{sup 3+} to Mn{sup 4+}. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.
Monte-Carlo study of Dirac semimetals phase diagram
Braguta, V V; Kotov, A Yu; Nikolaev, A A
2016-01-01
In this paper the phase diagram of Dirac semimetals is studied within lattice Monte-Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in semimetal/insulator transition. Using numerical simulation we determined the values of the critical coupling constant of the semimetal/insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allowed us to draw tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na$_3$Bi and Cd$_3$As$_2$ known experimentally to be Dirac semimetals would lie deeply in the insulating region of the phase diagram. It probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.
Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S
2006-01-01
We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi). PMID:17645997
Energy Technology Data Exchange (ETDEWEB)
Teles, Pedro; Barros, Silvia; Vaz, Pedro; Goncalves, Isabel [Instituto Tecnologico e Nuclear, Sacavem (Portugal). Instituto Superior Tecnico; Cardoso, Simone [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro [Comissao Nacional de Energia Nuclear, Rio de Janeiro, RJ (Brazil); Rosa, Luiz da; Santos, Maira [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pereira Junior, Pedro Paulo [Dosimetrika (Brazil); Zankl, Maria [German Research Centre for Environmental Health, Munchen (Germany). Helmholtz Zentrum Munchen
2013-10-01
Prostate Brachytherapy is a radiotherapy technique, which consists in inserting a number of radioactive seeds (containing, usually, the following radionuclides {sup 125} l, {sup 241}Am or {sup 103}Pd ) surrounding or in the vicinity of, prostate tumor tissue . The main objective of this technique is to maximize the radiation dose to the tumor and minimize it in other tissues and organs healthy, in order to reduce its morbidity. The absorbed dose distribution in the prostate, using this technique is usually non-homogeneous and time dependent. Various parameters such as the type of seed, the attenuation interactions between them, their geometrical arrangement within the prostate, the actual geometry of the seeds,and further swelling of the prostate gland after implantation greatly influence the course of absorbed dose in the prostate and surrounding areas. Quantification of these parameters is therefore extremely important for dose optimization and improvement of their plans conventional treatment, which in many cases not fully take into account. The Monte Carlo techniques allow to study these parameters quickly and effectively. In this work, we use the program MCNPX and generic voxel phantom (GOLEM) where simulated different geometric arrangements of seeds containing {sup 125}I, Amersham Health model of type 6711 in prostates of different sizes, in order to try to quantify some of the parameters. The computational model was validated using a phantom prostate cubic RW3 type , consisting of tissue equivalent, and thermoluminescent dosimeters. Finally, to have a term of comparison with a treatment real plan it was simulate a treatment plan used in a hospital of Rio de Janeiro, with exactly the same parameters, and our computational model. The results obtained in our study seem to indicate that the parameters described above may be a source of uncertainty in the correct evaluation of the dose required for actual treatment plans. The use of Monte Carlo techniques can
Sharma, Anupam; Long, Lyle N.
2004-10-01
A particle approach using the Direct Simulation Monte Carlo (DSMC) method is used to solve the problem of blast impact with structures. A novel approach to model the solid boundary condition for particle methods is presented. The solver is validated against an analytical solution of the Riemann shocktube problem and against experiments on interaction of a planar shock with a square cavity. Blast impact simulations are performed for two model shapes, a box and an I-shaped beam, assuming that the solid body does not deform. The solver uses domain decomposition technique to run in parallel. The parallel performance of the solver on two Beowulf clusters is also presented.
Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations
Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.
2014-07-01
Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.
International Nuclear Information System (INIS)
The pixelated semiconductor based on cadmium zinc telluride (CZT) is a promising imaging device that provides many benefits compared with conventional scintillation detectors. By using a high-resolution square parallel-hole collimator with a pixelated semiconductor detector, we were able to improve both sensitivity and spatial resolution. Here, we present a simulation of a CZT pixleated semiconductor single-photon emission computed tomography (SPECT) system with a high-resolution square parallel-hole collimator using various geometric designs of 0.5, 1.0, 1.5, and 2.0 mm X-axis hole size. We performed a simulation study of the eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, U.S.A.) CZT pixelated semiconductor detector using a Geant4 Application for Tomographic Emission (GATE). To evaluate the performances of these systems, the sensitivity and spatial resolution was evaluated. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed. Our results showed that the average sensitivity of the 2.0 mm collimator X-axis hole size was 1.34, 1.95, and 3.92 times higher than that of the 1.5, 1.0, and 0.5 mm collimator X-axis hole size, respectively. Also, the average spatial resolution of the 0.5 mm collimator X-axis hole size was 28.69, 44.65, and 55.73% better than that of the 1.0, 1.5, and 2.0 mm collimator X-axis hole size, respectively. We discuss the high-resolution square parallel-hole collimator of various collimator geometric designs and our evaluations. In conclusion, we have successfully designed a high-resolution square parallel-hole collimator with a CZT pixelated semiconductor SPECT system
Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors
Institute of Scientific and Technical Information of China (English)
雷咏梅; 蒋英; 等
2002-01-01
This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors(SMPs).The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition.Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied.Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly.It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.
Velazquez, L.; Castro-Palacio, J. C.
2013-07-01
Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.
A new Monte Carlo code for absorption simulation of laser-skin tissue interaction
Institute of Scientific and Technical Information of China (English)
Afshan Shirkavand; Saeed Sarkar; Marjaneh Hejazi; Leila Ataie-Fashtami; Mohammad Reza Alinaghizadeh
2007-01-01
In laser clinical applications, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue during laser irradiation are crucial. Such information allows the selection of proper operating parameters such as laser power, and exposure time for optimal therapeutic. The Monte Carlo method is a useful tool for studying laser-tissue interaction and simulation of energy absorption in tissue during laser irradiation. We use the principles of this technique and write a new code with MATLAB 6.5, and then validate it against Monte Carlo multi layer (MCML) code. The new code is proved to be with good accuracy. It can be used to calculate the total power bsorbed in the region of interest. This can be combined for heat modelling with other computerized programs.
Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation
Energy Technology Data Exchange (ETDEWEB)
Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.
2011-10-24
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes
Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R
2001-01-01
This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...
Introduction to Computational Physics and Monte Carlo Simulations of Matrix Field Theory
Ydri, Badis
2015-01-01
This book is divided into two parts. In the first part we give an elementary introduction to computational physics consisting of 21 simulations which originated from a formal course of lectures and laboratory simulations delivered since 2010 to physics students at Annaba University. The second part is much more advanced and deals with the problem of how to set up working Monte Carlo simulations of matrix field theories which involve finite dimensional matrix regularizations of noncommutative and fuzzy field theories, fuzzy spaces and matrix geometry. The study of matrix field theory in its own right has also become very important to the proper understanding of all noncommutative, fuzzy and matrix phenomena. The second part, which consists of 9 simulations, was delivered informally to doctoral students who are working on various problems in matrix field theory. Sample codes as well as sample key solutions are also provided for convenience and completness. An appendix containing an executive arabic summary of t...
Choi, Y; Lee, K B; Kim, K J; Han, J; Yi, E S
2016-03-01
We have chosen to establish the Compton Suppression Spectrometer (CSS) for low activity environmental samples with a high purity germanium (HPGe) primary detector and a removable plug-in detector (NaI(Tl)) surrounded with a cylindrical annulus guard detector (NaI(Tl)). Monte Carlo simulation with PENELOPE (PENetration and Energy LOss of Positrons and Electrons) is used to determine the optimal geometry of the CSS. To verify a correlation between experiment and simulation, the energy distribution of (137)Cs and (60)Co point sources is measured and simulated for each condition. The CSS parameters are studied to determine optimal detector geometry and Compton Suppression Factor (CSF). The timing resolution of the CSS was found to be 44ns (FWHM), which is an outstanding result in the semiconductor-based gamma-ray spectrometry. All measured values of CSF agree within 5% with the values obtained from the simulation. The optimum geometry and CSF values are discussed. PMID:26778448
Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields
Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.
2011-01-01
The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with m
Ehrig, Jens; Petrov, Eugene P.; Schwille, Petra
2010-01-01
By means of lattice-based Monte Carlo simulations, we address properties of two-component lipid membranes on the experimentally relevant spatial scales of order of a micrometer and time intervals of order of a second, using DMPC/DSPC lipid mixtures as a model system. Our large-scale simulations allowed us to obtain important results previously not reported in simulation studies of lipid membranes. We find that, within a certain range of lipid compositions, the phase transition from the fluid ...
Energy Technology Data Exchange (ETDEWEB)
Richet, Y
2006-12-15
Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)
Simulating rotationally inelastic collisions using a Direct Simulation Monte Carlo method
Schullian, O; Vaeck, N; van der Avoird, A; Heazlewood, B R; Rennick, C J; Softley, T P
2015-01-01
A new approach to simulating rotational cooling using a direct simulation Monte Carlo (DSMC) method is described and applied to the rotational cooling of ammonia seeded into a helium supersonic jet. The method makes use of ab initio rotational state changing cross sections calculated as a function of collision energy. Each particle in the DSMC simulations is labelled with a vector of rotational populations that evolves with time. Transfer of energy into translation is calculated from the mean energy transfer for this population at the specified collision energy. The simulations are compared with a continuum model for the on-axis density, temperature and velocity; rotational temperature as a function of distance from the nozzle is in accord with expectations from experimental measurements. The method could be applied to other types of gas mixture dynamics under non-uniform conditions, such as buffer gas cooling of NH$_3$ by He.
International Nuclear Information System (INIS)
Purpose: Proton therapy exhibits several advantages over photon therapy due to depth-dose distributions from proton interactions within the target material. However, uncertainties associated with protons beam range in the patient limit the advantage of proton therapy applications. To quantify beam range, positron-emitting nuclei (PEN) and prompt gamma (PG) techniques have been developed. These techniques use de-excitation photons to describe the location of the beam in the patient. To develop a detector system for implementing the PG technique for range verification applications in proton therapy, we studied the yields, energy and angular distributions of the secondary particles emitted from a PMMA phantom. Methods: Proton pencil beams of various energies incident onto a PMMA phantom with dimensions of 5 x 5 x 50 cm3 were used for simulation with the Geant4 toolkit using the standard electromagnetic packages as well as the packages based on the binary-cascade nuclear model. The emitted secondary particles are analyzed . Results: For 160 MeV incident protons, the yields of secondary neutrons and photons per 100 incident protons were ~6 and ~15 respectively. Secondary photon energy spectrum showed several energy peaks in the range between 0 and 10 MeV. The energy peaks located between 4 and 6 MeV were attributed to originate from direct proton interactions with 12C (~ 4.4 MeV) and 16O (~ 6 MeV), respectively. Most of the escaping secondary neutrons were found to have energies between 10 and 100 MeV. Isotropic emissions were found for lower energy neutrons (<10 MeV) and photons for all energies, while higher energy neutrons were emitted predominantly in the forward direction. The yields of emitted photons and neutrons increased with the increase of incident proton energies. Conclusions: A detector system is currently being developed incorporating the yields, energy and angular distributions of secondary particles from proton interactions obtained from this study
Bressel, L.; Reich, O.
2014-10-01
In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1].
Energy Technology Data Exchange (ETDEWEB)
Dinpajooh, Mohammadhasan [Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States); Bai, Peng; Allan, Douglas A. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States); Siepmann, J. Ilja, E-mail: siepmann@umn.edu [Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States); Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)
2015-09-21
Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T{sub c} = 1.3128 ± 0.0016, ρ{sub c} = 0.316 ± 0.004, and p{sub c} = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ{sub t} ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r{sub cut} = 3.5σ yield T{sub c} and p{sub c} that are higher by 0.2% and 1.4% than simulations with r{sub cut} = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r{sub cut} = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard
Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics
Good, Brian
2013-01-01
Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.
On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems
Energy Technology Data Exchange (ETDEWEB)
Walsh, Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-31
The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.
Monte Carlo simulation of the standardization of {sup 22}Na using scintillation detector arrays
Energy Technology Data Exchange (ETDEWEB)
Sato, Y., E-mail: yss.sato@aist.go.j [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, H. [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba 263-8555 (Japan); Yamada, T. [Japan Radioisotope Association, 2-28-45, Hon-komagome, Bunkyo, Tokyo 113-8941 (Japan); National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tohoku University, 6-6, Aoba, Aramaki, Aoba, Sendai 980-8579 (Japan); Hasegawa, T. [Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Oda, K. [Tokyo Metropolitan Institute of Gerontology, 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022 (Japan); Unno, Y.; Yunoki, A. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)
2010-07-15
In order to calibrate PET devices by a sealed point source, we contrived an absolute activity measurement method for the sealed point source using scintillation detector arrays. This new method was verified by EGS5 Monte Carlo simulation.
Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles
Digital Repository Service at National Institute of Oceanography (India)
Desa, E.S.; Desai, R.G.P.; Desa, B.A.E.
This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...
Modeling of hysteresis loops by Monte Carlo simulation
Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.
2015-12-01
Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.
Hybrid Monte-Carlo method for simulating neutron and photon radiography
International Nuclear Information System (INIS)
We present a Hybrid Monte-Carlo method (HMCM) for simulating neutron and photon radiographs. HMCM utilizes the combination of a Monte-Carlo particle simulation for calculating incident film radiation and a statistical post-processing routine to simulate film noise. Since the method relies on MCNP for transport calculations, it is easily generalized to most non-destructive evaluation (NDE) simulations. We verify the method's accuracy through ASTM International's E592-99 publication, Standard Guide to Obtainable (E)quivalent Penetrameter Sensitivity for Radiography of Steel Plates [1]. Potential uses for the method include characterizing alternative radiological sources and simulating NDE radiographs
Hybrid Monte-Carlo method for simulating neutron and photon radiography
Wang, Han; Tang, Vincent
2013-11-01
We present a Hybrid Monte-Carlo method (HMCM) for simulating neutron and photon radiographs. HMCM utilizes the combination of a Monte-Carlo particle simulation for calculating incident film radiation and a statistical post-processing routine to simulate film noise. Since the method relies on MCNP for transport calculations, it is easily generalized to most non-destructive evaluation (NDE) simulations. We verify the method's accuracy through ASTM International's E592-99 publication, Standard Guide to Obtainable Equivalent Penetrameter Sensitivity for Radiography of Steel Plates [1]. Potential uses for the method include characterizing alternative radiological sources and simulating NDE radiographs.
International Nuclear Information System (INIS)
Monte Carlo codes GEANT 4 and MUSIC have been used to calculate background components of low-level HPGe gamma-ray spectrometers operating in a shallow underground laboratory. The simulated background gamma-ray spectra have been comparable with spectra measured at the Ogoya underground laboratory operating at the depth of 270 m w.e. (water equivalent). The Monte Carlo simulations have proved to be useful approach in estimation of background characteristics of HPGe spectrometers before their construction. (author)
Resolution and intensity in neutron spectrometry determined by Monte Carlo simulation
DEFF Research Database (Denmark)
Dietrich, O.W.
1968-01-01
The Monte Carlo simulation technique was applied to the propagation of Bragg-reflected neutrons in mosaic single crystals. The method proved to be very useful for the determination of resolution and intensity in neutron spectrometers.......The Monte Carlo simulation technique was applied to the propagation of Bragg-reflected neutrons in mosaic single crystals. The method proved to be very useful for the determination of resolution and intensity in neutron spectrometers....
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
Rodríguez Niedenführ, Miquel; Sempau Roma, Josep; Fogliata, Antonella; Cozzi, L.; Sauerwein, W.; Brualla, L
2015-01-01
Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry develop...
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
Monte Carlo simulations of the radiation environment for the CMS Experiment
Mallows, Sophie
2015-01-01
Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.
Monte Carlo simulations of the radiation environment for the CMS experiment
Mallows, S.; Azhgirey, I.; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.
2016-07-01
Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.
STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions
Klein, Spencer R; Seger, Janet; Gorbunov, Yuri; Butterworth, Joey
2016-01-01
Ultra-peripheral collisions (UPCs) have been a significant source of study at RHIC and the LHC. In these collisions, the two colliding nuclei interact electromagnetically, via two-photon or photonuclear interactions, but not hadronically; they effectively miss each other. Photonuclear interactions produce vector meson states or more general photonuclear final states, while two-photon interactions can produce lepton or meson pairs, or single mesons. In these interactions, the collision geometry plays a major role. We present a program, STARlight, that calculates the cross-sections for a variety of UPC final states and also creates, via Monte Carlo simulation, events for use in determining detector efficiency.
Comparison of RPL GD-301 and TLD-100 detectors responses by Monte Carlo simulation
Benali, A.-H.; Medkour Ishak-Boushaki, G.; Nourreddine, A.; Allab, M.
2015-07-01
(LiF:Mg,Ti) Thermo Luminescent Detectors are widely used for monitoring patient dose in radiotherapy treatments whereas Radio-Photoluminescent Dosimeters (RPL) are increasingly devoted to radiological protection purposes. A study, aiming at extending the use of RPL glasses to clinical applications, is conducted by comparing the dosimetric characteristics of a RPL glass dosimeter, commercially known as GD-301 to those of a TLD -100 detector. In this paper, preliminary Monte Carlo simulation results describing these dosimeters responses in terms of absorbed dose, source-detector distance and characteristics of the incident gamma field are presented.
The Grand Canonical Monte Carlo Simulations of Benzene and Propylene in ITQ-1 Zeolite
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Grand Canonical Monte Carlo (GCMC) simulations have been performed to study the localization and adsorption behavior of benzene and propylene, in purely siliceous MWW zeolite (ITQ-1). By analyzing the locations of benzene and propylene in ITQ-1, it can be deduced that the alkylation of benzene and propylene will mainly happen in 12-MR supercages at the external surface or close to the external surface. The adsorption isotherms of benzene and propylene at 315K and 0～3.5kPa are predicted, and the results for benzene generally coincide with the trend from the experiments of a series of aromatic compounds.
Cosmic rays Monte Carlo simulations for the Extreme Energy Events Project
Abbrescia, M; Aiola, S; Antolini, R; Avanzini, C; Baldini Ferroli, R; Bencivenni, G; Bossini, E; Bressan, E; Chiavassa, A; Cicalò, C; Cifarelli, L; Coccia, E; De Gruttola, D; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Dreucci, M; Fabbri, F L; Frolov, V; Garbini, M; Gemme, G; Gnesi, I; Gustavino, C; Hatzifotiadou, D; La Rocca, P; Li, S; Librizzi, F; Maggiora, A; Massai, M; Miozzi, S; Panareo, M; Paoletti, R; Perasso, L; Pilo, F; Piragino, G; Regano, A; Riggi, F; Righini, G C; Sartorelli, G; Scapparone, E; Scribano, A; Selvi, M; Serci, S; Siddi, E; Spandre, G; Squarcia, S; Taiuti, M; Tosello, F; Votano, L; Williams, M C S; Yánez, G; Zichichi, A; Zuyeuski, R
2014-01-01
The Extreme Energy Events Project (EEE Project) is an innovative experiment to study very high energy cosmic rays by means of the detection of the associated air shower muon component. It consists of a network of tracking detectors installed inside Italian High Schools. Each tracking detector, called EEE telescope, is composed of three Multigap Resistive Plate Chambers (MRPCs). At present, 43 telescopes are installed and taking data, opening the way for the detection of far away coincidences over a total area of about 3 × 10 5 km 2 . In this paper we present the Monte Carlo simulations that have been performed to predict the expected coincidence rate between distant EEE telescopes.
Cosmic rays Monte Carlo simulations for the Extreme Energy Events Project
Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yánez, G.; Zichichi, A.; Zuyeuski, R.
2014-08-01
The Extreme Energy Events Project (EEE Project) is an innovative experiment to study very high energy cosmic rays by means of the detection of the associated air shower muon component. It consists of a network of tracking detectors installed inside Italian High Schools. Each tracking detector, called EEE telescope, is composed of three Multigap Resistive Plate Chambers (MRPCs). At present, 43 telescopes are installed and taking data, opening the way for the detection of far away coincidences over a total area of about 3 × 105 km2. In this paper we present the Monte Carlo simulations that have been performed to predict the expected coincidence rate between distant EEE telescopes.
Monte Carlo simulations of the complex field in the LHC radiation test facility at CERN
Tsoulou, A; Rausch, R; Wijnands, Thijs
2004-01-01
The hard radiation environment of the Large Hadron Collider (LHC) demands for a careful choice of COTS (Components Off The Shelf) that will be installed in the tunnel. All the electronic equipment should be tested in a mixed radiation field, similar to that of the LHC. To obtain optimum results it is essential to study thoroughly the complex radiation field in the test facility at CERN. For this purpose a detailed Monte Carlo simulation of the test area was carried out and the calculations were compared with the dosimetry measurements already available.
Monte-Carlo simulation for determining SNR and DQE of linear array plastic scintillating fiber
Institute of Scientific and Technical Information of China (English)
Mohammad Mehdi NASSERI; MA Qing-Li; YIN Ze-Jie; WU Xiao-Yi
2004-01-01
Fundamental characteristics of the plastic-scintillating fiber (PSF) for wide energy range of electromagnetic radiation (X & γ) have been studied to evaluate possibility of using the PSF as an imaging detector for industrial purposes. Monte-Carlo simulation program (GEANT4.5.1, 2003) was used to generate the data. In order to evaluate image quality of the detector, fiber array was irradiated under various energy and fluxes. Signal to noise ratio (SNR)as well as detector quantum efficiency (DQE) were obtained.
Energy Technology Data Exchange (ETDEWEB)
Rojas C, E. L., E-mail: leticia.rojas@inin.gob.m [ININ, Gerencia de Ciencias Ambientales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2010-07-01
At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)
Zoubair, M.; El Bardouni, T.; El Gonnouni, L.; Boulaich, Y.; El Bakkari, B.; El Younoussi, C.
2012-01-01
Computation time constitutes an important and a problematic parameter in Monte Carlo simulations, which is inversely proportional to the statistical errors so there comes the idea to use the variance reduction techniques. These techniques play an important role in reducing uncertainties and improving the statistical results. Several variance reduction techniques have been developed. The most known are Transport cutoffs, Interaction forcing, Bremsstrahlung splitting and Russian roulette. Also, the use of a phase space seems to be appropriate to reduce enormously the computing time. In this work, we applied these techniques on a linear accelerator (LINAC) using the MCNPX computer Monte Carlo code. This code gives a rich palette of variance reduction techniques. In this study we investigated various cards related to the variance reduction techniques provided by MCNPX. The parameters found in this study are warranted to be used efficiently in MCNPX code. Final calculations are performed in two steps that are related by a phase space. Results show that, comparatively to direct simulations (without neither variance-reduction nor phase space), the adopted method allows an improvement in the simulation efficiency by a factor greater than 700.
Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations
Müller, M
2003-01-01
Using Monte Carlo simulations and self-consistent field (SCF) theory we study the surface and interface properties of a coarse grained off-lattice model. In the simulations we employ the grand canonical ensemble together with a reweighting scheme in order to measure surface and interface free energies and discuss various methods for accurately locating the wetting transition. In the SCF theory, we use a partial enumeration scheme to incorporate single-chain properties on all length scales and use a weighted density functional for the excess free energy. The results of various forms of the density functional are compared quantitatively to the simulation results. For the theory to be accurate, it is important to decompose the free energy functional into a repulsive and an attractive part, with different approximations for the two parts. Measuring the effective interface potential for our coarse grained model we explore routes for controlling the equilibrium wetting properties. (i) Coating of the substrate by an...
Drixler, Fabian F
2015-04-01
This article quantifies the frequency of infanticide and abortion in one region of Japan by comparing observed fertility in a sample of 4.9 million person-years (1660-1872) with a Monte Carlo simulation of how many conceptions and births that population should have experienced. The simulation uses empirical values for the determinants of fertility from Eastern Japan itself as well as the best available studies of comparable populations. This procedure reveals that in several decades of the eighteenth century, at least 40% of pregnancies must have ended in either an induced abortion or an infanticide. In addition, the simulation results imply a rapid decline in the incidence of infanticide and abortion during the nineteenth century, when in a reverse fertility transition, this premodern family-planning regime gave way to a new age of large families.
Drixler, Fabian F
2015-04-01
This article quantifies the frequency of infanticide and abortion in one region of Japan by comparing observed fertility in a sample of 4.9 million person-years (1660-1872) with a Monte Carlo simulation of how many conceptions and births that population should have experienced. The simulation uses empirical values for the determinants of fertility from Eastern Japan itself as well as the best available studies of comparable populations. This procedure reveals that in several decades of the eighteenth century, at least 40% of pregnancies must have ended in either an induced abortion or an infanticide. In addition, the simulation results imply a rapid decline in the incidence of infanticide and abortion during the nineteenth century, when in a reverse fertility transition, this premodern family-planning regime gave way to a new age of large families. PMID:25832486
Lessons from Monte Carlo simulations of the performance of a dual-readout fiber calorimeter
Akchurin, N; Cardini, A; Cascella, M; De Pedis, D; Ferrari, R; Fracchia, S; Franchino, S; Fraternali, M; Gaudio, G; Genova, P; Hauptman, J; La Rotonda, L; Lee, S; Livan, M; Meoni, E; Pinci, D; Policicchio, A; Saraiva, J G; Scuri, F; Sill, A; Venturelli, T; Wigmans, R
2014-01-01
The RD52 calorimeter uses the dual-readout principle to detect both electromagnetic and hadronic showers, as well as muons. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on detailed, GEANT4 based Monte Carlo simulations of the performance of this instrument. The results of these simulations are compared in great detail to measurements that have been carried out and published by the DREAM Collaboration. This comparison makes it possible to understand subtle details of the shower development in this unusual particle detector. It also allows for predictions of the improvement in the performance that may be expected for larger detectors of this type. These studies also revealed some inadequacies in the GEANT4 simulation packages, especially for hadronic showers, but also for the Cherenkov signals from electromagnetic showers.
Monte Carlo simulation of glandular dose in a dedicated breast CT system
Institute of Scientific and Technical Information of China (English)
TANG Xiao; WEI Long; ZHAO Wei; WANG Yan-Fang; SHU Hang; SUN Cui-Li; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; SHI Rong-Jian
2012-01-01
A dedicated breast CT system (DBCT) is a new method for breast cancer detection proposed in recent years.In this paper,the glandular dose in the DBCT is simulated using the Monte Carlo method.The phantom shape is half ellipsoid,and a series of phantoms with different sizes,shapes and compositions were constructed. In order to optimize the spectra,monoenergy X-ray beams of 5-80 keV were used in simulation.The dose distribution of a breast phantom was studied:a higher energy beam generated more uniform distribution,and the outer parts got more dose than the inner parts.For polyenergtic spectra,four spectra of Al filters with different thicknesses were simulated,and the polyenergtic glandular dose was calculated as a spectral weighted combination of the monoenergetic dose.
Simulation on Mechanical Properties of Tungsten Carbide Thin Films Using Monte Carlo Model
Directory of Open Access Journals (Sweden)
Liliam C. Agudelo-Morimitsu
2012-12-01
Full Text Available The aim of this paper is to study the mechanical behavior of a system composed by substrate-coating using simulation methods. The contact stresses and the elastic deformation were analyzed by applying a normal load to the surface of the system consisting of a tungsten carbide (WC thin film, which is used as a wear resistant material and a stainless steel substrate. The analysis is based on Monte Carlo simulations using the Metropolis algorithm. The phenomenon was simulated from a fcc facecentered crystalline structure, for both, the coating and the substrate, assuming that the uniaxial strain is taken in the z-axis. Results were obtained for different values of normal applied load to the surface of the coating, obtaining the Strain-stress curves. From this curve, the Young´s modulus was obtained with a value of 600 Gpa, similar to the reports.
Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study
Directory of Open Access Journals (Sweden)
Ying Zhang
2016-01-01
Full Text Available A novel treatment modality termed energy modulated photon radiotherapy (EMXRT was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains.
Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study.
Zhang, Ying; Feng, Yuanming; Ming, Xin; Deng, Jun
2016-01-01
A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413
Monte Carlo study of electron transport in monolayer silicene
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2016-11-01
Electron mobility and diffusion coefficients in monolayer silicene are calculated by Monte Carlo simulations using simplified band structure with linear energy bands. Results demonstrate reasonable agreement with the full-band Monte Carlo method in low applied electric field conditions. Negative differential resistivity is observed and an explanation of the origin of this effect is proposed. Electron mobility and diffusion coefficients are studied in low applied electric field conditions. We demonstrate that a comparison of these parameter values can provide a good check that the calculation is correct. Low-field mobility in silicene exhibits {T}-3 temperature dependence for nondegenerate electron gas conditions and {T}-1 for higher electron concentrations, when degenerate conditions are imposed. It is demonstrated that to explain the relation between mobility and temperature in nondegenerate electron gas the linearity of the band structure has to be taken into account. It is also found that electron-electron scattering only slightly modifies low-field electron mobility in degenerate electron gas conditions.
Monte Carlo molecular simulation of phase-coexistence for oil production and processing
Li, Jun
2011-01-01
The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components, the Gibbs-NPT ensemble Monte Carlo method is employed in the simulation while the mole fraction of each component in each phase is modeled as a Leonard-Jones fluid. As the results of Monte Carlo simulations usually contain huge statistical error, the blocking method is used to estimate the variance of the simulation results. Additionally, in order to improve the simulation efficiency, the step sizes of different trial moves is adjusted automatically so that their acceptance probabilities can approach to the preset values.
Ainscow, E K; Brand, M D
1998-09-21
The errors associated with experimental application of metabolic control analysis are difficult to assess. In this paper, we give examples where Monte-Carlo simulations of published experimental data are used in error analysis. Data was simulated according to the mean and error obtained from experimental measurements and the simulated data was used to calculate control coefficients. Repeating the simulation 500 times allowed an estimate to be made of the error implicit in the calculated control coefficients. In the first example, state 4 respiration of isolated mitochondria, Monte-Carlo simulations based on the system elasticities were performed. The simulations gave error estimates similar to the values reported within the original paper and those derived from a sensitivity analysis of the elasticities. This demonstrated the validity of the method. In the second example, state 3 respiration of isolated mitochondria, Monte-Carlo simulations were based on measurements of intermediates and fluxes. A key feature of this simulation was that the distribution of the simulated control coefficients did not follow a normal distribution, despite simulation of the original data being based on normal distributions. Consequently, the error calculated using simulation was greater and more realistic than the error calculated directly by averaging the original results. The Monte-Carlo simulations are also demonstrated to be useful in experimental design. The individual data points that should be repeated in order to reduce the error in the control coefficients can be highlighted.
Monte Carlo simulation of the seed germination process
International Nuclear Information System (INIS)
Paper presented a mathematical model of seed germination process based on the Monte Carlo method and theoretical premises resulted from the physiology of seed germination suggesting three consecutive stages: physical, biochemical and physiological. The model was experimentally verified by determination of germination characteristics for seeds of ground tomatoes, Promyk cultivar, within broad range of temperatures (from 15 to 30 deg C)
Oever, J.M.P.; Leermakers, F.A.M.; Fleer, G.J.; Ivanov, V.A.; Shusharina, N.P.; Khokhlov, A.R.; Khalatur, P.G.
2002-01-01
The coil-globule transition has been studied for A-B copolymer chains both by means of lattice Monte Carlo (MC) simulations using bond fluctuation algorithm and by a numerical self-consistent-field (SCF) method. Copolymer chains of fixed length with A and B monomeric units with regular, random, and
Energy Technology Data Exchange (ETDEWEB)
Schwarcke, Marcelo; Marques, Tatiana; Nicolucci, Patricia; Baffa, Oswaldo, E-mail: mschwarcke@usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Bornemann, Clarissa [Hospital de Caridade Astrogildo de Azevedo, Santa Maria, RS (Brazil). Servico de Medicina Nuclear de Santa Maria
2010-06-15
Patients with Graves disease have a high hormonal disorder, which causes behavioral changes. One way to treat this disease is the use of high doses of {sup 131} Iodine, requiring that the patient carries out the examination of {sup 131}I uptake to estimate the activity to be administered. Using these data capture and compared with the simulated data using the Monte Carlo code PENELOPE is possible to determine a distribution of dose to the region surrounding the thyroid. As noted the difference between the simulated values and the experimentally obtained were 10.36%, thus showing the code of simulation for accurate determination of absorbed dose in tissue near the thyroid. (author)
The Monte Carlo simulation of the reaction π-p → K0 Λ in the PT55 experiment
International Nuclear Information System (INIS)
A Monte Carlo simulation is described of an experiment in which the polarization and spin-rotation parameters for the reaction πp → K0 Λ off a polarized target was studied (the PT 55 experiment). Having examined the purpose of the simulation, the main techniques used in simulating the kinematics of the reaction are considered and the simulation of the apparatus is described. In discussing the more general aspects of the Monte Carlo program, the generation of pseudo-random numbers with suitable distribution functions is examined and some of the uses to which the program has already been put are given. There are three appendices giving the more technical details of kinematic transformations, the simulation of beam track measurement errors and the Gaussian distribution generator. (U.K.)
Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Lehnert, Wencke; Meikle, Steven R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe NSW 1825 (Australia); Gregoire, Marie-Claude; Reilhac, Anthonin, E-mail: wlehnert@uni.sydney.edu.au [Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234 (Australia)
2011-06-07
Monte Carlo simulation codes that model positron interactions along their tortuous path are expected to be accurate but are usually slow. A simpler and potentially faster approach is to model positron range from analytical annihilation density distributions. The aims of this paper were to efficiently implement and validate such a method, with the addition of medium heterogeneity representing a further challenge. The analytical positron range model was evaluated by comparing annihilation density distributions with those produced by the Monte Carlo simulator GATE and by quantitatively analysing the final reconstructed images of Monte Carlo simulated data. In addition, the influence of positronium formation on positron range and hence on the performance of Monte Carlo simulation was investigated. The results demonstrate that 1D annihilation density distributions for different isotope-media combinations can be fitted with Gaussian functions and hence be described by simple look-up-tables of fitting coefficients. Together with the method developed for simulating positron range in heterogeneous media, this allows for efficient modelling of positron range in Monte Carlo simulation. The level of agreement of the analytical model with GATE depends somewhat on the simulated scanner and the particular research task, but appears to be suitable for lower energy positron emitters, such as {sup 18}F or {sup 11}C. No reliable conclusion about the influence of positronium formation on positron range and simulation accuracy could be drawn.
Quantum Monte Carlo study of bilayer ionic Hubbard model
Jiang, M.; Schulthess, T. C.
2016-04-01
The interaction-driven insulator-to-metal transition has been reported in the ionic Hubbard model (IHM) for moderate interaction U , while its metallic phase only occupies a narrow region in the phase diagram. To explore the enlargement of the metallic regime, we extend the ionic Hubbard model to two coupled layers and study the interplay of interlayer hybridization V and two types of intralayer staggered potentials Δ : one with the same (in-phase) and the other with a π -phase shift (antiphase) potential between layers. Our determinant quantum Monte Carlo (DQMC) simulations at lowest accessible temperatures demonstrate that the interaction-driven metallic phase between Mott and band insulators expands in the Δ -V phase diagram of bilayer IHM only for in-phase ionic potentials; while antiphase potential always induces an insulator with charge density order. This implies possible further extension of the ionic Hubbard model from the bilayer case here to a realistic three-dimensional model.
Khromova, A N; Arfelli, F; Menk, R H; Besch, H J; Plothow-Besch, H; 10.1109/NSSMIC.2004.1466758
2010-01-01
In this work we present a novel 3D Monte Carlo photon transport program for simulation of multiple refractive scattering based on the refractive properties of X-rays in highly scattering media, like lung tissue. Multiple scattering reduces not only the quality of the image, but contains also information on the internal structure of the object. This information can be exploited utilizing image modalities such as Diffraction Enhanced Imaging (DEI). To study the effect of multiple scattering a Monte Carlo program was developed that simulates multiple refractive scattering of X-ray photons on monodisperse PMMA (poly-methyl-methacrylate) microspheres representing alveoli in lung tissue. Eventually, the results of the Monte Carlo program were compared to the measurements taken at the SYRMEP beamline at Elettra (Trieste, Italy) on special phantoms showing a good agreement between both data.
Validation of MTF measurement for CBCT system using Monte Carlo simulations
Hao, Ting; Gao, Feng; Zhao, Huijuan; Zhou, Zhongxing
2016-03-01
To evaluate the spatial resolution performance of cone beam computed tomography (CBCT) system, accurate measurement of the modulation transfer function (MTF) is required. This accuracy depends on the MTF measurement method and CBCT reconstruction algorithms. In this work, the accuracy of MTF measurement of CBCT system using wire phantom is validated by Monte Carlo simulation. A Monte Carlo simulation software tool BEAMnrc/EGSnrc was employed to model X-ray radiation beams and transport. Tungsten wires were simulated with different diameters and radial distances from the axis of rotation. We adopted filtered back projection technique to reconstruct images from 360° acquisition. The MTFs for four reconstruction kernels were measured from corresponding reconstructed wire images, while the ram-lak kernel increased the MTF relative to the cosine, hamming and hann kernel. The results demonstrated that the MTF degraded radially from the axis of rotation. This study suggested that an increase in the MTF for the CBCT system is possible by optimizing scanning settings and reconstruction parameters.
Ohba, T
2016-06-01
Carbon nanotubes and graphene are among the major nanomaterials in nanoscience and technology. Despite having π electrons, these nanocarbon allotropes have been simply considered as neutral in classical calculations. In this study, the effects of partial charges on graphene and curved interfaces on molecular adsorption were investigated using Monte Carlo simulations of N2 and NaCl aqueous solutions on graphene and carbon nanotubes. The simulated N2 adsorption behavior and adsorption potential on partially charged and non-charged graphene coincided with each other. The adsorption potentials suggested that partially charged graphene attracted Na ions and repelled Cl ions. However, those tendencies were not present in NaCl aqueous solutions on graphene. Conversely, in partially charged carbon nanotube models, a preference for Na ions and repulsion of Cl ions in the internal nanospaces were observed in the adsorption potentials using Monte Carlo simulations. Curved interfaces in the internal nanospaces of carbon nanotubes enhanced these properties, suggesting significant electrostatic interactions in a curved π-conjugated system. PMID:27181336
Estimation of surface supersaturation in Monte Carlo simulations of single crystal growth
Directory of Open Access Journals (Sweden)
J. Żmija
2010-07-01
Full Text Available Purpose: The aim of this study is to propose a new calculation method using Monte Carlo simulations making it possible to estimate surface supersaturation and its transient behavior.Design/methodology/approach: Monte Carlo simulation method is used for investigations of crystal growth from microscopic point of view. It is assumed that the surface supersaturation may be represented by the number of growth units adsorbed on the crystal surface at any given moment.Findings: The presented method allows us to analyze the surface configuration of a growing crystal face and the mechanism of single crystal growth in various assumed growth conditions (supersaturation, temperature.Research limitations/implications: The results of the performed simulations show the influence of changes in bulk supersaturation on the behavior of surface supersaturation, which is very difficult to experimentally measure. In this way, some analytical results calculated previously and concerning transient behavior of surface supersaturation can also be verified.Originality/value: For the first time, Surface Roughening Coefficient (SRC is defined and the method of its calculation is shown. The SRC coefficient allows us to estimate surface supersaturation determining growth mechanism and, in consequence, determining the quality of grown crystals. The results are useful for control of growth process to obtain good quality single crystals.
Monte Carlo simulation of energy-dispersive x-ray fluorescence and applications
Li, Fusheng
Four key components with regards to Monte Carlo Library Least Squares (MCLLS) have been developed by the author. These include: a comprehensive and accurate Monte Carlo simulation code - CEARXRF5 with Differential Operators (DO) and coincidence sampling, Detector Response Function (DRF), an integrated Monte Carlo - Library Least-Squares (MCLLS) Graphical User Interface (GUI) visualization System (MCLLSPro) and a new reproducible and flexible benchmark experiment setup. All these developments or upgrades enable the MCLLS approach to be a useful and powerful tool for a tremendous variety of elemental analysis applications. CEARXRF, a comprehensive and accurate Monte Carlo code for simulating the total and individual library spectral responses of all elements, has been recently upgraded to version 5 by the author. The new version has several key improvements: input file format fully compatible with MCNP5, a new efficient general geometry tracking code, versatile source definitions, various variance reduction techniques (e.g. weight window mesh and splitting, stratifying sampling, etc.), a new cross section data storage and accessing method which improves the simulation speed by a factor of four and new cross section data, upgraded differential operators (DO) calculation capability, and also an updated coincidence sampling scheme which including K-L and L-L coincidence X-Rays, while keeping all the capabilities of the previous version. The new Differential Operators method is powerful for measurement sensitivity study and system optimization. For our Monte Carlo EDXRF elemental analysis system, it becomes an important technique for quantifying the matrix effect in near real time when combined with the MCLLS approach. An integrated visualization GUI system has been developed by the author to perform elemental analysis using iterated Library Least-Squares method for various samples when an initial guess is provided. This software was built on the Borland C++ Builder
Dosimetry in radiotherapy and brachytherapy by Monte-Carlo GATE simulation on computing grid
International Nuclear Information System (INIS)
Accurate radiotherapy treatment requires the delivery of a precise dose to the tumour volume and a good knowledge of the dose deposit to the neighbouring zones. Computation of the treatments is usually carried out by a Treatment Planning System (T.P.S.) which needs to be precise and fast. The G.A.T.E. platform for Monte-Carlo simulation based on G.E.A.N.T.4 is an emerging tool for nuclear medicine application that provides functionalities for fast and reliable dosimetric calculations. In this thesis, we studied in parallel a validation of the G.A.T.E. platform for the modelling of electrons and photons low energy sources and the optimized use of grid infrastructures to reduce simulations computing time. G.A.T.E. was validated for the dose calculation of point kernels for mono-energetic electrons and compared with the results of other Monte-Carlo studies. A detailed study was made on the energy deposit during electrons transport in G.E.A.N.T.4. In order to validate G.A.T.E. for very low energy photons (<35 keV), three models of radioactive sources used in brachytherapy and containing iodine 125 (2301 of Best Medical International; Symmetra of Uro- Med/Bebig and 6711 of Amersham) were simulated. Our results were analyzed according to the recommendations of task group No43 of American Association of Physicists in Medicine (A.A.P.M.). They show a good agreement between G.A.T.E., the reference studies and A.A.P.M. recommended values. The use of Monte-Carlo simulations for a better definition of the dose deposited in the tumour volumes requires long computing time. In order to reduce it, we exploited E.G.E.E. grid infrastructure where simulations are distributed using innovative technologies taking into account the grid status. Time necessary for the computing of a radiotherapy planning simulation using electrons was reduced by a factor 30. A Web platform based on G.E.N.I.U.S. portal was developed to make easily available all the methods to submit and manage G
Monte Carlo simulation of radiation streaming from a radioactive material shipping cask
International Nuclear Information System (INIS)
Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs
Yet another Monte Carlo study of the Schwinger model
International Nuclear Information System (INIS)
Some methodological improvements are introduced in the quantum Monte Carlo simulation of the 1 + 1 dimensional quantum electrodynamics (the Schwinger model). Properties at finite temperatures are investigated, concentrating on the existence of the chirality transition and of the deconfinement transition. (author)
Weijs, Liesbeth; Yang, Raymond S H; Das, Krishna; Covaci, Adrian; Blust, Ronny
2013-05-01
Physiologically based pharmacokinetic (PBPK) modeling in marine mammals is a challenge because of the lack of parameter information and the ban on exposure experiments. To minimize uncertainty and variability, parameter estimation methods are required for the development of reliable PBPK models. The present study is the first to develop PBPK models for the lifetime bioaccumulation of p,p'-DDT, p,p'-DDE, and p,p'-DDD in harbor porpoises. In addition, this study is also the first to apply the Bayesian approach executed with Markov chain Monte Carlo simulations using two data sets of harbor porpoises from the Black and North Seas. Parameters from the literature were used as priors for the first "model update" using the Black Sea data set, the resulting posterior parameters were then used as priors for the second "model update" using the North Sea data set. As such, PBPK models with parameters specific for harbor porpoises could be strengthened with more robust probability distributions. As the science and biomonitoring effort progress in this area, more data sets will become available to further strengthen and update the parameters in the PBPK models for harbor porpoises as a species anywhere in the world. Further, such an approach could very well be extended to other protected marine mammals.
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
International Nuclear Information System (INIS)
The image acquisition methods applied to nuclear medicine and radiobiology are a valuable research study for determination of thyroid anatomy to seek disorders associated to follicular cells. The Monte Carlo (MC) simulation has also been used in problems related to radiation detection in order to map medical images since the improvement of data processing compatible with personnel computers (PC). This work presents an innovative study to find out the adequate scintillation inorganic detector array that could be coupled to a specific light photo sensor, a charge coupled device (CCD) through a fiber optic plate in order to map the follicles of thyroid gland. The goal is to choose the type of detector that fits the application suggested here with spatial resolution of 10 μm and good detector efficiency. The methodology results are useful to map a follicle image using gamma radiation emission. A source - detector simulation is performed by using a MCNP4B (Monte Carlo for Neutron Photon transport) general code considering different source energies, detector materials and geometries including pixel sizes and reflector types. The results demonstrate that by using MCNP4B code is possible to searching for useful parameters related to the systems used in nuclear medicine, specifically in radiobiology applied to endocrine physiology studies to acquiring thyroid follicles images. (author)
An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy
Energy Technology Data Exchange (ETDEWEB)
Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)
2014-02-12
Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.
An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy
Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro
2014-02-01
Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.
Validation of a Monte Carlo simulation of the Inveon PET scanner using GATE
Lu, Lijun; Zhang, Houjin; Bian, Zhaoying; Ma, Jianhua; Feng, Qiangjin; Chen, Wufan
2016-08-01
The purpose of this study is to validate the application of GATE (Geant4 Application for Tomographic Emission) Monte Carlo simulation toolkit in order to model the performance characteristics of Siemens Inveon small animal PET system. The simulation results were validated against experimental/published data in accordance with the NEMA NU-4 2008 protocol for standardized evaluation of spatial resolution, sensitivity, scatter fraction (SF) and noise equivalent counting rate (NECR) of a preclinical PET system. An agreement of less than 18% was obtained between the radial, tangential and axial spatial resolutions of the simulated and experimental results. The simulated peak NECR of mouse-size phantom agreed with the experimental result, while for the rat-size phantom simulated value was higher than experimental result. The simulated and experimental SFs of mouse- and rat- size phantom both reached an agreement of less than 2%. It has been shown the feasibility of our GATE model to accurately simulate, within certain limits, all major performance characteristics of Inveon PET system.
Dosimetry in small-animal CT using Monte Carlo simulations
International Nuclear Information System (INIS)
Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8–414.30 mGy) was the highest for the beams at 50–80 kVp, and that of the corpus callosum (11.2–26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled
Dosimetry in small-animal CT using Monte Carlo simulations
Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.
2016-01-01
Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.
Estimation of beryllium ground state energy by Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)
2015-05-15
Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.
Bubnis, Gregory J.
Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and
Rigidity effect on phase behavior of symmetric ABA triblock copolymers: A Monte Carlo simulation
Song, Jianhui; Shi, Tongfei; Li, Yunqi; Chen, Jizhong; An, Lijia
2008-08-01
The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below TODT (order-disorder transition temperature). Within the midblock flexibility range we studied (lp/Nc51.8%. In order to elucidate phase behavior evolution observed in our simulation, a detailed conformation distribution analysis is also given. Our results bridge a gap of different phase behaviors between rod-coil block copolymer and coil-coil block copolymer and show a necessity to investigate rigidity influence on phase diagram.
Hickson, Kevin J; O'Keefe, Graeme J
2014-09-01
The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ← kidney) and organ cross dose (liver ← kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ← kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study.
Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation
Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.
2016-03-01
High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.
Zaidi, H
1999-01-01
the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...
An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media
Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu
2016-03-01
Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.
A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation
Directory of Open Access Journals (Sweden)
Birgir Hrafnkelsson
2016-04-01
Full Text Available A novel Monte Carlo (MC approach is proposed for the simulation of wind speed samples to assess the wind energy production potential of a site. The Monte Carlo approach is based on historical wind speed data and reserves the effect of autocorrelation and seasonality in wind speed observations. No distributional assumptions are made, and this approach is relatively simple in comparison to simulation methods that aim at including the autocorrelation and seasonal effects. Annual energy production (AEP is simulated by transforming the simulated wind speed values via the power curve of the wind turbine at the site. The proposed Monte Carlo approach is generic and is applicable for all sites provided that a sufficient amount of wind speed data and information on the power curve are available. The simulated AEP values based on the Monte Carlo approach are compared to both actual AEP and to simulated AEP values based on a modified Weibull approach for wind speed simulation using data from the Burfell site in Iceland. The comparison reveals that the simulated AEP values based on the proposed Monte Carlo approach have a distribution that is in close agreement with actual AEP from two test wind turbines at the Burfell site, while the simulated AEP of the Weibull approach is such that the P50 and the scale are substantially lower and the P90 is higher. Thus, the Weibull approach yields AEP that is not in line with the actual variability in AEP, while the Monte Carlo approach gives a realistic estimate of the distribution of AEP.
Energy Technology Data Exchange (ETDEWEB)
Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2011-03-15
Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different
Tracking in full Monte Carlo detector simulations of 500 GeV e+e- collisions
International Nuclear Information System (INIS)
In full Monte Carlo simulation models of future Linear Collider detectors, charged tracks are reconstructed from 3D space points in central tracking detectors. The track reconstruction software is being developed for detailed physics studies that take realistic detector resolution and background modeling into account. At this stage of the analysis, reference tracking efficiency and resolutions for ideal detector conditions are presented. High performance detectors are being designed to carry out precision studies of e+e- annihilation events in the energy range of 500 GeV to 1.5 TeV. Physics processes under study include Higgs mass and branching ratio measurements, measurement of possible manifestations of Supersymmetry (SUSY), precision Electro-Weak (EW) studies and searches for new phenomena beyond their current expectations. The relatively-low background machine environment at future Linear Colliders will allow precise measurements if proper consideration is given to the effects of the backgrounds on these studies. In current North American design studies, full Monte Carlo detector simulation and analysis is being used to allow detector optimization taking into account realistic models of machine backgrounds. In this paper the design of tracking software that is being developed for full detector reconstruction is discussed. In this study, charged tracks are found from simulated space point hits allowing for the straight-forward addition of background hits and for the accounting of missing information. The status of the software development effort is quantified by some reference performance measures, which will be modified by future work to include background effects
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
International Nuclear Information System (INIS)
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10−6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)
GATE Monte Carlo simulation of GE discovery 600 and a uniformity phantom
Energy Technology Data Exchange (ETDEWEB)
Sheen, Heesoon [Sungkyunkwan University, Seoul (Korea, Republic of); GE Healthcare Korea, Seoul (Korea, Republic of); Im, Kichun; Choi, Yong; Shin, Hanback [Sogang University, Seoul (Korea, Republic of); Han, Youngyih [Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University, Seoul (Korea, Republic of); Chung, Kwangzoo; Cho, Junsang [Samsung Medical Center, Seoul (Korea, Republic of); Ahn, Sanghee [Sungkyunkwan University, Seoul (Korea, Republic of)
2014-12-15
GATE (Geant4 Application Tomography Emission) Monte Carlo simulations have been successful in the application of emission tomography for precise modeling of various physical processes. Most previous studies on Monte Carlo simulations have only involved performance assessments using virtual phantoms. Although that allows the performance of simulated positron emission tomography (PET) to be evaluated, it does not reflect the reality of practical conditions. This restriction causes substantial drawbacks in GATE simulations of real situations. To overcome the described limitation and to provide a method to enable simulation research relevant to clinically important issues, we conducted a GATE simulation using real data from a scanner rather than a virtual phantom and evaluated the scanner is performance. For that purpose, the system and the geometry of a commercial GE PET/ CT (computed tomography) scanner, BGO-based Discovery 600 (D600), was developed for the first time. The performance of the modeled PET system was evaluated by using the National Electrical Manufacturers Association NEMA NU 2-2007 protocols and results were compared with those of the reference data. The sensitivity, scatter fraction, noise-equivalent count rate (NECR), and resolution were estimated by using the protocol of the NEMA NU2-2007. Sensitivities were 9.01 cps/kBq at 0 cm and 9.43 cps/kBq at 10 cm. Scatter fractions were 39.5%. The NECR peak was 89.7 kcps at 14.7 kBq/cc. Resolutions were 4.8 mm in the transaxial plane and 5.9 mm in the axial plane at 1 cm, and 6.2 mm in the transaxial plane and 6.4 mm in the axial plane at 10 cm. The resolutions exceeded the limited value provided by the manufacturer. The uniformity phantom was simulated using the CT and the PET data. The output data in a ROOT format were converted and then reconstructed by using the C program and STIR (Software for Tomographic Image Reconstruction). The reconstructed images of the simulated uniformity phantom data had
GATE Monte Carlo simulation of GE Discovery 600 and a uniformity phantom
Sheen, Heesoon; Im, Ki Chun; Choi, Yong; Shin, Hanback; Han, Youngyih; Chung, Kwangzoo; Cho, Junsang; Ahn, Sang Hee
2014-12-01
GATE (Geant4 Application Tomography Emission) Monte Carlo simulations have been successful in the application of emission tomography for precise modeling of various physical processes. Most previous studies on Monte Carlo simulations have only involved performance assessments using virtual phantoms. Although that allows the performance of simulated positron emission tomography (PET) to be evaluated, it does not reflect the reality of practical conditions. This restriction causes substantial drawbacks in GATE simulations of real situations. To overcome the described limitation and to provide a method to enable simulation research relevant to clinically important issues, we conducted a GATE simulation using real data from a scanner rather than a virtual phantom and evaluated the scanner is performance. For that purpose, the system and the geometry of a commercial GE PET/ CT (computed tomography) scanner, BGO-based Discovery 600 (D600), was developed for the first time. The performance of the modeled PET system was evaluated by using the National Electrical Manufacturers Association NEMA NU 2-2007 protocols and results were compared with those of the reference data. The sensitivity, scatter fraction, noise-equivalent count rate (NECR), and resolution were estimated by using the protocol of the NEMA NU2-2007. Sensitivities were 9.01 cps/kBq at 0 cm and 9.43 cps/kBq at 10 cm. Scatter fractions were 39.5%. The NECR peak was 89.7 kcps @ 14.7 kBq/cc. Resolutions were 4.8 mm in the transaxial plane and 5.9 mm in the axial plane at 1 cm, and 6.2 mm in the transaxial plane and 6.4 mm in the axial plane at 10 cm. The resolutions exceeded the limited value provided by the manufacturer. The uniformity phantom was simulated using the CT and the PET data. The output data in a ROOT format were converted and then reconstructed by using the C program and STIR (Software for Tomographic Image Reconstruction). The reconstructed images of the simulated uniformity phantom data had
GATE Monte Carlo simulation of GE discovery 600 and a uniformity phantom
International Nuclear Information System (INIS)
GATE (Geant4 Application Tomography Emission) Monte Carlo simulations have been successful in the application of emission tomography for precise modeling of various physical processes. Most previous studies on Monte Carlo simulations have only involved performance assessments using virtual phantoms. Although that allows the performance of simulated positron emission tomography (PET) to be evaluated, it does not reflect the reality of practical conditions. This restriction causes substantial drawbacks in GATE simulations of real situations. To overcome the described limitation and to provide a method to enable simulation research relevant to clinically important issues, we conducted a GATE simulation using real data from a scanner rather than a virtual phantom and evaluated the scanner is performance. For that purpose, the system and the geometry of a commercial GE PET/ CT (computed tomography) scanner, BGO-based Discovery 600 (D600), was developed for the first time. The performance of the modeled PET system was evaluated by using the National Electrical Manufacturers Association NEMA NU 2-2007 protocols and results were compared with those of the reference data. The sensitivity, scatter fraction, noise-equivalent count rate (NECR), and resolution were estimated by using the protocol of the NEMA NU2-2007. Sensitivities were 9.01 cps/kBq at 0 cm and 9.43 cps/kBq at 10 cm. Scatter fractions were 39.5%. The NECR peak was 89.7 kcps at 14.7 kBq/cc. Resolutions were 4.8 mm in the transaxial plane and 5.9 mm in the axial plane at 1 cm, and 6.2 mm in the transaxial plane and 6.4 mm in the axial plane at 10 cm. The resolutions exceeded the limited value provided by the manufacturer. The uniformity phantom was simulated using the CT and the PET data. The output data in a ROOT format were converted and then reconstructed by using the C program and STIR (Software for Tomographic Image Reconstruction). The reconstructed images of the simulated uniformity phantom data had
Catfish: A Monte Carlo simulator for black holes at the LHC
Cavaglià, M; Cremaldi, L; Summers, D
2006-01-01
We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.
Catfish: A Monte Carlo simulator for black holes at the LHC
Cavaglià, M.; Godang, R.; Cremaldi, L.; Summers, D.
2007-09-01
We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.