Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
Energy Technology Data Exchange (ETDEWEB)
WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Morse Monte Carlo Radiation Transport Code System
Energy Technology Data Exchange (ETDEWEB)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Energy Technology Data Exchange (ETDEWEB)
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
Applications of the Monte Carlo radiation transport toolkit at LLNL
Sale, Kenneth E.; Bergstrom, Paul M., Jr.; Buck, Richard M.; Cullen, Dermot; Fujino, D.; Hartmann-Siantar, Christine
1999-09-01
Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions.
Efficient, Automated Monte Carlo Methods for Radiation Transport.
Kong, Rong; Ambrose, Martin; Spanier, Jerome
2008-11-20
Monte Carlo simulations provide an indispensible model for solving radiative transport problems, but their slow convergence inhibits their use as an everyday computational tool. In this paper, we present two new ideas for accelerating the convergence of Monte Carlo algorithms based upon an efficient algorithm that couples simulations of forward and adjoint transport equations. Forward random walks are first processed in stages, each using a fixed sample size, and information from stage k is used to alter the sampling and weighting procedure in stage k + 1. This produces rapid geometric convergence and accounts for dramatic gains in the efficiency of the forward computation. In case still greater accuracy is required in the forward solution, information from an adjoint simulation can be added to extend the geometric learning of the forward solution. The resulting new approach should find widespread use when fast, accurate simulations of the transport equation are needed. PMID:23226872
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Françoise Benz
2006-01-01
2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...
Monte Carlo analysis of radiative transport in oceanographic lidar measurements
Energy Technology Data Exchange (ETDEWEB)
Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale
2001-07-01
The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is
International Nuclear Information System (INIS)
The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)
The use of Monte Carlo radiation transport codes in radiation physics and dosimetry
CERN. Geneva; Ferrari, Alfredo; Silari, Marco
2006-01-01
Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...
Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method
Wollaeger, Ryan T; Graziani, Carlo; Couch, Sean M; Jordan, George C; Lamb, Donald Q; Moses, Gregory A
2013-01-01
We explore the application of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) to radiation transport in strong fluid outflows with structured opacity. The IMC method of Fleck & Cummings is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking Monte Carlo particles through optically thick materials. The DDMC method of Densmore accelerates an IMC computation where the domain is diffusive. Recently, Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent neutrino transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally grey DDMC method. In this article we rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. The method described is suitable for a large variety of non-mono...
Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport
International Nuclear Information System (INIS)
Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations
A comparison between the Monte Carlo radiation transport codes MCNP and MCBEND
Energy Technology Data Exchange (ETDEWEB)
Sawamura, Hidenori; Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)
2001-01-01
In Japan, almost of all radiation analysts are using the MCNP code and MVP code on there studies. But these codes have not had automatic variance reduction. MCBEND code made by UKAEA have automatic variance reduction. And, MCBEND code is user friendly more than other Monte Carlo Radiation Transport Codes. Our company was first introduced MCBEND code in Japan. Therefore, we compared with MCBEND code and MCNP code about functions and production capacity. (author)
Overview and applications of the Monte Carlo radiation transport kit at LLNL
International Nuclear Information System (INIS)
Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions
International Nuclear Information System (INIS)
To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano’s and Lewis’ approaches are stated in this new equation. Fano’s theorem is found not to apply in the presence of electromagnetic fields. Lewis’ theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms. (paper)
Ge(Li) intrinsic efficiency calculation using Monte Carlo simulation for γ radiation transport
International Nuclear Information System (INIS)
To solve a radiation transport problem by using Monte Carlo simulation method, the evolution of a large number of radiations must be simulated and also the analysis of their history must be done. The evolution of a radiation starts by the radiation emission, followed by the radiation unperturbed propagation in the medium between the successive interactions and then the radiation parameters modification in the points where interactions occur. The goal of this paper consists in the calculation of the total detection efficiency and the intrinsic efficiency for a coaxial Ge(Li) detector, using Monte Carlo method in order to simulate the γ radiation transport. A Ge(Li) detector with 106 cm3 active volume and γ photons with energies in 50 keV - 2 MeV range, emitted by a point source situated on the detector axis, were considered. Each γ photon evolution is simulated by an analogue process step-by-step until the photon escapes from the detector or is completely absorbed in the active volume of the detector. (author)
Minimizing the cost of splitting in Monte Carlo radiation transport simulation
Energy Technology Data Exchange (ETDEWEB)
Juzaitis, R.J.
1980-10-01
A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma/sup 2//sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed (e.g., deep penetration calculations).
A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT
Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J
2001-01-01
We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...
Energy Technology Data Exchange (ETDEWEB)
Brooks III, E D; Szoke, A; Peterson, J L
2005-11-15
We describe a Monte Carlo solution for time dependent photon transport, in the difference formulation with the material in local thermodynamic equilibrium (LTE), that is piecewise linear in its treatment of the material state variable. Our method employs a Galerkin solution for the material energy equation while using Symbolic Implicit Monte Carlo (SIMC) to solve the transport equation. In constructing the scheme, one has the freedom to choose between expanding the material temperature, or the equivalent black body radiation energy density at the material temperature, in terms of finite element basis functions. The former provides a linear treatment of the material energy while the latter provides a linear treatment of the radiative coupling between zones. Subject to the conditional use of a lumped material energy in the vicinity of strong gradients, possible with a linear treatment of the material energy, our approach provides a robust solution for time dependent transport of thermally emitted radiation that can address a wide range of problems. It produces accurate results in the diffusion limit.
An object-oriented implementation of a parallel Monte Carlo code for radiation transport
Santos, Pedro Duarte; Lani, Andrea
2016-05-01
This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2016-03-01
This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.
Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method
Wollaeger, Ryan T.; van Rossum, Daniel R.; Graziani, Carlo; Couch, Sean M.; Jordan, George C., IV; Lamb, Donald Q.; Moses, Gregory A.
2013-12-01
We explore Implicit Monte Carlo (IMC) and discrete diffusion Monte Carlo (DDMC) for radiation transport in high-velocity outflows with structured opacity. The IMC method is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking MC particles through optically thick materials. DDMC accelerates IMC in diffusive domains. Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally gray DDMC method. We rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. This formulation includes an analysis that yields an additional factor in the standard IMC-to-DDMC spatial interface condition. To our knowledge the new boundary condition is distinct from others presented in prior DDMC literature. The method is suitable for a variety of opacity distributions and may be applied to semi-relativistic radiation transport in simple fluids and geometries. Additionally, we test the code, called SuperNu, using an analytic solution having static material, as well as with a manufactured solution for moving material with structured opacities. Finally, we demonstrate with a simple source and 10 group logarithmic wavelength grid that IMC-DDMC performs better than pure IMC in terms of accuracy and speed when there are large disparities between the magnitudes of opacities in adjacent groups. We also present and test our implementation of the new boundary condition.
International Nuclear Information System (INIS)
This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs
Monte Carlo Radiative Transfer
Whitney, Barbara A
2011-01-01
I outline methods for calculating the solution of Monte Carlo Radiative Transfer (MCRT) in scattering, absorption and emission processes of dust and gas, including polarization. I provide a bibliography of relevant papers on methods with astrophysical applications.
Bahadori, Amir Alexander
Astronauts are exposed to a unique radiation environment in space. United States terrestrial radiation worker limits, derived from guidelines produced by scientific panels, do not apply to astronauts. Limits for astronauts have changed throughout the Space Age, eventually reaching the current National Aeronautics and Space Administration limit of 3% risk of exposure induced death, with an administrative stipulation that the risk be assured to the upper 95% confidence limit. Much effort has been spent on reducing the uncertainty associated with evaluating astronaut risk for radiogenic cancer mortality, while tools that affect the accuracy of the calculations have largely remained unchanged. In the present study, the impacts of using more realistic computational phantoms with size variability to represent astronauts with simplified deterministic radiation transport were evaluated. Next, the impacts of microgravity-induced body changes on space radiation dosimetry using the same transport method were investigated. Finally, dosimetry and risk calculations resulting from Monte Carlo radiation transport were compared with results obtained using simplified deterministic radiation transport. The results of the present study indicated that the use of phantoms that more accurately represent human anatomy can substantially improve space radiation dose estimates, most notably for exposures from solar particle events under light shielding conditions. Microgravity-induced changes were less important, but results showed that flexible phantoms could assist in optimizing astronaut body position for reducing exposures during solar particle events. Finally, little overall differences in risk calculations using simplified deterministic radiation transport and 3D Monte Carlo radiation transport were found; however, for the galactic cosmic ray ion spectra, compensating errors were observed for the constituent ions, thus exhibiting the need to perform evaluations on a particle
Žukauskaite, A; Plukiene, R; Plukis, A
2007-01-01
Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Hubber, D A; Dale, J
2015-01-01
Ionising feedback from massive stars dramatically affects the interstellar medium local to star forming regions. Numerical simulations are now starting to include enough complexity to produce morphologies and gas properties that are not too dissimilar from observations. The comparison between the density fields produced by hydrodynamical simulations and observations at given wavelengths relies however on photoionisation/chemistry and radiative transfer calculations. We present here an implementation of Monte Carlo radiation transport through a Voronoi tessellation in the photoionisation and dust radiative transfer code MOCASSIN. We show for the first time a synthetic spectrum and synthetic emission line maps of an hydrodynamical simulation of a molecular cloud affected by massive stellar feedback. We show that the approach on which previous work is based, which remapped hydrodynamical density fields onto Cartesian grids before performing radiative transfer/photoionisation calculations, results in significant ...
International Nuclear Information System (INIS)
A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Žukauskaitėa, A; Plukienė, R; Ridikas, D
2007-01-01
Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.
Monte Carlo methods for particle transport
Haghighat, Alireza
2015-01-01
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-06-15
We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.
The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere
International Nuclear Information System (INIS)
The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department
Energy Technology Data Exchange (ETDEWEB)
Mariotti, F., E-mail: francesca.mariotti@bologna.enea.i [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy); Gualdrini, G. [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy)
2011-04-15
The ORAMED (Optimization of RAdiation protection for MEDical staff) Working Tasks (WP4) is addressed at evaluating extremity doses (and dose distributions across the hands) of medical staff working in nuclear medicine departments, to study the influence of protective devices such as syringe and vial shields, to improve such devices when possible and to propose 'levels of reference doses' for each standard nuclear medicine procedure. In particular task 4 is concerned with the study of the extremity dosimetry for the hand of operators devoted to the preparation and administration stages of the usage, for example, of {sup 99m}Tc, {sup 18}F and {sup 90}Y (Zevalin) radionuclides. The aim of this report consists in the study of photon-electron equilibrium conditions at 0.07 mm in the skin to justify a simplified 'kerma approximation' approach in the planned complex Monte Carlo voxel hand modeling. Furthermore a detailed investigation on primary electron and secondary bremsstrahlung photon transport from {sup 90}Y to speed up the calculations was performed. The results obtained in the simplified investigated conditions could be of help for the production calculations, introducing, if necessary, suited correction factors applicable to the complex condition results.
Energy Technology Data Exchange (ETDEWEB)
Morgan C. White
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second
International Nuclear Information System (INIS)
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Cooper, M A
2000-01-01
We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.
Muñoz, García; Mills,; P, F
2014-01-01
Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector Radiative Transport Equation (vRTE). Monte Carlo integration of the vRTE is a valuable approach for its flexible treatment of complex viewing and/or illumination geometries and because it can intuitively incorporate elaborate physics. Aims. We present a novel Pre-Conditioned Backward Monte Carlo (PBMC) algorithm for solving the vRTE and apply it to planetary atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. Methods. We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms leads to unstable and biased solutions for conservative, optically-thick, strongly-polarising media such as Rayleigh atmospheres. The numerical difficulty is avoid...
Glaser, Adam K.; Kanick, Stephen C.; Zhang, Rongxiao; Arce, Pedro; Pogue, Brian W.
2013-01-01
We describe a tissue optics plug-in that interfaces with the GEANT4/GAMOS Monte Carlo (MC) architecture, providing a means of simulating radiation-induced light transport in biological media for the first time. Specifically, we focus on the simulation of light transport due to the Čerenkov effect (light emission from charged particle’s traveling faster than the local speed of light in a given medium), a phenomenon which requires accurate modeling of both the high energy particle and subsequen...
Energy Technology Data Exchange (ETDEWEB)
Szoke, A; Brooks, E D; McKinley, M; Daffin, F
2005-03-30
The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media.
Challenges of Monte Carlo Transport
Energy Technology Data Exchange (ETDEWEB)
Long, Alex Roberts [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Physics and Methods (CCS-2)
2016-06-10
These are slides from a presentation for Parallel Summer School at Los Alamos National Laboratory. Solving discretized partial differential equations (PDEs) of interest can require a large number of computations. We can identify concurrency to allow parallel solution of discrete PDEs. Simulated particles histories can be used to solve the Boltzmann transport equation. Particle histories are independent in neutral particle transport, making them amenable to parallel computation. Physical parameters and method type determine the data dependencies of particle histories. Data requirements shape parallel algorithms for Monte Carlo. Then, Parallel Computational Physics and Parallel Monte Carlo are discussed and, finally, the results are given. The mesh passing method greatly simplifies the IMC implementation and allows simple load-balancing. Using MPI windows and passive, one-sided RMA further simplifies the implementation by removing target synchronization. The author is very interested in implementations of PGAS that may allow further optimization for one-sided, read-only memory access (e.g. Open SHMEM). The MPICH_RMA_OVER_DMAPP option and library is required to make one-sided messaging scale on Trinitite - Moonlight scales poorly. Interconnect specific libraries or functions are likely necessary to ensure performance. BRANSON has been used to directly compare the current standard method to a proposed method on idealized problems. The mesh passing algorithm performs well on problems that are designed to show the scalability of the particle passing method. BRANSON can now run load-imbalanced, dynamic problems. Potential avenues of improvement in the mesh passing algorithm will be implemented and explored. A suite of test problems that stress DD methods will elucidate a possible path forward for production codes.
Challenges of Monte Carlo Transport
Energy Technology Data Exchange (ETDEWEB)
Long, Alex Roberts [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Physics and Methods (CCS-2)
2016-06-10
These are slides from a presentation for Parallel Summer School at Los Alamos National Laboratory. Solving discretized partial differential equations (PDEs) of interest can require a large number of computations. We can identify concurrency to allow parallel solution of discrete PDEs. Simulated particles histories can be used to solve the Boltzmann transport equation. Particle histories are independent in neutral particle transport, making them amenable to parallel computation. Physical parameters and method type determine the data dependencies of particle histories. Data requirements shape parallel algorithms for Monte Carlo. Then, Parallel Computational Physics and Parallel Monte Carlo are discussed and finally the results are given. The mesh passing method greatly simplifies the IMC implementation and allows simple load-balancing. Using MPI windows and passive, one-sided RMA further simplifies the implementation by removing target synchronization. The author is very interested in implementations of PGAS that may allow further optimization for one-sided, read-only memory access (e.g. Open SHMEM). The MPICH_RMA_OVER_DMAPP option and library is required to make one-sided messaging scale on Trinitite - Moonlight scales poorly. Interconnect specific libraries or functions are likely necessary to ensure performance. BRANSON has been used to directly compare the current standard method to a proposed method on idealized problems. The mesh passing algorithm performs well on problems that are designed to show the scalability of the particle passing method. BRANSON can now run load-imbalanced, dynamic problems. Potential avenues of improvement in the mesh passing algorithm will be implemented and explored. A suite of test problems that stress DD methods will elucidate a possible path forward for production codes.
Problems in radiation shielding calculations with Monte Carlo methods
International Nuclear Information System (INIS)
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
Almansa, Julio; Salvat-Pujol, Francesc; Díaz-Londoño, Gloria; Carnicer, Artur; Lallena, Antonio M.; Salvat, Francesc
2016-02-01
The Fortran subroutine package PENGEOM provides a complete set of tools to handle quadric geometries in Monte Carlo simulations of radiation transport. The material structure where radiation propagates is assumed to consist of homogeneous bodies limited by quadric surfaces. The PENGEOM subroutines (a subset of the PENELOPE code) track particles through the material structure, independently of the details of the physics models adopted to describe the interactions. Although these subroutines are designed for detailed simulations of photon and electron transport, where all individual interactions are simulated sequentially, they can also be used in mixed (class II) schemes for simulating the transport of high-energy charged particles, where the effect of soft interactions is described by the random-hinge method. The definition of the geometry and the details of the tracking algorithm are tailored to optimize simulation speed. The use of fuzzy quadric surfaces minimizes the impact of round-off errors. The provided software includes a Java graphical user interface for editing and debugging the geometry definition file and for visualizing the material structure. Images of the structure are generated by using the tracking subroutines and, hence, they describe the geometry actually passed to the simulation code.
Smart detectors for Monte Carlo radiative transfer
Baes, Maarten
2008-01-01
Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon pack...
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Composite biasing in Monte Carlo radiative transfer
Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-01-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...
A study of Monte Carlo radiative transfer through fractal clouds
Energy Technology Data Exchange (ETDEWEB)
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Parallel MCNP Monte Carlo transport calculations with MPI
International Nuclear Information System (INIS)
The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected
Fast Monte Carlo for radiation therapy: the PEREGRINE Project
Energy Technology Data Exchange (ETDEWEB)
Hartmann Siantar, C.L.; Bergstrom, P.M.; Chandler, W.P.; Cox, L.J.; Daly, T.P.; Garrett, D.; House, R.K.; Moses, E.I.; Powell, C.L.; Patterson, R.W.; Schach von Wittenau, A.E.
1997-11-11
The purpose of the PEREGRINE program is to bring high-speed, high- accuracy, high-resolution Monte Carlo dose calculations to the desktop in the radiation therapy clinic. PEREGRINE is a three- dimensional Monte Carlo dose calculation system designed specifically for radiation therapy planning. It provides dose distributions from external beams of photons, electrons, neutrons, and protons as well as from brachytherapy sources. Each external radiation source particle passes through collimator jaws and beam modifiers such as blocks, compensators, and wedges that are used to customize the treatment to maximize the dose to the tumor. Absorbed dose is tallied in the patient or phantom as Monte Carlo simulation particles are followed through a Cartesian transport mesh that has been manually specified or determined from a CT scan of the patient. This paper describes PEREGRINE capabilities, results of benchmark comparisons, calculation times and performance, and the significance of Monte Carlo calculations for photon teletherapy. PEREGRINE results show excellent agreement with a comprehensive set of measurements for a wide variety of clinical photon beam geometries, on both homogeneous and heterogeneous test samples or phantoms. PEREGRINE is capable of calculating >350 million histories per hour for a standard clinical treatment plan. This results in a dose distribution with voxel standard deviations of <2% of the maximum dose on 4 million voxels with 1 mm resolution in the CT-slice plane in under 20 minutes. Calculation times include tracking particles through all patient specific beam delivery components as well as the patient. Most importantly, comparison of Monte Carlo dose calculations with currently-used algorithms reveal significantly different dose distributions for a wide variety of treatment sites, due to the complex 3-D effects of missing tissue, tissue heterogeneities, and accurate modeling of the radiation source.
International Nuclear Information System (INIS)
The crucial problem for radiation shielding design at heavy-ion accelerator facilities with beam energies to several GeV/n is the source term problem. Experimental data on double differential neutron yields from thick target irradiated with high-energy uranium nuclei are lacking. At present, there are not many Monte-Carlo multipurpose codes that can work with primary high-energy uranium nuclei. These codes use different physical models for simulation of nucleus-nucleus reactions. Therefore, verification of the codes with available experimental data is very important for selection of the most reliable code for practical tasks. This paper presents comparisons of the FLUKA, GEANT4 and SHIELD codes simulations with the experimental data on neutron production at 1 GeV/n 238U beam interaction with thick Fe target
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Temperature variance study in Monte-Carlo photon transport theory
International Nuclear Information System (INIS)
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case
Adjoint electron-photon transport Monte Carlo calculations with ITS
International Nuclear Information System (INIS)
A general adjoint coupled electron-photon Monte Carlo code for solving the Boltzmann-Fokker-Planck equation has recently been created. It is a modified version of ITS 3.0, a coupled electronphoton Monte Carlo code that has world-wide distribution. The applicability of the new code to radiation-interaction problems of the type found in space environments is demonstrated
Energy Technology Data Exchange (ETDEWEB)
Cupini, E. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione; Borgia, M.G. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Energia; Premuda, M. [Consiglio Nazionale delle Ricerche, Bologna (Italy). Ist. FISBAT
1997-03-01
The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department.
Radiation Transport Calculations and Simulations
Energy Technology Data Exchange (ETDEWEB)
Fasso, Alberto; /SLAC; Ferrari, A.; /CERN
2011-06-30
This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.
International Nuclear Information System (INIS)
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons (2H+) in the energy range 10 MeV-1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)
Application of Monte Carlo methods in tomotherapy and radiation biophysics
Hsiao, Ya-Yun
Helical tomotherapy is an attractive treatment for cancer therapy because highly conformal dose distributions can be achieved while the on-board megavoltage CT provides simultaneous images for accurate patient positioning. The convolution/superposition (C/S) dose calculation methods typically used for Tomotherapy treatment planning may overestimate skin (superficial) doses by 3-13%. Although more accurate than C/S methods, Monte Carlo (MC) simulations are too slow for routine clinical treatment planning. However, the computational requirements of MC can be reduced by developing a source model for the parts of the accelerator that do not change from patient to patient. This source model then becomes the starting point for additional simulations of the penetration of radiation through patient. In the first section of this dissertation, a source model for a helical tomotherapy is constructed by condensing information from MC simulations into series of analytical formulas. The MC calculated percentage depth dose and beam profiles computed using the source model agree within 2% of measurements for a wide range of field sizes, which suggests that the proposed source model provides an adequate representation of the tomotherapy head for dose calculations. Monte Carlo methods are a versatile technique for simulating many physical, chemical and biological processes. In the second major of this thesis, a new methodology is developed to simulate of the induction of DNA damage by low-energy photons. First, the PENELOPE Monte Carlo radiation transport code is used to estimate the spectrum of initial electrons produced by photons. The initial spectrum of electrons are then combined with DNA damage yields for monoenergetic electrons from the fast Monte Carlo damage simulation (MCDS) developed earlier by Semenenko and Stewart (Purdue University). Single- and double-strand break yields predicted by the proposed methodology are in good agreement (1%) with the results of published
International Nuclear Information System (INIS)
The transport of energy by X-ray photons has been included in the lD Lagrangian hydrodynamics code, MEDUSA. Calculations of the implosion by 0.53 μm laser irradiation of plastic and glass microballoons of current interest at the Central Laser Facility show that radiation preheats the fill gas and alters the temperature and density profiles during the implosion. A lower maximum gas temperature is obtained and this results, for a DT gas fill, in a greatly reduced neutron yield. (author)
Radiation Transport for Explosive Outflows: Opacity Regrouping
Wollaeger, Ryan T
2014-01-01
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that, in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure "opacity regrouping". Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in \\supernu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck ...
International Nuclear Information System (INIS)
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions (3He2+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)
International Nuclear Information System (INIS)
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons (3H+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)
Monte Carlo simulations of the radiation environment for the CMS Experiment
Mallows, Sophie
2015-01-01
Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.
Monte Carlo simulations of the radiation environment for the CMS experiment
Mallows, S.; Azhgirey, I.; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.
2016-07-01
Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Path Toward a Unifid Geometry for Radiation Transport
Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann
2014-01-01
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex computer-aided design (CAD) models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN [high charge and energy transport code developed by NASA Langley Research Center (LaRC)], are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their
RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING
Energy Technology Data Exchange (ETDEWEB)
Wollaeger, Ryan T. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison 1500 Engineering Drive, 410 ERB, Madison, WI 53706 (United States); Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)
2014-10-01
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.
Deterministic methods in radiation transport
International Nuclear Information System (INIS)
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)
2003-07-01
Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)
Energy Technology Data Exchange (ETDEWEB)
Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)
2009-01-15
Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)
MORSE Monte Carlo radiation transport code system
International Nuclear Information System (INIS)
For a number of years the MORSE user community has requested additional help in setting up problems using various options. The sample problems distributed with MORSE did not fully demonstrate the capability of the code. At Oak Ridge National Laboratory the code originators had a complete set of sample problems, but funds for documenting and distributing them were never available. Recently the number of requests for listings of input data and results for running some particular option the user was trying to implement has increased to the point where it is not feasible to handle them on an individual basis. Consequently it was decided to package a set of sample problems which illustrates more adequately how to run MORSE. This write-up may be added to Part III of the MORSE report. These sample problems include a combined neutron-gamma case, a neutron only case, a gamma only case, an adjoint case, a fission case, a time-dependent fission case, the collision density case, an XCHEKR run and a PICTUR run
Leman, S W
2011-01-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. Particular focus is placed on instrumentation that is used in the Cryogenic Dark Matter Search detectors however the discussion is quite general and includes phonon and charge transport physics relevant at low temperatures. Sufficient tutorials and physics references are provided such that an interested reader can jump right into a detector Monte Carlo campaign.
Multipurpose Monte Carlo simulator for photon transport in turbid media
Guerra, Pedro; Aguirre, Juan; Ortuño, Juan E.; María J Ledesma-Carbayo; Vaquero, Juan José; Desco, Manuel; Santos, Andrés
2009-01-01
Monte Carlo methods provide a flexible and rigorous solution to the problem of light transport in turbid media, which enable approaching complex geometries for a closed analytical solution is not feasible. The simulator implements local rules of propagation in the form of probability density functions that depend on the local optical properties of the tissue. This work presents a flexible simulator that can be applied in multiple applications related to optical tomography. In particular...
TRIPOLI-3: a neutron/photon Monte Carlo transport code
Energy Technology Data Exchange (ETDEWEB)
Nimal, J.C.; Vergnaud, T. [Commissariat a l' Energie Atomique, Gif-sur-Yvette (France). Service d' Etudes de Reacteurs et de Mathematiques Appliquees
2001-07-01
The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
JCOGIN. A parallel programming infrastructure for Monte Carlo particle transport
International Nuclear Information System (INIS)
The advantages of the Monte Carlo method for reactor analysis are well known, but the full-core reactor analysis challenges the computational time and computer memory. Meanwhile, the exponential growth of computer power in the last 10 years is now creating a great opportunity for large scale parallel computing on the Monte Carlo full-core reactor analysis. In this paper, a parallel programming infrastructure is introduced for Monte Carlo particle transport, named JCOGIN, which aims at accelerating the development of Monte Carlo codes for the large scale parallelism simulations of the full-core reactor. Now, JCOGIN implements the hybrid parallelism of the spatial decomposition and the traditional particle parallelism on MPI and OpenMP. Finally, JMCT code is developed on JCOGIN, which reaches the parallel efficiency of 70% on 20480 cores for fixed source problem. By the hybrid parallelism, the full-core pin-by-pin simulation of the Dayawan reactor was implemented, with the number of the cells up to 10 million and the tallies of the fluxes utilizing over 40GB of memory. (author)
Recent developments in the Los Alamos radiation transport code system
Energy Technology Data Exchange (ETDEWEB)
Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)
1997-06-01
A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.
Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes
Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R
2001-01-01
This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...
Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods
Sohn, Ilyoup
approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking
Analytical band Monte Carlo analysis of electron transport in silicene
Yeoh, K. H.; Ong, D. S.; Ooi, C. H. Raymond; Yong, T. K.; Lim, S. K.
2016-06-01
An analytical band Monte Carlo (AMC) with linear energy band dispersion has been developed to study the electron transport in suspended silicene and silicene on aluminium oxide (Al2O3) substrate. We have calibrated our model against the full band Monte Carlo (FMC) results by matching the velocity-field curve. Using this model, we discover that the collective effects of charge impurity scattering and surface optical phonon scattering can degrade the electron mobility down to about 400 cm2 V‑1 s‑1 and thereafter it is less sensitive to the changes of charge impurity in the substrate and surface optical phonon. We also found that further reduction of mobility to ∼100 cm2 V‑1 s‑1 as experimentally demonstrated by Tao et al (2015 Nat. Nanotechnol. 10 227) can only be explained by the renormalization of Fermi velocity due to interaction with Al2O3 substrate.
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O.; Whitworth, A. P.
2016-10-01
We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O
2016-01-01
We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
International Nuclear Information System (INIS)
Highlights: • A new Monte Carlo photon transport code ARCHER-CT for CT dose calculations is developed to execute on the GPU and coprocessor. • ARCHER-CT is verified against MCNP. • The GPU code on an Nvidia M2090 GPU is 5.15–5.81 times faster than the parallel CPU code on an Intel X5650 6-core CPU. • The coprocessor code on an Intel Xeon Phi 5110p coprocessor is 3.30–3.38 times faster than the CPU code. - Abstract: Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three components, ARCHER-CTCPU, ARCHER-CTGPU and ARCHER-CTCOP designed to be run on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI processes, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel ARCHER-CTCPU, respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work concurrently can increase the overall performance by 13–18%
Juste, Belén; Miró, R.; Abella, V.; Santos, A.; Verdú, Gumersindo
2015-11-01
Radiation therapy treatment planning based on Monte Carlo simulation provide a very accurate dose calculation compared to deterministic systems. Nowadays, Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy to verify the received dose by patients. In the present work, we have used the MCNP6 (Monte Carlo N-Particle transport code) to simulate the irradiation of an anthropomorphic phantom (RANDO) with a medical linear accelerator. The detailed model of the Elekta Precise multileaf collimator using a 6 MeV photon beam was designed and validated by means of different beam sizes and shapes in previous works. To include in the simulation the RANDO phantom geometry a set of Computer Tomography images of the phantom was obtained and formatted. The slices are input in PLUNC software, which performs the segmentation by defining anatomical structures and a Matlab algorithm writes the phantom information in MCNP6 input deck format. The simulation was verified and therefore the phantom model and irradiation was validated throughout the comparison of High-Sensitivity MOSFET dosimeter (Best medical Canada) measurements in different points inside the phantom with simulation results. On-line Wireless MOSFET provide dose estimation in the extremely thin sensitive volume, so a meticulous and accurate validation has been performed. The comparison show good agreement between the MOSFET measurements and the Monte Carlo calculations, confirming the validity of the developed procedure to include patients CT in simulations and approving the use of Monte Carlo simulations as an accurate therapy treatment plan.
Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment
Baes, M; Davies, J I; Whitworth, A P; Sabatini, S; Roberts, S; Linder, S M; Evans, R; Baes, Maarten; Stamatellos, Dimitris; Davies, Jonathan I.; Whitworth, Anthony P.; Sabatini, Sabina; Roberts, Sarah; Linder, Suzanne M.; Evans, Rhodri
2005-01-01
The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman & Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Although the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment ...
The macro response Monte Carlo method for electron transport
Svatos, M M
1999-01-01
This thesis demonstrates the feasibility of basing dose calculations for electrons in radiotherapy on first-principles single scatter physics, in a calculation time that is comparable to or better than current electron Monte Carlo methods. The macro response Monte Carlo (MRMC) method achieves run times that have potential to be much faster than conventional electron transport methods such as condensed history. The problem is broken down into two separate transport calculations. The first stage is a local, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position, and trajectory after leaving the local geometry, a small sphere or "kugel." A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25-8 MeV) and sizes (0.025 to 0.1 cm in radius). The second transport stage is a global calculation, in which steps that conform to the size of the kugels in the...
3D Monte Carlo radiation transfer modelling of photodynamic therapy
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
Monte Carlo simulation of transition radiation and δ electrons
International Nuclear Information System (INIS)
This paper employs Monte Carlo simulations of the performance of a transition radiation detector (TRD). The program has been written for the TRD in the ZEUS spectrometer, which separates electrons from hadrons in the momentum range between 1 GeV/c and 30 GeV/c. Both, total charge method and cluster counting method were simulated taking into account various experimental parameters. In particular, it was found that the cluster counting method relies on a quantitative understanding of the background originating from the production of δ-electrons by charged particles. The results of the Monte Carlo calculations are in agreement with experimental data obtained with prototypes within a systematic uncertainty of 20%. We applied our Monte Carlo program to studies in order to find an optimum layout for the TRD within available space in the ZEUS spectrometer. In this context, the performance of TRD layouts with different geometries and materials has been evaluated comprehensively. The geometry found by optimization promises an improvement on hadron suppression by a factor of about two for both methods compared with present results from test measurements. Applying algorithms for a detailed analysis of the energy and space distributions of the clusters in the TRD, hadrons in the momentum range from 1 to 30 GeV/c can be suppressed to a level of less than 2%. This method of cluster analysing improves the suppression of hadrons by a factor of about two compared to the total charge method. (orig.)
International Nuclear Information System (INIS)
Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER-CT(CPU), ARCHER-CT(GPU) and ARCHER-CT(COP) to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89-4.49 and 3.01-3.23 times faster than the parallel ARCHER-CT(CPU) running with 12 hyper-threads. (authors)
The macro response Monte Carlo method for electron transport
Energy Technology Data Exchange (ETDEWEB)
Svatos, M M
1998-09-01
The main goal of this thesis was to prove the feasibility of basing electron depth dose calculations in a phantom on first-principles single scatter physics, in an amount of time that is equal to or better than current electron Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that are on the order of conventional electron transport methods such as condensed history, with the potential to be much faster. This is possible because MRMC is a Local-to-Global method, meaning the problem is broken down into two separate transport calculations. The first stage is a local, in this case, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position and trajectory after leaving the local geometry, a small sphere or "kugel" A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second transport stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry. For each step, the appropriate PDFs from the MRMC library are sampled to determine the electron's new energy, position and trajectory. The electron is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until transport is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code. It was compared to Peregrine's class II condensed history electron transport package, EGS4, and MCNP for depth dose in simple phantoms having density inhomogeneities. Since the kugels completed in the library were of relatively small size, the zoning of the phantoms was scaled down from a clinical size, so that the energy deposition algorithms for spreading dose across 5-10 zones per kugel could
Monte Carlo solution of a semi-discrete transport equation
International Nuclear Information System (INIS)
The authors present the S∞ method, a hybrid neutron transport method in which Monte Carlo particles traverse discrete space. The goal of any deterministic/stochastic hybrid method is to couple selected characters from each of the methods in hopes of producing a better method. The S∞ method has the features of the lumped, linear-discontinuous (LLD) spatial discretization, yet it has no ray-effects because of the continuous angular variable. They derive the S∞ method for the solid-state, mono-energetic transport equation in one-dimensional slab geometry with isotropic scattering and an isotropic internal source. They demonstrate the viability of the S∞ method by comparing their results favorably to analytic and deterministic results
A Monte Carlo simulation of ion transport at finite temperatures
International Nuclear Information System (INIS)
We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. Special attention has been paid to properly treating the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulae for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics. (paper)
Monte Carlo simulation of transport from an electrothermal vaporizer
Energy Technology Data Exchange (ETDEWEB)
Holcombe, James A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: holcombe@mail.utexas.edu; Ertas, Gulay [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)
2006-06-15
Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction.
International Nuclear Information System (INIS)
The most dental imaging is performed by means a imaging system consisting of a film/screen combination. Fluorescent intensifying screens for X-ray films are used in order to reduce the radiation dose. They produce visible light which increases the efficiency of the film. In addition, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering) which will degrade the image resolution. Scattered radiation produced in Gd2O2S:Tb intensifying screens was simulated by using a Monte Carlo radiation transport code - the EGS4. The magnitude of scattered radiation striking the film is typically quantified using the scatter to primary radiation and the scatter fraction. The angular distribution of the intensity of the scattered radiation (sum of both the scattering effects) was simulated, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 5.67% and 3.28 % and the scatter function is about 5.27% and 3.18% for the front and back screen, respectively, over the range from 0 to π rad. (author)
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
MCNP is a very general Monte Carlo neutron photon transport code system with approximately 250 person years of Group X-6 code development invested. It is extremely portable, user-oriented, and a true production code as it is used about 60 Cray hours per month by about 150 Los Alamos users. It has as its data base the best cross-section evaluations available. MCNP contains state-of-the-art traditional and adaptive Monte Carlo techniques to be applied to the solution of an ever-increasing number of problems. Excellent user-oriented documentation is available for all facets of the MCNP code system. Many useful and important variants of MCNP exist for special applications. The Radiation Shielding Information Center (RSIC) in Oak Ridge, Tennessee is the contact point for worldwide MCNP code and documentation distribution. A much improved MCNP Version 3A will be available in the fall of 1985, along with new and improved documentation. Future directions in MCNP development will change the meaning of MCNP to Monte Carlo N Particle where N particle varieties will be transported
International Nuclear Information System (INIS)
We have investigated Monte Carlo schemes for analyzing particle transport through media with exponentially varying time-dependent cross sections. For such media, the cross sections are represented in the form Σ(t) = Σ0 e-at (1) or equivalently as Σ(x) = Σ0 e-bx (2) where b = av and v is the particle speed. For the following discussion, the parameters a and b may be either positive, for exponentially decreasing cross sections, or negative, for exponentially increasing cross sections. For most time-dependent Monte Carlo applications, the time and spatial variations of the cross-section data are handled by means of a stepwise procedure, holding the cross sections constant for each region over a small time interval Δt, performing the Monte Carlo random walk over the interval Δt, updating the cross sections, and then repeating for a series of time intervals. Continuously varying spatial- or time-dependent cross sections can be treated in a rigorous Monte Carlo fashion using delta-tracking, but inefficiencies may arise if the range of cross-section variation is large. In this paper, we present a new method for sampling collision distances directly for cross sections that vary exponentially in space or time. The method is exact and efficient and has direct application to Monte Carlo radiation transport methods. To verify that the probability density function (PDF) is correct and that the random-sampling procedure yields correct results, numerical experiments were performed using a one-dimensional Monte Carlo code. The physical problem consisted of a beam source impinging on a purely absorbing infinite slab, with a slab thickness of 1 cm and Σ0 = 1 cm-1. Monte Carlo calculations with 10 000 particles were run for a range of the exponential parameter b from -5 to +20 cm-1. Two separate Monte Carlo calculations were run for each choice of b, a continuously varying case using the random-sampling procedures described earlier, and a 'conventional' case where the
Verification of Monte Carlo transport codes FLUKA, Mars and Shield
International Nuclear Information System (INIS)
The present study is a continuation of the project 'Verification of Monte Carlo Transport Codes' which is running at GSI as a part of activation studies of FAIR relevant materials. It includes two parts: verification of stopping modules of FLUKA, MARS and SHIELD-A (with ATIMA stopping module) and verification of their isotope production modules. The first part is based on the measurements of energy deposition function of uranium ions in copper and stainless steel. The irradiation was done at 500 MeV/u and 950 MeV/u, the experiment was held at GSI from September 2004 until May 2005. The second part is based on gamma-activation studies of an aluminium target irradiated with an argon beam of 500 MeV/u in August 2009. Experimental depth profiling of the residual activity of the target is compared with the simulations. (authors)
Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications
Energy Technology Data Exchange (ETDEWEB)
Brantley, P S; Stuart, L M
2006-11-06
A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S)
Vuolo, M.; Giraudo, M.; Musenich, R.; Calvelli, V.; Ambroglini, F.; Burger, W. J.; Battiston, R.
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield - a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat.
Cost effective distributed computing for Monte Carlo radiation dosimetry
International Nuclear Information System (INIS)
Full text: An inexpensive computing facility has been established for performing repetitive Monte Carlo simulations with the BEAM and EGS4/EGSnrc codes of linear accelerator beams, for calculating effective dose from diagnostic imaging procedures and of ion chambers and phantoms used for the Australian high energy absorbed dose standards. The facility currently consists of 3 dual-processor 450 MHz processor PCs linked by a high speed LAN. The 3 PCs can be accessed either locally from a single keyboard/monitor/mouse combination using a SwitchView controller or remotely via a computer network from PCs with suitable communications software (e.g. Telnet, Kermit etc). All 3 PCs are identically configured to have the Red Hat Linux 6.0 operating system. A Fortran compiler and the BEAM and EGS4/EGSnrc codes are available on the 3 PCs. The preparation of sequences of jobs utilising the Monte Carlo codes is simplified using load-distributing software (enFuzion 6.0 marketed by TurboLinux Inc, formerly Cluster from Active Tools) which efficiently distributes the computing load amongst all 6 processors. We describe 3 applications of the system - (a) energy spectra from radiotherapy sources, (b) mean mass-energy absorption coefficients and stopping powers for absolute absorbed dose standards and (c) dosimetry for diagnostic procedures; (a) and (b) are based on the transport codes BEAM and FLURZnrc while (c) is a Fortran/EGS code developed at ARPANSA. Efficiency gains ranged from 3 for (c) to close to the theoretical maximum of 6 for (a) and (b), with the gain depending on the amount of 'bookkeeping' to begin each task and the time taken to complete a single task. We have found the use of a load-balancing batch processing system with many PCs to be an economical way of achieving greater productivity for Monte Carlo calculations or of any computer intensive task requiring many runs with different parameters. Copyright (2000) Australasian College of Physical Scientists and
International Nuclear Information System (INIS)
A new Monte Carlo atmospheric radiative transfer model is presented which is designed to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered Sun light in the atmosphere. The integro differential equation describing the underlying transport process and its formal solution are discussed. A stochastic approach to solve the differential equation, the Monte Carlo method, is deduced and its application to the formal solution is demonstrated. It is shown how model photon trajectories of the resulting ray tracing algorithm are used to estimate functionals of the radiation field such as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former quantities with respect to optical parameters of the atmosphere are analyzed. Model output quantities are validated against measurements, by self-consistency tests and through inter comparisons with other radiative transfer models.
Neutron spectrum obtained with Monte Carlo and transport theory
International Nuclear Information System (INIS)
The development of the computer, resulting in increasing memory capacity and processing speed, has enabled the application of Monte Carlo method to estimate the fluxes in thousands of fine bin energy structure. Usually the MC calculation is made using continuous energy nuclear data and exact geometry. Self shielding and interference of nuclides resonances are properly considered. Therefore, the fluxes obtained by this method may be a good estimation of the neutron energy distribution (spectrum) for the problem. In an early work it was proposed to use these fluxes as weighting spectrum to generate multigroup cross section for fast reactor analysis using deterministic codes. This non-traditional use of MC calculation needs a validation to gain confidence in the results. The work presented here is the validation start step of this scheme. The spectra of the JOYO first core fuel assembly MK-I and the benchmark Godiva were calculated using the tally flux estimator of the MCNP code and compared with the reference. Also, the two problems were solved with the multigroup transport theory code XSDRN of the AMPX system using the 171 energy groups VITAMIN-C library. The spectra differences arising from the utilization of these codes, the influence of evaluated data file and the application to fast reactor calculation are discussed. (author)
A generic algorithm for Monte Carlo simulation of proton transport
Salvat, Francesc
2013-12-01
A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.
Non-analog Monte Carlo estimators for radiation momentum deposition
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory; Hykes, Joshua M [Los Alamos National Laboratory
2008-01-01
The standard method for calculating radiation momentum deposition in Monte Carlo simulations is the analog estimator, which tallies the change in a particle's momentum at each interaction with the matter. Unfortunately, the analog estimator can suffer from large amounts of statistical error. In this paper, we present three new non-analog techniques for estimating momentum deposition. Specifically, we use absorption, collision, and track-length estimators to evaluate a simple integral expression for momentum deposition that does not contain terms that can cause large amounts of statistical error in the analog scheme. We compare our new non-analog estimators to the analog estimator with a set of test problems that encompass a wide range of material properties and both isotropic and anisotropic scattering. In nearly all cases, the new non-analog estimators outperform the analog estimator. The track-length estimator consistently yields the highest performance gains, improving upon the analog-estimator figure of merit by factors of up to two orders of magnitude.
Detailed Radiative Transport Modeling of a Radiative Divertor
Wan, A S; Scott, H A; Post, D; Rognlien, T D
1995-01-01
An effective radiative divertor maximizes the utilization of atomic processes to spread out the energy deposition to the divertor chamber walls and to reduce the peak heat flux. Because the mixture of neutral atoms and ions in the divertor can be optically thick to a portion of radiated power, it is necessary to accurately model the magnitude and distribution of line radiation in this complex region. To assess their importance we calculate the effects of radiation transport using CRETIN, a multi-dimensional, non-local thermodynamic equilibrium simulation code that includes the atomic kinetics and radiative transport processes necessary to model the complex environment of a radiative divertor. We also include neutral transport to model radiation from recycling neutral atoms. This paper presents a case study of a high-recycling radiative divertor with a typical large neutral pressure at the divertor plate to estimate the impact of H line radiation on the overall power balance in the divertor region with conside...
Intra-operative radiation therapy optimization using the Monte Carlo method
International Nuclear Information System (INIS)
The problem addressed with reference to the treatment head optimization has been the choice of the proper design of the head of a new 12 MeV linear accelerator in order to have the required dose uniformity on the target volume while keeping the dose rate sufficiently high and the photon production and the beam impact with the head walls within acceptable limits. The second part of the optimization work, concerning the TPS, is based on the rationale that the TPSs generally used in radiotherapy use semi-empirical algorithms whose accuracy can be inadequate particularly when irregular surfaces and/or inhomogeneities, such as air cavities or bone, are present. The Monte Carlo method, on the contrary, is capable of accurately calculating the dose distribution under almost all circumstances. Furthermore it offers the advantage of allowing to start the simulation of the radiation transport in the patient from the beam data obtained with the transport through the specific treatment head used. Therefore the Monte Carlo simulations, which at present are not yet widely used for routine treatment planning due to the required computing time, can be employed as a benchmark and as an optimization tool for conventional TPSs. (orig.)
Intra-operative radiation therapy optimization using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Rosetti, M. [ENEA, Bologna (Italy); Benassi, M.; Bufacchi, A.; D' Andrea, M. [Ist. Regina Elena, Rome (Italy); Bruzzaniti, V. [ENEA, S. Maria di Galeria (Rome) (Italy)
2001-07-01
The problem addressed with reference to the treatment head optimization has been the choice of the proper design of the head of a new 12 MeV linear accelerator in order to have the required dose uniformity on the target volume while keeping the dose rate sufficiently high and the photon production and the beam impact with the head walls within acceptable limits. The second part of the optimization work, concerning the TPS, is based on the rationale that the TPSs generally used in radiotherapy use semi-empirical algorithms whose accuracy can be inadequate particularly when irregular surfaces and/or inhomogeneities, such as air cavities or bone, are present. The Monte Carlo method, on the contrary, is capable of accurately calculating the dose distribution under almost all circumstances. Furthermore it offers the advantage of allowing to start the simulation of the radiation transport in the patient from the beam data obtained with the transport through the specific treatment head used. Therefore the Monte Carlo simulations, which at present are not yet widely used for routine treatment planning due to the required computing time, can be employed as a benchmark and as an optimization tool for conventional TPSs. (orig.)
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
Monte Carlo simulation of radiation streaming from a radioactive material shipping cask
International Nuclear Information System (INIS)
Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs
Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA
International Nuclear Information System (INIS)
Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)
International Nuclear Information System (INIS)
The internal radiation dose calculations based on Chinese models is important in nuclear medicine. Most of the existing models are based on the physical and anatomical data of Caucasian, whose anatomical structure and physiological parameters are quite different from the Chinese, may lead significant effect on internal radiation. Therefore, it is necessary to establish the model based on the Chinese ethnic characteristics, and applied to radiation dosimetry calculation. In this study, a voxel model was established based on the high resolution Visible Chinese Human (VCH). The transport procedure of photon and electron was simulated using the MCNPX Monte Carlo code. Absorbed fraction (AF) and specific absorbed fraction (SAF) were calculated and S-factors and mean absorbed doses for organs with 99mTc located in liver were also obtained. In comparison with those of VIP-Man and MIRD models, discrepancies were found to be correlated with the racial and anatomical differences in organ mass and inter-organ distance. The internal dosimetry data based on other models that were used to apply to Chinese adult population are replaced with Chinese specific data. The obtained results provide a reference for nuclear medicine, such as dose verification after surgery and potential radiation evaluation for radionuclides in preclinical research, etc. (authors)
A review of Monte Carlo techniques used in various fields of radiation protection
International Nuclear Information System (INIS)
Monte Carlo methods and their utilization in radiation protection are overviewed. Basic principles and the most frequently used sampling methods are described. Examples range from the simulation of the random walk of photons and neutrons to neutron spectrum unfolding. (author)
Zygmanski, Piotr; Sajo, Erno
2016-01-01
We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.
Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
Paro, Autumn D; Hossain, Mainul; Webster, Thomas J; Su, Ming
2016-01-01
Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy.
Energy Technology Data Exchange (ETDEWEB)
Lim, Chang Hwy; Park, Jong Won; Lee, Junghee [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of); Moon, Myung Kook; Kim, Jongyul; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
A plastic scintillator in the RPM is suited for the γ-ray detection of various-range energy and is the cost effective radiation detection material. In order to well inspect emitted radiation from the container cargo, the radiation detection area of a plastic scintillator should be larger than other general purpose radiation detector. However, the large size plastic scintillator affects the light collection efficiency at the photo-sensitive sensor due to the long light transport distance and light collisions in a plastic scintillator. Therefore, the improvement of light collection efficiency in a RPM is one of the major issues for the high performance RPM development. We calculated the change of the number of collected light according to changing of the attachment position and number of PMT. To calculate the number of collected light, the DETECT2000 and MCNP6 Monte Carlo simulation software tool was used. Response signal performance of RPM system is affected by the position of the incident radiation. If the distance between the radiation source and a PMT is long, the number of loss signal is larger. Generally, PMTs for signal detection in RPM system has been attached on one side of plastic scintillator. In contrast, RPM model in the study have 2 PMTs, which attached at the two side of plastic scintillator. We estimated difference between results using the old method and our method. According to results, uniformity of response signal was better than method using one side. If additive simulation and experiment is performed, it will be possible to develop the improved RPM system. In the future, we will perform additive simulation about many difference RPM model.
Construction of Monte Carlo operators in collisional transport theory
International Nuclear Information System (INIS)
A Monte Carlo approach for investigating the dynamics of quiescent collisional magnetoplasmas is presented, based on the discretization of the gyrokinetic equation. The theory applies to a strongly rotating multispecies plasma, in a toroidally axisymmetric configuration. Expressions of the Monte Carlo collision operators are obtained for general v-space nonorthogonal coordinates systems, in terms of approximate solutions of the discretized gyrokinetic equation. Basic features of the Monte Carlo operators are that they fullfill all the required conservation laws, i.e., linear momentum and kinetic energy conservation, and in addition that they take into account correctly also off-diagonal diffusion coefficients. The present operators are thus potentially useful for describing the dynamics of a multispecies toroidal magnetoplasma. In particular, strict ambipolarity of particle fluxes is ensured automatically in the limit of small departures of the unperturbed particle trajectories from some initial axisymmetric toroidal magnetic surfaces
Harries, Tim J
2015-01-01
We present a set of new numerical methods that are relevant to calculating radiation pressure terms in hydrodynamics calculations, with a particular focus on massive star formation. The radiation force is determined from a Monte Carlo estimator and enables a complete treatment of the detailed microphysics, including polychromatic radiation and anisotropic scattering, in both the free-streaming and optically-thick limits. Since the new method is computationally demanding we have developed two new methods that speed up the algorithm. The first is a photon packet splitting algorithm that enables efficient treatment of the Monte Carlo process in very optically thick regions. The second is a parallelisation method that distributes the Monte Carlo workload over many instances of the hydrodynamic domain, resulting in excellent scaling of the radiation step. We also describe the implementation of a sink particle method that enables us to follow the accretion onto, and the growth of, the protostars. We detail the resu...
Survey of radiation protection programmes for transport
International Nuclear Information System (INIS)
The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables
A multigroup treatment of radiation transport
International Nuclear Information System (INIS)
A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)
Harries, Tim J.
2015-01-01
We present a set of new numerical methods that are relevant to calculating radiation pressure terms in hydrodynamics calculations, with a particular focus on massive star formation. The radiation force is determined from a Monte Carlo estimator and enables a complete treatment of the detailed microphysics, including polychromatic radiation and anisotropic scattering, in both the free-streaming and optically-thick limits. Since the new method is computationally demanding we have developed two ...
Monte Carlo perturbation theory in neutron transport calculations
International Nuclear Information System (INIS)
The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures
Monte Carlo Studies of Charge Transport Below the Mobility Edge
Jakobsson, Mattias
2012-01-01
Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of h...
Monte Carlo modelling of positron transport in real world applications
International Nuclear Information System (INIS)
Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.
Monte Carlo modelling of positron transport in real world applications
Marjanović, S.; Banković, A.; Šuvakov, M.; Petrović, Z. Lj
2014-05-01
Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.
Energy Technology Data Exchange (ETDEWEB)
Cullen, D E
2003-06-06
TART 2002 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART 2002 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART 2002 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART 2002 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART 2002 and its data files.
Energy Technology Data Exchange (ETDEWEB)
Cullen, D.E
2000-11-22
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
Directory of Open Access Journals (Sweden)
Paro AD
2016-09-01
Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
International Nuclear Information System (INIS)
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Iandola, F N; O' Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
New electron multiple scattering distributions for Monte Carlo transport simulation
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Yoshizumi, Maíra T; Yoriyaz, Hélio; Caldas, Linda V E
2010-01-01
Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.
Monte Carlo study of electron transport in monolayer silicene
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2016-11-01
Electron mobility and diffusion coefficients in monolayer silicene are calculated by Monte Carlo simulations using simplified band structure with linear energy bands. Results demonstrate reasonable agreement with the full-band Monte Carlo method in low applied electric field conditions. Negative differential resistivity is observed and an explanation of the origin of this effect is proposed. Electron mobility and diffusion coefficients are studied in low applied electric field conditions. We demonstrate that a comparison of these parameter values can provide a good check that the calculation is correct. Low-field mobility in silicene exhibits {T}-3 temperature dependence for nondegenerate electron gas conditions and {T}-1 for higher electron concentrations, when degenerate conditions are imposed. It is demonstrated that to explain the relation between mobility and temperature in nondegenerate electron gas the linearity of the band structure has to be taken into account. It is also found that electron-electron scattering only slightly modifies low-field electron mobility in degenerate electron gas conditions.
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Energy Technology Data Exchange (ETDEWEB)
Dimitriadis, A; Gialousis, G; Karlatira, M; Karaiskos, P; Georgiou, E; Yakoumakis, E [Medical Physics Department, Medical School, University of Athens, 75 Mikras Asias Str., Goudi 11527, Athens (Greece); Makri, T; Papaodysseas, S, E-mail: anestisdim@yahoo.com [Radiological Imaging Department, Ag. Sofia Hospital, Lebadias and Thibon, Goudi 11527, Athens (Greece)
2011-01-21
Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.
A Monte Carlo Green's function method for three-dimensional neutron transport
International Nuclear Information System (INIS)
This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution
Wollaeger, Ryan; van Rossum, Daniel; Graziani, Carlo; Couch, Sean; Jordan, George; Lamb, Donald; Moses, Gregory
2013-10-01
We apply Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) to Nomoto's W7 model of Type Ia Supernovae (SNe Ia). IMC is a stochastic method for solving the nonlinear radiation transport equations. DDMC is a stochastic radiation diffusion method that is generally used to accelerate IMC for Monte Carlo (MC) particle histories in optically thick regions of space. The hybrid IMC-DDMC method has recently been extended to account for multifrequency and velocity effects. SNe Ia are thermonuclear explosions of white dwarf stars that produce characteristic light curves and spectra sourced by radioactive decay of 56Ni. We exhibit the advantages of the hybrid MC approach relative to pure IMC for the W7 model. These results shed light on the viability of IMC-DDMC in more sophisticated, multi-dimensional simulations of SNe Ia. This work was supported in part by the University of Chicago and the National Science Foundation under grant AST-0909132.
Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A
Energy Technology Data Exchange (ETDEWEB)
Chetvertkova, Vera [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Ratzinger, Ulrich [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); Latysheva, Ludmila; Sobolevskiy, Nikolai [Institute for Nuclear Research RAS, Moscow (Russian Federation)
2011-07-01
Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.
Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A
International Nuclear Information System (INIS)
Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.
DEFF Research Database (Denmark)
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael;
2015-01-01
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data...
Energy Technology Data Exchange (ETDEWEB)
Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M
2006-07-01
The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.
Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)
International Nuclear Information System (INIS)
Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author)
Radiative corrections and Monte Carlo generators for physics at flavor factories
Directory of Open Access Journals (Sweden)
Montagna Guido
2016-01-01
Full Text Available I review the state of the art of precision calculations and related Monte Carlo generators used in physics at flavor factories. The review describes the tools relevant for the measurement of the hadron production cross section (via radiative return, energy scan and in γγ scattering, luminosity monitoring, searches for new physics and physics of the τ lepton.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE ACCUMULATION IN TUNGSTEN
Energy Technology Data Exchange (ETDEWEB)
Nandipati, Giridhar; Setyawan, Wahyu; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2016-09-01
The objective of this work is to understand the accumulation of radiation damage created by primary knock-on atoms (PKAs) of various energies, at 300 K and for a dose rate of 10-4 dpa/s in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.
Local dose enhancement in radiation therapy: Monte Carlo simulation study
International Nuclear Information System (INIS)
The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)
Parallel thermal radiation transport in two dimensions
International Nuclear Information System (INIS)
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES
Zhang, Jin; Gicquel, Olivier; Veynante, Denis; Taine, Jean
2009-06-01
Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).
Radiation protection considerations along a radioactive ion beam transport line
Sarchiapone, Lucia; Zafiropoulos, Demetre
2016-09-01
The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.
Using Nuclear Theory, Data and Uncertainties in Monte Carlo Transport Applications
Energy Technology Data Exchange (ETDEWEB)
Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-03
These are slides for a presentation on using nuclear theory, data and uncertainties in Monte Carlo transport applications. The following topics are covered: nuclear data (experimental data versus theoretical models, data evaluation and uncertainty quantification), fission multiplicity models (fixed source applications, criticality calculations), uncertainties and their impact (integral quantities, sensitivity analysis, uncertainty propagation).
Shape based Monte Carlo code for light transport in complex heterogeneous tissues
Margallo-Balbás, E.; French, P.J.
2007-01-01
A Monte Carlo code for the calculation of light transport in heterogeneous scattering media is presented together with its validation. Triangle meshes are used to define the interfaces between different materials, in contrast with techniques based on individual volume elements. This approach allows
MCNP, a general Monte Carlo code for neutron and photon transport: a summary
International Nuclear Information System (INIS)
The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces
Sakamoto, Y
2002-01-01
In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...
Finite element radiation transport in one dimension
International Nuclear Information System (INIS)
A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature 'in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte's two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
Energy Technology Data Exchange (ETDEWEB)
Biondo, Elliott D [ORNL; Ibrahim, Ahmad M [ORNL; Mosher, Scott W [ORNL; Grove, Robert E [ORNL
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).
Radiative heat transport instability in ICF plasmas
Rozmus, W.; Bychenkov, V. Yu.
2015-11-01
A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.
International Nuclear Information System (INIS)
A general adjoint Monte Carlo-forward discrete ordinates radiation transport calculational scheme has been created to study the effects of the radiation environment in Hiroshima and Nagasaki due to the bombing of these two cities. Various such studies for comparison with physical data have progressed since the end of World War II with advancements in computing machinery and computational methods. These efforts have intensified in the last several years with the U.S.-Japan joint reassessment of nuclear weapons dosimetry in Hiroshima and Nagasaki. Three principal areas of investigation are: (1) to determine by experiment and calculation the neutron and gamma-ray energy and angular spectra and total yield of the two weapons; (2) using these weapons descriptions as source terms, to compute radiation effects at several locations in the two cities for comparison with experimental data collected at various times after the bombings and thus validate the source terms; and (3) to compute radiation fields at the known locations of fatalities and surviving individuals at the time of the bombings and thus establish an absolute cause-and-effect relationship between the radiation received and the resulting injuries to these individuals and any of their descendants as indicated by their medical records. It is in connection with the second and third items, the determination of the radiation effects and the dose received by individuals, that the current study is concerned
Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.
Smith, M F
1993-10-01
A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288
Trade and transport of radiation sources
International Nuclear Information System (INIS)
The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)
Polarization imaging of multiply-scattered radiation based on integral-vector Monte Carlo method
International Nuclear Information System (INIS)
A new integral-vector Monte Carlo method (IVMCM) is developed to analyze the transfer of polarized radiation in 3D multiple scattering particle-laden media. The method is based on a 'successive order of scattering series' expression of the integral formulation of the vector radiative transfer equation (VRTE) for application of efficient statistical tools to improve convergence of Monte Carlo calculations of integrals. After validation against reference results in plane-parallel layer backscattering configurations, the model is applied to a cubic container filled with uniformly distributed monodispersed particles and irradiated by a monochromatic narrow collimated beam. 2D lateral images of effective Mueller matrix elements are calculated in the case of spherical and fractal aggregate particles. Detailed analysis of multiple scattering regimes, which are very similar for unpolarized radiation transfer, allows identifying the sensitivity of polarization imaging to size and morphology.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2004-06-01
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Monte Carlo simulations of the complex field in the LHC radiation test facility at CERN
Tsoulou, A; Rausch, R; Wijnands, Thijs
2004-01-01
The hard radiation environment of the Large Hadron Collider (LHC) demands for a careful choice of COTS (Components Off The Shelf) that will be installed in the tunnel. All the electronic equipment should be tested in a mixed radiation field, similar to that of the LHC. To obtain optimum results it is essential to study thoroughly the complex radiation field in the test facility at CERN. For this purpose a detailed Monte Carlo simulation of the test area was carried out and the calculations were compared with the dosimetry measurements already available.
Parallelization of MCATNP MONTE CARLO particle transport code by using MPI
International Nuclear Information System (INIS)
A Monte Carlo code for simulating Atmospheric Transport of Neutrons and Photons (MCATNP) is used to simulate the ionization effects caused by high altitude nuclear detonation (HAND) and it was parallelized in MPI by adopting the leap random number producer and modifying the original serial code. The parallel results and serial results are identical. The speedup increases almost linearly with the number of processors used. The parallel efficiency is up to to 97% while 16 processors are used, and 94% while 32 are used. The experimental results show that parallelization can obviously reduce the calculation time of Monte Carlo simulation of HAND ionization effects. (authors)
Stationary neutrino radiation transport by maximum entropy closure
International Nuclear Information System (INIS)
The authors obtain the angular distributions that maximize the entropy functional for Maxwell-Boltzmann (classical), Bose-Einstein, and Fermi-Dirac radiation. In the low and high occupancy limits, the maximum entropy closure is bounded by previously known variable Eddington factors that depend only on the flux. For intermediate occupancy, the maximum entropy closure depends on both the occupation density and the flux. The Fermi-Dirac maximum entropy variable Eddington factor shows a scale invariance, which leads to a simple, exact analytic closure for fermions. This two-dimensional variable Eddington factor gives results that agree well with exact (Monte Carlo) neutrino transport calculations out of a collapse residue during early phases of hydrostatic neutron star formation
Harries, Tim J.
2015-04-01
We present a set of new numerical methods that are relevant to calculating radiation pressure terms in hydrodynamics calculations, with a particular focus on massive star formation. The radiation force is determined from a Monte Carlo estimator and enables a complete treatment of the detailed microphysics, including polychromatic radiation and anisotropic scattering, in both the free-streaming and optically thick limits. Since the new method is computationally demanding we have developed two new methods that speed up the algorithm. The first is a photon packet splitting algorithm that enables efficient treatment of the Monte Carlo process in very optically thick regions. The second is a parallelization method that distributes the Monte Carlo workload over many instances of the hydrodynamic domain, resulting in excellent scaling of the radiation step. We also describe the implementation of a sink particle method that enables us to follow the accretion on to, and the growth of, the protostars. We detail the results of extensive testing and benchmarking of the new algorithms.
SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research
DEFF Research Database (Denmark)
Bassler, Niels; Hansen, David Christoffer; Lühr, Armin;
2014-01-01
Abstract. Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The “-A” fork of SHIELD-HIT also aims to attach SHIELD...... of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More...
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.
Data decomposition of Monte Carlo particle transport simulations via tally servers
Energy Technology Data Exchange (ETDEWEB)
Romano, Paul K., E-mail: paul.k.romano@gmail.com [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegala@mcs.anl.gov [Argonne National Laboratory, Theory and Computing Sciences, 9700 S Cass Ave., Argonne, IL 60439 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Smith, Kord, E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)
2013-11-01
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.
Electron transport in radiotherapy using local-to-global Monte Carlo
International Nuclear Information System (INIS)
Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given
International Nuclear Information System (INIS)
BOT3P consists of a set of standard Fortran 77 language programs that gives the users of the deterministic transport codes DORT, TORT, TWODANT, THREEDANT, PARTISN and the sensitivity code SUSD3D some useful diagnostic tools to prepare and check the geometry of their input data files for both Cartesian and cylindrical geometries, including graphical display modules. Users can produce the geometrical and material distribution data for all the cited codes for both two-dimensional and three-dimensional applications and, only in 3-dimensional Cartesian geometry, for the Monte Carlo Transport Code MCNP, starting from the same BOT3P input. Moreover, BOT3P stores the fine mesh arrays and the material zone map in a binary file, the content of which can be easily interfaced to any deterministic and Monte Carlo transport code. This makes it possible to compare directly for the same geometry the effects stemming from the use of different data libraries and solution approaches on transport analysis results. BOT3P Version 5.0 lets users optionally and with the desired precision compute the area/volume error of material zones with respect to the theoretical values, if any, because of the stair-cased representation of the geometry, and automatically update material densities on the whole zone domains to conserve masses. A local (per mesh) density correction approach is also available. BOT3P is designed to run on Linux/UNIX platforms and is publicly available from the Organization for Economic Cooperation and Development (OECD/NEA)/Nuclear Energy Agency Data Bank. Through the use of BOT3P, radiation transport problems with complex 3-dimensional geometrical structures can be modelled easily, as a relatively small amount of engineer-time is required and refinement is achieved by changing few parameters. This tool is useful for solving very large challenging problems, as successfully demonstrated not only in some complex neutron shielding and criticality benchmarks but also in a power
International Nuclear Information System (INIS)
Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)
2010-07-15
Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
Application of Photon Transport Monte Carlo Module with GPU-based Parallel System
Energy Technology Data Exchange (ETDEWEB)
Park, Chang Je [Sejong University, Seoul (Korea, Republic of); Shon, Heejeong [Golden Eng. Co. LTD, Seoul (Korea, Republic of); Lee, Donghak [CoCo Link Inc., Seoul (Korea, Republic of)
2015-05-15
In general, it takes lots of computing time to get reliable results in Monte Carlo simulations especially in deep penetration problems with a thick shielding medium. To mitigate such a weakness of Monte Carlo methods, lots of variance reduction algorithms are proposed including geometry splitting and Russian roulette, weight windows, exponential transform, and forced collision, etc. Simultaneously, advanced computing hardware systems such as GPU(Graphics Processing Units)-based parallel machines are used to get a better performance of the Monte Carlo simulation. The GPU is much easier to access and to manage when comparing a CPU cluster system. It also becomes less expensive these days due to enhanced computer technology. There, lots of engineering areas adapt GPU-bases massive parallel computation technique. based photon transport Monte Carlo method. It provides almost 30 times speedup without any optimization and it is expected almost 200 times with fully supported GPU system. It is expected that GPU system with advanced parallelization algorithm will contribute successfully for development of the Monte Carlo module which requires quick and accurate simulations.
Application of Photon Transport Monte Carlo Module with GPU-based Parallel System
International Nuclear Information System (INIS)
In general, it takes lots of computing time to get reliable results in Monte Carlo simulations especially in deep penetration problems with a thick shielding medium. To mitigate such a weakness of Monte Carlo methods, lots of variance reduction algorithms are proposed including geometry splitting and Russian roulette, weight windows, exponential transform, and forced collision, etc. Simultaneously, advanced computing hardware systems such as GPU(Graphics Processing Units)-based parallel machines are used to get a better performance of the Monte Carlo simulation. The GPU is much easier to access and to manage when comparing a CPU cluster system. It also becomes less expensive these days due to enhanced computer technology. There, lots of engineering areas adapt GPU-bases massive parallel computation technique. based photon transport Monte Carlo method. It provides almost 30 times speedup without any optimization and it is expected almost 200 times with fully supported GPU system. It is expected that GPU system with advanced parallelization algorithm will contribute successfully for development of the Monte Carlo module which requires quick and accurate simulations
SRTC++: a New Monte Carlo Radiative Transfer Model for Titan
Barnes, Jason W.; MacKenzie, Shannon; Young, Eliot F.
2016-10-01
Titan's vertically extended and highly scattering atmosphere poses a challenge to interpreting near-infrared observations of its surface. Not only does Titan's extended atmosphere often require accommodation of its spherical geometry, it is also difficult to separate surface albedos from scattering or absorption within low-altitude atmospheric layers. One way to disentangle the surface and atmosphere is to combine observations in which terrain on Titan is imaged from a range of viewing geometries. To address this type of problem, we have developed a new algorithm, Spherical Radiative Transfer in C++ or SRTC++.This code is written from scratch in fast C++ and designed from the ground up to run efficiently in parallel. We see SRTC++ as complementary to existing plane-parallel codes, not in competition with them as the first problems that we seek to address will be spatial in nature. For example, we will be able to investigate spatial resolution limits in the various spectral windows, discrimination of vertical atmospheric layers, the adjacency effect, and indirect illumination past Titan's terminator.
International Nuclear Information System (INIS)
Numerous variance reduction techniques, such as splitting/Russian roulette, weight windows, and the exponential transform exist for improving the efficiency of Monte Carlo transport calculations. Typically, however, these methods, while reducing the variance in the problem area of interest tend to increase the variance in other, presumably less important, regions. As such, these methods tend to be not as effective in Monte Carlo calculations which require the minimization of the variance everywhere. Recently, ''Local'' Exponential Transform (LET) methods have been developed as a means of approximating the zero-variance solution. A numerical solution to the adjoint diffusion equation is used, along with an exponential representation of the adjoint flux in each cell, to determine ''local'' biasing parameters. These parameters are then used to bias the forward Monte Carlo transport calculation in a manner similar to the conventional exponential transform, but such that the transform parameters are now local in space and energy, not global. Results have shown that the Local Exponential Transform often offers a significant improvement over conventional geometry splitting/Russian roulette with weight windows. Since the biasing parameters for the Local Exponential Transform were determined from a low-order solution to the adjoint transport problem, the LET has been applied in problems where it was desirable to minimize the variance in a detector region. The purpose of this paper is to show that by basing the LET method upon a low-order solution to the forward transport problem, one can instead obtain biasing parameters which will minimize the maximum variance in a Monte Carlo transport calculation
Neutron cross-section probability tables in TRIPOLI-3 Monte Carlo transport code
Energy Technology Data Exchange (ETDEWEB)
Zheng, S.H.; Vergnaud, T.; Nimal, J.C. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France). Lab. d`Etudes de Protection et de Probabilite
1998-03-01
Neutron transport calculations need an accurate treatment of cross sections. Two methods (multi-group and pointwise) are usually used. A third one, the probability table (PT) method, has been developed to produce a set of cross-section libraries, well adapted to describe the neutron interaction in the unresolved resonance energy range. Its advantage is to present properly the neutron cross-section fluctuation within a given energy group, allowing correct calculation of the self-shielding effect. Also, this PT cross-section representation is suitable for simulation of neutron propagation by the Monte Carlo method. The implementation of PTs in the TRIPOLI-3 three-dimensional general Monte Carlo transport code, developed at Commissariat a l`Energie Atomique, and several validation calculations are presented. The PT method is proved to be valid not only in the unresolved resonance range but also in all the other energy ranges.
A new hybrid method--combined heat flux method with Monte-Carlo method to analyze thermal radiation
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".
Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)
International Nuclear Information System (INIS)
The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided
A Monte Carlo Simulation for the Ion Transport in Glow Discharges with Dusts
Institute of Scientific and Technical Information of China (English)
SUN Ai-Ping; PU Wei; QIU Xiao-Ming
2001-01-01
We use the Monte Carlo method to simulate theion transport in the rf parallel plate glow discharge with a negative-voltage pulse connected to the electrode. It is found that self-consistent field, dust charge, dust concentration,and dust size influence the energy distribution and the density of the ions arriving at the target, and in particular, the latter two make significant influence. As dust concentration or dust size increases, the number of ions arriving at the target reduces greatly.
Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program
International Nuclear Information System (INIS)
This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems
International Nuclear Information System (INIS)
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
Time-implicit Monte-Carlo collision algorithm for particle-in-cell electron transport models
International Nuclear Information System (INIS)
A time-implicit Monte-Carlo collision algorithm has been developed to allow particle-in-cell electron transport models to be applied to arbitrarily collisional systems. The algorithm is formulated for electrons moving in response to electric and magnetic accelerations and subject to collisional drag and scattering due to a background plasma. The correct fluid or streaming transport results are obtained in the respective limits of strongly- or weakly-collisional systems, and reasonable behavior is produced even for time steps greatly exceeding the magnetic-gyration and collisional-scattering times
A portable, parallel, object-oriented Monte Carlo neutron transport code in C++
Energy Technology Data Exchange (ETDEWEB)
Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A and M Univ., College Station, TX (United States)]|[Los Alamos National Lab., NM (United States)
1997-05-01
We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
2015-06-15
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.
Update on the development and validation of MERCURY: a modern, Monte Carlo particle transport code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R.; Taylor, J.; McKinley, S.; Greenman, G. [Dermott Cullen, Matthew O' Brien, Bret Beck and Christian Hagmann, Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-dimensional combinatorial geometry (CG), 1-dimensional radial meshes, 2-dimensional quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model for free gas and bound, S({alpha}, {beta}) molecular scattering, as well as support for continuous energy cross sections. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base. (authors)
Update on the Development and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Taylor, J M; McKinley, M S; Greenman, G M; Cullen, D E; O' Brien, M J; Beck, B R; Hagmann, C A
2005-06-06
An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-D combinatorial geometry (CG), 1-D radial meshes, 2-D quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model, support for continuous energy cross sections and S ({alpha}, {beta}) molecular bound scattering. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base.
Parallel processing of Monte Carlo code MCNP for particle transport problem
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Kawasaki, Takuji
1996-06-01
It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)
GPU-based Monte Carlo dust radiative transfer scheme applied to AGN
Heymann, Frank
2012-01-01
A three dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons (PAH). Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray-tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust...
Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators
AUTHOR|(CDS)2082330; Leonid, Rivkin
With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...
Transport methods and interactions for space radiations
Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.
1991-01-01
A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.
Energy Technology Data Exchange (ETDEWEB)
Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1994-12-31
The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.
Reverse Monte Carlo ray-tracing for radiative heat transfer in combustion systems
Sun, Xiaojing
Radiative heat transfer is a dominant heat transfer phenomenon in high temperature systems. With the rapid development of massive supercomputers, the Monte-Carlo ray tracing (MCRT) method starts to see its applications in combustion systems. This research is to find out if Monte-Carlo ray tracing can offer more accurate and efficient calculations than the discrete ordinates method (DOM). Monte-Carlo ray tracing method is a statistical method that traces the history of a bundle of rays. It is known as solving radiative heat transfer with almost no approximation. It can handle nonisotropic scattering and nongray gas mixtures with relative ease compared to conventional methods, such as DOM and spherical harmonics method, etc. There are two schemes in Monte-Carlo ray tracing method: forward and backward/reverse. Case studies and the governing equations demonstrate the advantages of reverse Monte-Carlo ray tracing (RMCRT) method. The RMCRT can be easily implemented for domain decomposition parallelism. In this dissertation, different efficiency improvements techniques for RMCRT are introduced and implemented. They are the random number generator, stratified sampling, ray-surface intersection calculation, Russian roulette, and important sampling. There are two major modules in solving the radiative heat transfer problems: the RMCRT RTE solver and the optical property models. RMCRT is first fully verified in gray, scattering, absorbing and emitting media with black/nonblack, diffuse/nondiffuse bounded surface problems. Sensitivity analysis is carried out with regard to the ray numbers, the mesh resolutions of the computational domain, optical thickness of the media and effects of variance reduction techniques (stratified sampling, Russian roulette). Results are compared with either analytical solutions or benchmark results. The efficiency (the product of error and computation time) of RMCRT has been compared to DOM and suggest great potential for RMCRT's application
Monte Carlo Study of Temperature-dependent Non-diffusive Thermal Transport in Si Nanowires
Ma, Lei; Liu, Mengmeng; Zhao, Xuxin; Wu, Qixing; Sun, Hongyuan
2016-01-01
Non-diffusive thermal transport has gained extensive research interest recently due to its important implications on fundamental understanding of material phonon mean free path distributions and many nanoscale energy applications. In this work, we systematically investigate the role of boundary scattering and nanowire length on the nondiffusive thermal transport in thin silicon nanowires by rigorously solving the phonon Boltzmann transport equation using a variance reduced Monte Carlo technique across a range of temperatures. The simulations use the complete phonon dispersion and spectral lifetime data obtained from first-principle density function theory calculations as input without any adjustable parameters. Our BTE simulation results show that the nanowire length plays an important role in determining the thermal conductivity of silicon nanowires. In addition, our simulation results suggest significant phonon confinement effect for the previously measured silicon nanowires. These findings are important fo...
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
Exact modeling of the torus geometry with Monte Carlo transport code
International Nuclear Information System (INIS)
It is valuable to model torus geometry exactry for the neutronics design of fusion reactor in order to assess neutronics characteristics such as tritium breeding ratio, heat generation rate, etc, near the plasma. Monte Carlo code MORSE-GG which plays important role in the radiation streaming calculation of fusion reactors had been able to deal with the geometry composed of second order surfaces. The MORSE-GG program is modified to be able to deal with torus geometry which has fourth order surface by solving biquadratic equations, hoping that MORSE-GG code becomes more effective for the neutronics calculation of the Tokamak fusion reactor. (author)
Effects of Nuclear Interactions in Space Radiation Transport
Lin, Zi-Wei; Barghouty, A. F.
2005-01-01
Space radiation transport codes have been developed to calculate radiation effects behind materials in human mission to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
International Nuclear Information System (INIS)
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice. (author)
Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2002-01-01
Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.
Verification and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A
2004-12-09
Verification and Validation (V&V) is a critical phase in the development cycle of any scientific code. The aim of the V&V process is to determine whether or not the code fulfills and complies with the requirements that were defined prior to the start of the development process. While code V&V can take many forms, this paper concentrates on validation of the results obtained from a modern code against those produced by a validated, legacy code. In particular, the neutron transport capabilities of the modern Monte Carlo code MERCURY are validated against those in the legacy Monte Carlo code TART. The results from each code are compared for a series of basic transport and criticality calculations which are designed to check a variety of code modules. These include the definition of the problem geometry, particle tracking, collisional kinematics, sampling of secondary particle distributions, and nuclear data. The metrics that form the basis for comparison of the codes include both integral quantities and particle spectra. The use of integral results, such as eigenvalues obtained from criticality calculations, is shown to be necessary, but not sufficient, for a comprehensive validation of the code. This process has uncovered problems in both the transport code and the nuclear data processing codes which have since been rectified.
International Nuclear Information System (INIS)
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)
An algorithm for Monte-Carlo time-dependent radiation transfer
Harries, Tim J.
2011-01-01
A new Monte-Carlo algorithm for calculating time-dependent radiative-transfer under the assumption of LTE is presented. Unlike flux-limited diffusion the method is polychromatic, includes scattering, and is able to treat the optically thick and free-streaming regimes simultaneously. The algorithm is tested on a variety of 1-d and 2-d problems, and good agreement with benchmark solutions is found. The method is used to calculate the time-varying spectral energy distribution from a circumstella...
Applying graphics processor units to Monte Carlo dose calculation in radiation therapy
Directory of Open Access Journals (Sweden)
Bakhtiari M
2010-01-01
Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.
Domain decomposition and terabyte tallies with the OpenMC Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Memory limitations are a key obstacle to applying Monte Carlo neutron transport methods to high-fidelity full-core reactor analysis. Billions of unique regions are needed to carry out full-core depletion and fuel performance analyses, equating to terabytes of memory for isotopic abundances and tally scores - far more than can fit on a single computational node in modern architectures. This work introduces an implementation of domain decomposition that addresses this problem, demonstrating excellent scaling up to a 2.39TB mesh-tally distributed across 512 compute nodes running a full-core reactor benchmark on the Mira Blue Gene/Q supercomputer at Argonne National Laboratory. (author)
New Capabilities in Mercury: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A; Kramer, K J; McKinley, M S; O' Brien, M J; Taylor, J M
2007-03-08
The new physics, algorithmic and computer science capabilities of the Mercury general-purpose Monte Carlo particle transport code are discussed. The new physics and algorithmic features include in-line energy deposition and isotopic depletion, significant enhancements to the tally and source capabilities, diagnostic ray-traced particles, support for multi-region hybrid (mesh and combinatorial geometry) systems, and a probability of initiation method. Computer science enhancements include a second method of dynamically load-balancing parallel calculations, improved methods for visualizing 3-D combinatorial geometries and initial implementation of an in-line visualization capabilities.
Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach
Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume
2016-03-01
Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.
International Nuclear Information System (INIS)
Contrast-enhanced stereotactic synchrotron radiation therapy (SSRT) is an innovative technique based on localized dose-enhancement effects obtained by reinforced photoelectric absorption in the tumor. Medium energy monochromatic X-rays (50 - 100 keV) are used for irradiating tumors previously loaded with a high-Z element. Clinical trials of SSRT are being prepared at the European Synchrotron Radiation Facility (ESRF), an iodinated contrast agent will be used. In order to compute the energy deposited in the patient (dose), a dedicated treatment planning system (TPS) has been developed for the clinical trials, based on the ISOgray TPS. This work focuses on the SSRT specific modifications of the TPS, especially to the PENELOPE-based Monte Carlo dose engine. The TPS uses a dedicated Monte Carlo simulation of medium energy polarized photons to compute the deposited energy in the patient. Simulations are performed considering the synchrotron source, the modeled beamline geometry and finally the patient. Specific materials were also implemented in the voxelized geometry of the patient, to consider iodine concentrations in the tumor. The computation process has been optimized and parallelized. Finally a specific computation of absolute doses and associated irradiation times (instead of monitor units) was implemented. The dedicated TPS was validated with depth dose curves, dose profiles and absolute dose measurements performed at the ESRF in a water tank and solid water phantoms with or without bone slabs. (author)
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)
2015-04-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.
International Nuclear Information System (INIS)
In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of: (1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain's replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.
Energy Technology Data Exchange (ETDEWEB)
O' Brien, M. J.; Brantley, P. S.
2015-01-20
In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 2^{21} = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.
International Nuclear Information System (INIS)
We develop a 'Local' Exponential Transform method which distributes the particles nearly uniformly across the system in Monte Carlo transport calculations. An exponential approximation to the continuous transport equation is used in each mesh cell to formulate biasing parameters. The biasing parameters, which resemble those of the conventional exponential transform, tend to produce a uniform sampling of the problem geometry when applied to a forward Monte Carlo calculation, and thus they help to minimize the maximum variance of the flux. Unlike the conventional exponential transform, the biasing parameters are spatially dependent, and are automatically determined from a forward diffusion calculation. We develop two versions of the forward Local Exponential Transform method, one with spatial biasing only, and one with spatial and angular biasing. The method is compared to conventional geometry splitting/Russian roulette for several sample one-group problems in X-Y geometry. The forward Local Exponential Transform method with angular biasing is found to produce better results than geometry splitting/Russian roulette in terms of minimizing the maximum variance of the flux. (orig.)
Frankl, Matthias; Macián-Juan, Rafael
2016-03-01
The development of intensity-modulated radiotherapy treatments delivering large amounts of monitor units (MUs) recently raised concern about higher risks for secondary malignancies. In this study, optimised combinations of several variance reduction techniques (VRTs) have been implemented in order to achieve a high precision in Monte Carlo (MC) radiation transport simulations and the calculation of in- and out-of-field photon and neutron dose-equivalent distributions in an anthropomorphic phantom using MCNPX, v.2.7. The computer model included a Varian Clinac 2100C treatment head and a high-resolution head phantom. By means of the applied VRTs, a relative uncertainty for the photon dose-equivalent distribution of 8 MeV, has been calculated. Relative uncertainty, calculated for each voxel, could be kept below 5 % in average over all voxels of the phantom. Thus, a very detailed neutron dose distribution could be obtained. The achieved precision now allows a far better estimation of both photon and especially neutron doses out-of-field, where neutrons can become the predominant component of secondary radiation. PMID:26311702
Energy Technology Data Exchange (ETDEWEB)
Manchado de Sola, F.; Vilches Pacheco, M.; Lallena Rojo, A. M.; Prezado, Y.
2013-07-01
Still in testing phase, radiation therapy with mini-beams is presented as a promising form of treatment. The irradiation with beams constituted by a group of parallel strips of radiation and shade (peaks and valleys), each an of the which has a width of the order of microns. We studied using Monte Carlo simulation, the effect of the brain caused by the heartbeat pulsed on the reason of dose peak-valley in cranial radiotherapy with mini-beams, depending on the width of peak and the rate of irradiation. (Author)
International Nuclear Information System (INIS)
three dimensional Monte Carlo calculation is required for the shielding calculation in the tokamak-type DT nuclear fusion reactor with many penetrations. 2) In Chapter 3, radiation streaming through the slit between the blanket modules is described, in Chapter 4, that through the small circular duct in the blanket modules is described, in Chapter 5, and that through the large opening duct in the vacuum vessel is described. The nuclear properties of the blanket, the vacuum vessel and the TF coil are systematically calculated for the various configurations. Based on the obtained results, the analytical formulas of these nuclear properties are deduced, and the guideline is proposed for the shielding design. 3) In Chapter 6, in order to evaluate the decay gamma ray dose rate around the duct due to radiation streaming through the large opening duct in the vacuum vessel, the evaluation method is proposed using the decay gamma ray Monte Carlo calculation. By replacing the prompt gamma-ray spectrum to the decay one in the Monte Carlo code, the decay gamma ray Monte Carlo transport calculation is conducted. The effective variance reduction method is developed for the decay gamma ray Monte Carlo calculation in the over-all tokamak region with drastically reducing the calculation time. Using this method, the shielding calculation is conducted for the ITER duct penetration, and the effectiveness of this method is demonstrated. (author)
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house opti...
Energy Technology Data Exchange (ETDEWEB)
Han, Gi Young; Seo, Bo Kyun [Korea Institute of Nuclear Safety,, Daejeon (Korea, Republic of); Kim, Do Hyun; Shin, Chang Ho; Kim, Song Hyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-06-15
In analyzing residual radiation, researchers generally use a two-step Monte Carlo (MC) simulation. The first step (MC1) simulates neutron transport, and the second step (MC2) transports the decay photons emitted from the activated materials. In this process, the stochastic uncertainty estimated by the MC2 appears only as a final result, but it is underestimated because the stochastic error generated in MC1 cannot be directly included in MC2. Hence, estimating the true stochastic uncertainty requires quantifying the propagation degree of the stochastic error in MC1. The brute force technique is a straightforward method to estimate the true uncertainty. However, it is a costly method to obtain reliable results. Another method, called the adjoint-based method, can reduce the computational time needed to evaluate the true uncertainty; however, there are limitations. To address those limitations, we propose a new strategy to estimate uncertainty propagation without any additional calculations in two-step MC simulations. To verify the proposed method, we applied it to activation benchmark problems and compared the results with those of previous methods. The results show that the proposed method increases the applicability and user-friendliness preserving accuracy in quantifying uncertainty propagation. We expect that the proposed strategy will contribute to efficient and accurate two-step MC calculations.
Generalized Subtraction Schemes for the Difference Formulation in Radiation Transport
Energy Technology Data Exchange (ETDEWEB)
Luu, T; Brooks, E; Szoke, A
2008-07-25
In the difference formulation for the transport of thermally emitted photons, the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field removes the cancellation between thermal emission and absorption that is responsible for noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that can not be determined until the end of the time step. It can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this report, we consider a difference formulation relative to the material temperature at the beginning of the time step, and in the situations where the radiation intensity more closely follows a temperature other than the local material temperature, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. To support our contention that the resulting generalized subtraction scheme is robust, and therefore suitable for practical use, we perform a stability analysis in the thick limit where instabilities usually occur.
Transport and radiation in complex LTE mixtures
Janssen, Jesper; Peerenboom, Kim; Suijker, Jos; Gnybida, Mykhailo; van Dijk, Jan
2014-10-01
Complex LTE mixtures are for example encountered in re-entry, welding, spraying and lighting. These mixtures typically contain a rich chemistry in combination with large temperature gradients. LTE conditions are also interesting because they can aid in the validation of NLTE algorithms. An example is the calculation of transport properties. In this work a mercury free high intensity discharge lamp is considered. The investigation focusses on using salts like InI or SnI as a buffer species. By using these species a dominant background gas like mercury is no longer present. As a consequence the diffusion algorithms based on Fick's law are no longer applicable and the Stefan-Maxwell equations must be solved. This system of equations is modified with conservation rules to set a coldspot pressure for saturated species and enforce the mass dosage for unsaturated species. The radiative energy transport is taken into account by raytracing. Quantum mechanical simulations have been used to calculate the potential curves and the transition dipole moments for indium with iodine and tin with iodine. The results of these calculations have been used to predict the quasistatic broadening by iodine. The work was supported by the project SCHELP from the Belgium IWT (Project Number 110003) and the CATRENE SEEL Project (CA502).
Simulating Radiation Transport in Curved Spacetimes
Endeve, Eirik; Hauck, Cory; Xing, Yulong; Cardall, Christian; Mezzacappa, Anthony
2014-03-01
We are developing methods for simulation of radiation transport in systems governed by strong gravity (e.g., neutrino transport in core-collapse supernovae). By employing conservative formulations of the general relativistic Boltzmann equation, we aim to develop methods that are (i) high-order accurate for computational efficiency; (ii) robust in the sense that the phase space density f preserves the maximum principle of the physical model (f ∈ [ 0 , 1 ] for fermions); and (iii) applicable to curvilinear coordinate systems to accommodate curved spacetimes, which result in gravity-induced frequency shift and angular aberration. Our approach is based on the Runge-Kutta discontinuous Galerkin method, which has many attractive properties, including high-order accuracy on a compact stencil. We present the physical model, describe our numerical methods, and show results from implementations in spherical and axial symmetry. Our tests show that the method is high-order accurate and strictly preserves the maximum principle on f. We also demonstrate the ability of our method to accurately include effects of a strong gravitational field.
International Nuclear Information System (INIS)
Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value
Energy Technology Data Exchange (ETDEWEB)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.
The ATLAS collaboration
2013-01-01
Recently the ATLAS collaboration has measured several final state observables that are sensitive to additional parton radiation in top anti-top quark final states produced in proton-proton collisions at a centre-of-mass energies of $sqrt{s}=7$~TeV. These measurements are compared to modern Monte Carlo generators implementing several different models and with systematic model parameter variations. Future measurements to constrain parton radiation are also proposed and the predictions of various Monte Carlo generators are compared.
Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study
Energy Technology Data Exchange (ETDEWEB)
Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)
2015-06-15
Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical
Nelson, Adam
Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system
Description of Transport Codes for Space Radiation Shielding
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.
2011-01-01
This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.
COMET-PE as an Alternative to Monte Carlo for Photon and Electron Transport
Hayward, Robert M.; Rahnema, Farzad
2014-06-01
Monte Carlo methods are a central component of radiotherapy treatment planning, shielding design, detector modeling, and other applications. Long calculation times, however, can limit the usefulness of these purely stochastic methods. The coarse mesh method for photon and electron transport (COMET-PE) provides an attractive alternative. By combining stochastic pre-computation with a deterministic solver, COMET-PE achieves accuracy comparable to Monte Carlo methods in only a fraction of the time. The method's implementation has been extended to 3D, and in this work, it is validated by comparison to DOSXYZnrc using a photon radiotherapy benchmark. The comparison demonstrates excellent agreement; of the voxels that received more than 10% of the maximum dose, over 97.3% pass a 2% / 2mm acceptance test and over 99.7% pass a 3% / 3mm test. Furthermore, the method is over an order of magnitude faster than DOSXYZnrc and is able to take advantage of both distributed-memory and shared-memory parallel architectures for increased performance.
Charge transport in a-Si:H detectors: Comparison of analytical and Monte Carlo simulations
International Nuclear Information System (INIS)
To understand the signal formation in hydrogenated amorphous silicon (a-Si:H) p-i-n detectors, dispersive charge transport due to multiple trapping in a-Si:H tail states is studied both analytically and by Monte Carlo simulations. An analytical solution is found for the free electron and hole distributions n(x,t) and the transient current I(t) due to an initial electron-hole pair generated at an arbitrary depth in the detector for the case of exponential band tails and linear field profiles; integrating over all e-h pairs produced along the particle's trajectory yields the actual distributions and current; the induced charge Q(t) is obtained by numerically integrating the current. This generalizes previous models used to analyze time-of-flight experiments. The Monte Carlo simulation provides the same information but can be applied to arbitrary field profiles, field dependent mobilities and localized state distributions. A comparison of both calculations is made in a simple case to show that identical results are obtained over a large time domain. A comparison with measured signals confirms that the total induced charge depends on the applied bias voltage. The applicability of the same approach to other semiconductors is discussed
Energy Technology Data Exchange (ETDEWEB)
Su, L.; Du, X.; Liu, T.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)
2013-07-01
An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)
A Monte Carlo study of the radiation quality dependence of DNA fragmentation spectra.
Alloni, D; Campa, A; Belli, M; Esposito, G; Facoetti, A; Friedland, W; Liotta, M; Mariotti, L; Paretzke, H G; Ottolenghi, A
2010-03-01
We simulated the irradiation of human fibroblasts with gamma rays, protons and helium, carbon and iron ions at a fixed dose of 5 Gy. The simulations were performed with the biophysical Monte Carlo code PARTRAC. From the output of the code, containing in particular the genomic positions of the radiation-induced DNA double-strand breaks (DSBs), we obtained the DNA fragmentation spectra. Very small fragments, in particular those related to "complex lesions" (few tens of base pairs), are probably very important for the late cellular consequences, but their detection is not possible with the common experimental techniques. We paid special attention to the differences among the various ions in the production of these very small fragments; in particular, we compared the fragmentation spectra for ions of the same specific energy and for ions of the same LET (linear energy transfer). As found previously for iron ions, we found that the RBE (relative biological effectiveness) for DSB production was considerably higher than 1 for all high-LET radiations considered. This is at variance with the results obtainable from experimental data, and it is due to the ability to count the contribution of small fragments. It should be noted that for a given LET this RBE decreases with increasing ion charge, due mainly to the increasing mean energy of secondary electrons. A precise quantification of the DNA initial damage can be of great importance for both radiation protection, particularly in open-space long-term manned missions, and hadrontherapy.
Monte Carlo simulation methods of determining red bone marrow dose from external radiation
International Nuclear Information System (INIS)
Objective: To provide evidence for a more reasonable method of determining red bone marrow dose by analyzing and comparing existing simulation methods. Methods: By utilizing Monte Carlo simulation software MCNPX, the absorbed doses of red hone marrow of Rensselaer Polytechnic Institute (RPI) adult female voxel phantom were calculated through 4 different methods: direct energy deposition.dose response function (DRF), King-Spiers factor method and mass-energy absorption coefficient (MEAC). The radiation sources were defined as infinite plate.sources with the energy ranging from 20 keV to 10 MeV, and 23 sources with different energies were simulated in total. The source was placed right next to the front of the RPI model to achieve a homogeneous anteroposterior radiation scenario. The results of different simulated photon energy sources through different methods were compared. Results: When the photon energy was lower than 100 key, the direct energy deposition method gave the highest result while the MEAC and King-Spiers factor methods showed more reasonable results. When the photon energy was higher than 150 keV taking into account of the higher absorption ability of red bone marrow at higher photon energy, the result of the King-Spiers factor method was larger than those of other methods. Conclusions: The King-Spiers factor method might be the most reasonable method to estimate the red bone marrow dose from external radiation. (authors)
International Nuclear Information System (INIS)
The objective of this study was to establish the biological effects on occupational workers. In this study, have made a bibliographic review of the changes on skin of 217 professionals; between 21 and 70 years radiologists, X-ray technicians, radioisotope workers, nurses and others, which were exposed to ionizing radiation, in the departments of Diagnosis and Treatment of the Hospital Carlos Andrade Marin of the Quito city. From this universe 133 workers were excluded of the analysis. From the totality of lesions produced on the skin; the depilation constituted 40.18%, hyper pigmentation 19.34%, hypo pigmentation 9 %, capillary fragility 13.39%, erythema 13.39%, alopecia 5.37%. From the totality of lesions produced in blood: the leukopenia constituted 20.23% between all workers. The percentage method was used for statical calculation. A bibliographic update is done and the most relevant clinical aspects are reviewed. (The author)
An algorithm for Monte-Carlo time-dependent radiation transfer
Harries, Tim J
2011-01-01
A new Monte-Carlo algorithm for calculating time-dependent radiative-transfer under the assumption of LTE is presented. Unlike flux-limited diffusion the method is polychromatic, includes scattering, and is able to treat the optically thick and free-streaming regimes simultaneously. The algorithm is tested on a variety of 1-d and 2-d problems, and good agreement with benchmark solutions is found. The method is used to calculate the time-varying spectral energy distribution from a circumstellar disc illuminated by a protostar whose accretion luminosity is varying. It is shown that the time lag between the optical variability and the infrared variability results from a combination of the photon travel time and the thermal response in the disc, and that the lag is an approximately linear function of wavelength.
GPU-based high performance Monte Carlo simulation in neutron transport
Energy Technology Data Exchange (ETDEWEB)
Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br
2009-07-01
Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)
Overview of TRIPOLI-4 version 7, Continuous-energy Monte Carlo Transport Code
International Nuclear Information System (INIS)
The TRIPOLI-4 code is used essentially for four major classes of applications: shielding studies, criticality studies, core physics studies, and instrumentation studies. In this updated overview of the Monte Carlo transport code TRIPOLI-4, we list and describe its current main features, including recent developments or extended capacities like effective beta estimation, photo-nuclear reactions or extended mesh tallies. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. TRIPOLI-4 has support for execution in parallel mode. Special features and applications are also presented concerning: 'particles storage', resuming a stopped TRIPOLI-4 run, collision bands, Green's functions, source convergence in criticality mode, and mesh tally
Core-scale solute transport model selection using Monte Carlo analysis
Malama, Bwalya; James, Scott C
2013-01-01
Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (H-3) and sodium-22, and the retarding solute uranium-232. The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single- and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows ...
penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE
Energy Technology Data Exchange (ETDEWEB)
Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-01
The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.
Monte Carlo simulation of phonon transport in variable cross-section nanowires
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A dedicated Monte Carlo (MC) model is proposed to investigate the mechanism of phonon transport in variable cross-section silicon nanowires (NWs). Emphasis is placed on understanding the thermal rectification effect and thermal conduction in tapered cross-section and incremental cross-section NWs. In the simulations, both equal and unequal heat input conditions are discussed. Under the latter condition, the tapered cross-section NW has a more prominent thermal rectification effect. Additionally, the capacity of heat conduction in the tapered cross-section NW is always higher than that of the incremental one. Two reasons may be attributed to these behaviors: one is their different boundary conditions and the other is their different volume distribution. Although boundary scattering plays an important role in nanoscale structures, the results suggest the influence of boundary scattering on heat conduction is less obvious than that of volume distribution in NWs with variable cross-sections.
Improved cache performance in Monte Carlo transport calculations using energy banding
Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.
2014-04-01
We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.
Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code
Energy Technology Data Exchange (ETDEWEB)
O' Brien, M J; Joy, K I; Procassini, R J; Greenman, G M
2008-12-07
Domain decomposition has been implemented in a Constructive Solid Geometry (CSG) Monte Carlo neutron transport code. Previous methods to parallelize a CSG code relied entirely on particle parallelism; but in our approach we distribute the geometry as well as the particles across processors. This enables calculations whose geometric description is larger than what could fit in memory of a single processor, thus it must be distributed across processors. In addition to enabling very large calculations, we show that domain decomposition can speed up calculations compared to particle parallelism alone. We also show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission Energy (LIFE) facility, which has 5.6 million CSG parts.
MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners
International Nuclear Information System (INIS)
MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)
Monte Carlo Simulations of Spin Transport in Nanoscale InGaAs Field Effect Transistors
Thorpe, B; Langbein, F; Schirmer, S
2016-01-01
By augmenting an in-house developed, experimentally verified Monte Carlo device simulator with a Bloch equation model with a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings, we simulate electron spin transport in a \\SI{25}{nm} gate length InGaAs MOSFET. We observe non-uniform decay of the net magnetization between the source and gate electrodes and an interesting magnetization recovery effect due to spin refocusing induced by high electric field between the gate and drain electrodes. We demonstrate coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current is sensitive to strain in the channel, suggesting that the device could act as a room-temperature nanoscale strain sensor.
Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics.
Gagorik, Adam G; Mohin, Jacob W; Kowalewski, Tomasz; Hutchison, Geoffrey R
2013-01-01
The effect of morphology on charge transport in organic photovoltaics is assessed using Monte Carlo. In isotopic two-phase morphologies, increasing the domain size from 6.3 to 18.3 nm improves the fill factor by 11.6%, a result of decreased tortuosity and relaxation of Coulombic barriers. Additionally, when small aggregates of electron acceptors are interdispersed into the electron donor phase, charged defects form in the system, reducing fill factors by 23.3% on average, compared with systems without aggregates. In contrast, systems with idealized connectivity show a 3.31% decrease in fill factor when domain size was increased from 4 to 64 nm. We attribute this to a decreased rate of exciton separation at donor-acceptor interfaces. Finally, we notice that the presence of Coulomb interactions increases device performance as devices become smaller. The results suggest that for commonly found isotropic morphologies the Coulomb interactions between charge carriers dominates exciton separation effects.
Analysis of Light Transport Features in Stone Fruits Using Monte Carlo Simulation.
Directory of Open Access Journals (Sweden)
Chizhu Ding
Full Text Available The propagation of light in stone fruit tissue was modeled using the Monte Carlo (MC method. Peaches were used as the representative model of stone fruits. The effects of the fruit core and the skin on light transport features in the peaches were assessed. It is suggested that the skin, flesh and core should be separately considered with different parameters to accurately simulate light propagation in intact stone fruit. The detection efficiency was evaluated by the percentage of effective photons and the detection sensitivity of the flesh tissue. The fruit skin decreases the detection efficiency, especially in the region close to the incident point. The choices of the source-detector distance, detection angle and source intensity were discussed. Accurate MC simulations may result in better insight into light propagation in stone fruit and aid in achieving the optimal fruit quality inspection without extensive experimental measurements.
McKinley, Michael Scott; Brooks, Eugene D., III; Szoke, Abraham
2003-07-01
We compare the implicit Monte Carlo (IMC) technique to the symbolic IMC (SIMC) technique, with and without weight vectors in frequency space, for time-dependent line transport in the presence of collisional pumping. We examine the efficiency and accuracy of the IMC and SIMC methods for test problems involving the evolution of a collisionally pumped trapping problem to its steady-state, the surface heating of a cold medium by a beam, and the diffusion of energy from a localized region that is collisionally pumped. The importance of spatial biasing and teleportation for problems involving high opacity is demonstrated. Our numerical solution, along with its associated teleportation error, is checked against theoretical calculations for the last example.
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Ilic, R D; Stankovic, S J
2002-01-01
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75–2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices
Energy Technology Data Exchange (ETDEWEB)
Zhang, Guoqing
2011-12-22
Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For
Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices
International Nuclear Information System (INIS)
Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For
User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code
International Nuclear Information System (INIS)
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate keff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
Monte-Carlo Radiative Transfer Model of the Diffuse Galactic Light
Seon, Kwang-Il
2015-02-01
Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calcu-lated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the gen-erally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of r . 0.5 kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of 1 . r . 2 kpc. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.
Directory of Open Access Journals (Sweden)
Robert Pincus
2009-06-01
Full Text Available Large-eddy simulation (LES refers to a class of calculations in which the large energy-rich eddies are simulated directly and are insensitive to errors in the modeling of sub-grid scale processes. Flows represented by LES are often driven by radiative heating and therefore require the calculation of radiative transfer along with the fluid-dynamical simulation. Current methods for detailed radiation calculations, even those using simple one-dimensional radiative transfer, are far too expensive for routine use, while popular shortcuts are either of limited applicability or run the risk of introducing errors on time and space scales that might affect the overall simulation. A new approximate method is described that relies on Monte Carlo sampling of the spectral integration in the heating rate calculation and is applicable to any problem. The error introduced when using this method is substantial for individual samples (single columns at single times but is uncorrelated in time and space and so does not bias the statistics of scales that are well resolved by the LES. The method is evaluated through simulation of two test problems; these behave as expected. A scaling analysis shows that the errors introduced by the method diminish as flow features become well resolved. Errors introduced by the approximation increase with decreasing spatial scale but the spurious energy introduced by the approximation is less than the energy expected in the unperturbed flow, i.e. the energy associated with the spectral cascade from the large scale, even on the grid scale.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
International Nuclear Information System (INIS)
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
Energy Technology Data Exchange (ETDEWEB)
Chi, Y; Tian, Z; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)
2015-06-15
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
Monte Carlo simulation of the sequential probability ratio test for radiation monitoring
International Nuclear Information System (INIS)
A computer program simulates the Sequential Probability Ratio Test (SPRT) using Monte Carlo techniques. The program, SEQTEST, performs random-number sampling of either a Poisson or normal distribution to simulate radiation monitoring data. The results are in terms of the detection probabilities and the average time required for a trial. The computed SPRT results can be compared with tabulated single interval test (SIT) values to determine the better statistical test for particular monitoring applications. Use of the SPRT in a hand-and-foot alpha monitor shows that the SPRT provides better detection probabilities while generally requiring less counting time. Calculations are also performed for a monitor where the SPRT is not permitted to the take longer than the single interval test. Although the performance of the SPRT is degraded by this restriction, the detection probabilities are still similar to the SIT values, and average counting times are always less than 75% of the SIT time. Some optimal conditions for use of the SPRT are described. The SPRT should be the test of choice in many radiation monitoring situations. 6 references, 8 figures, 1 table
MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.
Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio
2012-03-26
This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470
Monte Carlo calculation of the energy response characteristics of a RadFET radiation detector
International Nuclear Information System (INIS)
The Metal -Oxide Semiconductor Field-Effect-Transistor (MOSFET, RadFET) is frequently used as a sensor of ionizing radiation in nuclear-medicine, diagnostic-radiology, radiotherapy quality-assurance and in the nuclear and space industries. We focused our investigations on calculating the energy response of a p-type RadFET to low-energy photons in range from 12 keV to 2 MeV and on understanding the influence of uncertainties in the composition and geometry of the device in calculating the energy response function. All results were normalized to unit air kerma incident on the RadFET for incident photon energy of 1.1 MeV. The calculations of the energy response characteristics of a RadFET radiation detector were performed via Monte Carlo simulations using the MCNPX code and for a limited number of incident photon energies the FOTELP code was also used for the sake of comparison. The geometry of the RadFET was modeled as a simple stack of appropriate materials. Our goal was to obtain results with statistical uncertainties better than 1% (fulfilled in MCNPX calculations for all incident energies which resulted in simulations with 1 - 2x109 histories.
Load balancing in highly parallel processing of Monte Carlo code for particle transport
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Takemiya, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Kawasaki, Takuji [Fuji Research Institute Corporation, Tokyo (Japan)
2001-01-01
In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)
Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)
2015-05-15
Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.
Load balancing in highly parallel processing of Monte Carlo code for particle transport
International Nuclear Information System (INIS)
In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)
Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G
2004-12-01
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.
Modeling radiation from the atmosphere of Io with Monte Carlo methods
Gratiy, Sergey
Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. To validate a global numerical model of Io's atmosphere against astronomical observations requires a 3-D spherical-shell radiative transfer (RT) code to simulate disk-resolved images and disk-integrated spectra from the ultraviolet to the infrared spectral region. In addition, comparison of simulated and astronomical observations provides important information to improve existing atmospheric models. In order to achieve this goal, a new 3-D spherical-shell forward/backward photon Monte Carlo code capable of simulating radiation from absorbing/emitting and scattering atmospheres with an underlying emitting and reflecting surface was developed. A new implementation of calculating atmospheric brightness in scattered sunlight is presented utilizing the notion of an "effective emission source" function. This allows for the accumulation of the scattered contribution along the entire path of a ray and the calculation of the atmospheric radiation when both scattered sunlight and thermal emission contribute to the observed radiation---which was not possible in previous models. A "polychromatic" algorithm was developed for application with the backward Monte Carlo method and was implemented in the code. It allows one to calculate radiative intensity at several wavelengths simultaneously, even when the scattering properties of the atmosphere are a function of wavelength. The application of the "polychromatic" method improves the computational efficiency because it reduces the number of photon bundles traced during the simulation. A 3-D gas dynamics model of Io's atmosphere, including both sublimation and volcanic
STUDI PEMODELAN DAN PERHITUNGAN TRANSPORT MONTE CARLO DALAM TERAS HTR PEBBLE BED
Directory of Open Access Journals (Sweden)
Zuhair .
2013-01-01
Full Text Available Konsep sistem energi VHTR baik yang berbahan bakar pebble (VHTR pebble bed maupun blok prismatik (VHTR prismatik menarik perhatian fisikawan reaktor nuklir. Salah satu kelebihan teknologi bahan bakar bola adalah menawarkan terobosan teknologi pengisian bahan bakar tanpa harus menghentikan produksi listrik. Selain itu, partikel bahan bakar pebble dengan kernel uranium oksida (UO2 atau uranium oksikarbida (UCO yang dibalut TRISO dan pelapisan silikon karbida (SiC dianggap sebagai opsi utama dengan pertimbangan performa tinggi pada burn-up bahan bakar dan temperatur tinggi. Makalah ini mendiskusikan pemodelan dan perhitungan transport Monte Carlo dalam teras HTR pebble bed. HTR pebble bed adalah reaktor berpendingin gas temperatur tinggi dan bermoderator grafit dengan kemampuan kogenerasi. Perhitungan dikerjakan dengan program MCNP5 pada temperatur 1200 K. Pustaka data nuklir energi kontinu ENDF/B-V dan ENDF/B-VI dimanfaatkan untuk melengkapi analisis. Hasil perhitungan secara keseluruhan menunjukkan konsistensi dengan nilai keff yang hampir sama untuk pustaka data nuklir yang digunakan. Pustaka ENDF/B-VI (66c selalu memproduksi keff lebih besar dibandingkan ENDF/B-V (50c maupun ENDF/B-VI (60c dengan bias kurang dari 0,25%. Kisi BCC memprediksi keff hampir selalu lebih kecil daripada kisi lainnya, khususnya FCC. Nilai keff kisi BCC lebih dekat dengan kisi FCC dengan bias kurang dari 0,19% sedangkan dengan kisi SH bias perhitungannya kurang dari 0,22%. Fraksi packing yang sedikit berbeda (BCC= 61%, SH= 60,459% tidak membuat bias perhitungan menjadi berbeda jauh. Estimasi keff ketiga model kisi menyimpulkan bahwa model BCC lebih bisa diadopsi dalam perhitungan HTR pebble bed dibandingkan model FCC dan SH. Verifikasi hasil estimasi ini perlu dilakukan dengan simulasi Monte Carlo atau bahkan program deterministik lainnya guna optimisasi perhitungan teras reaktor temperatur tinggi. Kata-kunci: kernel, TRISO, bahan bakar pebble, HTR pebble bed
International Nuclear Information System (INIS)
1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can
C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO
Energy Technology Data Exchange (ETDEWEB)
Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL
2011-01-01
The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.
Tricoli, Ugo; Da Silva, Anabela; Markel, Vadim A
2016-01-01
We derive a reciprocity relation for vector radiative transport equation (vRTE) that describes propagation of polarized light in multiple-scattering media. We then show how this result, together with translational invariance of a plane-parallel sample, can be used to compute efficiently the sensitivity kernel of diffuse optical tomography (DOT) by Monte Carlo simulations. Numerical examples of polarization-selective sensitivity kernels thus computed are given.
GPU-based Monte Carlo Dust Radiative Transfer Scheme Applied to Active Galactic Nuclei
Heymann, Frank; Siebenmorgen, Ralf
2012-05-01
A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman & Wood method to reduce the calculation time, and the Fleck & Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
International Nuclear Information System (INIS)
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
Energy Technology Data Exchange (ETDEWEB)
Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)
2014-08-15
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS
Energy Technology Data Exchange (ETDEWEB)
Richers, Sherwood; Ott, Christian D. [TAPIR, Mailcode 350-17, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasen, Daniel; Fernández, Rodrigo [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); O’Connor, Evan [Department of Physics, Campus Code 8202, North Carolina State University, Raleigh, NC 27695 (United States)
2015-11-01
We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.
Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model
International Nuclear Information System (INIS)
Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface
Radiation safety in sea transport of radioactive material in Japan
Energy Technology Data Exchange (ETDEWEB)
Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)
2004-07-01
Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.
Near-field radiative thermal transport: From theory to experiment
Energy Technology Data Exchange (ETDEWEB)
Song, Bai, E-mail: baisong@umich.edu; Fiorino, Anthony; Meyhofer, Edgar, E-mail: meyhofer@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Reddy, Pramod, E-mail: pramodr@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2015-05-15
Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.
Effects of Nuclear Interactions on Accuracy of Space Radiation Transport
Lin, Zi-Wei; Barghouty, A. F.
2005-01-01
Space radiation risk to astronauts and electronic equipments is one major obstacle in long term human space explorations. Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect the accuracy of predictions from such radiation transport. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials. These results tell us at what energies nuclear cross sections are the most important for radiation risk evaluations, and how uncertainties in our knowledge about nuclear fragmentations relate to uncertainties in space transport predictions.
Energy Technology Data Exchange (ETDEWEB)
Procassini, R.J. [Lawrence Livermore National lab., CA (United States)
1997-12-31
The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.
1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO
Energy Technology Data Exchange (ETDEWEB)
T. EVANS; ET AL
2000-08-01
We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a best
International Nuclear Information System (INIS)
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.
International Nuclear Information System (INIS)
The radiation detection efficiency of four scintillators employed, or designed to be employed, in positron emission imaging (PET) was evaluated as a function of the crystal thickness by applying Monte Carlo Methods. The scintillators studied were the LuSiO5 (LSO), LuAlO3 (LuAP), Gd2SiO5 (GSO) and the YAlO3 (YAP). Crystal thicknesses ranged from 0 to 50 mm. The study was performed via a previously generated photon transport Monte Carlo code. All photon track and energy histories were recorded and the energy transferred or absorbed in the scintillator medium was calculated together with the energy redistributed and retransported as secondary characteristic fluorescence radiation. Various parameters were calculated e.g. the fraction of the incident photon energy absorbed, transmitted or redistributed as fluorescence radiation, the scatter to primary ratio, the photon and energy distribution within each scintillator block etc. As being most significant, the fraction of the incident photon energy absorbed was found to increase with increasing crystal thickness tending to form a plateau above the 30 mm thickness. For LSO, LuAP, GSO and YAP scintillators, respectively, this fraction had the value of 44.8, 36.9 and 45.7% at the 10 mm thickness and 96.4, 93.2 and 96.9% at the 50 mm thickness. Within the plateau area approximately (57-59)% (59-63)% (52-63)% and (58-61)% of this fraction was due to scattered and reabsorbed radiation for the LSO, GSO, YAP and LuAP scintillators, respectively. In all cases, a negligible fraction (<0.1%) of the absorbed energy was found to escape the crystal as fluorescence radiation
Querlioz, Damien
2013-01-01
This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.
Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport
Jia, Xun; Sempau, Josep; Choi, Dongju; Majumdar, Amitava; Jiang, Steve B
2009-01-01
Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in two cases. Our results demonstrate the adequate accuracy of the GPU implementation for both electron and photon beams in radiotherapy energy range. A speed up factor of 4.5 and 5.5 times have been observed for electron and photon testing cases, respectively, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor .
Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model
Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.
2015-10-01
Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface
Evaluation of the scattered radiation components produced in a gamma camera using Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Polo, Ivon Oramas, E-mail: ivonoramas67@gmail.com [Department of Nuclear Engineering, Faculty of Nuclear Sciences and Technologies, Higher Institute of Applied Science and Technology (InSTEC), La Habana (Cuba)
2014-07-01
Introduction: this paper presents a simulation for evaluation of the scattered radiation components produced in a gamma camera PARK using Monte Carlo code SIMIND. It simulates a whole body study with MDP (Methylene Diphosphonate) radiopharmaceutical based on Zubal anthropomorphic phantom, with some spinal lesions. Methods: the simulation was done by comparing 3 configurations for the detected photons. The corresponding energy spectra were obtained using Low Energy High Resolution collimator. The parameters related with the interactions and the fraction of events in the energy window, the simulated events of the spectrum and scatter events were calculated. Results: the simulation confirmed that the images without influence of scattering events have a higher number of valid recorded events and it improved the statistical quality of them. A comparison among different collimators was made. The parameters and detector energy spectrum were calculated for each simulation configuration with these collimators using {sup 99m}Tc. Conclusion: the simulation corroborated that LEHS collimator has higher sensitivity and HEHR collimator has lower sensitivity when they are used with low energy photons. (author)
International Nuclear Information System (INIS)
Background: Airborne γ-ray spectrometer has been used extensively over several decades for mineral exploration and geological mapping purposes to look for the peaks of potassium, uranium and thorium. And the low-energy ray is ignored. Purpose: In order to provide a basis for obtaining effective environmental radioactivity measurement results, Minimum detectable activity (MDA) values in monitoring ground radiation of the polycrystalline airborne γ-ray spectrometer need to be calculated. Methods: MDA is related with the detection efficiency. A Monte Carlo simulation was performed using the MCNP5 code for different radionuclides in the ground environment. Equivalent mass thickness was proposed to reduce variance, and the secondary source was used in the MCNP5 input. Results: The pulse height distributions of external detectors and internal detectors for 137Cs and 131I at different heights were obtained, which represent the counting rate decreased as the altitude increases. And the MDA of external detectors is better than that of internal detectors. Conclusion: The external detector is suggested to adopt in flight measurement for enhancing MDA. (authors)
International Nuclear Information System (INIS)
A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.
Energy Technology Data Exchange (ETDEWEB)
Narayan, Raman D.; Miranda, Ryan; Rez, Peter [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)
2012-03-15
A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.
Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B
International Nuclear Information System (INIS)
Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyNT = 1,35x108 n/cm , a fast neutron dose of 5,86x10-10 Gy/NT and a gamma ray dose of 8,30x10-14 Gy/NT. (author)
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Comparison of some popular Monte Carlo solution for proton transportation within pCT problem
Energy Technology Data Exchange (ETDEWEB)
Evseev, Ivan; Assis, Joaquim T. de; Yevseyeva, Olga [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico], E-mail: evseev@iprj.uerj.br, E-mail: joaquim@iprj.uerj.br, E-mail: yevseyeva@iprj.uerj.br; Lopes, Ricardo T.; Cardoso, Jose J.B.; Silva, Ademir X. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear], E-mail: ricardo@lin.ufrj.br, E-mail: jjbrum@oi.com.br, E-mail: ademir@con.ufrj.br; Vinagre Filho, Ubirajara M. [Instituto de Engenharia Nuclear IEN/CNEN-RJ, Rio de Janeiro, RJ (Brazil)], E-mail: bira@ien.gov.br; Hormaza, Joel M. [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias], E-mail: jmesa@ibb.unesp.br; Schelin, Hugo R.; Paschuk, Sergei A.; Setti, Joao A.P.; Milhoretto, Edney [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil)], E-mail: schelin@cpgei.cefetpr.br, E-mail: sergei@utfpr.edu.br, E-mail: jsetti@gmail.com, E-mail: edneymilhoretto@yahoo.com
2007-07-01
The proton transport in matter is described by the Boltzmann kinetic equation for the proton flux density. This equation, however, does not have a general analytical solution. Some approximate analytical solutions have been developed within a number of significant simplifications. Alternatively, the Monte Carlo simulations are widely used. Current work is devoted to the discussion of the proton energy spectra obtained by simulation with SRIM2006, GEANT4 and MCNPX packages. The simulations have been performed considering some further applications of the obtained results in computed tomography with proton beam (pCT). Thus the initial and outgoing proton energies (3 / 300 MeV) as well as the thickness of irradiated target (water and aluminum phantoms within 90% of the full range for a given proton beam energy) were considered in the interval of values typical for pCT applications. One from the most interesting results of this comparison is that while the MCNPX spectra are in a good agreement with analytical description within Fokker-Plank approximation and the GEANT4 simulated spectra are slightly shifted from them the SRIM2006 simulations predict a notably higher mean energy loss for protons. (author)
Core-scale solute transport model selection using Monte Carlo analysis
Malama, Bwalya; Kuhlman, Kristopher L.; James, Scott C.
2013-06-01
Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (3H) and sodium-22 (22Na ), and the retarding solute uranium-232 (232U). The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows single-porosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5/2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models.
Monte Carlo model of neutral-particle transport in diverted plasmas
Energy Technology Data Exchange (ETDEWEB)
Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G.
1981-11-01
The transport of neutral atoms and molecules in the edge and divertor regions of fusion experiments has been calculated using Monte-Carlo techniques. The deuterium, tritium, and helium atoms are produced by recombination in the plasma and at the walls. The relevant collision processes of charge exchange, ionization, and dissociation between the neutrals and the flowing plasma electrons and ions are included, along with wall reflection models. General two-dimensional wall and plasma geometries are treated in a flexible manner so that varied configurations can be easily studied. The algorithm uses a pseudo-collision method. Splitting with Russian roulette, suppression of absorption, and efficient scoring techniques are used to reduce the variance. The resulting code is sufficiently fast and compact to be incorporated into iterative treatments of plasma dynamics requiring numerous neutral profiles. The calculation yields the neutral gas densities, pressures, fluxes, ionization rates, momentum transfer rates, energy transfer rates, and wall sputtering rates. Applications have included modeling of proposed INTOR/FED poloidal divertor designs and other experimental devices.
International Nuclear Information System (INIS)
A Monte Carlo method of multiple scattered coherent light with the information of shear wave propagation in scattering media is presented. The established Monte-Carlo algorithm is mainly relative to optical phase variations due to the acoustic-radiation-force shear-wave-induced displacements of light scatterers. Both the distributions and temporal behaviors of optical phase increments in probe locations are obtained. Consequently, shear wave speed is evaluated quantitatively. It is noted that the phase increments exactly track the propagations of shear waves induced by focus-ultrasound radiation force. In addition, attenuations of shear waves are demonstrated in simulation results. By using linear regression processing, the shear wave speed, which is set to 2.1 m/s in simulation, is estimated to be 2.18 m/s and 2.35 m/s at time sampling intervals of 0.2 ms and 0.5 ms, respectively
Directory of Open Access Journals (Sweden)
Daniel G Zhang
Full Text Available MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF and conventional flattened 6MV photon beams were used. High dose rate (HDR brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL would be needed.
Zhang, Daniel G; Feygelman, Vladimir; Moros, Eduardo G; Latifi, Kujtim; Zhang, Geoffrey G
2014-01-01
MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.
Department of Environmental and Radiation Transport Physics - Overview
International Nuclear Information System (INIS)
structures, in collaboration with the Institute of Geological Sciences of Polish Academy of Sciences. The geological fault system which surrounds the ''Las Wolski'' horst is covered with loess overburden. An evident increase in radon concentration in the upper loess layer is observed over the fault position. This may have important environmental implications. Several samples of soil taken from those areas were analysed for the concentration of natural isotopes (U, Th, and K). Natural radioactivity measurements in various samples (soils, rocks, raw, and building materials, etc.) have been carried out using low background spectrometers (with NaI(Tl) and HPGe detectors). We took part in the national inter-comparison concerning the methodology of ''radon-in-water'' measurements. The results are to be published. A joint project ''The Radon Centre - Non- Governmental International Scientific Network'' has been started in co-operation with the Central Mining Institute in Katowice. The main goals are to prepare and execute joint research projects and programmes, and to disseminate and put into practice the results of research activities of particular Network members. Neutron methods are an important part of nuclear geophysics and are also used in medical modalities. Investigations of the neutron transport parameters require usually the detection and/or calculation of spatial, time, and energy distributions of fast, epithermal and thermal neutrons, and of the accompanying γ radiation. The research has been directed into several aspects: - Basic theoretical and experimental investigation for the thermal neutron transport: a) the temperature behaviour of the pulsed parameters in a hydrogenous moderator, b) diffusion cooling in small two-region systems containing substances of different types of energy characteristics of thermal neutron scattering. - Calculations of the radiation field and energy deposition in the water beam dump for the TESLA electron-positron collider for the DESY
Energy Technology Data Exchange (ETDEWEB)
Clouet, J.F.; Samba, G. [CEA Bruyeres-le-Chatel, 91 (France)
2005-07-01
We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)
International Nuclear Information System (INIS)
Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min-1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, T.; Nimal, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))
1990-01-01
The three-dimensional polycinetic Monte Carlo particle transport code TRIPOLI has been under development in the French Shielding Laboratory at Saclay since 1965. TRIPOLI-1 began to run in 1970 and became TRIPOLI-2 in 1978: since then its capabilities have been improved and many studies have been performed. TRIPOLI can treat stationary or time dependent problems in shielding and in neutronics. Some examples of solved problems are presented to demonstrate the many possibilities of the system. (author).
Overview. Department of Environmental and Radiation Transport Physics. Section 6
Energy Technology Data Exchange (ETDEWEB)
Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.
Green, K; Lumme, K
2001-08-01
The effect of clustering of small scatterers on optical properties was studied by creation of a Poisson distributed plane-parallel geometry and slow cooling of the particle system in the sense of simulated annealing in an attempt to minimize the assumed total potential energy and sample the spatial distribution during the process. The optical properties were calculated by the volume integral equation method (VIEM). The scattering results for unclustered structures with different size parameters and packing densities were also compared with those given by Monte Carlo simulation for radiative transfer. In particular, measuring the intensity distribution of the VIEM is well suited to the classic radiative transfer approach. PMID:18360404
Directory of Open Access Journals (Sweden)
Xueli Chen
2010-01-01
Full Text Available During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results.
Radiation transport in ultrafast heated high Z solid targets
Paraschiv, Ioana; Sentoku, Yasuhiko; Mancini, Roberto; Johzaki, Tomoyuki
2013-10-01
Ultra-intense laser-target interactions generate hot, dense, and radiating plasmas, especially in the case of high-Z target materials. In order to evaluate the effect of radiation and its transport on the laser-produced plasmas we have developed a radiation transport (RT) code and implemented it in a collisional particle-in-cell code, PICLS. The code uses a database of emissivities and opacities as functions of photon frequency, created for given densities and temperatures by the non-equilibrium, collisional-radiative atomic kinetics 0-D code FLYCHK together with its postprocessor FLYSPECTRA. Using the two-dimensional RT-PICLS code we have studied the X-ray transport in an ultrafast heated copper target, the X-ray conversion efficiency, and the exchange of energy between the radiation field and the target. The details of these results obtained from the implementation of the radiation transport model into the PICLS calculations will be reported in this presentation. Work supported by the DOE Office of Science grant no. DE-SC0008827 and by the NNSA/DOE grant no. DE-FC52-06NA27616.
Kovtanyuk, Andrey E.
2012-01-01
Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.
Antiproton annihilation physics in the Monte Carlo particle transport code SHIELD-HIT12A
Energy Technology Data Exchange (ETDEWEB)
Taasti, Vicki Trier; Knudsen, Helge [Dept. of Physics and Astronomy, Aarhus University (Denmark); Holzscheiter, Michael H. [Dept. of Physics and Astronomy, Aarhus University (Denmark); Dept. of Physics and Astronomy, University of New Mexico (United States); Sobolevsky, Nikolai [Institute for Nuclear Research of the Russian Academy of Sciences (INR), Moscow (Russian Federation); Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Thomsen, Bjarne [Dept. of Physics and Astronomy, Aarhus University (Denmark); Bassler, Niels, E-mail: bassler@phys.au.dk [Dept. of Physics and Astronomy, Aarhus University (Denmark)
2015-03-15
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi–Teller Z-law, which is implemented by default in SHIELD-HIT12A has been shown not to be a good approximation for the capture probability of negative projectiles by nuclei. We investigate other theories which have been developed, and give a better agreement with experimental findings. The consequence of these updates is tested by comparing simulated data with the antiproton depth dose curve in water. It is found that the implementation of these new capture probabilities results in an overestimation of the depth dose curve in the Bragg peak. This can be mitigated by scaling the antiproton collision cross sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds.
Zweck, Christopher; Zreda, Marek; Desilets, Darin
2013-10-01
Conventional formulations of changes in cosmogenic nuclide production rates with snow cover are based on a mass-shielding approach, which neglects the role of neutron moderation by hydrogen. This approach can produce erroneous correction factors and add to the uncertainty of the calculated cosmogenic exposure ages. We use a Monte Carlo particle transport model to simulate fluxes of secondary cosmic-ray neutrons near the surface of the Earth and vary surface snow depth to show changes in neutron fluxes above rock or soil surface. To correspond with shielding factors for spallation and low-energy neutron capture, neutron fluxes are partitioned into high-energy, epithermal and thermal components. The results suggest that high-energy neutrons are attenuated by snow cover at a significantly higher rate (shorter attenuation length) than indicated by the commonly-used mass-shielding formulation. As thermal and epithermal neutrons derive from the moderation of high-energy neutrons, the presence of a strong moderator such as hydrogen in snow increases the thermal neutron flux both within the snow layer and above it. This means that low-energy production rates are affected by snow cover in a manner inconsistent with the mass-shielding approach and those formulations cannot be used to compute snow correction factors for nuclides produced by thermal neutrons. Additionally, as above-ground low-energy neutron fluxes vary with snow cover as a result of reduced diffusion from the ground, low-energy neutron fluxes are affected by snow even if the snow is at some distance from the site where measurements are made.
Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@gmail.com [Laboratoire d’Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage, 15 rue Georges Clemenceau, 91406 Orsay cedex (France)
2014-06-15
Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (⩾20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.
International Nuclear Information System (INIS)
The models for prediction of the intensity and probability of radiation accidents during railway transportation of radiation-dangerous objects are suggested. The models are based on those developed for transport accident with general cargoes. Ultimate velocity of the special train at a moment of accident characterizing the object stability is used as a criterion for transformation of a transport accident into radiation one. The formulae for calculation of radiation accident intensities as a result of different events including accidents with a special train, collision with a train moving in opposite direction on railroad between stations, natural phenomenon (earthquake) are derived. The conclusion is made that application of the models suggested in optimization problems gives an opportunity to reduce the total cost of radiation-dangerous object design and operation
Radiation exposure during air and ground transportation
International Nuclear Information System (INIS)
The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO4:Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)
Radiation inactivation target size of rat adipocyte glucose transporter
International Nuclear Information System (INIS)
In situ assembly states of rat adipocyte glucose transport protein in plasma membrane (PM) and in microsomal pool (MM) were assessed by measuring target size (TS) of D glucose-sensitive, cytochalasin B binding activity. High energy radiation inactivated the binding in both PM and MM by reducing the total capacity of the binding (B/sub T/) without affecting the dissociation constant (K/sub D/). The reduction in B/sub T/ as a function of radiation dose was analyzed based on classical target theory, from which TS was calculated. TS in the PM of insulin-treated adipocytes was 58 KDa. TS in the MM of noninsulin-treated and insulin-treated adipocytes were 112 and 109 KDa, respectively. With MM, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses showing a shoulder in the semilog plots, which may be due to an interaction with a radiation sensitive inhibitor. With these results, they propose the following model: Adipocyte glucose transporter, while exists as a monomer (T) in PM, occurs in MM either as a homodimer (T2) or as a heterodimer (TX) with a protein X of a similar size. These dimers (T2 or TX) in MM, furthermore, may form a multi-molecular assembly with another, large (300-400 KDa) protein Y, and insulin increases this assembly formation. These putative, transporter-associated proteins X and Y may play an important role in control of transporter distribution between PM and MM, particularly in response to insulin
De Geyter, Gert; Fritz, Jacopo; Camps, Peter
2012-01-01
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different...
FY2008 Report on GADRAS Radiation Transport Methods.
Energy Technology Data Exchange (ETDEWEB)
Mattingly, John.; Mitchell, Dean J; Harding, Lee T.; Varley, Eric S.; Hilton, Nathan R.
2008-10-01
The primary function of the Gamma Detector Response and Analysis Software (GADRAS) is the solution of inverse radiation transport problems, by which the con-figuration of an unknown radiation source is inferred from one or more measured radia-tion signatures. GADRAS was originally developed for the analysis of gamma spec-trometry measurements. During fiscal years 2007 and 2008, GADRAS was augmented to implement the simultaneous analysis of neutron multiplicity measurements. This report describes the radiation transport methods developed to implement this new capability. This work was performed at the direction of the National Nuclear Security Administration's Office of Nonproliferation Research and Development. It was executed as an element of the Proliferation Detection Program's Simulation, Algorithm, and Modeling element. Acronyms BNL Brookhaven National Laboratory CSD Continuous Slowing-Down DU depleted uranium ENSDF Evaluated Nuclear Structure Data Files GADRAS Gamma Detector Response and Analysis Software HEU highly enriched uranium LANL Los Alamos National Laboratory LLNL Lawrence Livermore National Laboratory NA-22 Office of Nonproliferation Research and Development NNDC National Nuclear Data Center NNSA National Nuclear Security Administration ODE ordinary differential equation ONEDANT One-dimensional diffusion accelerated neutral particle transport ORNL Oak Ridge National Laboratory PARTISN Parallel time-dependent SN PDP Proliferation Detection Program RADSAT Radiation Scenario Analysis Toolkit RSICC Radiation Safety Information Computational Center SAM Simulation, Algorithms, and Modeling SNL Sandia National Laboratories SNM special nuclear material ToRI Table of Radioactive Isotopes URI uniform resource identifier XML Extensible Markup Language
Computation of radiative heat transport across a nanoscale vacuum gap
Energy Technology Data Exchange (ETDEWEB)
Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)
2014-02-10
Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.
State-of-the-art Monte Carlo 1988
Energy Technology Data Exchange (ETDEWEB)
Soran, P.D.
1988-06-28
Particle transport calculations in highly dimensional and physically complex geometries, such as detector calibration, radiation shielding, space reactors, and oil-well logging, generally require Monte Carlo transport techniques. Monte Carlo particle transport can be performed on a variety of computers ranging from APOLLOs to VAXs. Some of the hardware and software developments, which now permit Monte Carlo methods to be routinely used, are reviewed in this paper. The development of inexpensive, large, fast computer memory, coupled with fast central processing units, permits Monte Carlo calculations to be performed on workstations, minicomputers, and supercomputers. The Monte Carlo renaissance is further aided by innovations in computer architecture and software development. Advances in vectorization and parallelization architecture have resulted in the development of new algorithms which have greatly reduced processing times. Finally, the renewed interest in Monte Carlo has spawned new variance reduction techniques which are being implemented in large computer codes. 45 refs.
Directory of Open Access Journals (Sweden)
F. Spada
2006-02-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.
First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.
A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.
Signal Processing Model for Radiation Transport
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H
2008-07-28
This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the
Garain, Sudip K; Chakrabarti, Sandip K
2013-01-01
Low and intermediate frequency quasi-periodic oscillations (QPOs) in black hole candidates are believed to be due to oscillations of the Comptonizing regions in an accretion flow. Assuming that the general structure of an accretion disk is a Two Component Advective Flow (TCAF), we numerically simulate the light curves emitted from an accretion disk for different accretion rates and find how the QPO frequencies vary. We use a standard Keplerian disk residing at the equatorial plane as a source of soft photons. These soft photons, after suffering multiple scattering with the hot electrons of the low angular momentum, sub-Keplerian, flow emerge out as hard radiation. The hydrodynamic and thermal properties of the electron cloud is simulated using a Total Variation Diminishing (TVD) code. The TVD code is then coupled with a radiative transfer code which simulates the energy exchange between the electron and radiation using Monte Carlo technique. The resulting localized heating and cooling are included also. We fi...
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2005-09-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Energy Technology Data Exchange (ETDEWEB)
Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; /SLAC; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne
2010-09-14
In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-01
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time
Energy Technology Data Exchange (ETDEWEB)
Bellezzo, Murillo
2014-09-01
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)
Energy Technology Data Exchange (ETDEWEB)
Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi [Department of Applied Physics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Tarvainen, T. [Department of Applied Physics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kim, A.D. [Applied Mathematics Unit, School of Natural Sciences, University of California, Merced, CA 95343 (United States); Arridge, S.R. [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-02-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.
International Nuclear Information System (INIS)
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light
Some factors affecting radiative heat transport in PWR cores
International Nuclear Information System (INIS)
This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO2. It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 22000C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)
Directory of Open Access Journals (Sweden)
Ahad Ollah Ezzati
2014-08-01
Full Text Available Introduction In this study, we aimed to calculate dose enhancement factor (DEF for gold (Au and iron (Fe nanoparticles (NPs in brachytherapy and teletherapy, using Monte Carlo (MC method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192 brachytherapy and Cobalt-60 (Co-60 teletherapy sources, using the MC method. In this algorithm, the semi-random distribution of NPs was used instead of the regular distribution. Diameters were assumed to be 15, 30, and 100 nm in brachytherapy and 15 and 30 nm in teletherapy. Monte Carlo MCNP4C code was used for simulations, and NP density values were 0.107 mg/ml and 0.112 mg/ml in brachytherapy and teletherapy, respectively. Results AuNPs significantly enhanced the radiation dose in brachytherapy (approximately 60%, and 100 nm diameter NPs showed the most uniform dose distribution. AuNPs had an insignificant effect on teletherapy radiation field, with a dose enhancement ratio of 3% (about the calculation uncertainty or less. In addition, FeNPs had an insignificant effect on both brachytherapy and teletherapy radiation fields. FeNPs dose enhancement was 3% in brachytherapy and 6% (about the calculation uncertainty or less in teletherapy. Conclusion It can be concluded that AuNPs can significantly increase the absorbed dose in brachytherapy; however, FeNPs do not have a noticeable effect on the absorbed dose
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)
2012-05-15
Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at
Measurement and Monte Carlo simulation of 6 MV X-rays for small radiation fields
International Nuclear Information System (INIS)
In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement. Monte Carlo simulations were performed using the EGS4 code with the input data prepared for the energy distribution of 6MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 2.0 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of 10cm in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated penumbra radii were 0.1cm shorter than measured values. The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification
Energy Technology Data Exchange (ETDEWEB)
Pazianotto, Mauricio Tizziani; Carlson, Brett Vern [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio Antonio; Goncalez, Odair Lelis [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Instituto de Estudos Avancados
2011-07-01
Full text: Great effort is required to understand better the cosmic radiation (CR) dose received by sensitive equipment, on-board computers and aircraft crew members at Brazil airspace, because there is a large area of South America and Brazil subject to the South Atlantic Anomaly (SAA). High energy neutrons are produced by interactions between primary cosmic ray and atmospheric atoms, and also undergo moderation resulting in a wider spectrum of energy ranging from thermal energies (0:025eV ) to energies of several hundreds of MeV. Measurements of the cosmic radiation dose on-board aircrafts need to be followed with an integral flow monitor on the ground level in order to register CR intensity variations during the measurements. The Long Counter (LC) neutron detector was designed as a directional neutron flux meter standard because it presents fairly constant response for energy under 10MeV. However we would like to use it as a ground based neutron monitor for cosmic ray induced neutron spectrum (CRINS) that presents an isotropic fluency and a wider spectrum of energy. The LC was modeled and tested using a Monte Carlo transport simulation for irradiations with known neutron sources ({sup 241}Am-Be and {sup 251}Cf) as a benchmark. Using this geometric model its efficiency was calculated to CRINS isotropic flux, introducing high energy neutron interactions models. The objective of this work is to present the model for simulation of the isotropic neutron source employing the MCNPX code (Monte Carlo N-Particle eXtended) and then access the LC efficiency to compare it with experimental results for cosmic ray neutrons measures on ground level. (author)
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
Energy Technology Data Exchange (ETDEWEB)
Pater, P; Vallieres, M; Seuntjens, J [McGill University, Montreal, Quebec (Canada)
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges
Energy Technology Data Exchange (ETDEWEB)
Nimal, J.C.; Vergnaud, T. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))
1990-01-01
This paper describes the most important features of the Monte Carlo code TRIPOLI-2. This code solves the Boltzmann equation in three-dimensional geometries for coupled neutron and gamma rays problems. A particular emphasis is devoted to the biasing techniques, which are very important for deep penetration. Future developments in TRIPOLI are described in the conclusion. (author).
Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi
2014-06-01
This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.
International Nuclear Information System (INIS)
The perturbation source method is used in the Monte Carlo method in calculating small effects in a particle field. It offers primising possibilities for introducing positive correlation between subtracting estimates even in the cases where other methods fail, in the case of geometrical variations of a given arrangement. The perturbation source method is formulated on the basis of integral equations for the particle fields. The formulae for the second moment of the difference of events are derived. Explicity a certain class of transport games and different procedures for generating the so-called perturbation particles are considered
Liu, Baoshun; Li, Ziqiang; Zhao, Xiujian
2015-02-21
In this research, Monte-Carlo Continuity Random Walking (MC-RW) model was used to study the relation between electron transport and photocatalysis of nano-crystalline (nc) clusters. The effects of defect energy disorder, spatial disorder of material structure, electron density, and interfacial transfer/recombination on the electron transport and the photocatalysis were studied. Photocatalytic activity is defined as 1/τ from a statistical viewpoint with τ being the electron average lifetime. Based on the MC-RW simulation, a clear physical and chemical "picture" was given for the photocatalytic kinetic analysis of nc-clusters. It is shown that the increase of defect energy disorder and material spatial structural disorder, such as the decrease of defect trap number, the increase of crystallinity, the increase of particle size, and the increase of inter-particle connection, can enhance photocatalytic activity through increasing electron transport ability. The increase of electron density increases the electron Fermi level, which decreases the activation energy for electron de-trapping from traps to extending states, and correspondingly increases electron transport ability and photocatalytic activity. Reducing recombination of electrons and holes can increase electron transport through the increase of electron density and then increases the photocatalytic activity. In addition to the electron transport, the increase of probability for electrons to undergo photocatalysis can increase photocatalytic activity through the increase of the electron interfacial transfer speed.
Radiation Transport through cylindrical foams with heated walls
Baker, Kevin; MacLaren, Steve; Kallman, Joshua; Heinz, Ken; Hsing, Warren
2012-10-01
Radiation transport through low density SiO2 foams has been experimentally studied on the Omega laser. In particular these experiments examined the effects on radiation transport when the boundaries of the SiO2 foam are heated such that energy loss to the boundaries is minimized. The initial density of the SiO2 foams was determined by taking an x-ray radiograph of the foams using a monochromatic Henke source at multiple x-ray energies. The radiation drive used to both study the transport in the SiO2 foam as well as to heat the higher density CRF wall was generated in a laser-heated gold hohlraum using ˜7.5 kJ of the laser energy. The time-dependent spatial profile of the heat wave breaking out of the SiO2 foam was detected with an x-ray streak camera coupled with a soft x-ray transmission grating. The Omega DANTE diagnostic measured the radiation drive in the hohlraum and the Omega VISAR diagnostic monitored the spatial temperature gradient in the foam section of the hohlraum.
Radiation inactivation target size of rat adipocyte glucose transporter
Energy Technology Data Exchange (ETDEWEB)
Jung, C.Y.; Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.
1987-05-01
In situ assembly states of rat adipocyte glucose transport protein in plasma membrane (PM) and in microsomal pool (MM) were assessed by measuring target size (TS) of D glucose-sensitive, cytochalasin B binding activity. High energy radiation inactivated the binding in both PM and MM by reducing the total capacity of the binding (B/sub T/) without affecting the dissociation constant (K/sub D/). The reduction in B/sub T/ as a function of radiation dose was analyzed based on classical target theory, from which TS was calculated. TS in the PM of insulin-treated adipocytes was 58 KDa. TS in the MM of noninsulin-treated and insulin-treated adipocytes were 112 and 109 KDa, respectively. With MM, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses showing a shoulder in the semilog plots, which may be due to an interaction with a radiation sensitive inhibitor. With these results, they propose the following model: Adipocyte glucose transporter, while exists as a monomer (T) in PM, occurs in MM either as a homodimer (T/sub 2/) or as a heterodimer (TX) with a protein X of a similar size. These dimers (T/sub 2/ or TX) in MM, furthermore, may form a multi-molecular assembly with another, large (300-400 KDa) protein Y, and insulin increases this assembly formation. These putative, transporter-associated proteins X and Y may play an important role in control of transporter distribution between PM and MM, particularly in response to insulin.
Application of radiation protection programmes to transport of radioactive material
International Nuclear Information System (INIS)
Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part
Energy Technology Data Exchange (ETDEWEB)
Hugtenburg, Richard P., E-mail: r.p.hugtenburg@swansea.ac.u [School of Medicine, Swansea University, Swansea SA2 8PP (United Kingdom); Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg University, LHB, Swansea SA2 8QA (United Kingdom); Adegunloye, A.S.; Bradley, David A. [Department of Physics, Surrey University, Guildford (United Kingdom)
2010-07-21
Microbeam radiation therapy (MRT) is currently being considered for the treatment of glioblastoma multiforme. A high degree of dosimetric accuracy (around 5%) is known to be required for a successful outcome in conventional radiation therapy, Modelling of MRT beams, measurements and treatments have been performed with Monte Carlo methods using the code EGS5, which features improved physics models for low energy scattering processes including linear polarisation. Polarisation of the X-ray source leads to distortions in beam profiles that exceed the usual clinical tolerances. Changes in the energy spectrum also effect the response of many dosimetry systems. Anatomical (CT) data has been used in the dose calculations and the manipulation of dose data with the open-source software treatment planning system, PlanUNC, is demonstrated, in order that the therapeutic effects of the different components, e.g. the microbeam and scattered photons, can examined separately in relation to relevant anatomy.
A geometric approach for radiation transport inside complex systems
Energy Technology Data Exchange (ETDEWEB)
Fumeron, S. [Groupe de Recherche en Ingenierie des Procedes et Systemes, Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, PQ (Canada)]. E-mail: sebastien_fumeron@uqac.ca
2006-09-04
The aim of this Letter is to extend the phenomenological theory of radiation transfer to complex systems. For elastic or electromagnetic waves, one presents a geometrization of matter based on relativistic gravitation models. In this approach, particles experience material media as curved spacetimes, which locally affect the energetic processes. The general form of Clausius invariant is calculated and the curved radiative transfer equation is derived. An application to phonon transport in solids shows that the presence of a defect can amplify the elastic energy carried in particular directions of propagation.
Energy Technology Data Exchange (ETDEWEB)
Kong, Rong, E-mail: kongr413@yahoo.com [Veros Software Inc., 2333 N. Broadway, Santa Ana, CA 92706 (United States); Spanier, Jerome, E-mail: jspanier@uci.edu [Beckman Laser Institute and Medical Clinic, 1002 Health Science Road E., University of California, Irvine, CA 92612 (United States)
2013-06-01
In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems.
Sampling of transport coefficients in steady state Townsend Monte Carlo simulation
International Nuclear Information System (INIS)
In this paper a complete and consistent set of equations for sampling of the data in steady state Townsend (SST) Monte Carlo simulations (MCS) is developed. Standard implementation of a Monte Carlo simulation code for time of flight (TOF) allows us to add SST sampling. Membrane's sampling has an advantage in obtaining spatial variation of properties with high spatial resolution but with a problem in poor statistics for low energy electrons that move perpendicular to the field axis. The box sampling overcomes this problem but suffers from a poorer statistics than membrane sampling. The results show the effect of non-conservative collisions in the difference between SST and TOF results. In addition the internal consistency between two methods of SST sampling is very good. The present paper also gives a complete set of equations for conversion between the two types of experiments TOF and SST. Our simulation provided us also with a way to test the conversion formulae and their convergence
Tattersall, W J; Boyle, G J; White, R D
2015-01-01
We generalize a simple Monte Carlo (MC) model for dilute gases to consider the transport behavior of positrons and electrons in Percus-Yevick model liquids under highly non-equilibrium conditions, accounting rigorously for coherent scattering processes. The procedure extends an existing technique [Wojcik and Tachiya, Chem. Phys. Lett. 363, 3--4 (1992)], using the static structure factor to account for the altered anisotropy of coherent scattering in structured material. We identify the effects of the approximation used in the original method, and develop a modified method that does not require that approximation. We also present an enhanced MC technique that has been designed to improve the accuracy and flexibility of simulations in spatially-varying electric fields. All of the results are found to be in excellent agreement with an independent multi-term Boltzmann equation solution, providing benchmarks for future transport models in liquids and structured systems.
Tseung, H Wan Chan; Beltran, C
2014-01-01
Purpose: Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on GPUs. However, these usually use simplified models for non-elastic (NE) proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and NE collisions. Methods: Using CUDA, we implemented GPU kernels for these tasks: (1) Simulation of spots from our scanning nozzle configurations, (2) Proton propagation through CT geometry, considering nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) Modeling of the intranuclear cascade stage of NE interactions, (4) Nuclear evaporation simulation, and (5) Statistical error estimates on the dose. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions, (2) Dose calculations in homogeneous phantoms, (3) Re-calculations of head and neck plans from a commercial treatment planning system (TPS), and compared with Geant4.9.6p2/TOPAS. Results: Yields, en...
International Nuclear Information System (INIS)
The electron drift velocity W, and the first Townsend ionization coefficient, α, are calculated for nitrogen, over the range 7000 is the electric field to pressure ratio. The pressure P0 is reduced to 00C. The spherical harmonic expansion calculation predicts α values which are 50-100% larger than those predicted by the Monte Carlo calculation. The predicted drift velocities agree to within 10-20%. (Auth.)
Unbiased estimators of coincidence and correlation in non-analogous Monte Carlo particle transport
International Nuclear Information System (INIS)
Highlights: • The history splitting method was developed for non-Boltzmann Monte Carlo estimators. • The method allows variance reduction for pulse-height and higher moment estimators. • It works in highly multiplicative problems but Russian roulette has to be replaced. • Estimation of higher moments allows the simulation of neutron noise measurements. • Biased sampling of fission helps the effective simulation of neutron noise methods. - Abstract: The conventional non-analogous Monte Carlo methods are optimized to preserve the mean value of the distributions. Therefore, they are not suited to non-Boltzmann problems such as the estimation of coincidences or correlations. This paper presents a general method called history splitting for the non-analogous estimation of such quantities. The basic principle of the method is that a non-analogous particle history can be interpreted as a collection of analogous histories with different weights according to the probability of their realization. Calculations with a simple Monte Carlo program for a pulse-height-type estimator prove that the method is feasible and provides unbiased estimation. Different variance reduction techniques have been tried with the method and Russian roulette turned out to be ineffective in high multiplicity systems. An alternative history control method is applied instead. Simulation results of an auto-correlation (Rossi-α) measurement show that even the reconstruction of the higher moments is possible with the history splitting method, which makes the simulation of neutron noise measurements feasible
Energy Technology Data Exchange (ETDEWEB)
Bankovic, A., E-mail: ana.bankovic@gmail.com [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Dujko, S. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Centrum Wiskunde and Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam (Netherlands); ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); White, R.D. [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); Buckman, S.J. [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia); Petrovic, Z.Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)
2012-05-15
This work reports on a new series of calculations of positron transport properties in molecular hydrogen under the influence of spatially homogeneous electric field. Calculations are performed using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Values and general trends of the mean energy, drift velocity and diffusion coefficients as a function of the reduced electric field E/n{sub 0} are reported here. Emphasis is placed on the explicit and implicit effects of positronium (Ps) formation on the drift velocity and diffusion coefficients. Two important phenomena arise; first, for certain regions of E/n{sub 0} the bulk and flux components of the drift velocity and longitudinal diffusion coefficient are markedly different, both qualitatively and quantitatively. Second, and contrary to previous experience in electron swarm physics, there is negative differential conductivity (NDC) effect in the bulk drift velocity component with no indication of any NDC for the flux component. In order to understand this atypical manifestation of the drift and diffusion of positrons in H{sub 2} under the influence of electric field, the spatially dependent positron transport properties such as number of positrons, average energy and velocity and spatially resolved rate for Ps formation are calculated using a Monte Carlo simulation technique. The spatial variation of the positron average energy and extreme skewing of the spatial profile of positron swarm are shown to play a central role in understanding the phenomena.
Energy Technology Data Exchange (ETDEWEB)
Cullen, D E; Hansen, L F; Lent, E M; Plechaty, E F
2003-05-17
Recently we implemented the ENDF/B-VI thermal scattering law data in our neutron transport codes COG and TART. Our objective was to convert the existing ENDF/B data into double differential form in the Livermore ENDL format. This will allow us to use the ENDF/B data in any neutron transport code, be it a Monte Carlo, or deterministic code. This was approached as a multi-step project. The first step was to develop methods to directly use the thermal scattering law data in our Monte Carlo codes. The next step was to convert the data to double-differential form. The last step was to verify that the results obtained using the data directly are essentially the same as the results obtained using the double differential data. Part of the planned verification was intended to insure that the data as finally implemented in the COG and TART codes, gave the same answer as the well known MCNP code, which includes thermal scattering law data. Limitations in the treatment of thermal scattering law data in MCNP have been uncovered that prevented us from performing this part of our verification.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)
2015-07-28
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.
International Nuclear Information System (INIS)
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves
Predicting radiative transport properties of plasma sprayed porous ceramics
Wang, B. X.; Zhao, C. Y.
2016-03-01
The typical yttria-stabilized zirconia material for making the thermal barrier coatings (TBCs) is intrinsically semitransparent to thermal radiation, and the unique disordered microstructures in TBCs make them surprisingly highly scattering. To quantitatively understand the influence of disordered microstructures, this paper presents a quantitative prediction on the radiative properties, especially the transport scattering coefficient of plasma sprayed TBC based on microstructure analysis and rigorous electromagnetic theory. The impact of the porosity, shape, size, and orientation of different types of voids on transport scattering coefficient is comprehensively investigated under the discrete dipole approximation. An inverse model integrating these factors together is then proposed to quantitatively connect transport scattering coefficient with microstructural information, which is also validated by available experimental data. Afterwards, an optimization procedure is carried out based on this model to obtain the optimal size and orientation distribution of the microscale voids to achieve the maximal radiation insulation performance at different operating temperatures, providing guidelines for practical coating design and fabrication. This work suggests that the current model is effective and also efficient for connecting scattering properties to microstructures and can be implemented as a quantitative tool for further studies like non-destructive infrared imaging as well as micro/nanoscale thermal design of TBCs.
International Nuclear Information System (INIS)
Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the PN approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the PN approximation is compared against Monte Carlo simulations and other state-of-the-art methods.
Efendiev, Yalchin R.
2013-08-21
In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed multiscale finite element methods and (2) a novel use of mixed multiscale finite element methods within multilevel Monte Carlo techniques to speed up the computations. The main idea of ensemble level multiscale methods is to construct local multiscale basis functions that can be used for any member of the ensemble. In this paper, we consider two ensemble level mixed multiscale finite element methods: (1) the no-local-solve-online ensemble level method (NLSO); and (2) the local-solve-online ensemble level method (LSO). The first approach was proposed in Aarnes and Efendiev (SIAM J. Sci. Comput. 30(5):2319-2339, 2008) while the second approach is new. Both mixed multiscale methods use a number of snapshots of the permeability media in generating multiscale basis functions. As a result, in the off-line stage, we construct multiple basis functions for each coarse region where basis functions correspond to different realizations. In the no-local-solve-online ensemble level method, one uses the whole set of precomputed basis functions to approximate the solution for an arbitrary realization. In the local-solve-online ensemble level method, one uses the precomputed functions to construct a multiscale basis for a particular realization. With this basis, the solution corresponding to this particular realization is approximated in LSO mixed multiscale finite element method (MsFEM). In both approaches, the accuracy of the method is related to the number of snapshots computed based on different realizations that one uses to precompute a multiscale basis. In this paper, ensemble level multiscale methods are used in multilevel Monte Carlo methods (Giles 2008a, Oper.Res. 56(3):607-617, b). In multilevel Monte Carlo methods, more accurate
Energy Technology Data Exchange (ETDEWEB)
Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr
2009-08-07
A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.
International Nuclear Information System (INIS)
Ionization chambers are the most widely used instruments for dosimetry in radiotherapy. With the aim to test new configurations and materials using low-cost and easily-available components, verify the possibility of its application in the gamma radiation field of 60Co and fulfill the need of a chamber for scientific metrological purposes, in this paper the prototype of a plane-parallel ionization chamber has been designed and built, and its performance has been studied at the SSDL of KARAJ. The front wall and back wall of the chamber were made of graphite and Plexiglas respectively, as opposed to the one type of material in commercially available chambers. The collecting electrode has a diameter of 20 mm. The sensitive volume is 0.63 cm3. It was found that the Leakage current, the short-term stability and the polarity effect were within the international recommendations. The results were compared with those of a reference cylindrical chamber. The maximum difference observed in this comparison was 1.1%. The relative uncertainty was below 0.2%. Moreover, Monte Carlo simulation was undertaken using MCNP4C code and the relative difference of 1.9% was observed compared to the experiment. As a result the chamber presented a satisfactory performance in all evaluated tests in Gamma radiation field of 60Co. -- Highlights: • The prototype of a plane-parallel Ionization Chamber was designed. • Its performance was studied in Gamma radiation field of 60Co. • The response of the chamber was measured and compared with that of the cylindrical ionization chamber. • The chamber was simulated using the MCNP4C Monte Carlo code. • The Leakage current, the short-term stability and the polarity effect were within the international recommendations
Atmospheric transport, clouds and the Arctic longwave radiation paradox
Sedlar, Joseph
2016-04-01
Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are
Monte Carlo simulation of radiative processes in electron-positron scattering
International Nuclear Information System (INIS)
The Monte Carlo simulation of scattering processes has turned out to be one of the most successful methods of translating theoretical predictions into experimentally meaningful quantities. It is the purpose of this thesis to describe how this approach can be applied to higher-order QED corrections to several fundamental processes. In chapter II a very brief overview of the currently interesting phenomena in e+- scattering is given. It is argued that accurate information on higher-order QED corrections is very important and that the Monte Carlo approach is one of the most flexible and general methods to obtain this information. In chapter III the author describes various techniques which are useful in this context, and makes a few remarks on the numerical aspects of the proposed method. In the following three chapters he applies this to the processes e+e- → μ+μ-(γ) and e+e- → qanti q(sigma). In chapter IV he motivates his choice of these processes in view of their experimental and theoretical relevance. The formulae necessary for a computer simulation of all quantities of interest, up to order α3, is given. Chapters V and VI describe how this simulation can be performed using the techniques mentioned in chapter III. In chapter VII it is shown how additional dynamical quantities, namely the polarization of the incoming and outgoing particles, can be incorporated in our treatment, and the relevant formulae for the example processes mentioned above are given. Finally, in chapter VIII the author presents some examples of the comparison between theoretical predictions based on Monte Carlo simulations as outlined here, and the results from actual experiments. (Auth.)
Monte Carlo treatment of Lyman-alpha radiation in a plane-parallel atmosphere.
Modali, S. B.; Brandt, J. C.; Kastner, S. O.
1972-01-01
A Monte Carlo technique involving Stokes vectors is used to obtain the state of polarization and intensity of solar Lyman-alpha photons as they diffuse through a plane-parallel homogeneous model of earth's hydrogen envelope. Fine structure of Lyman-alpha and Doppler redistribution of frequencies are taken into account. Comparison of the results with Heath's observed upper limit for polarization of 1.5 per cent implies an optical thickness tau greater than 7 and intensities of 8-10 kilorayleighs for a solar Lyman-alpha flux of 5.8 ergs per sq cm per sec.
Monte Carlo treatment of Lyman-alpha. II - Radiation in a spherical atmosphere
Modali, S. B.; Brandt, J. C.; Kastner, S. O.
1975-01-01
Intensity and state of polarization of solar L-alpha photons as they diffuse through an inhomogeneous, spherically symmetric, isothermal geocorona are theoretically determined. The fine structure of L-alpha and Doppler redistribution of frequencies are taken into account. The calculation use the Monte Carlo technique involving Stokes vectors. Comparison of the results with OGO-4 and OSO-4 observed intensities at an altitude of 650 km shows good agreement. Calculations of the polarization versus solar zenith angle show a residual polarization at large zenith angles which is mainly due to multiply scattered photons.
International Nuclear Information System (INIS)
DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s
Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.
2015-01-01
DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.
Garain, Sudip K.; Ghosh, Himadri; Chakrabarti, Sandip K.
2014-01-01
Low- and intermediate-frequency quasi-periodic oscillations (QPOs) in black hole candidates are believed to be due to oscillations of the Comptonizing regions in an accretion flow. Assuming that the general structure of an accretion disc is a two-component advective flow (TCAF), we numerically simulate the light curves emitted from an accretion disc for different accretion rates and find how the QPO frequencies vary. We use a standard Keplerian disc residing at the equatorial plane as a source of soft photons. These soft photons, after suffering multiple scattering with the hot electrons of the low angular momentum, sub-Keplerian, flow emerge out as hard radiation. The hydrodynamic and thermal properties of the electron cloud is simulated using a total variation diminishing (TVD) code. The TVD code is then coupled with a radiative transfer code which simulates the energy exchange between the electron and radiation using Monte Carlo technique. The resulting localized heating and cooling are included also. We find that the QPO frequency increases and the spectrum becomes softer as we increase the Keplerian disc rate. However, the spectrum becomes harder if we increase the sub-Keplerian accretion rate. We find that an earlier prediction that QPOs occur when the infall time-scale roughly matches with the cooling time-scale, originally obtained using a power-law cooling, remains valid even for Compton cooling. Our findings agree with the general observations of low-frequency QPOs in black hole candidates.
Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang
2016-01-01
Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.
Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William
2011-01-01
A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute
Verification of radiation transport codes with unstructured meshes
International Nuclear Information System (INIS)
Confidence in the results of a radiation transport code requires that the code be verified against problems with known solutions. Such verification problems may be generated by means of the method of manufactured solutions. Previously we reported the application of this method to the verification of radiation transport codes for structured meshes, in particular the SCEPTRE code. We extend this work to verification with unstructured meshes and again apply it to SCEPTRE. We report on additional complexities for unstructured mesh verification of transport codes. Refinement of such meshes for error convergence studies is more involved, particularly for tetrahedral meshes. Furthermore, finite element integrations arising from the presence of the streaming operator exhibit different behavior for unstructured meshes than for structured meshes. We verify SCEPTRE with a combination of 'exact' and 'inexact' problems. Errors in the results are consistent with the discretizations, either being limited to roundoff error or displaying the expected rates of convergence with mesh refinement. We also observe behaviors in the results that were difficult to analyze and predict from a strictly theoretical basis, thereby yielding benefits from verification activities beyond demonstrating code correctness. (author)
Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N
2000-01-01
Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...
Energy Technology Data Exchange (ETDEWEB)
Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France); Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others
2014-06-15
In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.
Niccolini, G.; Alcolea, J.
Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).
International Nuclear Information System (INIS)
Intensity-modulated radiation therapy (IMRT) is a new technique for administering external beam radiation therapy. This technology modulates the intensity and shape of the treatment beam as a function of source position and patient anatomy. This process of conforming the source to the patient requires the optimization of the independent variables of the source field. In this study, adjoint Monte Carlo methods were used to compute the sensitivity field that corresponds to a prescribed dose distribution. Given these data, linear and nonlinear optimization models were constructed with a simplified geometry to compute an optimized set of beams to deliver a desired dose distribution. The dose delivered to voxel i by beam j (Dij) influence matrix may be obtained from solutions to the adjoint transport equation. These solutions provide the sensitivity of the prescribed dose at a single point in the patient to all possible points in the source field. For this investigation, the source field consisted of 36 possible positions along a circular gantry. Each position had 21 possible directions to aim at the patient. Beam weights could vary continuously, and beam energy spectra matched that of a hospital-based linear accelerator. The MCNP Monte Carlo code was used to transport adjoint particles from each patient voxel to the 36 possible source locations where they were binned by direction and energy. The patient voxels (1 cm3) were defined within the central slice of a block phantom (31 x 31 x 11 cm) of unit-density water. The adjoint source for each voxel was the flux-to-dose conversion factor for tissue. The bin structures for the tallies matched the direction and energy structure of the forward source. Figure 1 shows the dose volume histograms (DVHs) for the optimized dose distributions for a ring-shaped tumor surrounding a sensitive structure. The DVH reports the fraction of each tissue type that is raised to each dose level. The lower dose limit prescribed for TU was 2
Monte Carlo Simulation of Light Transport in Five-Layered Skin Tissue
Institute of Scientific and Technical Information of China (English)
XUE Ling-Ling; ZHANG Chun-Ping; WANG Xin-Yu; ZHU Ming-Yao; ZHANG Lian-Shun; CHI Rong-Hua; ZHANG Jian-Dong; ZHANG Guang-Yin
2000-01-01
The light propagation and distribution in skin tissue is studied by using Monte Carlo technique. The radially resolved diffuse reflectance R and transmittance T vs radius r, angularly resolved R and Tvs the exiting angle of the photon, absorption energy density A and internal fiuence F vs r and z are simulated. Our results reveal that the light distribution for Gaussian beam is more centralized and its change is more rapid than those of circularly flat beam under the same incident energy and radius, no matter what R and T or A and F are. In addition,except that R(r) for circularly flat beam needs to be fitted by 15-order curve, the others can be fitted by 5-order or 6-order curve.
International Nuclear Information System (INIS)
A detailed Monte Carlo N-Particle Transport Code (MCNP5) model of the University of Missouri research reactor (MURR) has been developed. The ability of the model to accurately predict isotope production rates was verified by comparing measured and calculated neutron- capture reaction rates for numerous isotopes. In addition to thermal (1/v) monitors, the benchmarking included a number of isotopes whose (n, γ) reaction rates are very sensitive to the epithermal portion of the neutron spectrum. Using the most recent neutron libraries (ENDF/ B-VII.0), the model was able to accurately predict the measured reaction rates in all cases. The model was then combined with ORIGEN 2.2, via MONTEBURNS 2.0, to calculate production of 99Mo from fission of low-enriched uranium foils. The model was used to investigate both annular and plate LEU foil targets in a variety of arrangements in a graphite irradiation wedge to optimize the production of 99Mo. (author)
International Nuclear Information System (INIS)
Questions, related to Monte-Carlo method for solution of neutron and photon transport equation, are discussed in the work concerned. Problems dealing with direct utilization of information from evaluated nuclear data files in run-time calculations are considered. ENDF-6 format libraries have been used for calculations. Approaches provided by the rules of ENDF-6 files 2, 3-6, 12-15, 23, 27 and algorithms for reconstruction of resolved and unresolved resonance region cross sections under preset energy are described. The comparison results of calculations made by NJOY and GRUCON programs and computed cross sections data are represented. Test computation data of neutron leakage spectra for spherical benchmark-experiments are also represented. (authors)
Monte Carlo simulation on electron transport in Si sub 1 sub - sub y C sub y alloy layers
Ihm, S H; Lee, C H; Lee, H J; Kim, J Y; Chun, S K
1999-01-01
We investigated electron transport in strained Si sub 1 sub - sub y C sub y alloy layers grown on Si(100) substrates using the Monte Carlo simulation. The electron mobility higher than that of bulk Si over a wide range of temperatures from 40 K to 300 K is mainly attributed to the valley splitting induced by the tensile strain in the Si sub 1 sub - sub y C sub y layer. For lower temperatures less than 100 K the mobility increases sharply depending on the carbon fraction up to about 0.6%. Beyond the fraction, however, it keeps almost constant regardless of increasing the carbon fraction. On the other hand, we observe a monotonic mobility increase with increasing the carbon for a higher temperature regime.
Transport appraisal and Monte Carlo simulation by use of the CBA-DK model
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2011-01-01
This paper presents the Danish CBA-DK software model for assessment of transport infrastructure projects. The assessment model is based on both a deterministic calculation following the cost-benefit analysis (CBA) methodology in a Danish manual from the Ministry of Transport and on a stochastic......, is explained. Furthermore, comprehensive assessments based on the set of distributions are made and implemented by use of a Danish case example. Finally, conclusions and a perspective are presented....
Evaluation of a radiation transport modeling method for radioactive bone cement
Energy Technology Data Exchange (ETDEWEB)
Kaneko, T S [Department of Radiological Sciences, B170 Med Sci I, University of California, Irvine, CA 92697 (United States); Sehgal, V; Al-Ghazi, M S A L; Ramisinghani, N S [Department of Radiation Oncology, University of California Irvine Medical Center, Orange, CA 92868 (United States); Skinner, H B [St Jude Heritage Medical Group, Fullerton, CA 92835 (United States); Keyak, J H [Departments of Radiological Sciences, Biomedical Engineering, and Mechanical Engineering, University of California, Irvine, CA 92697 (United States)], E-mail: tkaneko@uci.edu
2010-05-07
Spinal metastases are a common and serious manifestation of cancer, and are often treated with vertebroplasty/kyphoplasty followed by external beam radiation therapy (EBRT). As an alternative, we have introduced radioactive bone cement, i.e. bone cement incorporated with a radionuclide. In this study, we present a Monte Carlo radiation transport modeling method to calculate dose distributions within vertebrae containing radioactive cement. Model accuracy was evaluated by comparing model-predicted depth-dose curves to those measured experimentally in eight cadaveric vertebrae using radiochromic film. The high-gradient regions of the depth-dose curves differed by radial distances of 0.3-0.9 mm, an improvement over EBRT dosimetry accuracy. The low-gradient regions differed by 0.033-0.055 Gy/h/mCi, which may be important in situations involving prior spinal cord irradiation. Using a more rigorous evaluation of model accuracy, four models predicted the measured dose distribution within the experimental uncertainty, as represented by the 95% confidence interval of the measured log-linear depth-dose curve. The remaining four models required modification to account for marrow lost from the vertebrae during specimen preparation. However, the accuracy of the modified model results indicated that, when this source of uncertainty is accounted for, this modeling method can be used to predict dose distributions in vertebrae containing radioactive cement.
Evaluation of a radiation transport modeling method for radioactive bone cement
Kaneko, T. S.; Sehgal, V.; Skinner, H. B.; Al-Ghazi, M. S. A. L.; Ramisinghani, N. S.; Keyak, J. H.
2010-05-01
Spinal metastases are a common and serious manifestation of cancer, and are often treated with vertebroplasty/kyphoplasty followed by external beam radiation therapy (EBRT). As an alternative, we have introduced radioactive bone cement, i.e. bone cement incorporated with a radionuclide. In this study, we present a Monte Carlo radiation transport modeling method to calculate dose distributions within vertebrae containing radioactive cement. Model accuracy was evaluated by comparing model-predicted depth-dose curves to those measured experimentally in eight cadaveric vertebrae using radiochromic film. The high-gradient regions of the depth-dose curves differed by radial distances of 0.3-0.9 mm, an improvement over EBRT dosimetry accuracy. The low-gradient regions differed by 0.033-0.055 Gy/h/mCi, which may be important in situations involving prior spinal cord irradiation. Using a more rigorous evaluation of model accuracy, four models predicted the measured dose distribution within the experimental uncertainty, as represented by the 95% confidence interval of the measured log-linear depth-dose curve. The remaining four models required modification to account for marrow lost from the vertebrae during specimen preparation. However, the accuracy of the modified model results indicated that, when this source of uncertainty is accounted for, this modeling method can be used to predict dose distributions in vertebrae containing radioactive cement.
International Nuclear Information System (INIS)
Hybrid methods of neutron transport have increased greatly in use, for example, in applications of using both Monte Carlo and deterministic transport methods to calculate quantities of interest, such as the flux and eigenvalue in a nuclear reactor. Many 3d parallel Sn codes apply a Cartesian mesh, and thus for nuclear reactors the representation of curved fuels (cylinder, sphere, etc.) are impacted in the representation of proper fuel inventory, resulting in both a deviation of mass and exact geometry in the computer model representation. In addition, we discuss auto-conversion techniques with our 3d Cartesian mesh generation tools to allow for full generation of MCNP5 inputs (Cartesian mesh and Multigroup XS) from a basis PENTRAN Sn model. For a PWR assembly eigenvalue problem, we explore the errors associated with this Cartesian discrete mesh representation, and perform an analysis to calculate a slope parameter that relates the pcm to the percent areal/volumetric deviation (areal → 2d problems, volumetric → 3d problems). This paper analysis demonstrates a linear relationship between pcm change and areal/volumetric deviation using Multigroup MCNP on a PWR assembly compared to a reference exact combinatorial MCNP geometry calculation. For the same MCNP multigroup problems, we also characterize this linear relationship in discrete ordinates (3d PENTRAN). Finally, for 3D Sn models, we show an application of corner fractioning, a volume-weighted recovery of underrepresented target fuel mass that reduced pcm error to < 100, compared to reference Monte Carlo, in the application to a PWR assembly. (author)
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.
2006-10-31
Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.
Inverse treatment planning for radiation therapy based on fast Monte Carlo dose calculation
International Nuclear Information System (INIS)
An inverse treatment planning system based on fast Monte Carlo (MC) dose calculation is presented. It allows optimisation of intensity modulated dose distributions in 15 to 60 minutes on present day personal computers. If a multi-processor machine is available, parallel simulation of particle histories is also possible, leading to further calculation time reductions. The optimisation process is divided into two stages. The first stage results influence profiles based on pencil beam (PB) dose calculation. The second stage starts with MC verification and post-optimisation of the PB dose and fluence distributions. Because of the potential to accurately model beam modifiers, MC based inverse planning systems are able to optimise compensator thicknesses and leaf trajectories instead of intensity profiles only. The corresponding techniques, whose implementation is the subject for future work, are also presented here. (orig.)
BBBREM - Monte Carlo simulation of radiative Bhabha scattering in the very forward direction
International Nuclear Information System (INIS)
A fast and simple Monte Carlo program is presented that simulates single Bremsstrahlung in Bhabha scattering, e+e-→e+e-γ, without constraints on scattering angles. This allows the study of this process at arbitrarily small, or even vanishing, scattering angles. Experimental cuts can be imposed on an event-by-event basis, allowing for detailed studies of the process as a limitation to beam lifetimes, or a luminosity-measuring device, in e+e- storage rings. As an application, we show that the easy introduction of a cut-off parameter, corresponding to the characteristic distance between particles in the e± bunches, gives a reduced cross section that is in good agreement with observation. (orig.)
A fast algorithm for radiative transport in isotropic media
Ren, Kui; Zhong, Yimin
2016-01-01
We propose in this work a fast numerical algorithm for solving the equation of radiative transfer (ERT) in isotropic media. The algorithm has two steps. In the first step, we derive an integral equation for the angularly averaged ERT solution by taking advantage of the isotropy of the scattering kernel, and solve the integral equation with a fast multipole method (FMM). In the second step, we solve a scattering-free transport equation to recover the original ERT solution. Numerical simulations are presented to demonstrate the performance of the algorithm for both homogeneous and inhomogeneous media.
High thermal-transport capacity heat pipes for space radiators
Carlson, Albert W.; Gustafson, Eric; Roukis, Susan L.
1987-01-01
This paper presents the results of performance tests of several dual-slot heat pipe test articles. The dual-slot configuration has a very high thermal transport capability and has been identified as a very promising candidate for the radiator system for the NASA Space Station solar dynamic power modules. Two six-foot long aluminum heat pipes were built and tested with ammonia and acetone. A 20-ft long heat pipe was also built and tested with ammonia. The test results have been compared with performance predictions. A thermal transport capacity of 2000 W at an adverse tilt of 1 in. and a 1000 W capacity at an adverse tilt of 2 in. were achieved on the 20-ft long heat pipe. These values are in close agreement with the predicted performance limits.
International Nuclear Information System (INIS)
Following Wilson's suggestion of electron acceleration by the electric fields in thunderclouds, a number of experiments were attempted to investigate whether or not energetic electrons and bremsstrahlung X-rays were generated by thunderstorm electric fields or lightning discharge processes. In recent years, enhanced radiation at high altitude has been detected in experiments using scintillation detectors on a jet and an artificial satellite, demonstrating that radiation is indeed associated with lightning activities. However there are few experimental reports of detection near the ground since Whitmire's investigation using thermoluminescent dosimeters (TLDs) in 1979. In winter, many thunderstorms occur on the west coast of Japan, and it has been suggested that gamma-ray dose may increase occasionally during winter thunderstorms. Recently, a gamma-ray dose enhancement which might be caused by the lightning activity was measured by TLDs and environmental radiation monitors around the site of the fast breeder reactor 'Monju', a nuclear power plant facing the Japan Sea. (author)
International Nuclear Information System (INIS)
Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs
New Parallel computing framework for radiation transport codes
Energy Technology Data Exchange (ETDEWEB)
Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.; /Fermilab; Niita, K.; /JAERI, Tokai
2010-09-01
A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.
International Nuclear Information System (INIS)
Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00–3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations. (paper)
Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432
Chen, L; Weigelt, G; Hofmann, K -H; Schertl, D; Malbet, F; Massi, F; Petrov, R; Stee, Ph
2015-01-01
Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {\\SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at $0.21\\enDash0.32~\\AU$ and an optically thick outer disk at $1.4\\enDash10~\\AU$. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick componen...
Stratis, Andreas; Zhang, Guozhi; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde
2015-03-01
The aim of this work was to investigate the influence of backscatter radiation from the orbital bone and the intraorbital fat on the eye lens dose in the dental CBCT energy range. To this end we conducted three different yet interrelated studies; A preliminary simulation study was conducted to examine the impact of a bony layer situated underneath a soft tissue layer on the amount of backscatter radiation. We compared the Percentage Depth Dose (PDD) curves in soft tissue with and without the bone layer and we estimated the depth in tissue where the decrease in backscatter caused by the presence of the bone is noticeable. In a supplementary study, an eye voxel phantom was designed with the DOSxyznrc code. Simulations were performed exposing the phantom at different x-ray energies sequentially in air, in fat tissue and in realistic anatomy with the incident beam perpendicular to the phantom. Finally, a virtual head phantom was implemented into a validated hybrid Monte Carlo (MC) framework to simulate a large Field of View protocol of a real CBCT scanner and examine the influence of scattered dose to the eye lens during the whole rotation of the paired tube-detector system. The results indicated an increase in the dose to the lens due to the fatty tissue in the surrounding anatomy. There is a noticeable dose reduction close to the bone-tissue interface which weakens with increasing distance from the interface, such that the impact of the orbital bone in the eye lens dose becomes small.
Energy Technology Data Exchange (ETDEWEB)
Pukite, Janis [Max- Planck-Institut fuer Chemie, Mainz (Germany); Institute of Atomic Physics and Spectroscopy, University of Latvia (Latvia); Kuehl, Sven; Wagner, Thomas [Max- Planck-Institut fuer Chemie, Mainz (Germany); Deutschmann, Tim; Platt, Ulrich [Institut fuer Umweltphysik, University of Heidelberg (Germany)
2007-07-01
A two step method for the retrieval of stratospheric trace gases (NO{sub 2}, BrO, OClO) from SCIAMACHY limb observations in the UV/VIS spectral region is presented: First, DOAS is applied on the spectra, yielding slant column densities (SCDs) of the respective trace gases. Second, the SCDs are converted into vertical concentration profiles applying radiative transfer modeling. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3D properties, which are important for a realistic description of the limb geometry. The implementation of a 3D box air mass factor concept allows accounting for horizontal gradients of trace gases. An important point is the effect of horizontal gradients on the profile inversion. This is of special interest in Polar Regions, where the Sun elevation is typically low and photochemistry can highly vary along the long absorption paths. We investigate the influence of horizontal gradients by applying 3-dimensional radiative transfer modelling.
Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P
2009-04-01
Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.
Jaud, Marie-Anne
2006-01-01
Today, the MOSFET transistor reaches nanometric dimensions for which quantum effects cannot be neglected anymore. It is thus necessary to develop models able to precisely describe the physical phenomena of electronic transport, and to account for the impact of these effects on the performances of the nanometric transistors. In this context, this work concerns the introduction of the quantization effects into a semi-classical Monte Carlo code for the simulation of electronic transport in MOSFE...
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert
2011-03-04
Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library
Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1999-01-01
Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
Energy Technology Data Exchange (ETDEWEB)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 (Korea, Republic of)
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
Global aerosol transport and consequences for the radiation budget
International Nuclear Information System (INIS)
Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels
An OpenCL-based Monte Carlo dose calculation engine (oclMC) for coupled photon-electron transport
Tian, Zhen; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-01-01
Monte Carlo (MC) method has been recognized the most accurate dose calculation method for radiotherapy. However, its extremely long computation time impedes clinical applications. Recently, a lot of efforts have been made to realize fast MC dose calculation on GPUs. Nonetheless, most of the GPU-based MC dose engines were developed in NVidia CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a fast cross-platform MC dose engine oclMC using OpenCL environment for external beam photon and electron radiotherapy in MeV energy range. Coupled photon-electron MC simulation was implemented with analogue simulations for photon transports and a Class II condensed history scheme for electron transports. To test the accuracy and efficiency of our dose engine oclMC, we compared dose calculation results of oclMC and gDPM, our previously developed GPU-based MC code, for a 15 MeV electron ...
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, Various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length Scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
Rodriguez, Manuel Jairo; Sempau Roma, Josep; Brualla, Lorenzo
2013-01-01
Background: The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. Methods: PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron appli...
Development of BERMUDA: a radiation transport code system, 1
International Nuclear Information System (INIS)
A radiation transport code system BERMUDA has been developed for one-, two- and three-dimensional geometries. The time-independent transport equation is numerically solved using a direct integration method in a multigroup model, to obtain spatial, angular and energy distributions of neutron, gamma rays or adjoint neutron flux. As to group constants, a library with an any structure of energy groups is capable to be produced from a data base JSSTDL, or by a processing code PROF-GROUCH-G/B, selecting objective nuclear data through a retrieval system EDFSRS. Validity of the present code system has been tested by analyzing the shielding benchmark experiments. The test has shown that accurate results are obtainable with this system especially in deep penetration calculation. Described are the devised calculation method and the results of validity tests. Input data specification, job control languages and output data are also described as a user's manual for the following four neutron transport codes: BERMUDA-1DN : sphere, slab(S20), BERMUDA-2DN : cylinder (S8), BERMUDA-2DN-S16 : cylinder (S16), and BERMUDA-3DN : rectangular parallelpiped (S8). (J.P.N.)
International Nuclear Information System (INIS)
Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that ‘wrap around’ glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient’s skin and to the x-ray field. With the use of such shields, the Hp(10) values recorded at the collar, chest and waist level and the Hp(3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses. (paper)
Benchmarks and models for 1-D radiation transport in stochastic participating media
Energy Technology Data Exchange (ETDEWEB)
Miller, D S
2000-08-21
Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.
International Nuclear Information System (INIS)
This paper proposes the Monte-Carlo Integral method for the direct exchange area calculation in the zone method for the first time. This method is simple and able to handle the complex geometry zone problem and the self-zone radiation problem. The Monte-Carlo Integral method is adjusted to improve the efficiency, so that an acceptable accuracy within a reasonable computation time could be achieved. The zone method with the adjusted Monte-Carlo Integral method is used for the modeling and simulation of the radiation transfer in the industrial furnace. The simulation result is compared with the industrial data and show great accordance. It also shows the high temperature flue gas heats the furnace wall, which reflects the radiant heat to the reactor tubes. The highest temperature of flue gas and the side wall appears in nearly one third of the furnace height from the bottom, which corresponds with the industrial measuring data. The simulation result indicates that the zone method is comprehensive and easy to implement for radiative phenomenon in the furnace. - Highlights: • The Monte Carlo Integral method for evaluating direct exchange areas. • Adjustment from the MCI method to the AMCI method for efficiency. • Examination of the performance of the MCI and AMCI methods. • Development of the 3D zone model with the AMCI method. • The simulation results show good accordance with the industrial data
Numerical simulations for radiation hydrodynamics. 2: Transport limit
International Nuclear Information System (INIS)
A finite difference scheme is proposed for two-dimensional radiation hydrodynamical equations in the transport limit. The scheme is of Godunov-type, in which the set of time-averaged flux needed in the scheme is calculated through Riemann problems solved. In the scheme, flow signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and radiation fields are updated simultaneously. An iterative approach is proposed to solve the set of nonlinear algebraic equations arising from the implicitness of the scheme. The sweeping method used in the scheme significantly reduces the number of iterations or computer CPU time needed. A new approach to further accelerate the convergence is proposed, which further reduces the number of iterations needed by more than one order. No matter how many cells radiation signals propagate in one time step, only an extremely small number of iterations are needed in the scheme, and each iteration costs only about 0.8% of computer CPU time which is needed for one time step of a second order accurate and fully explicit scheme. Two-dimensional problems are treated through a dimensionally split technique. Therefore, iterations for solving the set of algebraic equations are carried out only in each one-dimensional sweep. Through numerical examples it is shown that the scheme keeps the principle advantages of Godunov schemes for flow motion. In the time scale of flow motion numerical results are the same as those obtained from a second order accurate and fully explicit scheme. The acceleration of the convergence proposed in this paper may be directly applied to other hyperbolic systems. This study is important for laser fusion and astrophysics
Directory of Open Access Journals (Sweden)
Mary Yip
Full Text Available Detection of buried improvised explosive devices (IEDs is a delicate task, leading to a need to develop sensitive stand-off detection technology. The shape, composition and size of the IEDs can be expected to be revised over time in an effort to overcome increasingly sophisticated detection methods. As an example, for the most part, landmines are found through metal detection which has led to increasing use of non-ferrous materials such as wood or plastic containers for chemical based explosives being developed.Monte Carlo simulations have been undertaken considering three different commercially available detector materials (hyperpure-Ge (HPGe, lanthanum(III bromide (LaBr and thallium activated sodium iodide (NaI(Tl, applied at a stand-off distance of 50 cm from the surface and burial depths of 0, 5 and 10 cm, with sand as the obfuscating medium. Target materials representing medium density wood and mild steel have been considered. Each detector has been modelled as a 10 cm thick cylinder with a 20 cm diameter.It appears that HPGe represents the most promising detector for this application. Although it was not the highest density material studied, its excellent energy resolving capability leads to the highest quality spectra from which detection decisions can be inferred.The simulation work undertaken here suggests that a vehicle-born threat detection system could be envisaged using a single betatron and a series of detectors operating in parallel observing the space directly in front of the vehicle path. Furthermore, results show that non-ferrous materials such as wood can be effectively discerned in such remote-operated detection system, with the potential to apply a signature analysis template matching technique for real-time analysis of such data.
3D unstructured-mesh radiation transport codes
Energy Technology Data Exchange (ETDEWEB)
Morel, J. [Los Alamos National Lab., NM (United States)
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Kern, Christoph
2016-03-23
This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.
A novel approach in electron beam radiation therapy of lips carcinoma: A Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Shokrani, Parvaneh [Medical Physics and Medical Engineering Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Baradaran-Ghahfarokhi, Milad [Medical Physics and Medical Engineering Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran and Medical Radiation Engineering Department, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan 81746-73441 (Iran, Islamic Republic of); Zadeh, Maryam Khorami [Medical Physics Department, School of Medicine, Ahwaz Jundishapour University of Medical Sciences, Ahwaz 15794-61357 (Iran, Islamic Republic of)
2013-04-15
Purpose: Squamous cell carcinoma (SCC) is commonly treated by electron beam radiotherapy (EBRT) followed by a boost via brachytherapy. Considering the limitations associated with brachytherapy, in this study, a novel boosting technique in EBRT of lip carcinoma using an internal shield as an internal dose enhancer tool (IDET) was evaluated. An IDET is referred to a partially covered internal shield located behind the lip. It was intended to show that while the backscattered electrons are absorbed in the portion covered with a low atomic number material, they will enhance the target dose in the uncovered area. Methods: Monte-Carlo models of 6 and 8 MeV electron beams were developed using BEAMnrc code and were validated against experimental measurements. Using the developed models, dose distributions in a lip phantom were calculated and the effect of an IDET on target dose enhancement was evaluated. Typical lip thicknesses of 1.5 and 2.0 cm were considered. A 5 Multiplication-Sign 5 cm{sup 2} of lead covered by 0.5 cm of polystyrene was used as an internal shield, while a 4 Multiplication-Sign 4 cm{sup 2} uncovered area of the shield was used as the dose enhancer. Results: Using the IDET, the maximum dose enhancement as a percentage of dose at d{sub max} of the unshielded field was 157.6% and 136.1% for 6 and 8 MeV beams, respectively. The best outcome was achieved for lip thickness of 1.5 cm and target thickness of less than 0.8 cm. For lateral dose coverage of planning target volume, the 80% isodose curve at the lip-IDET interface showed a 1.2 cm expansion, compared to the unshielded field. Conclusions: This study showed that a boost concomitant EBRT of lip is possible by modifying an internal shield into an IDET. This boosting method is especially applicable to cases in which brachytherapy faces limitations, such as small thicknesses of lips and targets located at the buccal surface of the lip.
A novel approach in electron beam radiation therapy of lips carcinoma: A Monte Carlo study
International Nuclear Information System (INIS)
Purpose: Squamous cell carcinoma (SCC) is commonly treated by electron beam radiotherapy (EBRT) followed by a boost via brachytherapy. Considering the limitations associated with brachytherapy, in this study, a novel boosting technique in EBRT of lip carcinoma using an internal shield as an internal dose enhancer tool (IDET) was evaluated. An IDET is referred to a partially covered internal shield located behind the lip. It was intended to show that while the backscattered electrons are absorbed in the portion covered with a low atomic number material, they will enhance the target dose in the uncovered area. Methods: Monte-Carlo models of 6 and 8 MeV electron beams were developed using BEAMnrc code and were validated against experimental measurements. Using the developed models, dose distributions in a lip phantom were calculated and the effect of an IDET on target dose enhancement was evaluated. Typical lip thicknesses of 1.5 and 2.0 cm were considered. A 5 × 5 cm2 of lead covered by 0.5 cm of polystyrene was used as an internal shield, while a 4 × 4 cm2 uncovered area of the shield was used as the dose enhancer. Results: Using the IDET, the maximum dose enhancement as a percentage of dose at dmax of the unshielded field was 157.6% and 136.1% for 6 and 8 MeV beams, respectively. The best outcome was achieved for lip thickness of 1.5 cm and target thickness of less than 0.8 cm. For lateral dose coverage of planning target volume, the 80% isodose curve at the lip-IDET interface showed a 1.2 cm expansion, compared to the unshielded field. Conclusions: This study showed that a boost concomitant EBRT of lip is possible by modifying an internal shield into an IDET. This boosting method is especially applicable to cases in which brachytherapy faces limitations, such as small thicknesses of lips and targets located at the buccal surface of the lip.
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows Project
National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code...
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, Th.; Nimal, J.C.; Chiron, M
2001-07-01
The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)
Energy Technology Data Exchange (ETDEWEB)
Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)
2001-07-01
The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)
Kinetic Monte Carlo of transport processes in Al/AlOx/Au-layers: Impact of defects
Weiler, Benedikt; Haeberle, Tobias; Gagliardi, Alessio; Lugli, Paolo
2016-09-01
Ultrathin films of alumina were investigated by a compact kMC-model. Experimental jV-curves from Al/AlOx/Au-junctions with plasma- and thermal-grown AlOx were fitted by simulated ones. We found dominant defects at 2.3-2.5 eV below CBM for AlOx with an effective mass mox ∗= 0.35 m0 and a barrier EB ,A l /A l O x≈2.8 eV in agreement with literature. The parameterization is extended to varying defect levels, defect densities, injection barriers, effective masses and the thickness of AlOx. Thus, dominant charge transport processes and implications on the relevance of defects are derived and AlOx parameters are specified which are detrimental for the operation of devices.
Kinetic Monte Carlo of transport processes in Al/AlOx/Au-layers: Impact of defects
Directory of Open Access Journals (Sweden)
Benedikt Weiler
2016-09-01
Full Text Available Ultrathin films of alumina were investigated by a compact kMC-model. Experimental jV-curves from Al/AlOx/Au-junctions with plasma- and thermal-grown AlOx were fitted by simulated ones. We found dominant defects at 2.3-2.5 eV below CBM for AlOx with an effective mass mox∗=0.35 m0 and a barrier EB,Al/AlOx≈2.8 eV in agreement with literature. The parameterization is extended to varying defect levels, defect densities, injection barriers, effective masses and the thickness of AlOx. Thus, dominant charge transport processes and implications on the relevance of defects are derived and AlOx parameters are specified which are detrimental for the operation of devices.
A graphics-card implementation of Monte-Carlo simulations for cosmic-ray transport
Tautz, R. C.
2016-05-01
A graphics card implementation of a test-particle simulation code is presented that is based on the CUDA extension of the C/C++ programming language. The original CPU version has been developed for the calculation of cosmic-ray diffusion coefficients in artificial Kolmogorov-type turbulence. In the new implementation, the magnetic turbulence generation, which is the most time-consuming part, is separated from the particle transport and is performed on a graphics card. In this article, the modification of the basic approach of integrating test particle trajectories to employ the SIMD (single instruction, multiple data) model is presented and verified. The efficiency of the new code is tested and several language-specific accelerating factors are discussed. For the example of isotropic magnetostatic turbulence, sample results are shown and a comparison to the results of the CPU implementation is performed.
International Nuclear Information System (INIS)
The MCI transport model was used to compare chemical and physical sputtering for a DIII-D divertor plasma near detachment. With physical sputtering alone the integrated carbon influx was 8.4 x 1019 neutral/s while physical plus chemical sputtering produced an integrated carbon influx of 1.7 x 1021 neutrals/s. The average carbon concentration in the computational volume increased from 0.012% with only physical sputtering to 0.182% with both chemical and physical sputtering. This increase in the carbon inventory produced more radiated power which is in better agreement with experimental measurements
OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN
Energy Technology Data Exchange (ETDEWEB)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-09-22
We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIA diffusion.
International Nuclear Information System (INIS)
To test possible effects of the heterogeneous nature of the cell nucleus on simulation results of radiation-induced DNA damage, inhomogeneous targets have been implemented in the biophysical code PARTRAC. The geometry of the DNA and the histones was defined by spheres around the constituent atoms. Electron cross sections in liquid water were scaled according to the mass density of the different materials, whereas photon cross sections were derived from the sum of the cross sections for the constituent atoms. In the case of higher energy electrons the simulations show an increase of energy deposition in the DNA proportional to its high mass density. For photons with energies in the range of the carbon and the oxygen K-shell (0.28-0.53 keV), cross sections of DNA are larger than those of water, leading to an increased yield of strand breaks per average absorbed dose in the cell nucleus. (author)
International Nuclear Information System (INIS)
-Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18F radioactivity concentration of 1.86x105 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The
Efficient, Multi-Scale Radiation Transport Modeling Project
National Aeronautics and Space Administration — Focusing on a reduced-dimension problem of a hypersonic orbital/lunar reentry capsule, an algorithm will be built which combines the stochastic Monte Carlo method...
Radiation transport analysis with the aid of CAD/CAM
International Nuclear Information System (INIS)
The determination of radiation exposure to sensitive parts in spacecraft involves complex shielding configurations and multi-directional exposures. Ray tracing is commonly used to determine shielding along different directions for transport calculations and dose conversions. Ray tracing requires geometric modeling of the spacecraft, structures, equipment and enclosures. Modeling by manual procedures is inefficient and slow. Combinatorial geometry codes are a substantial improvement over manual procedures but modeling a spacecraft and its contents can take many man months; and still involves many approximations. The increasing use of CAD/CAM in engineering and design results in the convenient accessibility of geometric modeling data. A CAD/CAM system, CADAM, was used to develop an ancillary program which provides one-dimensional ray trace information from CADAM models. The resultant ray trace information is used in subsequent transport analysis on a DEC computer. The result is a timesavings of man-months, by utilizing an existing data base and an increase in accuracy by using up-to-date geometrical information
The stochastic collocation method for radiation transport in random media
International Nuclear Information System (INIS)
Stochastic spectral expansions are used to represent random input parameters and the random unknown solution to describe radiation transport in random media. The total macroscopic cross section is taken to be a spatially continuous log-normal random process with known covariance function and expressed as a memoryless transformation of a Gaussian random process. The Karhunen-Loeve expansion is applied to represent the spatially continuous random cross section in terms of a finite number of discrete Gaussian random variables. The angular flux is then expanded in terms of Hermite polynomials and, using a quadrature-based stochastic collocation method, the expansion coefficients are shown to satisfy uncoupled deterministic transport equations. Sparse grid Gauss quadrature rules are investigated to establish the efficacy of the polynomial chaos-collocation scheme. Numerical results for the mean and standard deviation of the scalar flux as well as probability density functions of the scalar flux and transmission function are obtained for a deterministic incident source, contrasting between absorbing and diffusive media.
Directory of Open Access Journals (Sweden)
T. Deutschmann
2009-04-01
Full Text Available We present a new technique for the quantitative simulation of the "Ring effect" for scattered light observations from various platforms and under different atmospheric situations. The method is based on radiative transfer calculations at only one wavelength λ_{0} in the wavelength range under consideration, and is thus computationally fast. The strength of the Ring effect is calculated from statistical properties of the photon paths for a given situation, which makes Monte Carlo radiative transfer models in particular appropriate. We quantify the Ring effect by the so called rotational Raman scattering probability, the probability that an observed photon has undergone a rotational Raman scattering event. The Raman scattering probability is independent from the spectral resolution of the instrument and can easily be converted into various definitions used to characterise the strength of the Ring effect. We compare the results of our method to the results of previous studies and in general good quantitative agreement is found. In addition to the simulation of the Ring effect, we developed a detailed retrieval strategy for the analysis of the Ring effect based on DOAS retrievals, which allows the precise determination of the strength of the Ring effect for a specific wavelength while using the spectral information within a larger spectral interval around the selected wavelength. Using our technique, we simulated synthetic satellite observation of an atmospheric scenario with a finite cloud illuminated from different sun positions. The strength of the Ring effect depends systematically on the measurement geometry, and is strongest if the satellite points to the side of the cloud which lies in the shadow of the sun.
Energy Technology Data Exchange (ETDEWEB)
Casali, N., E-mail: nicola.casali@gmail.com [Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell' Aquila, Coppito (AQ) (Italy); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Bellini, F. [Sapienza Università di roma, P.le A. Moro 2, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, Roma (Italy); Dafinei, I. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, Roma (Italy); Marafini, M. [Museo Storico della Fisisca e Centro Studi e Ricerche “Enrico Fermi“, Piazza del Viminale 1, Roma (Italy); Morganti, S.; Orio, F.; Pinci, D.; Vignati, M.; Voena, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, Roma (Italy)
2013-12-21
TeO{sub 2} crystals are currently used as bolometric detectors in experiments searching for the neutrinoless double beta decay of {sup 130}Te. The extreme rarity of the studied signal forces the experiments to reach an ultra low background level. The main background source is represented by α particles emitted by radioactive contaminants placed in the materials that compose and surround the detector. Recent measurements show that a particle discrimination in TeO{sub 2} bolometers detecting the light emitted by β/γ particles is possible, opening the possibility to make large improvements in the performance of experiments based on this kind of materials. In order to understand the nature of this light emission a measurement at room temperature with TeO{sub 2} crystals was performed. According to these results, the detected light was compatible with the Cherenkov emission, even though the scintillation hypothesis could not be discarded. In this work a Monte Carlo (MC) simulation of the Cherenkov radiation emitted by TeO{sub 2} crystal when crossed by cosmic muons was performed. The data from MC and the room temperature measurement are perfectly compatible and prove that the Cherenkov light is the only component of the light yield of TeO{sub 2} crystals.
Pontoppidan, K M; Van Dishoeck, E F; Blake, G A; Boogert, A C A; Evans, N J; Kessler-Silacci, J E; Lahuis, F; Pontoppidan, Klaus M; Dullemond, Cornelis P; Van Dishoeck, Ewine F; Blake, Geoffrey A; Boogert, Adwin C A; Kessler-Silacci, Jacqueline E; Lahuis, Fred
2004-01-01
We present 5.2-37.2 micron spectroscopy of the edge-on circumstellar disk CRBR 2422.8-3423 obtained using the InfraRed Spectrograph (IRS) of the Spitzer Space Telescope. The IRS spectrum is combined with ground-based 3-5 micron spectroscopy to obtain a complete inventory of solid state material present along the line of sight toward the source. We model the object with a 2D axisymmetric (effectively 3D) Monte Carlo radiative transfer code. It is found that the model disk, assuming a standard flaring structure, is too warm to contain the very large observed column density of pure CO ice, but is possibly responsible for up to 50% of the water, CO2 and minor ice species. In particular the 6.85 micron band, tentatively due to NH4+, exhibits a prominent red wing, indicating a significant contribution from warm ice in the disk. It is argued that the pure CO ice is located in the dense core Oph-F in front of the source seen in the submillimeter imaging, with the CO gas in the core highly depleted. The model is used ...
International Nuclear Information System (INIS)
Mammography is a standard procedure that facilitates breast cancer detection. Initial results of contrast-enhanced digital mammography (CEDM) are promising. The purpose of this study is to assess the CEDM radiation dose using a Monte Carlo code. EGSnrc MC code was used to simulate the interaction of photons with matter and estimate the glandular dose (Dg). A voxel female human phantom with a 2-8-cm breast thickness range and a breast glandular composition of 50 % was applied. Dg values ranged between 0.96 and 1.45 mGy (low and high energy). Dg values for a breast thickness of 5.0 cm and a glandular fraction of 50 % for craniocaudal and mediolateral oblique view were 1.12 (low energy image contribution is 0.98 mGy) and 1.07 (low energy image contribution is 0.95 mGy), respectively. The low kV part of CEDM is the main contributor to total glandular breast dose. (authors)
International Nuclear Information System (INIS)
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Guidelines for effective radiation transport for cable SGEMP modeling
Energy Technology Data Exchange (ETDEWEB)
Drumm, Clifton Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fan, Wesley C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, C. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
This report describes experiences gained in performing radiation transport computations with the SCEPTRE radiation transport code for System Generated ElectroMagnetic Pulse (SGEMP) applications. SCEPTRE is a complex code requiring a fairly sophisticated user to run the code effectively, so this report provides guidance for analysts interested in performing these types of calculations. One challenge in modeling coupled photon/electron transport for SGEMP is to provide a spatial mesh that is sufficiently resolved to accurately model surface charge emission and charge deposition near material interfaces. The method that has been most commonly used to date to compute cable SGEMP typically requires a sub-micron mesh size near material interfaces, which may be difficult for meshing software to provide for complex geometries. We present here an alternative method for computing cable SGEMP that appears to substantially relax this requirement. The report also investigates the effect of refining the energy mesh and increasing the order of the angular approximation to provide some guidance on determining reasonable parameters for the energy/angular approximation needed for x-ray environments. Conclusions for -ray environments may be quite different and will be treated in a subsequent report. In the course of the energy-mesh refinement studies, a bug in the cross-section generation software was discovered that may cause under prediction of the result by as much as an order of magnitude for the test problem studied here, when the electron energy group widths are much smaller than those for the photons. Results will be presented and compared using cross sections generated before and after the fix. We also describe adjoint modeling, which provides sensitivity of the total charge drive to the source energy and angle of incidence, which is quite useful for comparing the effect of changing the source environment and for determining most stressing angle of incidence and
Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs
Prod'homme, T; Lindegren, L; Short, A D T; Brown, S W
2011-01-01
Current optical space telescopes rely upon silicon Charge Coupled Devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semi-conductor bandgap which act as localized electron traps. The reduction in Charge Transfer Efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity Charge Transfer Inefficiency (CTI = 1-CTE). CTI is an ...
International Nuclear Information System (INIS)
There are many problems related to multi-step Monte Carlo (MC) calculation. Surface Source Reading (SSR) and Surface Source Writing (SSW) options in MCNP, MC depletion calculation, accelerator shielding analysis using secondary particle source term calculation, and residual particle transport calculation caused by activation are the examples of the simulations. In these problems, the average values estimated from the MC result in the previous step are used as sources of MC simulation in the next step. Hence, the uncertainties of the results in previous step are usually not considered for calculating that of next step MC simulation even though they are propagated as the stepwise progression. In this study, a new method using the forward-adjoint calculation and the union tally is proposed for the estimation of real uncertainty. For the activation benchmark problems the responses and real uncertainties were estimated by using the proposed method. And, the results were compared with those estimated by the brute force technique and the adjoint-based approach. The result shows that the proposed approach gives an accurate result comparing with the reference results
Directory of Open Access Journals (Sweden)
Nilseia Aparecida Barbosa
2014-08-01
heterogeneous eye model, indicating that the homogeneous water eye model is a reasonable one. The determined isodose curves give a good visualization of dose distributions inside the eye structures, pointing out their most exposed volume....................................................Cite this article as:Barbosa NA, da Rosa LAR, de Menezes AF, Reis JP, Facure A, Braz D. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code. Int J Cancer Ther Oncol 2014; 2(3:02038. DOI: 10.14319/ijcto.0203.8
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Miguel; Sempau, Josep [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-duisburg-essen.de [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, Essen D-45122 (Germany)
2015-06-15
Purpose: The Monte Carlo simulation of electron transport in Linac targets using the condensed history technique is known to be problematic owing to a potential dependence of absorbed dose distributions on the electron step length. In the PENELOPE code, the step length is partially determined by the transport parameters C1 and C2. The authors have investigated the effect on the absorbed dose distribution of the values given to these parameters in the target. Methods: A monoenergetic 6.26 MeV electron pencil beam from a point source was simulated impinging normally on a cylindrical tungsten target. Electrons leaving the tungsten were discarded. Radial absorbed dose profiles were obtained at 1.5 cm of depth in a water phantom located at 100 cm for values of C1 and C2 in the target both equal to 0.1, 0.01, or 0.001. A detailed simulation case was also considered and taken as the reference. Additionally, lateral dose profiles were estimated and compared with experimental measurements for a 6 MV photon beam of a Varian Clinac 2100 for the cases of C1 and C2 both set to 0.1 or 0.001 in the target. Results: On the central axis, the dose obtained for the case C1 = C2 = 0.1 shows a deviation of (17.2% ± 1.2%) with respect to the detailed simulation. This difference decreases to (3.7% ± 1.2%) for the case C1 = C2 = 0.01. The case C1 = C2 = 0.001 produces a radial dose profile that is equivalent to that of the detailed simulation within the reached statistical uncertainty of 1%. The effect is also appreciable in the crossline dose profiles estimated for the realistic geometry of the Linac. In another simulation, it was shown that the error made by choosing inappropriate transport parameters can be masked by tuning the energy and focal spot size of the initial beam. Conclusions: The use of large path lengths for the condensed simulation of electrons in a Linac target with PENELOPE conducts to deviations of the dose in the patient or phantom. Based on the results obtained in
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B
2003-07-01
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k{sub eff} (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
Deterministic methods in radiation transport. A compilation of papers presented February 4--5, 1992
Energy Technology Data Exchange (ETDEWEB)
Rice, A.F.; Roussin, R.W. [eds.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Deterministic methods in radiation transport. A compilation of papers presented February 4-5, 1992
Energy Technology Data Exchange (ETDEWEB)
Rice, A. F.; Roussin, R. W. [eds.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Energy Technology Data Exchange (ETDEWEB)
Pazianotto, Mauricio Tizziani; Goncalez, Odair Lelis; Federico, Claudio Antonio [Centro Tecnico Aeroespacial (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Carlson, Brett Vern [Centro Tecnico Aeroespacial (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica
2010-07-01
Full text: The Institute for Advanced Studies (IEAv) is developing activities to study the dose levels of ionizing radiation from cosmic rays (CR) received by aircraft crews, sensitive equipment (on-board computers, for example) and embedded electronics in Brazilian airspace. Neutrons generated by the interaction of CR with the atmosphere are the dominant particles in the dose accumulation in electronic circuits and aircraft crews at flight altitude. Their production has a very broad energy spectrum, ranging from thermal neutrons (0.025eV ) to neutrons of several hundreds of MeV , making their detection a very difficult process. To observe the temporal variation in flow during the measurements, a detector of the Long Counter (LC) type is being used. This detector is designed to measure the one-way flow of neutrons with constant response over a wide energy range (thermal to 20 MeV ). However, to measure cosmic rays, the flow of which is non-directional, the dependence of the response on the angle of incidence, as well as energy, should be properly investigated. The objective of this study is to assess the angular response of the neutron detector (Long Counter) using the code MCNP5 (Monte Carlo N-Particle) and to compare it with the experimental data previously obtained with a {sup 241}Am-Be source at a distance of 1.66 m from the geometric center of the detector, varying the angle of incidence from 00 to 3600 in intervals of 150. The simulation was performed by modeling in detail the structure and materials of the LC, as well as the experimental arrangement for irradiation. The results of the simulation present reasonable agreement with the experimental data. This agreement shows that the modeling of the geometry of the source-detector system is adequate. The next step is to develop a model of neutron detection for the higher energy present in cosmic radiation fields, for which the experimental calibration is not so easily achievable. (author)
International Nuclear Information System (INIS)
From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined
Guerra, Pedro; Udías, José M; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L; Valdivieso, Manlio F; Rodríguez, Raúl; Calama, Juan A; Pascau, Javier; Calvo, Felipe A; Illana, Carlos; Ledesma-Carbayo, María J; Santos, Andrés
2014-12-01
This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning
Implication of radiative forcing distribution for energy transport
Huang, Yi
2016-04-01
Radiative forcing of a homogeneous greenhouse gas can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range being more than three times the magnitude of the global mean value. The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the CMIP5 models, we find that inter-model discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.
Energy Technology Data Exchange (ETDEWEB)
Silva, Laura E. da; Nicolucci, Patricia, E-mail: laura.emilia.fm@gmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras
2014-04-15
The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)
Charon, Julien; Blanco, Stéphane; Cornet, Jean-François; Dauchet, Jérémi; El Hafi, Mouna; Fournier, Richard; Abboud, Mira Kaissar; Weitz, Sebastian
2016-03-01
In the present paper, Schiff's approximation is applied to the study of light scattering by large and optically-soft axisymmetric particles, with special attention to cylindrical and spheroidal photosynthetic micro-organisms. This approximation is similar to the anomalous diffraction approximation but includes a description of phase functions. Resulting formulations for the radiative properties are multidimensional integrals, the numerical resolution of which requires close attention. It is here argued that strong benefits can be expected from a statistical resolution by the Monte Carlo method. But designing such efficient Monte Carlo algorithms requires the development of non-standard algorithmic tricks using careful mathematical analysis of the integral formulations: the codes that we develop (and make available) include an original treatment of the nonlinearity in the differential scattering cross-section (squared modulus of the scattering amplitude) thanks to a double sampling procedure. This approach makes it possible to take advantage of recent methodological advances in the field of Monte Carlo methods, illustrated here by the estimation of sensitivities to parameters. Comparison with reference solutions provided by the T-Matrix method is presented whenever possible. Required geometric calculations are closely similar to those used in standard Monte Carlo codes for geometric optics by the computer-graphics community, i.e. calculation of intersections between rays and surfaces, which opens interesting perspectives for the treatment of particles with complex shapes.
Energy Technology Data Exchange (ETDEWEB)
Duch, M. A.; Zaragoza, F. J.; Sempau, J.; Ginjaume, M.; Vano, E.; Sanchez, R.; Fernandez, J. M.
2013-07-01
The study shows that the MC simulation is a useful tool to facilitate the assessment of the spatial distribution of the dose due to the radiation scattered in interventional radiology procedures, as well as to determine the influence of various operational parameters in the same , avoiding experimental measures that require much time of use the Cath Labs. (Author)
International Nuclear Information System (INIS)
Highlights: • WARP, a GPU-accelerated Monte Carlo neutron transport code, has been developed. • The NVIDIA OptiX high-performance ray tracing library is used to process geometric data. • The unionized cross section representation is modified for higher performance. • Reference remapping is used to keep the GPU busy as neutron batch population reduces. • Reference remapping is done using a key-value radix sort on neutron reaction type. - Abstract: In recent supercomputers, general purpose graphics processing units (GPGPUs) are a significant faction of the supercomputer’s total computational power. GPGPUs have different architectures compared to central processing units (CPUs), and for Monte Carlo neutron transport codes used in nuclear engineering to take advantage of these coprocessor cards, transport algorithms must be changed to execute efficiently on them. WARP is a continuous energy Monte Carlo neutron transport code that has been written to do this. The main thrust of WARP is to adapt previous event-based transport algorithms to the new GPU hardware; the algorithmic choices for all parts of which are presented in this paper. It is found that remapping history data references increases the GPU processing rate when histories start to complete. The main reason for this is that completed data are eliminated from the address space, threads are kept busy, and memory bandwidth is not wasted on checking completed data. Remapping also allows the interaction kernels to be launched concurrently, improving efficiency. The OptiX ray tracing framework and CUDPP library are used for geometry representation and parallel dataset-side operations, ensuring high performance and reliability
Calibration and Monte Carlo modelling of neutron long counters
Tagziria, H
2000-01-01
The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...
Department of Environmental and Radiation Transport Physics - Overview
International Nuclear Information System (INIS)
has been pursued. The influence of the components of new drilling fluids on the interpretation of neutron logs has been tested. The problem of a proper description of the thermal neutron diffusion parameters dependent on the energy flux distribution in finite hydrogenous media has been studied. Granada's synthetic model for slow-neutron scattering has been used. As the valuable result of the research the thermal neutron diffusion cooling coefficient in polyethylene has been calculated, using individual characteristics of the scattering kernel for this substance. The experimental set-up at the pulsed neutron generator has been equipped with a new-built thermostatic chamber. Artificial neural network (ANN) applications in petrophysics have been studied: ANN analysis was applied with success to assess Σa values for the data from Miocene formations near Tarnogrod. And also the artificial intelligence methods have been used for appreciation of two different methods of measurement of thermal neutron absorption cross section Σa. A part of the samples was measured by first method and the other one by the second method. Using ANN it was possible to detect a systematic difference of results from both methods on the level of the standard deviation. A later large experiment consisting of the measurement of all samples by both methods has validated the ANN results. The semi-empirical calibration method of neutron borehole tools was further developed. The three-layer case solution, based on diffusion approximation solution of neutron transport equation, does not give correct results when compared with experimental values. This discrepancy was due to the fact that in the case of highly absorbing media like iron or boron the diffusion approximation should not be applied for such media. The calculations of the migration length in the simple three cylindrical layer case with the use of Monte Carlo codes are studied. The work focused on the improvement of radon measurement methods in
Putze, A; Maurin, D
2010-01-01
On-going measurements of the cosmic radiation (nuclear, electronic, and gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of propagation models. A Markov Chain Monte Carlo is used to obtain these parameters in a diffusion model. From the measurement of the B/C ratio and radioactive cosmic-ray clocks, we calculate their probability density functions, with a special emphasis on the halo size L of the Galaxy and the local underdense bubble of size r_h. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009, paper I of this series) for the parameter determination. As found in previous studies, the B/C best-fit model favours diffusion/convection/reacceleration (Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~ 120 pc for the bes...
The effect of coherent scattering in photon radiation transport calculations
International Nuclear Information System (INIS)
The effect of including or excluding the coherent scattering cross section in the Monte Carlo analysis of photon penetration in water has been studied. Source energies from 80 keV down to 20 keV were investigated. The inclusion of coherent scattering has the effect of degrading the photon population with depth of penetration, but at the same time dispersing the population over a larger volume than when it is excluded from the scattering model. 4 refs., 5 figs., 2 tabs
Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun
2015-05-01
Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the
Development of a New Monte Carlo reactor physics code
Leppänen, Jaakko
2007-01-01
Monte Carlo neutron transport codes are widely used in various reactor physics applications, traditionally related to criticality safety analyses, radiation shielding problems, detector modelling and validation of deterministic transport codes. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to so...
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time
Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples
International Nuclear Information System (INIS)
This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices
Jones, Andrew Osler
There is an increasing interest in the use of inhomogeneity corrections for lung, air, and bone in radiotherapy treatment planning. Traditionally, corrections based on physical density have been used. Modern algorithms use the electron density derived from CT images. Small fields are used in both conformal radiotherapy and IMRT, however their beam characteristics in inhomogeneous media have not been extensively studied. This work compares traditional and modern treatment planning algorithms to Monte Carlo simulations in and near low-density inhomogeneities. Field sizes ranging from 0.5 cm to 5 cm in diameter are projected onto a phantom containing inhomogeneities and depth dose curves are compared. Comparisons of the Dose Perturbation Factors (DPF) are presented as functions of density and field size. Dose Correction Factors (DCF), which scale the algorithms to the Monte Carlo data, are compared for each algorithm. Physical scaling algorithms such as Batho and Equivalent Pathlength (EPL) predict an increase in dose for small fields passing through lung tissue, where Monte Carlo simulations show a sharp dose drop. The physical model-based collapsed cone convolution (CCC) algorithm correctly predicts the dose drop, but does not accurately predict the magnitude. Because the model-based algorithms do not correctly account for the change in backscatter, the dose drop predicted by CCC occurs further downstream compared to that predicted by the Monte Carlo simulations. Beyond the tissue inhomogeneity all of the algorithms studied predict dose distributions in close agreement with Monte Carlo simulations. Dose-volume relationships are important in understanding the effects of radiation to the lung. Dose within the lung is affected by a complex function of beam energy, lung tissue density, and field size. Dose algorithms vary in their abilities to correctly predict the dose to the lung tissue. A thorough analysis of the effects of density, and field size on dose to the lung
Energy Technology Data Exchange (ETDEWEB)
Lacornerie, T.; Prevost, B.; Reynaert, N. [Centre Oscar-Lambret, Lille (France); Lisbona, A.; Thillays, F. [Institut de cancerologie de l' Ouest Rene-Gauducheau, Nantes (France)
2011-10-15
As important differences are noticed in lung for some dose calculation algorithms (Pencil Beam and Monte Carlo for IPlan RT Dose, Ray-Tracing and Monte Carlo for CyberKnife, Pencil Beam and Collapsed Cone for Clinac 6V), the authors report the search for a way to adapt protocols established with old algorithms and to minimize the difference between teams who are using a same irradiation scheme, for example three 20 Gy fractions. They have studied whether the prescription of a peripheral isodose to the previsional target volume (PTV) is the best approach. Irradiation plans have been calculated for different types of accelerators, with two types of algorithms, and for three different lesion sizes. The doses received by 98, 50 and 2 per cent of the volume are analyzed for the PTV, the gross tumour volume (GTV) and for the irradiated lung volumes. Differences are as much important as target size is low. It appears that type B algorithms (Monte Carlo, Collapsed Cone) are recommended. Short communication
International Nuclear Information System (INIS)
This study aims to utilize a measurement-based Monte Carlo (MBMC) method to evaluate the accuracy of dose distributions calculated using the Eclipse radiotherapy treatment planning system (TPS) based on the anisotropic analytical algorithm. Dose distributions were calculated for the nasopharyngeal carcinoma (NPC) patients treated with the intensity modulated radiotherapy (IMRT). Ten NPC IMRT plans were evaluated by comparing their dose distributions with those obtained from the in-house MBMC programs for the same CT images and beam geometry. To reconstruct the fluence distribution of the IMRT field, an efficiency map was obtained by dividing the energy fluence of the intensity modulated field by that of the open field, both acquired from an aS1000 electronic portal imaging device. The integrated image of the non-gated mode was used to acquire the full dose distribution delivered during the IMRT treatment. This efficiency map redistributed the particle weightings of the open field phase-space file for IMRT applications. Dose differences were observed in the tumor and air cavity boundary. The mean difference between MBMC and TPS in terms of the planning target volume coverage was 0.6% (range: 0.0–2.3%). The mean difference for the conformity index was 0.01 (range: 0.0–0.01). In conclusion, the MBMC method serves as an independent IMRT dose verification tool in a clinical setting. - Highlights: ► The patient-based Monte Carlo method serves as a reference standard to verify IMRT doses. ► 3D Dose distributions for NPC patients have been verified by the Monte Carlo method. ► Doses predicted by the Monte Carlo method matched closely with those by the TPS. ► The Monte Carlo method predicted a higher mean dose to the middle ears than the TPS. ► Critical organ doses should be confirmed to avoid overdose to normal organs
Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique
Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.
2010-01-01
In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed
Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013
International Nuclear Information System (INIS)
The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.
Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak
Directory of Open Access Journals (Sweden)
Casali L.
2014-01-01
Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.
Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013
International Nuclear Information System (INIS)
The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.
On the Development of a Deterministic Three-Dimensional Radiation Transport Code
Rockell, Candice; Tweed, John
2011-01-01
Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.
International Nuclear Information System (INIS)
The coupled radiative transport-diffusion model can be used as light transport model in situations in which the diffusion equation is not a valid approximation everywhere in the domain. In the coupled model, light propagation is modelled with the radiative transport equation in sub-domains in which the approximations of the diffusion equation are not valid, such as within low-scattering regions, and the diffusion approximation is used elsewhere in the domain. In this paper, an image reconstruction method for diffuse optical tomography based on using the coupled radiative transport-diffusion model is developed. In the approach, absorption and scattering distributions are estimated by minimising a regularised least-squares error between the measured data and solution of the coupled model. The approach is tested with simulations. Reconstructions from different cases including domains with low-scattering regions are shown. The results show that the coupled radiative transport-diffusion model can be utilised in image reconstruction problem of diffuse optical tomography and that it produces as good quality reconstructions as the full radiative transport equation also in the presence of low-scattering regions.
Adjoint transport methods for radiation-effects testing
International Nuclear Information System (INIS)
Adjoint transport has been exploited for some time for neutral particle calculations. For charged particles, however, production adjoint capability was not available until Morel developed the ability to solve coupled-photon-electron transport problems with production discrete ordinates codes. This represents a significant advance for many problems of interest, such as predicting bremsstrahlung yield from flash X-ray machines, internal electromagnetic pulse (IEMP) for photons incident on printed circuit boards, shielding requirements for electron dosimetry, and dose enhancement from photon irradiation of printed circuit boards. The authors demonstrate here that adjoint photon-electron transport is at least an order of magnitude more efficient than forward transport for optimizing bremsstrahlung yield from flash X-ray machine converters. This problem is particularly interesting since adjoint transport provides a good approximation for a variable geometry in addition to a variable source, due to the highly forward-peaked nature of the electron scattering. Normally, neither forward nor adjoint transport is efficient for studying a variable-geometry problem
Energy Technology Data Exchange (ETDEWEB)
Authier, N
1998-12-01
One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)
Method to transport and store radioactive radiating articles or substances
International Nuclear Information System (INIS)
A suggestion is made to fill radioactive articles, e.g. fuel elements, into transport containers and then to cover these with a salt melt (at least 41% salt) which solidifies at temperatures > 980C, so that ameer hardening of the melt, one may transport or store these as solid blocks. If desired, one can remelt the salt melt by heating slightly and extract the articles. Insulating materials (such as e.g. glass fibres) can be added to the salt mixture, the hardened melt can also be covered by bitumen, concrete etc. Apparatus to carry out this proposed method is presented in detail. (UWI) 891 HP/UWI 892 CKA
The Roles of Transport and Wave-Particle Interactions on Radiation Belt Dynamics
Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua
2011-01-01
Particle fluxes in the radiation belts can vary dramatically during geomagnetic active periods. Transport and wave-particle interactions are believed to be the two main types of mechanisms that control the radiation belt dynamics. Major transport processes include substorm dipolarization and injection, radial diffusion, convection, adiabatic acceleration and deceleration, and magnetopause shadowing. Energetic electrons and ions are also subjected to pitch-angle and energy diffusion when interact with plasma waves in the radiation belts. Important wave modes include whistler mode chorus waves, plasmaspheric hiss, electromagnetic ion cyclotron waves, and magnetosonic waves. We investigate the relative roles of transport and wave associated processes in radiation belt variations. Energetic electron fluxes during several storms are simulated using our Radiation Belt Environment (RBE) model. The model includes important transport and wave processes such as substorm dipolarization in global MHD fields, chorus waves, and plasmaspheric hiss. We discuss the effects of these competing processes at different phases of the storms and validate the results by comparison with satellite and ground-based observations. Keywords: Radiation Belts, Space Weather, Wave-Particle Interaction, Storm and Substorm
Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation
Directory of Open Access Journals (Sweden)
Y. Balkanski
2010-01-01
Full Text Available Aerosols and their precursors are emitted abundantly by transport activities. Transportation constitutes one of the fastest growing activities and its growth is predicted to increase significantly in the future. Previous studies have estimated the aerosol direct radiative forcing from one transport sub-sector, but only one study to our knowledge estimated the range of radiative forcing from the main aerosol components (sulphate, black carbon (BC and organic carbon for the whole transportation sector. In this study, we compare results from two different chemical transport models and three radiation codes under different hypothesis of mixing: internal and external mixing using emission inventories for the year 2000. The main results from this study is a positive direct radiative forcing for aerosols emitted by road traffic of +20±11 mWm^{−2} for an externally mixed aerosol, and of +32±13 mWm^{−2} when BC is internally mixed . These direct radiative forcings are much higher than the previously published estimate of +3±11 mWm^{−2}. For transport activities from shipping, the net direct aerosol radiative forcing is negative. This forcing is dominated by the contribution of the sulphate. For both an external and an internal mixture, the radiative forcing from shipping is estimated at −26±4 mWm^{−2}. These estimates are in very good agreement with the range of a previously published one (from −46 to −13 mWm^{−2} but with a much narrower range. By contrast, the direct aerosol forcing from aviation is estimated to be small, and in the range −0.9 to +0.3 mWm^{−2}.
Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation
Directory of Open Access Journals (Sweden)
Y. Balkanski
2010-05-01
Full Text Available Aerosols and their precursors are emitted abundantly by transport activities. Transportation constitutes one of the fastest growing activities and its growth is predicted to increase significantly in the future. Previous studies have estimated the aerosol direct radiative forcing from one transport sub-sector, but only one study to our knowledge estimated the range of radiative forcing from the main aerosol components (sulphate, black carbon (BC and organic carbon for the whole transportation sector. In this study, we compare results from two different chemical transport models and three radiation codes under different hypothesis of mixing: internal and external mixing using emission inventories for the year 2000. The main results from this study consist of a positive direct radiative forcing for aerosols emitted by road traffic of +20±11 mW m^{−2} for an externally mixed aerosol, and of +32±13 mW m^{−2} when BC is internally mixed. These direct radiative forcings are much higher than the previously published estimate of +3±11 mW m^{−2}. For transport activities from shipping, the net direct aerosol radiative forcing is negative. This forcing is dominated by the contribution of the sulphate. For both an external and an internal mixture, the radiative forcing from shipping is estimated at −26±4 mW m^{−2}. These estimates are in very good agreement with the range of a previously published one (from −46 to −13 mW m^{−2} but with a much narrower range. By contrast, the direct aerosol forcing from aviation is estimated to be small, and in the range −0.9 to +0.3 mW m^{−2}.
Laboure, Vincent M.; McClarren, Ryan G.; Hauck, Cory D.
2016-09-01
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
Laboure, Vincent M; Hauck, Cory D
2016-01-01
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system in the streaming limit, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte-Carlo (IMC) calculations.
Takabe, Hideaki
A brief review is given of the physics of radiation transport, a topic that is important in the study of astrophysics, laser-plasmas, divertor-plasmas, etc. In general, we must solve non-local thermodynamic equilibrium processes using an appropriate atomic model. The resultant data related to the spectral emissivity and opacity of partially ionized plasmas are then used to solve the radiation transfer equation. In this note, I briefly overview a variety of ways to carry out such a calculation. In addition, similarities and differences in the physical process between laser-plasmas and divertor-plasmas are briefly described.
Nuclear medicine radiation dosimetry
McParland, Brian J
2010-01-01
Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and
Ultrasound radiation force transport of drugs in tumors
Sun, Xianhua
2013-01-01
Chemotherapy effectiveness not only depends on drug penetration extent in target tissues or tumor cells, but also depends on drug suppression extent by the normal tissues and cells. Ultrasound acts as an important role to meet this requirement in drug delivery of chemotherapy in recent years. The popular methods are micro bubbles and HIFU (high intensity focused ultrasound). In this thesis, we developed a method using ultrasound radiation force to ?push? the drug penetrate into tumor cells. ...
International Nuclear Information System (INIS)
A radiation shielding analysis under the hypothetical accident condition has been conducted using a computer program MCNP5 for a B-type HIC (High Integrated Container) Transport Package, which contains HIC with radioactive waste or spent resin, for transportation from nuclear power plat sites to disposal repository. Radiation source term is first carefully determined from the safety analysis reports related to HIC for appropriate calculation. And then MCNP5 is performed to obtain the minimum crevice between package lid and body, which meets the dose rate limit under the hypothetical accident conditions. Standards and codes of radiation shielding analysis related to the hypothetical accident condition are prescribed in Korea Nuclear Law, IAEA Safety Standards Series for Radioactive Material Transport and US 10CFR Part 71
International Nuclear Information System (INIS)
A simple and effective framework is presented for modeling transport processes unfolding at computationally and/or observationally unresolved scales in scattering, absorbing and emitting media. The new approach acts directly on the spatial (i.e., propagation) part of the kernel in the integral formulation of the generic linear transport equation framed for stochastic media with a wide variety of spatial correlations, going far beyond the Markov-Poisson class used in the classic Pomraning-Levermore model. This statistical look at the extinction of un-collided particle beams takes us away from the standard exponential law of transmission. New transmission laws arise that are generally not exponential, often not even for asymptotically large jumps. This means that, from this perspective on random spatial variability, there is no 'effective medium' per se nor homogenization technique that can be used to describe the effects of unresolved fluctuations of the collision coefficient. However, one can still rewrite the transport equation, at least in its integral form, in a manner that looks like its counterpart for uniform media, but with a modified propagation kernel. Implementation in a Monte Carlo scheme is trivially simple and numerical results are presented that illustrate the bulk effect of the new parameterization for plane-parallel geometry. We survey time-domain diagnostics of solar radiative transfer in the Earth's cloudy atmosphere obtained recently from high-resolution ground-based spectroscopy, and it is shown that they are explained comprehensively by the new model. Finally, we discuss possible applications of this modeling framework in nuclear engineering. (authors)
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2006-01-01
This paper presents the Danish CBA-DK software model for assessment of transport infrastructure projects. The as-sessment model is based on both a deterministic calcula-tion following the cost-benefit analysis (CBA) methodol-ogy in a Danish manual from the Ministry of Transport and on a stochastic...
Dissipation and Vertical Energy Transport in Radiation-Dominated Accretion Disks
Blaes, Omer; Hirose, Shigenobu; Shabaltas, Natalia
2011-01-01
Standard models of radiation supported accretion disks generally assume that diffusive radiation flux is solely responsible for vertical heat transport. This requires that heat must be generated at a critical rate per unit volume if the disk is to be in hydrostatic and thermal equilibrium. This raises the question of how heat is generated and how energy is transported in MHD turbulence. By analysis of a number of radiation/MHD stratified shearing-box simulations, we show that the divergence of the diffusive radiation flux is indeed capped at the critical rate, but deep inside the disk, substantial vertical energy flux is also carried by advection of radiation. Work done by radiation pressure is a significant part of the energy budget, and much of this work is dissipated later through damping by radiative diffusion. We show how this damping can be measured in the simulations, and identify its physical origins. Radiative damping accounts for as much as tens of percent of the total dissipation, and is the only r...
Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility
Energy Technology Data Exchange (ETDEWEB)
Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others
2014-06-15
Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.
Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014
International Nuclear Information System (INIS)
Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards
Analytical Radiation Transport Benchmarks for The Next Century
International Nuclear Information System (INIS)
Verification of large-scale computational algorithms used in nuclear engineering and radiological applications is an essential element of reliable code performance. For this reason, the development of a suite of multidimensional semi-analytical benchmarks has been undertaken to provide independent verification of proper operation of codes dealing with the transport of neutral particles. The benchmarks considered cover several one-dimensional, multidimensional, monoenergetic and multigroup, fixed source and critical transport scenarios. The first approach, called the Green's Function. In slab geometry, the Green's function is incorporated into a set of integral equations for the boundary fluxes. Through a numerical Fourier transform inversion and subsequent matrix inversion for the boundary fluxes, a semi-analytical benchmark emerges. Multidimensional solutions in a variety of infinite media are also based on the slab Green's function. In a second approach, a new converged SN method is developed. In this method, the SN solution is ''minded'' to bring out hidden high quality solutions. For this case multigroup fixed source and criticality transport problems are considered. Remarkably accurate solutions can be obtained with this new method called the Multigroup Converged SN (MGCSN) method as will be demonstrated
Energy Technology Data Exchange (ETDEWEB)
Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.
1988-07-01
This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.
Transport calculations and accelerator experiments needed for radiation risk assessment in space
International Nuclear Information System (INIS)
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be belter estimated. Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed. The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials. (orig.)
HUMMEL, JOHN R.; KUHN, WILLIAM R.
2011-01-01
In the present generation of radiative-convective models, clouds are assigned specific levels or temperatures that do not change during the course of the calculations. In addition, a single water vapor distribution is used for the “mean atmosphere” instead of separate distributions for the clear sky and cloudy sky atmospheres. We present results from a one-dimensional radiative-convective model that includes interactive water vapor transport and predicts cloud altitudes and thicknesses. The ...
High-Accuracy Spectral Lines for Radiation Transport in Stellar Atmospheres
Amit R. Sharma; Braams, Bastiaan J.; Bowman, Joel M.; Robert Warmbier; Ralf Schneider; Hauschildt, Peter H.
2008-01-01
The theory of radiative transfer is an important element for the understanding of the spectral signature and physical structure of stellar atmosphere. PHOENIX1 is a such, very general non-Local Thermodynamic Equilibrium(NLTE) stellar atmosphere computer code which can handle very large model atoms/molecules as well as line blanketing by hundreds of millions of atomic and molecular lines. The code is used to compute model atmospheres and synthetic spectra (solution of the radiative transport e...
Daniel J. Whalen; Norman, Michael L.
2005-01-01
Radiation hydrodynamical transport of ionization fronts in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is...
The implication of radiative forcing and feedback for meridional energy transport
Huang, Yi; Zhang, Minghong
2014-03-01
The distributions of radiative forcing and feedback in the Coupled Model Intercomparison Project phase 5 abrupt4xCO2 and Historical experiments are diagnosed, with a focus on their effects on the zonal mean structure of the top-of-the-atmosphere radiation anomalies and implications for the meridional energy transport. It is found that because the greenhouse gas longwave forcing peaks in the low latitudes, it reinforces the equator-to-pole net radiation gradient and accounts for the increase in the poleward energy transport in both hemispheres under global warming. The shortwave forcing by aerosol, ozone, etc. peaks in the Northern Hemisphere and instead implies an interhemispheric energy transport. Although the water vapor feedback also reinforces the equator-to-pole gradient of the net radiation, the temperature and albedo feedback act against it. The feedback tend to offset the zonal mean radiation anomaly caused by the forcing, although the overall feedback effect on the energy transport is rather uncertain, mainly due to the uncertainty in the cloud feedback.
Hawking Radiation of a Kaluza-Klein Black Hole Described by Landauer Transport Model
Institute of Scientific and Technical Information of China (English)
兰小刚; 韦联福
2012-01-01
We investigate the Hawking radiation of a Kaluza-Klein black hole by using one-dimensional(1D),non-equilibrium,Landauer transport model.The derived Hawking radiation temperature is in consistence with that obtained by using the usual anomaly method.With the Landauer transport model,we calculate the entropy flow out of the Kaluza-Klein black hole and the relevant entropy production rate.How these quantities depending on the physical parameters of the black hole is also discussed.
Periyasamy, Vijitha; Pramanik, Manojit
2014-04-01
Monte Carlo modeling of light transport in multilayered tissue (MCML) is modified to incorporate objects of various shapes (sphere, ellipsoid, cylinder, or cuboid) with a refractive-index mismatched boundary. These geometries would be useful for modeling lymph nodes, tumors, blood vessels, capillaries, bones, the head, and other body parts. Mesh-based Monte Carlo (MMC) has also been used to compare the results from the MCML with embedded objects (MCML-EO). Our simulation assumes a realistic tissue model and can also handle the transmission/reflection at the object-tissue boundary due to the mismatch of the refractive index. Simulation of MCML-EO takes a few seconds, whereas MMC takes nearly an hour for the same geometry and optical properties. Contour plots of fluence distribution from MCML-EO and MMC correlate well. This study assists one to decide on the tool to use for modeling light propagation in biological tissue with objects of regular shapes embedded in it. For irregular inhomogeneity in the model (tissue), MMC has to be used. If the embedded objects (inhomogeneity) are of regular geometry (shapes), then MCML-EO is a better option, as simulations like Raman scattering, fluorescent imaging, and optical coherence tomography are currently possible only with MCML. PMID:24727908
Fomin, Boris; Falaleeva, Victoria
2016-07-01
A polarized high-resolution 1-D model has been presented for TIR (Thermal Infrared) remote sensing application. It is based on the original versions of MC (Monte Carlo) and LbL (Line-by-Line) algorithms, which have shown their effectiveness when modelling the thermal radiation atmospheric transfer, taking into account, the semi-transparent Ci-type and polar clouds scattering, as well as the direct consideration of the spectra of molecular absorption. This model may be useful in the planning of satellite experiments and in the validation of similar models, which use the "k-distribution" or other approximations, to account for gaseous absorption. The example simulations demonstrate that, the selective gas absorption does not only significantly affect the absorption and emission of radiation, but also, its polarization in the Ci-type clouds. As a result, the spectra of polarized radiation contain important information about the clouds, and a high-resolution polarized limb sounding in the TIR, seems to be a useful tool in obtaining information on cloud types and their vertical structures.
Energy Technology Data Exchange (ETDEWEB)
Skidmore, M.S., E-mail: mss16@star.le.ac.u [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)
2010-01-01
Characterising a planetary radiation environment is important to: (1) assess the habitability of a planetary body for indigenous life; (2) assess the risks associated with manned exploration missions to a planetary body and (3) predict/interpret the results that remote sensing instrumentation may obtain from a planetary body (e.g. interpret the gamma-ray emissions from a planetary surface produced by radioactive decay or via the interaction of galactic cosmic rays to obtain meaningful estimates of the concentration of certain elements on the surface of a planet). The University of Leicester is developing instrumentation for geophysical applications that include gamma-ray spectroscopy, gamma-ray densitometry and radiometric dating. This paper describes the verification of a Monte-Carlo planetary radiation environment model developed using the MCNPX code. The model is designed to model the radiation environments of Mars and the Moon, but is applicable to other planetary bodies, and will be used to predict the performance of the instrumentation being developed at Leicester. This study demonstrates that the modelled gamma-ray data is in good agreement with gamma-ray data obtained by the gamma-ray spectrometers on 2001 Mars Odyssey and Lunar Prospector, and can be used to accurately model geophysical instrumentation for planetary science applications.
In silico radiobiology: Have we reached the limit of Monte Carlo simulations?
International Nuclear Information System (INIS)
Monte Carlo radiation transport models are increasingly being used to simulate biological damage. However, such radiation biophysics simulations require realistic molecular models for water, whereas existing Monte Carlo models are limited by their use of atomic cross-sections, which become inadequate for accurately modelling interactions of the very low-energy electrons that are responsible for biological damage. In this study, we borrow theoretical methods commonly employed in molecular dynamics simulations to model the molecular wavefunction of the water molecule as the first step towards deriving new molecular cross-sections. We calculate electron charge distributions for molecular water and find non-negligible differences between the vapor and liquid phases that can be attributed to intermolecular bonding in the condensed phase. We propose that a hybrid Monte Carlo – Molecular Dynamics (MC-MD) approach to modelling radiation biophysics will provide new insights into radiation damage and new opportunities to develop targeted molecular therapy strategies.
In silico radiobiology: Have we reached the limit of Monte Carlo simulations?
Gholami, Y.; Toghyani, M.; Champion, C.; Kuncic, Z.
2014-03-01
Monte Carlo radiation transport models are increasingly being used to simulate biological damage. However, such radiation biophysics simulations require realistic molecular models for water, whereas existing Monte Carlo models are limited by their use of atomic cross-sections, which become inadequate for accurately modelling interactions of the very low-energy electrons that are responsible for biological damage. In this study, we borrow theoretical methods commonly employed in molecular dynamics simulations to model the molecular wavefunction of the water molecule as the first step towards deriving new molecular cross-sections. We calculate electron charge distributions for molecular water and find non-negligible differences between the vapor and liquid phases that can be attributed to intermolecular bonding in the condensed phase. We propose that a hybrid Monte Carlo - Molecular Dynamics (MC-MD) approach to modelling radiation biophysics will provide new insights into radiation damage and new opportunities to develop targeted molecular therapy strategies.
Energy Technology Data Exchange (ETDEWEB)
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Radiation-induced charge transport in polymer electrets
Energy Technology Data Exchange (ETDEWEB)
Labonte, K. (Technische Univ., Darmstadt (Germany, F.R.). Inst. for Electroacoustics)
1984-01-01
Recently, a new physical model has been developed describing the charge dynamics in dielectrics during irradiation. Experimental investigations of the charge transport in polymer electrets were carried out in a modified electron-beam microscope on various materials (FEP, PETP, PVDF). A qualitative comparison of the theoretical results with experimental data shows that, in FEP, electrons are practically immobile, whereas positive charge carriers cause a trap-modulated unipolar hole current. For PETP, analogous results are found except that here the mobility of the electrons dominates. In PVDF, however, both charge carriers must be mobile.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
Monte Carlo simulations of the Galileo energetic particle detector
International Nuclear Information System (INIS)
Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study