WorldWideScience

Sample records for carlo radiation transport

  1. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  2. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  3. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  4. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  5. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik

    2012-01-01

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  6. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  7. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  8. Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport

    International Nuclear Information System (INIS)

    Lynch, J.E.

    1985-01-01

    Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs

  9. Monte Carlo method in radiation transport problems

    International Nuclear Information System (INIS)

    Dejonghe, G.; Nimal, J.C.; Vergnaud, T.

    1986-11-01

    In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr

  10. bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT

    International Nuclear Information System (INIS)

    Ryan, B. R.; Gammie, C. F.; Dolence, J. C.

    2015-01-01

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry

  11. grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika

    2009-01-01

    We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.

  12. Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport

    International Nuclear Information System (INIS)

    McKinley, M S; Brooks III, E D; Daffin, F

    2004-01-01

    Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations

  13. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.

    2007-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  14. Overview and applications of the Monte Carlo radiation transport kit at LLNL

    International Nuclear Information System (INIS)

    Sale, K. E.

    1999-01-01

    Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions

  15. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  16. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  17. Monte Carlo radiation transport: A revolution in science

    International Nuclear Information System (INIS)

    Hendricks, J.

    1993-01-01

    When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science

  18. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  19. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  20. The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    CERN. Geneva; Ferrari, Alfredo; Silari, Marco

    2006-01-01

    Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...

  1. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-01-01

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results

  2. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    Science.gov (United States)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  3. Vectorization and parallelization of Monte-Carlo programs for calculation of radiation transport

    International Nuclear Information System (INIS)

    Seidel, R.

    1995-01-01

    The versatile MCNP-3B Monte-Carlo code written in FORTRAN77, for simulation of the radiation transport of neutral particles, has been subjected to vectorization and parallelization of essential parts, without touching its versatility. Vectorization is not dependent on a specific computer. Several sample tasks have been selected in order to test the vectorized MCNP-3B code in comparison to the scalar MNCP-3B code. The samples are a representative example of the 3-D calculations to be performed for simulation of radiation transport in neutron and reactor physics. (1) 4πneutron detector. (2) High-energy calorimeter. (3) PROTEUS benchmark (conversion rates and neutron multiplication factors for the HCLWR (High Conversion Light Water Reactor)). (orig./HP) [de

  4. Acceleration of a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Hochstedler, R.D.; Smith, L.M.

    1996-01-01

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  5. PEREGRINE: An all-particle Monte Carlo code for radiation therapy

    International Nuclear Information System (INIS)

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Svatos, M.M.; White, R.M.

    1994-09-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor while minimizing the dose to normal tissues. To carry out this task, it is critical to calculate correctly the distribution of dose delivered. Monte Carlo transport methods have the potential to provide more accurate prediction of dose distributions than currently-used methods. PEREGRINE is a new Monte Carlo transport code developed at Lawrence Livermore National Laboratory for the specific purpose of modeling the effects of radiation therapy. PEREGRINE transports neutrons, photons, electrons, positrons, and heavy charged-particles, including protons, deuterons, tritons, helium-3, and alpha particles. This paper describes the PEREGRINE transport code and some preliminary results for clinically relevant materials and radiation sources

  6. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    Science.gov (United States)

    Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald

    2017-09-01

    In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  7. Applications Of Monte Carlo Radiation Transport Simulation Techniques For Predicting Single Event Effects In Microelectronics

    International Nuclear Information System (INIS)

    Warren, Kevin; Reed, Robert; Weller, Robert; Mendenhall, Marcus; Sierawski, Brian; Schrimpf, Ronald

    2011-01-01

    MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University's Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. In addition to basic radiation transport physics contained in the Geant4 core, MRED has the capability to track energy loss in tetrahedral geometric objects, includes a cross section biasing and track weighting technique for variance reduction, and additional features relevant to semiconductor device applications. The crucial element of predicting Single Event Upset (SEU) parameters using radiation transport software is the creation of a dosimetry model that accurately approximates the net collected charge at transistor contacts as a function of deposited energy. The dosimetry technique described here is the multiple sensitive volume (MSV) model. It is shown to be a reasonable approximation of the charge collection process and its parameters can be calibrated to experimental measurements of SEU cross sections. The MSV model, within the framework of MRED, is examined for heavy ion and high-energy proton SEU measurements of a static random access memory.

  8. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  9. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    Directory of Open Access Journals (Sweden)

    Chapoutier Nicolas

    2017-01-01

    Full Text Available In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics. Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  10. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM

    Science.gov (United States)

    Rodriguez, M.; Brualla, L.

    2018-04-01

    Monte Carlo simulation of radiation transport is computationally demanding to obtain reasonably low statistical uncertainties of the estimated quantities. Therefore, it can benefit in a large extent from high-performance computing. This work is aimed at assessing the performance of the first generation of the many-integrated core architecture (MIC) Xeon Phi coprocessor with respect to that of a CPU consisting of a double 12-core Xeon processor in Monte Carlo simulation of coupled electron-photonshowers. The comparison was made twofold, first, through a suite of basic tests including parallel versions of the random number generators Mersenne Twister and a modified implementation of RANECU. These tests were addressed to establish a baseline comparison between both devices. Secondly, through the p DPM code developed in this work. p DPM is a parallel version of the Dose Planning Method (DPM) program for fast Monte Carlo simulation of radiation transport in voxelized geometries. A variety of techniques addressed to obtain a large scalability on the Xeon Phi were implemented in p DPM. Maximum scalabilities of 84 . 2 × and 107 . 5 × were obtained in the Xeon Phi for simulations of electron and photon beams, respectively. Nevertheless, in none of the tests involving radiation transport the Xeon Phi performed better than the CPU. The disadvantage of the Xeon Phi with respect to the CPU owes to the low performance of the single core of the former. A single core of the Xeon Phi was more than 10 times less efficient than a single core of the CPU for all radiation transport simulations.

  11. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    Ueki, Kohtaro

    1985-01-01

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  12. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  13. Path Toward a Unified Geometry for Radiation Transport

    Science.gov (United States)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading

  14. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  15. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  16. Monte Carlo applications to radiation shielding problems

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2009-01-01

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation

  17. Application of the Monte Carlo technique to the study of radiation transport in a prompt gamma in vivo neutron activation system

    International Nuclear Information System (INIS)

    Chan, A.A.; Beddoe, A.H.

    1985-01-01

    A Monte Carlo code (MORSE-SGC) from the Radiation Shielding Information Centre at Oak Ridge National Laboratory, USA, has been adapted and used to model radiation transport in the Auckland prompt gamma in vivo neutron activation analysis facility. Preliminary results are presented for the slow neutron flux in an anthropomorphic phantom which are in broad agreement with those obtained by measurement via activation foils. Since experimental optimization is not logistically feasible and since theoretical optimization of neutron activation facilities has not previously been attempted, it is hoped that the Monte Carlo calculations can be used to provide a basis for improved system design

  18. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  19. Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings

    International Nuclear Information System (INIS)

    Kling, A.; Barao, F.J.C.; Nakagawa, M.; Tavora, L.

    2001-01-01

    The following topics were dealt with: Electron and photon interactions and transport mechanisms, random number generation, applications in medical physisc, microdosimetry, track structure, radiobiological modeling, Monte Carlo method in radiotherapy, dosimetry, and medical accelerator simulation, neutron transport, high-energy hadron transport. (HSI)

  20. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  1. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  2. Radiation transport: Progress report, July 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Nagy, A.

    1988-05-01

    Research and development progress in radiation transport for the Los Alamos National Laboratory's Group S-6 for the fourth quarter of FY 87 is reported. Included are unclassified tasks in the areas of Deterministic Radiation Transport, Monte Carlo Radiation Transport, and Cross Sections and Physics. 23 refs., 9 figs

  3. The effect on radiation damage of structural material in a hybrid system by using a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Günay, Mehtap; Şarer, Başar; Kasap, Hızır

    2014-01-01

    Highlights: • The effects of some fluids on gas production rates in structural material were investigated. • The MCNPX-2.7.0 Monte Carlo code was used for three-dimensional calculations. • It was found that biggest contribution to gas production rates comes from Fe isotope of the. • The desirable values for 5% SFG-PuO 2 with respect to radiation damage were specified. - Abstract: In this study, the molten salt-heavy metal mixtures 99–95% Li20Sn80-1-5% SFG-Pu, 99–95% Li20Sn80-1-5% SFG-PuF4, 99-95% Li20Sn80-1-5% SFG-PuO2 were used as fluids. The fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The parameters of radiation damage are proton, deuterium, tritium, He-3 and He-4 gas production rates. In this study, the effects of the selected fluid on the radiation damage, in terms of individual as well as total isotopes in the structural material, were investigated for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent version of the MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  4. Radiation transport. Progress report, April 1-December 31, 1983

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1984-10-01

    Research and development progress in radiation transport by the Los Alamos National Laboratory's Group X-6 for the last nine months of CY 83 is reported. Included are unclassified tasks in the areas of Fission Reactor Neutronics, Deterministic Transport Methods, Monte Carlo Radiation Transport, and Cross Sections and Physics

  5. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    Science.gov (United States)

    Smith, L. M.; Hochstedler, R. D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  6. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Smith, L.M.; Hochstedler, R.D.

    1997-01-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)

  7. A computer code package for electron transport Monte Carlo simulation

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    1999-01-01

    A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)

  8. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  9. A numerical analysis of antithetic variates in Monte Carlo radiation transport with geometrical surface splitting

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Prasad, M.A.

    1989-01-01

    A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs

  10. Renormalization-group approach to nonlinear radiation-transport problems

    International Nuclear Information System (INIS)

    Chapline, G.F.

    1980-01-01

    A Monte Carlo method is derived for solving nonlinear radiation-transport problems that allows one to average over the effects of many photon absorptions and emissions at frequencies where the opacity is large. This method should allow one to treat radiation-transport problems with large optical depths, e.g., line-transport problems, with little increase in computational effort over that which is required for optically thin problems

  11. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  12. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  13. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  14. Advanced Monte Carlo methods for thermal radiation transport

    Science.gov (United States)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more

  15. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  16. Radiation transport simulation in gamma irradiator systems using E G S 4 Monte Carlo code and dose mapping calculations based on point kernel technique

    International Nuclear Information System (INIS)

    Raisali, G.R.

    1992-01-01

    A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained

  17. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.

  18. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.

  19. Review of hybrid (deterministic/Monte Carlo) radiation transport methods, codes, and applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, J.C.; Peplow, D.E.; Mosher, S.W.; Evans, T.M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications. (author)

  20. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  1. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  2. A Study on Efficiency Improvement of the Hybrid Monte Carlo/Deterministic Method for Global Transport Problems

    International Nuclear Information System (INIS)

    Kim, Jong Woo; Woo, Myeong Hyeon; Kim, Jae Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung

    2017-01-01

    In this study hybrid Monte Carlo/Deterministic method is explained for radiation transport analysis in global system. FW-CADIS methodology construct the weight window parameter and it useful at most global MC calculation. However, Due to the assumption that a particle is scored at a tally, less particles are transported to the periphery of mesh tallies. For compensation this space-dependency, we modified the module in the ADVANTG code to add the proposed method. We solved the simple test problem for comparing with result from FW-CADIS methodology, it was confirmed that a uniform statistical error was secured as intended. In the future, it will be added more practical problems. It might be useful to perform radiation transport analysis using the Hybrid Monte Carlo/Deterministic method in global transport problems.

  3. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  4. A Monte Carlo Method for the Analysis of Gamma Radiation Transport from Distributed Sources in Laminated Shields

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1964-02-15

    A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements.

  5. A Monte Carlo Method for the Analysis of Gamma Radiation Transport from Distributed Sources in Laminated Shields

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1964-02-01

    A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements

  6. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Kotlyar, D.

    2015-01-01

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  7. A practical look at Monte Carlo variance reduction methods in radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Olsher, Richard H. [Los Alamos National Laboratory, Los Alamos (United States)

    2006-04-15

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission.

  8. A practical look at Monte Carlo variance reduction methods in radiation shielding

    International Nuclear Information System (INIS)

    Olsher, Richard H.

    2006-01-01

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission

  9. Computer codes in nuclear safety, radiation transport and dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.

    2006-01-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations

  10. Microwave transport in EBT distribution manifolds using Monte Carlo ray-tracing techniques

    International Nuclear Information System (INIS)

    Lillie, R.A.; White, T.L.; Gabriel, T.A.; Alsmiller, R.G. Jr.

    1983-01-01

    Ray tracing Monte Carlo calculations have been carried out using an existing Monte Carlo radiation transport code to obtain estimates of the microsave power exiting the torus coupling links in EPT microwave manifolds. The microwave power loss and polarization at surface reflections were accounted for by treating the microwaves as plane waves reflecting off plane surfaces. Agreement on the order of 10% was obtained between the measured and calculated output power distribution for an existing EBT-S toroidal manifold. A cost effective iterative procedure utilizing the Monte Carlo history data was implemented to predict design changes which could produce increased manifold efficiency and improved output power uniformity

  11. Anthology of the Development of Radiation Transport Tools as Applied to Single Event Effects

    Science.gov (United States)

    Reed, R. A.; Weller, R. A.; Akkerman, A.; Barak, J.; Culpepper, W.; Duzellier, S.; Foster, C.; Gaillardin, M.; Hubert, G.; Jordan, T.; Jun, I.; Koontz, S.; Lei, F.; McNulty, P.; Mendenhall, M. H.; Murat, M.; Nieminen, P.; O'Neill, P.; Raine, M.; Reddell, B.; Saigné, F.; Santin, G.; Sihver, L.; Tang, H. H. K.; Truscott, P. R.; Wrobel, F.

    2013-06-01

    This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing websites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools.

  12. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  13. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  14. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.; Morel, J.E.; Hughes, H.G.

    1985-01-01

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  15. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  16. Angular Distribution of Particles Emerging from a Diffusive Region and its Implications for the Fleck-Canfield Random Walk Algorithm for Implicit Monte Carlo Radiation Transport

    CERN Document Server

    Cooper, M A

    2000-01-01

    We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.

  17. Anthology of the development of radiation transport tools as applied to single event effects

    International Nuclear Information System (INIS)

    Akkerman, A.; Barak, J.; Murat, M.; Duzellier, S.; Hubert, G.; Gaillardin, M.; Raine, M.; Jordan, T.; Jun, I.; Koontz, S.; Reddell, B.; O'Neill, P.; Foster, C.; Culpepper, W.; Lei, F.; McNulty, P.; Nieminen, P.; Saigne, F.; Wrobel, F.; Santin, G.; Sihver, L.; Tang, H.H.K.; Truscott, P.R.

    2013-01-01

    This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing web sites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools. (authors)

  18. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  19. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    International Nuclear Information System (INIS)

    White, Morgan C.

    2000-01-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  20. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  1. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  2. Monte Carlo simulations of the radiation environment for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mallows, S., E-mail: sophie.mallows@cern.ch [KIT, Karlsruhe (Germany); Azhgirey, I.; Bayshev, I. [IHEP, Protvino (Russian Federation); Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M. [CERN, Geneva (Switzerland); Kurochkin, I. [IHEP, Protvino (Russian Federation); Vincke, H.; Tajeda, S. [CERN, Geneva (Switzerland)

    2016-07-11

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton–proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  3. Monte Carlo simulations of the radiation environment for the CMS Experiment

    CERN Document Server

    AUTHOR|(CDS)2068566; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.

    2016-01-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  4. The MC21 Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H

    2007-01-01

    MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities

  5. Utilization of Monte Carlo Calculations in Radiation Transport Analyses to Support the Design of the U.S. Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.

    2000-01-01

    The Department of Energy (DOE) has given the Spallation Neutron Source (SNS) project approval to begin Title I design of the proposed facility to be built at Oak Ridge National Laboratory (ORNL) and construction is scheduled to commence in FY01 . The SNS initially will consist of an accelerator system capable of delivering an ∼0.5 microsecond pulse of 1 GeV protons, at a 60 Hz frequency, with 1 MW of beam power, into a single target station. The SNS will eventually be upgraded to a 2 MW facility with two target stations (a 60 Hz station and a 10 Hz station). The radiation transport analysis, which includes the neutronic, shielding, activation, and safety analyses, is critical to the design of an intense high-energy accelerator facility like the proposed SNS, and the Monte Carlo method is the cornerstone of the radiation transport analyses

  6. Accurate and efficient radiation transport in optically thick media -- by means of the Symbolic Implicit Monte Carlo method in the difference formulation

    International Nuclear Information System (INIS)

    Szoke, A; Brooks, E D; McKinley, M; Daffin, F

    2005-01-01

    The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media

  7. PENGEOM-A general-purpose geometry package for Monte Carlo simulation of radiation transport in material systems defined by quadric surfaces

    Science.gov (United States)

    Almansa, Julio; Salvat-Pujol, Francesc; Díaz-Londoño, Gloria; Carnicer, Artur; Lallena, Antonio M.; Salvat, Francesc

    2016-02-01

    The Fortran subroutine package PENGEOM provides a complete set of tools to handle quadric geometries in Monte Carlo simulations of radiation transport. The material structure where radiation propagates is assumed to consist of homogeneous bodies limited by quadric surfaces. The PENGEOM subroutines (a subset of the PENELOPE code) track particles through the material structure, independently of the details of the physics models adopted to describe the interactions. Although these subroutines are designed for detailed simulations of photon and electron transport, where all individual interactions are simulated sequentially, they can also be used in mixed (class II) schemes for simulating the transport of high-energy charged particles, where the effect of soft interactions is described by the random-hinge method. The definition of the geometry and the details of the tracking algorithm are tailored to optimize simulation speed. The use of fuzzy quadric surfaces minimizes the impact of round-off errors. The provided software includes a Java graphical user interface for editing and debugging the geometry definition file and for visualizing the material structure. Images of the structure are generated by using the tracking subroutines and, hence, they describe the geometry actually passed to the simulation code.

  8. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    International Nuclear Information System (INIS)

    Cleveland, M.; Gentile, N.

    2013-01-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  9. Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo

    International Nuclear Information System (INIS)

    Evans, T.M.; Densmore, J.D.

    2007-01-01

    We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations

  10. Condensed history Monte Carlo methods for photon transport problems

    International Nuclear Information System (INIS)

    Bhan, Katherine; Spanier, Jerome

    2007-01-01

    We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions

  11. Applications of the Monte Carlo method in radiation protection

    International Nuclear Information System (INIS)

    Kulkarni, R.N.; Prasad, M.A.

    1999-01-01

    This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)

  12. Transport and attenuation of radiations

    CERN Document Server

    Nimal, J C

    2003-01-01

    This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...

  13. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    International Nuclear Information System (INIS)

    Badal, Andreu; Badano, Aldo

    2009-01-01

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  14. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    Energy Technology Data Exchange (ETDEWEB)

    Badal, Andreu; Badano, Aldo [Division of Imaging and Applied Mathematics, OSEL, CDRH, U.S. Food and Drug Administration, Silver Spring, Maryland 20993-0002 (United States)

    2009-11-15

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  15. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.

    Science.gov (United States)

    Badal, Andreu; Badano, Aldo

    2009-11-01

    It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  16. Transport methods: general. 2. Monte Carlo Particle Transport in Media with Exponentially Varying Time-Dependent Cross Sections

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Martin, William R.

    2001-01-01

    We have investigated Monte Carlo schemes for analyzing particle transport through media with exponentially varying time-dependent cross sections. For such media, the cross sections are represented in the form Σ(t) = Σ 0 e -at (1) or equivalently as Σ(x) = Σ 0 e -bx (2) where b = av and v is the particle speed. For the following discussion, the parameters a and b may be either positive, for exponentially decreasing cross sections, or negative, for exponentially increasing cross sections. For most time-dependent Monte Carlo applications, the time and spatial variations of the cross-section data are handled by means of a stepwise procedure, holding the cross sections constant for each region over a small time interval Δt, performing the Monte Carlo random walk over the interval Δt, updating the cross sections, and then repeating for a series of time intervals. Continuously varying spatial- or time-dependent cross sections can be treated in a rigorous Monte Carlo fashion using delta-tracking, but inefficiencies may arise if the range of cross-section variation is large. In this paper, we present a new method for sampling collision distances directly for cross sections that vary exponentially in space or time. The method is exact and efficient and has direct application to Monte Carlo radiation transport methods. To verify that the probability density function (PDF) is correct and that the random-sampling procedure yields correct results, numerical experiments were performed using a one-dimensional Monte Carlo code. The physical problem consisted of a beam source impinging on a purely absorbing infinite slab, with a slab thickness of 1 cm and Σ 0 = 1 cm -1 . Monte Carlo calculations with 10 000 particles were run for a range of the exponential parameter b from -5 to +20 cm -1 . Two separate Monte Carlo calculations were run for each choice of b, a continuously varying case using the random-sampling procedures described earlier, and a 'conventional' case where the

  17. Photonuclear Physics in Radiation Transport - II: Implementation

    International Nuclear Information System (INIS)

    White, M.C.; Little, R.C.; Chadwick, M.B.; Young, P.G.; MacFarlane, R.E.

    2003-01-01

    This is the second of two companion papers. The first paper describes model calculations and nuclear data evaluations of photonuclear reactions on isotopes of C, O, Al, Si, Ca, Fe, Cu, Ta, W, and Pb for incident photon energies up to 150 MeV. This paper describes the steps taken to process these files into transport libraries and to update the Monte Carlo N-Particle (MCNP) and MCNPX radiation transport codes to use tabular photonuclear reaction data. The evaluated photonuclear data files are created in the standard evaluated nuclear data file (ENDF) format. These files must be processed by the NJOY data processing system into A Compact ENDF (ACE) files suitable for radiation transport calculations. MCNP and MCNPX have been modified to use these new data in a self-consistent and fully integrated manner. Verification problems were used at each step along the path to check the integrity of the methodology. The resulting methodology and tools provide a comprehensive system for using photonuclear data in radiation transport calculations. Also described are initial validation simulations used to benchmark several of the photonuclear transport tables

  18. Review of the Monte Carlo and deterministic codes in radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Tagziria, H

    2000-02-01

    Modelling a physical system can be carried out either stochastically or deterministically. An example of the former method is the Monte Carlo technique, in which statistically approximate methods are applied to exact models. No transport equation is solved as individual particles are simulated and some specific aspect (tally) of their average behaviour is recorded. The average behaviour of the physical system is then inferred using the central limit theorem. In contrast, deterministic codes use mathematically exact methods that are applied to approximate models to solve the transport equation for the average particle behaviour. The physical system is subdivided in boxes in the phase-space system and particles are followed from one box to the next. The smaller the boxes the better the approximations become. Although the Monte Carlo method has been used for centuries, its more recent manifestation has really emerged from the Manhattan project of the Word War II. Its invention is thought to be mainly due to Metropolis, Ulah (through his interest in poker), Fermi, von Neuman andRichtmeyer. Over the last 20 years or so, the Monte Carlo technique has become a powerful tool in radiation transport. This is due to users taking full advantage of richer cross section data, more powerful computers and Monte Carlo techniques for radiation transport, with high quality physics and better known source spectra. This method is a common sense approach to radiation transport and its success and popularity is quite often also due to necessity, because measurements are not always possible or affordable. In the Monte Carlo method, which is inherently realistic because nature is statistical, a more detailed physics is made possible by isolation of events while rather elaborate geometries can be modelled. Provided that the physics is correct, a simulation is exactly analogous to an experimenter counting particles. In contrast to the deterministic approach, however, a disadvantage of the

  19. Exponential convergence on a continuous Monte Carlo transport problem

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-01-01

    For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described

  20. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  1. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  2. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  3. Modified Monte Carlo procedure for particle transport problems

    International Nuclear Information System (INIS)

    Matthes, W.

    1978-01-01

    The simulation of photon transport in the atmosphere with the Monte Carlo method forms part of the EURASEP-programme. The specifications for the problems posed for a solution were such, that the direct application of the analogue Monte Carlo method was not feasible. For this reason the standard Monte Carlo procedure was modified in the sense that additional properly weighted branchings at each collision and transport process in a photon history were introduced. This modified Monte Carlo procedure leads to a clear and logical separation of the essential parts of a problem and offers a large flexibility for variance reducing techniques. More complex problems, as foreseen in the EURASEP-programme (e.g. clouds in the atmosphere, rough ocean-surface and chlorophyl-distribution in the ocean) can be handled by recoding some subroutines. This collision- and transport-splitting procedure can of course be performed differently in different space- and energy regions. It is applied here only for a homogeneous problem

  4. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.

    1993-01-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures

  5. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.

    1993-06-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.

  6. Review of the Monte Carlo and deterministic codes in radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Tagziria, H.

    2000-02-01

    Modelling a physical system can be carried out either stochastically or deterministically. An example of the former method is the Monte Carlo technique, in which statistically approximate methods are applied to exact models. No transport equation is solved as individual particles are simulated and some specific aspect (tally) of their average behaviour is recorded. The average behaviour of the physical system is then inferred using the central limit theorem. In contrast, deterministic codes use mathematically exact methods that are applied to approximate models to solve the transport equation for the average particle behaviour. The physical system is subdivided in boxes in the phase-space system and particles are followed from one box to the next. The smaller the boxes the better the approximations become. Although the Monte Carlo method has been used for centuries, its more recent manifestation has really emerged from the Manhattan project of the Word War II. Its invention is thought to be mainly due to Metropolis, Ulah (through his interest in poker), Fermi, von Neuman and Richtmeyer. Over the last 20 years or so, the Monte Carlo technique has become a powerful tool in radiation transport. This is due to users taking full advantage of richer cross section data, more powerful computers and Monte Carlo techniques for radiation transport, with high quality physics and better known source spectra. This method is a common sense approach to radiation transport and its success and popularity is quite often also due to necessity, because measurements are not always possible or affordable. In the Monte Carlo method, which is inherently realistic because nature is statistical, a more detailed physics is made possible by isolation of events while rather elaborate geometries can be modelled. Provided that the physics is correct, a simulation is exactly analogous to an experimenter counting particles. In contrast to the deterministic approach, however, a disadvantage of the

  7. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  8. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  9. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  10. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2011-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)

  11. Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2004-01-01

    The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions

  12. Penelope - a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation is used in many applications of modern technology. Its proper handling requires competent knowledge of the basic physical laws governing its interaction with matter. To ensure its safe use, appropriate tools for predicting radiation fields and doses, as well as pertinent regulations, are required. One area of radiation physics that has received much attention concerns electron-photon transport in matter. PENELOPE is a modern, general-purpose Monte Carlo tool for simulating the transport of electrons and photons, which is applicable for arbitrary materials and in a wide energy range. PENELOPE provides quantitative guidance for many practical situations and techniques, including electron and X-ray spectroscopies, electron microscopy and microanalysis, biophysics, dosimetry, medical diagnostics and radiotherapy, as well as radiation damage and shielding. These proceedings contain the extensively revised teaching notes of the second workshop/training course on PENELOPE held in 2003, along with a detailed description of the improved physic models, numerical algorithms and structure of the code system. (author)

  13. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  14. Simulation of transport equations with Monte Carlo

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-09-01

    The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game

  15. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  16. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  17. Optix: A Monte Carlo scintillation light transport code

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)

    2014-02-11

    The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.

  18. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  19. Verification of Monte Carlo transport codes by activation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera

    2012-12-18

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

  20. GPU - Accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using 6 GPU cards

    International Nuclear Information System (INIS)

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-01-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)

  1. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  2. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.

    2002-01-01

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  3. An investigation of the adjoint method for external beam radiation therapy treatment planning using Monte Carlo transport

    International Nuclear Information System (INIS)

    Kowalok, M.; Mackie, T.R.

    2001-01-01

    A relatively new technique for achieving the right dose to the right tissue, is intensity modulated radiation therapy (IMRT). In this technique, a megavoltage x-ray beam is rotated around a patient, and the intensity and shape of the beam is modulated as a function of source position and patient anatomy. The relationship between beam-let intensity and patient dose can be expressed under a matrix form where the matrix D ij represents the dose delivered to voxel i by beam-let j per unit fluence. The D ij influence matrix is the key element that enables this approach. In this regard, sensitivity theory lends itself in a natural way to the process of computing beam weights for treatment planning. The solution of the adjoint form of the Boltzmann equation is an adjoint function that describes the importance of particles throughout the system in contributing to the detector response. In this case, adjoint methods can provide the sensitivity of the dose at a single point in the patient with respect to all points in the source field. The purpose of this study is to investigate the feasibility of using the adjoint method and Monte Carlo transport for radiation therapy treatment planning

  4. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  5. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  6. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice

  7. Exploring Monte Carlo methods

    CERN Document Server

    Dunn, William L

    2012-01-01

    Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble

  8. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  9. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  10. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  11. Non-classical radiation transport in random media with fluctuating densities

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    The ensemble averaged propagation kernels of the non-classical radiation transport are studied by means of the proposed application of the stochastic differential equation random medium generators. It is shown that the non-classical transport is favored in long-correlated weakly fluctuating media. The developed kernel models have been implemented in GEANT4 and validated against the d ouble Monte Carlo m odeling of absorptions curves of disperse neutron absorbers and γ-albedos from a scatterer/absorber random mix

  12. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Taylor, Michael; Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick

    2012-01-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm 3 regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of “generic” tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  13. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2012-04-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  14. ETRAN, Electron Transport and Gamma Transport with Secondary Radiation in Slab by Monte-Carlo

    International Nuclear Information System (INIS)

    1992-01-01

    A - Nature of physical problem solved: ETRAN computes the transport of electrons and photons through plane-parallel slab targets that have a finite thickness in one dimension and are unbound in the other two-dimensions. The incident radiation can consist of a beam of either electrons or photons with specified spectral and directional distribution. Options are available by which all orders of the electron-photon cascade can be included in the calculation. Thus electrons are allowed to give rise to secondary knock-on electrons, continuous Bremsstrahlung and characteristic x-rays; and photons are allowed to produce photo-electrons, Compton electrons, and electron- positron pairs. Annihilation quanta, fluorescence radiation, and Auger electrons are also taken into account. If desired, the Monte- Carlo histories of all generations of secondary radiations are followed. The information produced by ETRAN includes the following items: 1) reflection and transmission of electrons or photons, differential in energy and direction; 2) the production of continuous Bremsstrahlung and characteristic x-rays by electrons and the emergence of such radiations from the target (differential in photon energy and direction); 3) the spectrum of the amounts of energy left behind in a thick target by an incident electron beam; 4) the deposition of energy and charge by an electron beam as function of the depth in the target; 5) the flux of electrons, differential in energy, as function of the depth in the target. B - Method of solution: A programme called DATAPAC-4 takes data for a particular material from a library tape and further processes them. The function of DATAPAC-4 is to produce single-scattering and multiple-scattering data in the form of tabular arrays (again stored on magnetic tape) which facilitate the rapid sampling of electron and photon Monte Carlo histories in ETRAN. The photon component of the electron-photon cascade is calculated by conventional random sampling that imitates

  15. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.

    2010-01-01

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  16. Rare Event Simulation in Radiation Transport

    Science.gov (United States)

    Kollman, Craig

    This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiplied by the likelihood ratio between the true and simulated probabilities so as to keep our estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive "learning" algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give, with probability one, a sequence of estimates converging exponentially fast to the true solution. In the final chapter, an attempt to generalize this algorithm to a continuous

  17. Rare event simulation in radiation transport

    International Nuclear Information System (INIS)

    Kollman, C.

    1993-10-01

    This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ''learning'' algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution

  18. A Monte Carlo Green's function method for three-dimensional neutron transport

    International Nuclear Information System (INIS)

    Gamino, R.G.; Brown, F.B.; Mendelson, M.R.

    1992-01-01

    This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution

  19. Utilization of a photon transport code to investigate radiation therapy treatment planning quantities and techniques

    International Nuclear Information System (INIS)

    Palta, J.R.

    1981-01-01

    A versatile computer program MORSE, based on neutron and photon transport theory has been utilzed to investigate radiation therapy treatment planning quantities and techniques. A multi-energy group representation of transport equation provides a concise approach in utilizing Monte Carlo numerical techniques to multiple radiation therapy treatment planning problems. Central axis total and scattered dose distributions for homogeneous and inhomogeneous water phantoms are calculated and the correction factor for lung and bone inhomogeneities are also evaluated. Results show that Monte Carlo calculations based on multi-energy group tansport theory predict the depth dose distributions that are in good agreement with available experimental data. Central axis depth dose distributions for a bremsstrahlung spectrum from a linear accelerator is also calculated to exhibit the versatility of the computer program in handling multiple radiation therapy problems. A novel approach is undertaken to study the dosimetric properties of brachytherapy sources

  20. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  1. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  2. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  3. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  4. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  5. Radiative transport equation for the Mittag-Leffler path length distribution

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2017-05-01

    In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.

  6. Study on MPI/OpenMP hybrid parallelism for Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Liang Jingang; Xu Qi; Wang Kan; Liu Shiwen

    2013-01-01

    Parallel programming with mixed mode of messages-passing and shared-memory has several advantages when used in Monte Carlo neutron transport code, such as fitting hardware of distributed-shared clusters, economizing memory demand of Monte Carlo transport, improving parallel performance, and so on. MPI/OpenMP hybrid parallelism was implemented based on a one dimension Monte Carlo neutron transport code. Some critical factors affecting the parallel performance were analyzed and solutions were proposed for several problems such as contention access, lock contention and false sharing. After optimization the code was tested finally. It is shown that the hybrid parallel code can reach good performance just as pure MPI parallel program, while it saves a lot of memory usage at the same time. Therefore hybrid parallel is efficient for achieving large-scale parallel of Monte Carlo neutron transport. (authors)

  7. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  8. Monte Carlo simulation of radiation streaming from a radioactive material shipping cask

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Schwarz, R.A.; Tang, J.S.

    1996-01-01

    Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs

  9. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  10. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ozaki, Y.; Watanabe, H.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192 Ir hairpins and 198 Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192 Ir hairpins and 198 Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained.

  11. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J M; Kodeli, I; Menard, St; Bouchet, J L; Renard, F; Martin, E; Blazy, L; Voros, S; Bochud, F; Laedermann, J P; Beaugelin, K; Makovicka, L; Quiot, A; Vermeersch, F; Roche, H; Perrin, M C; Laye, F; Bardies, M; Struelens, L; Vanhavere, F; Gschwind, R; Fernandez, F; Quesne, B; Fritsch, P; Lamart, St; Crovisier, Ph; Leservot, A; Antoni, R; Huet, Ch; Thiam, Ch; Donadille, L; Monfort, M; Diop, Ch; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  12. ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments

    International Nuclear Information System (INIS)

    Xu, X. George; Liu, Tianyu; Su, Lin; Du, Xining; Riblett, Matthew; Ji, Wei; Gu, Deyang; Carothers, Christopher D.; Shephard, Mark S.; Brown, Forrest B.; Kalra, Mannudeep K.; Liu, Bob

    2015-01-01

    Highlights: • A fast Monte Carlo based radiation transport code ARCHER was developed. • ARCHER supports different hardware including CPU, GPU and Intel Xeon Phi coprocessor. • Code is benchmarked again MCNP for medical applications. • A typical CT scan dose simulation only takes 6.8 s on an NVIDIA M2090 GPU. • GPU and coprocessor-based codes are 5–8 times faster than the CPU-based codes. - Abstract: The Monte Carlo radiation transport community faces a number of challenges associated with peta- and exa-scale computing systems that rely increasingly on heterogeneous architectures involving hardware accelerators such as GPUs and Xeon Phi coprocessors. Existing Monte Carlo codes and methods must be strategically upgraded to meet emerging hardware and software needs. In this paper, we describe the development of a software, called ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments), which is designed as a versatile testbed for future Monte Carlo codes. Preliminary results from five projects in nuclear engineering and medical physics are presented

  13. 3D-TRANS-2003, Workshop on Common Tools and Interfaces for Radiation Transport Codes

    International Nuclear Information System (INIS)

    2004-01-01

    Description: Contents proceedings of Workshop on Common Tools and Interfaces for Deterministic Radiation Transport, for Monte Carlo and Hybrid Codes with a proposal to develop the following: GERALD - A General Environment for Radiation Analysis and Design. GERALD intends to create a unifying software environment where the user can define, solve and analyse a nuclear radiation transport problem using available numerical tools seamlessly. This environment will serve many purposes: teaching, research, industrial needs. It will also help to preserve the existing analytical and numerical knowledge base. This could represent a significant step towards solving the legacy problem. This activity should contribute to attracting young engineers to nuclear science and engineering and contribute to competence and knowledge preservation and management. This proposal was made at the on Workshop on C ommon Tools and Interfaces for Deterministic Radiation Transport, for Monte Carlo and Hybrid Codes , held from 25-26 September 2003 in connection with the conference SNA-2003. A first success with the development of such tools was achieved with the BOT3P2.0 and 3.0 codes providing an easy procedure and mechanism for defining and displaying 3D geometries and materials both in the form of refineable meshes for deterministic codes or Monte Carlo geometries consistent with deterministic models. Advanced SUSD: Improved tools for Sensitivity/Uncertainty Analysis. The development of tools for the analysis and estimation of sensitivities and uncertainties in calculations, or their propagation through complex computational schemes, in the field of neutronics, thermal hydraulics and also thermo-mechanics is of increasing importance for research and engineering applications. These tools allow establishing better margins for engineering designs and for the safe operation of nuclear facilities. Such tools are not sufficiently developed, but their need is increasingly evident in many activities

  14. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2001-01-01

    Full text: We deal with environmental physics and the radiation transport physics, both theoretically and experimentally. Some results find their way to practical applications. Our environmental physics research encompasses hydrogeological problems as well as measurements of trace elements in the atmosphere and in the water. Theoretical (analytical and numerical) and experimental issues of the radiation transport and radiation fields are our main field of research. The interest in radiation transport phenomena is stimulated by their importance for the environmental physics, industrial and nuclear facilities and methods of geophysical. Environmental isotopes and noble gases are used in the investigation of water-bearing geological formations in order to determine the origin and age of groundwater. The papers listed below and three ''Reports on research'' present recent achievements in this field. The gas chromatography methods are used for monitoring the anthropogenic trace gases (SF 6 and freons), which participate in the Earth green-house effect. A very high detection level of SF 6 in water, 0.0028 fg/cm 3 H 2 0, has been reached as required for hydrogeological purposes. A preliminary verification of the SF 6 tracer method for dating young groundwaters by the tritium method has been carried out. We carried on the work on a method of radon measurement in soil in connection with geological conditions. The national seminar ''Radon in Environment'' organized at the INP aroused an interest of Polish scientific centres in that field. The seminar gathered 60 participants who presented 24 oral reports and 8 posters. Within the scope of the radiation transport physics we studied thermal neutron transport in finite hydrogenous media. Advantages and limitations of a Monte Carlo code (MCNP) in thermal neutron transport simulations have been examined by both the analytical solution and the experiment on the INP pulsed neutron generator. An interesting contribution to the

  15. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  16. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  17. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  18. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  19. Implementation and display of Computer Aided Design (CAD) models in Monte Carlo radiation transport and shielding applications

    International Nuclear Information System (INIS)

    Burns, T.J.

    1994-01-01

    An Xwindow application capable of importing geometric information directly from two Computer Aided Design (CAD) based formats for use in radiation transport and shielding analyses is being developed at ORNL. The application permits the user to graphically view the geometric models imported from the two formats for verification and debugging. Previous models, specifically formatted for the radiation transport and shielding codes can also be imported. Required extensions to the existing combinatorial geometry analysis routines are discussed. Examples illustrating the various options and features which will be implemented in the application are presented. The use of the application as a visualization tool for the output of the radiation transport codes is also discussed

  20. ITS, TIGER System of Coupled Electron Photon Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.; Young, M.F.

    1996-01-01

    1 - Description of program or function: ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/ photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. 2 - Method of solution: Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors. With the ITS-3.0 release the PSR-0245/UPEML package is included to perform these functions. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/ photon cascade from 1.0 GeV down to 1.0 keV. Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures. 3 - Restrictions on the complexity of the problem: - Restrictions and/or limitations for ITS depend upon the local operating system

  1. Semi-analog Monte Carlo (SMC) method for time-dependent non-linear three-dimensional heterogeneous radiative transfer problems

    International Nuclear Information System (INIS)

    Yun, Sung Hwan

    2004-02-01

    Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with

  2. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  3. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy; Benchmark-Experiment zur Verifikation von Strahlungstransportrechnungen fuer die Dosimetrie in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Franziska [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-11-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  4. A 3D Monte Carlo code for plasma transport in island divertors

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.; Grigull, P.

    1997-01-01

    A fully 3D self-consistent Monte Carlo code EMC3 (edge Monte Carlo 3D) for modelling the plasma transport in island divertors has been developed. In a first step, the code solves a simplified version of the 3D time-independent plasma fluid equations. Coupled to the neutral transport code EIRENE, the EMC3 code has been used to study the particle, energy and neutral transport in W7-AS island divertor configurations. First results are compared with data from different diagnostics (Langmuir probes, H α cameras and thermography). (orig.)

  5. TRIPOLI-4: Monte Carlo transport code functionalities and applications; TRIPOLI-4: code de transport Monte Carlo fonctionnalites et applications

    Energy Technology Data Exchange (ETDEWEB)

    Both, J P; Lee, Y K; Mazzolo, A; Peneliau, Y; Petit, O; Roesslinger, B [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)

    2003-07-01

    Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)

  6. Analysis of error in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Booth, T.E.

    1979-01-01

    The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table

  7. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  8. Monte Carlo method for neutron transport problems

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-01-01

    Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)

  9. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    Science.gov (United States)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  10. Hybrid Monte-Carlo method for ICF calculations

    International Nuclear Information System (INIS)

    Clouet, J.F.; Samba, G.

    2003-01-01

    ) conduction and ray-tracing for laser description. Radiation transport is usually solved by a Monte-Carlo method. In coupling diffusion approximation and transport description, the difficult part comes from the need for an implicit discretization of the emission-absorption terms: this problem was solved by using the symbolic Monte-Carlo method. This means that at each step of the simulation a matrix is computed by a Monte-Carlo method which accounts for the radiation energy exchange between the cells. Because of time step limitation by hydrodynamic motion, energy exchange is limited to a small number of cells and the matrix remains sparse. This matrix is added to usual diffusion matrix for thermal and radiative conductions: finally we arrive at a non-symmetric linear system to invert. A generalized Marshak condition describe the coupling between transport and diffusion. In this paper we will present the principles of the method and numerical simulation of an ICF hohlraum. We shall illustrate the benefits of the method by comparing the results with full implicit Monte-Carlo calculations. In particular we shall show how the spectral cut-off evolves during the propagation of the radiative front in the gold wall. Several issues are still to be addressed (robust algorithm for spectral cut- off calculation, coupling with ALE capabilities): we shall briefly discuss these problems. (authors)

  11. BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)

    2016-03-20

    In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.

  12. A New Monte Carlo Neutron Transport Code at UNIST

    International Nuclear Information System (INIS)

    Lee, Hyunsuk; Kong, Chidong; Lee, Deokjung

    2014-01-01

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  13. A Monte Carlo method using octree structure in photon and electron transport

    International Nuclear Information System (INIS)

    Ogawa, K.; Maeda, S.

    1995-01-01

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that with electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting

  14. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  15. EGS-Ray, a program for the visualization of Monte-Carlo calculations in the radiation physics

    International Nuclear Information System (INIS)

    Kleinschmidt, C.

    2001-01-01

    A Windows program is introduced which allows a relatively easy and interactive access to Monte Carlo techniques in clinical radiation physics. Furthermore, this serves as a visualization tool of the methodology and the results of Monte Carlo simulations. The program requires only little effort to formulate and calculate a Monte Carlo problem. The Monte Carlo module of the program is based on the well-known EGS4/PRESTA code. The didactic features of the program are presented using several examples common to the routine of the clinical radiation physicist. (orig.) [de

  16. Radiation transport analyses for IFMIF design by the Attila software using a Monte-Carlo source model

    International Nuclear Information System (INIS)

    Arter, W.; Loughlin, M.J.

    2009-01-01

    Accurate calculation of the neutron transport through the shielding of the IFMIF test cell, defined by CAD, is a difficult task for several reasons. The ability of the powerful deterministic radiation transport code Attila, to do this rapidly and reliably has been studied. Three models of increasing geometrical complexity were produced from the CAD using the CADfix software. A fourth model was produced to represent transport within the cell. The work also involved the conversion of the Vitenea-IEF database for high energy neutrons into a format usable by Attila, and the conversion of a particle source specified in MCNP wssaformat to a form usable by Attila. The final model encompassed the entire test cell environment, with only minor modifications. On a state-of-the-art PC, Attila took approximately 3 h to perform the calculations, as a consequence of a careful mesh 'layering'. The results strongly suggest that Attila will be a valuable tool for modelling radiation transport in IFMIF, and for similar problems

  17. A Monte Carlo study of radiation trapping effects

    International Nuclear Information System (INIS)

    Wang, J.B.; Williams, J.F.; Carter, C.J.

    1997-01-01

    A Monte Carlo simulation of radiative transfer in an atomic beam is carried out to investigate the effects of radiation trapping on electron-atom collision experiments. The collisionally excited atom is represented by a simple electric dipole, for which the emission intensity distribution is well known. The spatial distribution, frequency and free path of this and the sequential dipoles were determined by a computer random generator according to the probabilities given by quantum theory. By altering the atomic number density at the target site, the pressure dependence of the observed atomic lifetime, the angular intensity distribution and polarisation of the radiation field is studied. 7 refs., 5 figs

  18. Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system

    International Nuclear Information System (INIS)

    Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.

    1992-01-01

    Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs

  19. Cost of splitting in Monte Carlo transport

    International Nuclear Information System (INIS)

    Everett, C.J.; Cashwell, E.D.

    1978-03-01

    In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined

  20. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  1. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  2. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    International Nuclear Information System (INIS)

    Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.

    2015-01-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light

  3. Monte Carlo simulation of radiation treatment machine heads

    International Nuclear Information System (INIS)

    Mohan, R.

    1988-01-01

    Monte Carlo simulations of radiation treatment machine heads provide practical means for obtaining energy spectra and angular distributions of photons and electrons. So far, most of the work published in the literature has been limited to photons and the contaminant electrons knocked out by photons. This chapter will be confined to megavoltage photon beams produced by medical linear accelerators and 60 Co teletherapy units. The knowledge of energy spectra and angular distributions of photons and contaminant electrons emerging from such machines is important for a variety of applications in radiation dosimetry

  4. Monte Carlo calculations of channeling radiation

    International Nuclear Information System (INIS)

    Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

    1981-01-01

    Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist

  5. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    1979-11-01

    The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables

  6. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  7. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  8. SPHERE: a spherical-geometry multimaterial electron/photon Monte Carlo transport code

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.

    1977-06-01

    SPHERE provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through multimaterial configurations possessing spherical symmetry. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. SPHERE combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies, with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. 8 figs., 3 tables

  9. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  10. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  11. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  12. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  13. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  14. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Tramm, J.R.; Siegel, A.R.

    2013-01-01

    The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)

  15. Introduction to radiation transport

    International Nuclear Information System (INIS)

    Olson, G.L.

    1998-01-01

    This lecture will present time-dependent radiation transport where the radiation is coupled to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the materials it propagates through and will accelerate the material in the direction of the radiation flow. This fully coupled problem with radiation transport and materials in motion is referred to as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of this lecture

  16. A functional method for estimating DPA tallies in Monte Carlo calculations of Light Water Reactors

    International Nuclear Information System (INIS)

    Read, Edward A.; Oliveira, Cassiano R.E. de

    2011-01-01

    There has been a growing need in recent years for the development of methodology to calculate radiation damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is to discuss the development and implementation of a dpa method using Monte Carlo method for transport calculations. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and fuel depletion are assessed for radiation damage calculations and its capability demonstrated and compared to those of the Monte Carlo code MCNP for radiation damage calculations of a typical LWR configuration. (author)

  17. Stationary neutrino radiation transport by maximum entropy closure

    International Nuclear Information System (INIS)

    Bludman, S.A.

    1994-11-01

    The authors obtain the angular distributions that maximize the entropy functional for Maxwell-Boltzmann (classical), Bose-Einstein, and Fermi-Dirac radiation. In the low and high occupancy limits, the maximum entropy closure is bounded by previously known variable Eddington factors that depend only on the flux. For intermediate occupancy, the maximum entropy closure depends on both the occupation density and the flux. The Fermi-Dirac maximum entropy variable Eddington factor shows a scale invariance, which leads to a simple, exact analytic closure for fermions. This two-dimensional variable Eddington factor gives results that agree well with exact (Monte Carlo) neutrino transport calculations out of a collapse residue during early phases of hydrostatic neutron star formation

  18. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Cullen, D.E

    2000-01-01

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files

  19. TART 2000 A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    CERN Document Server

    Cullen, D

    2000-01-01

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.

  20. Chain segmentation for the Monte Carlo solution of particle transport problems

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1984-01-01

    A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems

  1. Design of tallying function for general purpose Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Deng Li; Zhang Baoyin

    2013-01-01

    A new postponed accumulation algorithm was proposed. Based on JCOGIN (J combinatorial geometry Monte Carlo transport infrastructure) framework and the postponed accumulation algorithm, the tallying function of the general purpose Monte Carlo neutron-photon transport code JMCT was improved markedly. JMCT gets a higher tallying efficiency than MCNP 4C by 28% for simple geometry model, and JMCT is faster than MCNP 4C by two orders of magnitude for complicated repeated structure model. The available ability of tallying function for JMCT makes firm foundation for reactor analysis and multi-step burnup calculation. (authors)

  2. Visual Monte Carlo and its application to internal and external dosimetry

    International Nuclear Information System (INIS)

    Hunt, J.G.; Silva, F.C. da; Souza-Santos, D. de; Dantas, B.M.; Azeredo, A.; Malatova, I.; Foltanova, S.; Isakson, M.

    2001-01-01

    The program visual Monte Carlo (VMC), combined with voxel phantoms, and its application to three areas of radiation protection: calibration of in vivo measurement systems, dose calculations due to external sources of radiation, and the calculation of Specific Effective Energies is described in this paper. The simulation of photon transport through a voxel phantom requires a Monte Carlo program adapted to voxel geometries. VMC is written in Visual Basic trademark, a Microsoft Windows based program, which is easy to use and has an extensive graphic output. (orig.)

  3. Backscattered radiation into a transmission ionization chamber: Measurement and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Yoriyaz, Helio; Caldas, Linda V.E.

    2010-01-01

    Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.

  4. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  5. TRIPOLI-4: Monte Carlo transport code functionalities and applications

    International Nuclear Information System (INIS)

    Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.

    2003-01-01

    Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)

  6. Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)

    1998-04-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  7. A vectorized Monte Carlo code for modeling photon transport in SPECT

    International Nuclear Information System (INIS)

    Smith, M.F.; Floyd, C.E. Jr.; Jaszczak, R.J.

    1993-01-01

    A vectorized Monte Carlo computer code has been developed for modeling photon transport in single photon emission computed tomography (SPECT). The code models photon transport in a uniform attenuating region and photon detection by a gamma camera. It is adapted from a history-based Monte Carlo code in which photon history data are stored in scalar variables and photon histories are computed sequentially. The vectorized code is written in FORTRAN77 and uses an event-based algorithm in which photon history data are stored in arrays and photon history computations are performed within DO loops. The indices of the DO loops range over the number of photon histories, and these loops may take advantage of the vector processing unit of our Stellar GS1000 computer for pipelined computations. Without the use of the vector processor the event-based code is faster than the history-based code because of numerical optimization performed during conversion to the event-based algorithm. When only the detection of unscattered photons is modeled, the event-based code executes 5.1 times faster with the use of the vector processor than without; when the detection of scattered and unscattered photons is modeled the speed increase is a factor of 2.9. Vectorization is a valuable way to increase the performance of Monte Carlo code for modeling photon transport in SPECT

  8. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  9. Study on shielding design method of radiation streaming in a tokamak-type DT fusion reactor based on Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2003-09-01

    three dimensional Monte Carlo calculation is required for the shielding calculation in the tokamak-type DT nuclear fusion reactor with many penetrations. 2) In Chapter 3, radiation streaming through the slit between the blanket modules is described, in Chapter 4, that through the small circular duct in the blanket modules is described, in Chapter 5, and that through the large opening duct in the vacuum vessel is described. The nuclear properties of the blanket, the vacuum vessel and the TF coil are systematically calculated for the various configurations. Based on the obtained results, the analytical formulas of these nuclear properties are deduced, and the guideline is proposed for the shielding design. 3) In Chapter 6, in order to evaluate the decay gamma ray dose rate around the duct due to radiation streaming through the large opening duct in the vacuum vessel, the evaluation method is proposed using the decay gamma ray Monte Carlo calculation. By replacing the prompt gamma-ray spectrum to the decay one in the Monte Carlo code, the decay gamma ray Monte Carlo transport calculation is conducted. The effective variance reduction method is developed for the decay gamma ray Monte Carlo calculation in the over-all tokamak region with drastically reducing the calculation time. Using this method, the shielding calculation is conducted for the ITER duct penetration, and the effectiveness of this method is demonstrated. (author)

  10. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    International Nuclear Information System (INIS)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young

    2016-01-01

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety

  11. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2016-11-15

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety.

  12. Electron transport in radiotherapy using local-to-global Monte Carlo

    International Nuclear Information System (INIS)

    Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.

    1994-09-01

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given

  13. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.

    1985-01-01

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  14. Energy imparted to water slabs by photons in the energy range 5-300 keV. Calculations using a Monte Carlo photon transport model

    International Nuclear Information System (INIS)

    Persliden, J.; Carlsson, G.A.

    1984-01-01

    In diagnostic examinations of the trunk and head, the energy imparted to the patient is related to the radiation risk. In this work, the energy imparted to laterally infinite, 10-300 mm thick water slabs by 5-300 keV photons is calculated using a Monte Carlo photon transport model. The energy imparted is also derived for energy spectra of primary photons relevant to diagnostic radiology. In addition to values of energy imparted, values of backscattered and transmitted energies, quantities primarily obtained in the transport calculations, are reported. Assumptions about coherent scattering are shown to be important for values of backscattered and transmitted energies but unimportant with respect to values of energy imparted. Comparisons are made with other Monte Carlo results from the literature. Discrepancies of 10-20% in some calculated quantities can be traced back to the use of different tabulations of interaction cross-sections by various authors. (author)

  15. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    International Nuclear Information System (INIS)

    Alan, E.; Nahum, PhD.

    2003-01-01

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  16. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  17. Monte Carlo simulation for the transport beamline

    International Nuclear Information System (INIS)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-01-01

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery

  18. Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds

    Science.gov (United States)

    Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.

    2012-11-01

    A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.

  19. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  20. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    Science.gov (United States)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  1. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  2. On Monte Carlo estimation of radiation damage in light water reactor systems

    International Nuclear Information System (INIS)

    Read, Edward A.; Oliveira, Cassiano R.E. de

    2010-01-01

    There has been a growing need in recent years for the development of methodologies to calculate damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is discuss and highlight the main issues associated with the calculation of radiation damage factors utilizing the Monte Carlo method. Among these issues are: particle tracking and tallying in complex geometries, dpa calculation methodology, coupled fuel depletion and uncertainty propagation. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and burnup are assessed for radiation damage calculations and its capability demonstrated and compared to those of the MCNP code for dpa calculations of a typical LWR configuration involving the core vessel and the downcomer. (author)

  3. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  4. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    Science.gov (United States)

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  5. Material motion corrections for implicit Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Morel, Jim E.

    2011-01-01

    We describe changes to the Implicit Monte Carlo (IMC) algorithm to include the effects of material motion. These changes assume that the problem can be embedded in a global Lorentz frame. We also assume that the material in each zone can be characterized by a single velocity. With this approximation, we show how to make IMC Lorentz invariant, so that the material motion corrections are correct to all orders of v/c. We develop thermal emission and face sources in moving material and discuss the coupling of IMC to the non- relativistic hydrodynamics equations via operator splitting. We discuss the effect of this coupling on the value of the 'Fleck factor' in IMC. (author)

  6. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  7. Present and future problems of radiation shielding for maritime transport of nuclear spent fuels

    International Nuclear Information System (INIS)

    Ueki, K.; Nariyama, N.; Ohashi, A.

    2000-01-01

    The transport of spent fuels with casks began in September 1999 by the exclusive spent fuel transport vessel the 'Rokuei Maru'. The casks have been transported to the reprocessing plant at Rokkasho-village in Aomori Prefecture. The 'Rokuei Maru' is approximately 100 m-length, 16.5 m-width and 3,000 gross-tons. The 20 NFT casks can be loaded into 5 holds. At the present time, the NFT casks can carry spent fuels of up to 44,000 MWD/MTU. Serpentine concrete is employed as a neutron shields in the hatch covers, the bulkheads, and the house front of the accommodations except the wheelhouse. Polyethylene covers the side walls in each hold. The neutron shielding ability of serpentine concrete and polyethylene was investigated by a shielding experiment using a 252 Cf-neutron source. The shielding experiment was analyzed with the Monte Carlo code MCNP 4B. In the near future, on-board experiment will be carried out to measure the dose-equivalent rate distributions in the 'Rokuei Maru' and the measured data and the Monte Carlo analysis of it will establish the radiation safety of the ship. (author)

  8. A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1999-01-01

    The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport

  9. Radiation transport analyses in support of the SNS Target Station Neutron Beam Line Shutters Title I Design

    International Nuclear Information System (INIS)

    Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.

    2000-01-01

    A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations

  10. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  11. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Science.gov (United States)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  12. Automatic modeling for the monte carlo transport TRIPOLI code

    International Nuclear Information System (INIS)

    Zhang Junjun; Zeng Qin; Wu Yican; Wang Guozhong; FDS Team

    2010-01-01

    TRIPOLI, developed by CEA, France, is Monte Carlo particle transport simulation code. It has been widely applied to nuclear physics, shielding design, evaluation of nuclear safety. However, it is time-consuming and error-prone to manually describe the TRIPOLI input file. This paper implemented bi-directional conversion between CAD model and TRIPOLI model. Its feasibility and efficiency have been demonstrated by several benchmarking examples. (authors)

  13. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  14. Monte Carlo simulations of a D-T neutron generator shielding for landmine detection

    International Nuclear Information System (INIS)

    Reda, A.M.

    2011-01-01

    Shielding for a D-T sealed neutron generator has been designed using the MCNP5 Monte Carlo radiation transport code. The neutron generator will be used in field for the detection of explosives, landmines, drugs and other 'threat' materials. The optimization of the detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. - Highlights: → A landmine detection system based on neutron fast/slow analysis has been designed. → Shielding for a D-T sealed neutron generator tube has been designed using Monte Carlo radiation transport code. → Detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. → The signal-to-background ratio optimized at one position for all depths.

  15. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.

    1991-01-01

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  16. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  17. Survey of ionizing radiations to workers in Carlos Andrade Hospital during March 1998 and December 2000

    International Nuclear Information System (INIS)

    Del Pino Albuja, Norma Josefina

    2005-01-01

    Ionizing radiation represents a daily risk for the people who work occupationally exposed to radiations at Carlos Andrade Marin hospital. For that reason, the knowledge of the basic concepts of the physical phenomenon of ionizing radiation and the study of dosimetry that is carried out to occupationally exposed workers at Carlos Andrade Marin hospital are very important to manage ionizing radiations as a risk factor. This study shows the system of dosimetry of Carlos Andrade Marin hospital. Moreover, it includes an analysis between the doses received by workers occupationally exposed of Carlos Andrade Marin hospital and the limit dose internationally recommended. For this investigation, it was used bibliographical revision, descriptive, historical, and inductive study, and descriptive statistics with the software Microsoft Office Excel 2003. The hypothesis of this research is that the workplaces exposed to ionizing radiations at Carlos Andrade Marin hospital have an appropriate dosimetry system. Furthermore, it considers superficial and deep doses of occupationally exposed workers of both genders and age. The obtained results of the studied period 1998 to 2000 are: i) The 99% of the occupationally exposed workers used the dosimeter. ii) The higher superficial dose -13,34mSv - corresponds to a Hemodynamic doctor. iii) The higher deep dose -7,1mSv - corresponds to a Nuclear Medicine medical technologist. iv) The higher doses mentioned above are under the limits internationally recommended by the International Commission on International Protection. These limits are 20mSv per year and 100mSv per 5 years respectively. The conclusions of the investigation are: i) Carlos Andrade Marin hospital has an adequate Dosimetry system and the occupationally exposed workers are permanently monitored with the dosimeter. ii) The Nuclear Medicine workers have the higher doses of exposition related to the other areas of Carlos Andrade Marin hospital. iii) The most exposed

  18. Exponentially-convergent Monte Carlo for the 1-D transport equation

    International Nuclear Information System (INIS)

    Peterson, J. R.; Morel, J. E.; Ragusa, J. C.

    2013-01-01

    We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)

  19. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  20. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  1. Gamma irradiation of cultural artifacts for disinfection using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Choi, Jong-il; Yoon, Minchul; Kim, Dongho

    2012-01-01

    In this study, it has been investigated the disinfection of Korean cultural artifacts by gamma irradiation, simulating the absorbed dose distribution on the object with the Monte Carlo methodology. Fungal contamination was identified on two traditional Korean agricultural tools, Hongdukkae and Holtae, which had been stored in a museum. Nine primary species were identified from these items: Bjerkandera adusta, Dothideomycetes sp., Penicillium sp., Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp., Entrophospora sp., Aspergillus sydowii, and Corynascus sepedonium. However, these fungi were completely inactivated by gamma irradiation at an absorbed dose of 20 kGy on the front side. Monte Carlo N Particle Transport Code was used to simulate the doses applied to these cultural artifacts, and the measured dose distributions were well predicted by the simulations. These results show that irradiation is effective for the disinfection of cultural artifacts and that dose distribution can be predicted with Monte Carlo simulations, allowing the optimization of the radiation treatment. - Highlights: ► Radiation was applied for the disinfection of Korean cultural artifacts. ► Fungi on the artifacts were completely inactivated by the irradiation. ► Monte Carlo N Particle Transport Code was used to predict the dose distribution. ► This study is applicable for the preservation of cultural artifacts by irradiation.

  2. Commissioning of a Monte Carlo treatment planning system for clinical use in radiation therapy; Evaluacion de un sistema de planificacion Monte Carlo de uso clinico para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparcio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.

    2016-10-01

    The commissioning procedures of a Monte Carlo treatment planning system (MC) for photon beams from a dedicated stereotactic body radiosurgery (SBRT) unit has been reported in this document. XVMC has been the MC Code available in the treatment planning system evaluated (BrainLAB iPlan RT Dose) which is based on Virtual Source Models that simulate the primary and scattered radiation, besides the electronic contamination, using gaussian components for whose modelling are required measurements of dose profiles, percentage depth dose and output factors, performed both in water and in air. The dosimetric accuracy of the particle transport simulation has been analyzed by validating the calculations in homogeneous and heterogeneous media versus measurements made under the same conditions as the dose calculation, and checking the stochastic behaviour of Monte Carlo calculations when using different statistical variances. Likewise, it has been verified how the planning system performs the conversion from dose to medium to dose to water, applying the stopping power ratio water to medium, in the presence of heterogeneities where this phenomenon is relevant, such as high density media (cortical bone). (Author)

  3. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE ACCUMULATION IN TUNGSTEN

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2016-09-01

    The objective of this work is to understand the accumulation of radiation damage created by primary knock-on atoms (PKAs) of various energies, at 300 K and for a dose rate of 10-4 dpa/s in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  4. Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA

    International Nuclear Information System (INIS)

    Roubicek, P.

    1982-01-01

    Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)

  5. Current and future applications of Monte Carlo

    International Nuclear Information System (INIS)

    Zaidi, H.

    2003-01-01

    Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic

  6. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  7. Analysis of Monte Carlo methods for the simulation of photon transport

    International Nuclear Information System (INIS)

    Carlsson, G.A.; Kusoffsky, L.

    1975-01-01

    In connection with the transport of low-energy photons (30 - 140 keV) through layers of water of different thicknesses, various aspects of Monte Carlo methods are examined in order to improve their effectivity (to produce statistically more reliable results with shorter computer times) and to bridge the gap between more physical methods and more mathematical ones. The calculations are compared with results of experiments involving the simulation of photon transport, using direct methods and collision density ones (J.S.)

  8. Monte Carlo Transverse Emittance Study on Cs2Te

    CERN Document Server

    Banfi, F; Galimberti, P G; Giannetti, C; Pagliara, S; Parmigiani, F; Pedersoli, E

    2005-01-01

    A Monte Carlo study of electron transport in Cs2Te films is performed to investigate the transverse emittance epsilon at the cathode surface. We find the photoemitted electron angular distribution and explain the physical mechanism involved in the process, a mechanism hindered by the statistical nature of the Monte Carlo method. The effects of electron-phonon scattering are discussed. The transverse emittance is calculated for different radiation wavelengths and a laser spot size of 1.5*10(-3) m. For a laser radiation at 265 nm we find epsilon = 0.56 mm-mrad. The dependence of epsilon and the quantum yield on the electron affinity Ea is also investigated. The data shows the importance of aging/contamination on the material.

  9. A computationally efficient moment-preserving Monte Carlo electron transport method with implementation in Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A., E-mail: ddixon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, MS P365, Los Alamos, NM 87545 (United States); Prinja, A.K., E-mail: prinja@unm.edu [Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Franke, B.C., E-mail: bcfrank@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87123 (United States)

    2015-09-15

    This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data.

  10. Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    Procassini, R J; O'Brien, M J; Taylor, J M

    2005-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  11. Vectorization of Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V.

    1989-01-01

    This paper reports that fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP

  12. Use of Monte Carlo method in low-energy gamma radiation applications

    International Nuclear Information System (INIS)

    Sulc, J.

    1982-01-01

    Modelling based on the Monte Carlo method is described in detail of the interaction of low-energy gamma radiation resulting in characteristic radiation of the K series of a pure element. The modelled system corresponds to the usual configuration of the measuring part of a radionuclide X-ray fluorescence analyzer. The accuracy of determination of the mean probability of impingement of characteristic radiation on the detector increases with the number of events. The number of events was selected with regard to the required accuracy, the demand on computer time and the accuracy of input parameters. The results of a comparison of computation and experiment are yet to be published. (M.D.)

  13. Vectorized Monte Carlo

    International Nuclear Information System (INIS)

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes

  14. Modelling of a general purpose irradiation chamber using a Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Dhiyauddin Ahmad Fauzi; Sheik, F.O.A.; Nurul Fadzlin Hasbullah

    2013-01-01

    Full-text: The aim of this research is to stimulate the effectiveness use of a general purpose irradiation chamber to contain pure neutron particles obtained from a research reactor. The secondary neutron and gamma particles dose discharge from the chamber layers will be used as a platform to estimate the safe dimension of the chamber. The chamber, made up of layers of lead (Pb), shielding, polyethylene (PE), moderator and commercial grade aluminium (Al) cladding is proposed for the use of interacting samples with pure neutron particles in a nuclear reactor environment. The estimation was accomplished through simulation based on general Monte Carlo N-Particle transport code using Los Alamos MCNPX software. Simulations were performed on the model of the chamber subjected to high neutron flux radiation and its gamma radiation product. The model of neutron particle used is based on the neutron source found in PUSPATI TRIGA MARK II research reactor which holds a maximum flux value of 1 x 10 12 neutron/ cm 2 s. The expected outcomes of this research are zero gamma dose in the core of the chamber and neutron dose rate of less than 10 μSv/ day discharge from the chamber system. (author)

  15. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  16. Verification of Monte Carlo transport codes by activation experiments

    OpenAIRE

    Chetvertkova, Vera

    2013-01-01

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is...

  17. Monte Carlo codes use in neutron therapy

    International Nuclear Information System (INIS)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D.; Pignol, J.P.; Cuendet, P.; Iborra, N.

    1998-01-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  18. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    Science.gov (United States)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions

  19. Progress on RMC: a Monte Carlo neutron transport code for reactor analysis

    International Nuclear Information System (INIS)

    Wang, Kan; Li, Zeguang; She, Ding; Liu, Yuxuan; Xu, Qi; Shen, Huayun; Yu, Ganglin

    2011-01-01

    This paper presents a new 3-D Monte Carlo neutron transport code named RMC (Reactor Monte Carlo code), specifically intended for reactor physics analysis. This code is being developed by Department of Engineering Physics in Tsinghua University and written in C++ and Fortran 90 language with the latest version of RMC 2.5.0. The RMC code uses the method known as the delta-tracking method to simulate neutron transport, the advantages of which include fast simulation in complex geometries and relatively simple handling of complicated geometrical objects. Some other techniques such as computational-expense oriented method and hash-table method have been developed and implemented in RMC to speedup the calculation. To meet the requirements of reactor analysis, the RMC code has the calculational functions including criticality calculation, burnup calculation and also kinetics simulation. In this paper, comparison calculations of criticality problems, burnup problems and transient problems are carried out using RMC code and other Monte Carlo codes, and the results show that RMC performs quite well in these kinds of problems. Based on MPI, RMC succeeds in parallel computation and represents a high speed-up. This code is still under intensive development and the further work directions are mentioned at the end of this paper. (author)

  20. Data decomposition of Monte Carlo particle transport simulations via tally servers

    International Nuclear Information System (INIS)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit; Smith, Kord

    2013-01-01

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations

  1. Monte Carlo particle simulation and finite-element techniques for tandem mirror transport

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.

    1987-01-01

    A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. (author)

  2. Monte Carlo particle simulation and finite-element techniques for tandem mirror transport

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.

    1985-12-01

    A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. 11 refs

  3. Deterministic methods in radiation transport

    International Nuclear Information System (INIS)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community

  4. MC++: A parallel, portable, Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms

  5. Investigation of radiation effects in Hiroshima and Nagasaki using a general Monte Carlo-discrete ordinates coupling scheme

    International Nuclear Information System (INIS)

    Cramer, S.N.; Slater, C.O.

    1990-01-01

    A general adjoint Monte Carlo-forward discrete ordinates radiation transport calculational scheme has been created to study the effects of the radiation environment in Hiroshima and Nagasaki due to the bombing of these two cities. Various such studies for comparison with physical data have progressed since the end of World War II with advancements in computing machinery and computational methods. These efforts have intensified in the last several years with the U.S.-Japan joint reassessment of nuclear weapons dosimetry in Hiroshima and Nagasaki. Three principal areas of investigation are: (1) to determine by experiment and calculation the neutron and gamma-ray energy and angular spectra and total yield of the two weapons; (2) using these weapons descriptions as source terms, to compute radiation effects at several locations in the two cities for comparison with experimental data collected at various times after the bombings and thus validate the source terms; and (3) to compute radiation fields at the known locations of fatalities and surviving individuals at the time of the bombings and thus establish an absolute cause-and-effect relationship between the radiation received and the resulting injuries to these individuals and any of their descendants as indicated by their medical records. It is in connection with the second and third items, the determination of the radiation effects and the dose received by individuals, that the current study is concerned

  6. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Samin, Adib; Cao, Lei

    2015-01-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  7. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Cao, Lei

    2015-10-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  8. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)

    1990-01-01

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (SN) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and SN regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor SN is well suited for by themselves. The fully coupled Monte Carlo/SN technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an SN calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary SN region. The Monte Carlo and SN regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the SN code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the SN code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating SN calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  9. Monte Carlo methods in electron transport problems. Pt. 1

    International Nuclear Information System (INIS)

    Cleri, F.

    1989-01-01

    The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage

  10. A review of Monte Carlo techniques used in various fields of radiation protection

    International Nuclear Information System (INIS)

    Koblinger, L.

    1987-06-01

    Monte Carlo methods and their utilization in radiation protection are overviewed. Basic principles and the most frequently used sampling methods are described. Examples range from the simulation of the random walk of photons and neutrons to neutron spectrum unfolding. (author)

  11. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  12. SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo

    International Nuclear Information System (INIS)

    2003-01-01

    1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux

  13. FTREE. Single-history Monte Carlo analysis for radiation detection and measurement

    International Nuclear Information System (INIS)

    Chin, M.P.W.

    2015-01-01

    This work introduces FTREE, which describes radiation cascades following impingement of a source particle on matter. The ensuing radiation field is characterised interaction by interaction, accounting for each generation of secondaries recursively. Each progeny is uniquely differentiated and catalogued into a family tree; the kinship is identified without ambiguity. This mode of observation, analysis and presentation goes beyond present-day detector technologies, beyond conventional Monte Carlo simulations and beyond standard pedagogy. It is able to observe rare events far out in the Gaussian tail which would have been lost in averaging-events less probable, but no less correct in physics. (author)

  14. Radiative corrections and Monte Carlo generators for physics at flavor factories

    Directory of Open Access Journals (Sweden)

    Montagna Guido

    2016-01-01

    Full Text Available I review the state of the art of precision calculations and related Monte Carlo generators used in physics at flavor factories. The review describes the tools relevant for the measurement of the hadron production cross section (via radiative return, energy scan and in γγ scattering, luminosity monitoring, searches for new physics and physics of the τ lepton.

  15. Radiation shielding design for DECY-13 cyclotron using Monte Carlo method

    International Nuclear Information System (INIS)

    Rasito T; Bunawas; Taufik; Sunardi; Hari Suryanto

    2016-01-01

    DECY-13 is a 13 MeV proton cyclotron with target H_2"1"8O. The bombarding of 13 MeV protons on target H_2"1"8O produce large amounts of neutrons and gamma radiation. It needs the efficient radiation shielding to reduce the level of neutrons and gamma rays to ensure safety for workers and public. Modeling and calculations have been carried out using Monte Carlo method with MCNPX code to optimize the thickness for the radiation shielding. The calculations were done for radiation shielding of rectangular space room type with the size of 5.5 m x 5 m x 3 m and thickness of 170 cm made from lightweight concrete types of portland. It was shown that with this shielding the dose rate outside the wall was reduced to 1 μSv/h. (author)

  16. Design of sampling tools for Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Zhang Baoyin; Deng Li

    2012-01-01

    A class of sampling tools for general Monte Carlo particle transport code JMCT is designed. Two ways are provided to sample from distributions. One is the utilization of special sampling methods for special distribution; the other is the utilization of general sampling methods for arbitrary discrete distribution and one-dimensional continuous distribution on a finite interval. Some open source codes are included in the general sampling method for the maximum convenience of users. The sampling results show sampling correctly from distribution which are popular in particle transport can be achieved with these tools, and the user's convenience can be assured. (authors)

  17. Adaptive multilevel splitting for Monte Carlo particle transport

    Directory of Open Access Journals (Sweden)

    Louvin Henri

    2017-01-01

    Full Text Available In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting (AMS is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algorithm, adapted for the first time to the field of particle transport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies like pulse-height tallies and other spectra. Furthermore, the efficiency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  18. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    Science.gov (United States)

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  19. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2010-07-15

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  20. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M.

    2010-01-01

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  1. Current status of radiation transport tools for proliferation and terrorism prevention

    International Nuclear Information System (INIS)

    Sale, K.E.

    2004-01-01

    We present the current status and future plans for the set of calculational tools and data bases developed and maintained at LLNL. The calculational tools include the Monte Carlo codes TART and COG as well as the deterministic code ARDRA. In addition to these codes presently in use there is a major development effort for a new massively parallel transport code. An important part of the capability we're developing is a sophisticated user interface, based on a commercial 3-D modeling product, to improve the model development process. A major part of this user interface tool is being developed by Strela under the Nuclear Cities Initiative. Strela has developed a hub-and-spoke technology for code input interconversions (between COG, TART and MCNP) and will produce the plug-ins that extend the capabilities of the 3-D modeler for use as a radiation transport input generator. The major advantages of this approach are the built-in user interface for 3-D modeling and the ability to read a large variety of CAD-file formats. In addition to supporting our current radiation transport codes and developing new capabilities we are working on some nuclear data needs for homeland security. These projects are carried out and the Lawrence Berkeley National Laboratory 88' cyclotron and at the Institute for Nuclear Research of the Nation Academy of Science of Ukraine under and STCU contract. (author)

  2. Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    O'Brien, M; Taylor, J; Procassini, R

    2004-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  3. Angular biasing in implicit Monte-Carlo

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1994-01-01

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise

  4. Automatic modeling for the Monte Carlo transport code Geant4

    International Nuclear Information System (INIS)

    Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team

    2015-01-01

    Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in Geometry Description Markup Language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. This method has been Studied based on Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)

  5. Application of Monte Carlo codes to neutron dosimetry

    International Nuclear Information System (INIS)

    Prevo, C.T.

    1982-01-01

    In neutron dosimetry, calculations enable one to predict the response of a proposed dosimeter before effort is expended to design and fabricate the neutron instrument or dosimeter. The nature of these calculations requires the use of computer programs that implement mathematical models representing the transport of radiation through attenuating media. Numerical, and in some cases analytical, solutions of these models can be obtained by one of several calculational techniques. All of these techniques are either approximate solutions to the well-known Boltzmann equation or are based on kernels obtained from solutions to the equation. The Boltzmann equation is a precise mathematical description of neutron behavior in terms of position, energy, direction, and time. The solution of the transport equation represents the average value of the particle flux density. Integral forms of the transport equation are generally regarded as the formal basis for the Monte Carlo method, the results of which can in principle be made to approach the exact solution. This paper focuses on the Monte Carlo technique

  6. Evaluation of light Collection in Radiation Portal Monitor with Multi PMTs using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lim, Chang Hwy; Park, Jong Won; Lee, Junghee; Moon, Myung Kook; Kim, Jongyul; Lee, Suhyun

    2015-01-01

    A plastic scintillator in the RPM is suited for the γ-ray detection of various-range energy and is the cost effective radiation detection material. In order to well inspect emitted radiation from the container cargo, the radiation detection area of a plastic scintillator should be larger than other general purpose radiation detector. However, the large size plastic scintillator affects the light collection efficiency at the photo-sensitive sensor due to the long light transport distance and light collisions in a plastic scintillator. Therefore, the improvement of light collection efficiency in a RPM is one of the major issues for the high performance RPM development. We calculated the change of the number of collected light according to changing of the attachment position and number of PMT. To calculate the number of collected light, the DETECT2000 and MCNP6 Monte Carlo simulation software tool was used. Response signal performance of RPM system is affected by the position of the incident radiation. If the distance between the radiation source and a PMT is long, the number of loss signal is larger. Generally, PMTs for signal detection in RPM system has been attached on one side of plastic scintillator. In contrast, RPM model in the study have 2 PMTs, which attached at the two side of plastic scintillator. We estimated difference between results using the old method and our method. According to results, uniformity of response signal was better than method using one side. If additive simulation and experiment is performed, it will be possible to develop the improved RPM system. In the future, we will perform additive simulation about many difference RPM model

  7. Evaluation of light Collection in Radiation Portal Monitor with Multi PMTs using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Park, Jong Won; Lee, Junghee [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of); Moon, Myung Kook; Kim, Jongyul; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A plastic scintillator in the RPM is suited for the γ-ray detection of various-range energy and is the cost effective radiation detection material. In order to well inspect emitted radiation from the container cargo, the radiation detection area of a plastic scintillator should be larger than other general purpose radiation detector. However, the large size plastic scintillator affects the light collection efficiency at the photo-sensitive sensor due to the long light transport distance and light collisions in a plastic scintillator. Therefore, the improvement of light collection efficiency in a RPM is one of the major issues for the high performance RPM development. We calculated the change of the number of collected light according to changing of the attachment position and number of PMT. To calculate the number of collected light, the DETECT2000 and MCNP6 Monte Carlo simulation software tool was used. Response signal performance of RPM system is affected by the position of the incident radiation. If the distance between the radiation source and a PMT is long, the number of loss signal is larger. Generally, PMTs for signal detection in RPM system has been attached on one side of plastic scintillator. In contrast, RPM model in the study have 2 PMTs, which attached at the two side of plastic scintillator. We estimated difference between results using the old method and our method. According to results, uniformity of response signal was better than method using one side. If additive simulation and experiment is performed, it will be possible to develop the improved RPM system. In the future, we will perform additive simulation about many difference RPM model.

  8. MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)

    2013-08-15

    A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.

  9. Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation

    Directory of Open Access Journals (Sweden)

    Xueli Chen

    2010-01-01

    Full Text Available During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results.

  10. SANDYL, 3-D Time-Dependent and Space-Dependent Gamma Electron Cascade Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Haggmark, L.G.

    1980-01-01

    1 - Description of problem or function: SANDYL performs three- dimensional, time and space dependent Monte Carlo transport calculations for photon-electron cascades in complex systems. 2 - Method of solution: The problem geometry is divided into zones of homogeneous atomic composition bounded by sections of planes and quadrics. The material of each zone is a specified element or combination of elements. For a photon history, the trajectory is generated by following the photon from scattering to scattering using the various probability distributions to find distances between collisions, types of collisions, types of secondaries, and their energies and scattering angles. The photon interactions are photoelectric absorption (atomic ionization), coherent scattering, incoherent scattering, and pair production. The secondary photons which are followed include Bremsstrahlung, fluorescence photons, and positron-electron annihilation radiation. The condensed-history Monte Carlo method is used for the electron transport. In a history, the spatial steps taken by an electron are pre-computed and may include the effects of a number of collisions. The corresponding scattering angle and energy loss in the step are found from the multiple scattering distributions of these quantities. Atomic ionization and secondary particles are generated with the step according to the probabilities for their occurrence. Electron energy loss is through inelastic electron-electron collisions, Bremsstrahlung generation, and polarization of the medium (density effect). Included in the loss is the fluctuation due to the variation in the number of energy-loss collisions in a given Monte Carlo step (straggling). Scattering angular distributions are determined from elastic nuclear-collision cross sections corrected for electron-electron interactions. The secondary electrons which are followed included knock-on, pair, Auger (through atomic ionizations), Compton, and photoelectric electrons. 3

  11. Tripoli-4, a three-dimensional poly-kinetic particle transport Monte-Carlo code

    International Nuclear Information System (INIS)

    Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.; Soldevila, M.

    2003-01-01

    In this updated of the Monte-Carlo transport code Tripoli-4, we list and describe its current main features. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. Tripoli-4 enables the user to compute the following physical quantities: a flux, a multiplication factor, a current, a reaction rate, a dose equivalent rate as well as deposit of energy and recoil energies. For each interesting physical quantity, a Monte-Carlo simulation offers different types of estimators. Tripoli-4 has support for execution in parallel mode. Special features and applications are also presented

  12. Tripoli-4, a three-dimensional poly-kinetic particle transport Monte-Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Both, J P; Lee, Y K; Mazzolo, A; Peneliau, Y; Petit, O; Roesslinger, B; Soldevila, M [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DM2S/SERMA/LEPP), 91 - Gif sur Yvette (France)

    2003-07-01

    In this updated of the Monte-Carlo transport code Tripoli-4, we list and describe its current main features. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. Tripoli-4 enables the user to compute the following physical quantities: a flux, a multiplication factor, a current, a reaction rate, a dose equivalent rate as well as deposit of energy and recoil energies. For each interesting physical quantity, a Monte-Carlo simulation offers different types of estimators. Tripoli-4 has support for execution in parallel mode. Special features and applications are also presented.

  13. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  14. Monte Carlo importance sampling for the MCNP trademark general source

    International Nuclear Information System (INIS)

    Lichtenstein, H.

    1996-01-01

    Research was performed to develop an importance sampling procedure for a radiation source. The procedure was developed for the MCNP radiation transport code, but the approach itself is general and can be adapted to other Monte Carlo codes. The procedure, as adapted to MCNP, relies entirely on existing MCNP capabilities. It has been tested for very complex descriptions of a general source, in the context of the design of spent-reactor-fuel storage casks. Dramatic improvements in calculation efficiency have been observed in some test cases. In addition, the procedure has been found to provide an acceleration to acceptable convergence, as well as the benefit of quickly identifying user specified variance-reduction in the transport that effects unstable convergence

  15. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  16. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  17. Evaluation and characterization of X-ray scattering in tissues and mammographic simulators using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Oliveira, Monica G. Nunes; Braz, Delson; Silva, Regina Cely B. da S.

    2005-01-01

    The computer simulation has been widely used in physical researches by both the viability of the codes and the growth of the power of computers in the last decades. The Monte Carlo simulation program, EGS4 code is a simulation program used in the area of radiation transport. The simulators, surrogate tissues, phantoms are objects used to perform studies on dosimetric quantities and quality testing of images. The simulators have characteristics of scattering and absorption of radiation similar to tissues that make up the body. The aim of this work is to translate the effects of radiation interactions in a real healthy breast tissues, sick and on simulators using the EGS4 Monte Carlo simulation code

  18. OGRE, Monte-Carlo System for Gamma Transport Problems

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50

  19. Proton therapy Monte Carlo SRNA-VOX code

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2012-01-01

    Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.

  20. Practical Application of Monte Carlo Code in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Julia Abdul Karim; Muhammad Rawi Mohamed Zin; Na'im Syauqi Hamzah; Mark Dennis Anak Usang; Abi Muttaqin Jalal Bayar; Muhammad Khairul Ariff Mustafa

    2015-01-01

    Monte Carlo neutron transport codes are widely used in various reactor physics applications in RTP and other related nuclear and radiation research in Nuklear Malaysia. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to some extent. The importance of Monte Carlo calculation is likely to increase in the future, along with the development in computer capacities and parallel calculation. This paper presents several calculation activities, its achievements and challenges in using MCNP code for neutronics analysis, nuclide inventory and source term calculation, shielding and dose evaluation. (author)

  1. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute α-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed

  2. Radiation shielding and criticality safety assessment for KN-12 spent nuclear fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Shin, Chang Ho; Kim, Gi Hwan [Hanyang Univ., Seoul (Korea, Republic of)

    2001-08-15

    Because SNFs involve TRU (Transuranium), fission products, and fissile materials, they are highly radioactive and also have a possibility to be critical. Therefore, radiation shielding and criticality safety for transport casks containing the SNFs should be guaranteed through reliable valuation procedure. IAEA safety standard series No ST-1 recommends regulation for safe transportation of the SNFs by transport casks, and United States is carrying out it according to the regulation guide, 10 CFR parts 71 and 72. Present research objective is to evaluate the KN-12 spent nuclear fuel transport cask that is designed for transportation of up to 12 assemblies and is standby status for being licensed in accordance with Korea Atomic Energy Act. Both radiation shielding and criticality analysis using the accurate Monte Carlo transport code, MCNP-4B are carried out for the KN-12 SNF cask as a benchmark calculation. Source terms for radiation shielding calculation are obtained using ORIGEN-S computer code. In this work, for normal transport conditions, the results from MCNP-4B shows the maximum dose rate of 0.557 mSv/hr at the side surface. And the maximum dose rate of 0.0871 mSv/hr was resulted at the 2 m distance from the cask. The level of calculated dose rate is 27.9% of the limit at the cask surface, 87.1% at 2 m from the cask surface for normal transport condition. For hypothetical accident conditions, the maximum rate of 2.5144 mSv/hr was resulted at the 1 m distance from the cask and this level is 25.1% of the limit for hypothetical accident conditions. In criticality calculations using MCNP-4B, the k{sub eff} values yielded for 5.0 w/o U-235 enriched fresh fuel are 0.92098 {+-} 0.00065. This result confirms subcritical condition of the KN-12 SNF cask and gives 96.95% of recommendations for criticality safety evaluation by US NRC these results will be useful as a basis for approval for the KN-12 SNF cask.

  3. FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation

    International Nuclear Information System (INIS)

    Taormina, A.

    1978-05-01

    FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)

  4. Investigating the effect of K-characteristic radiation on the performance of nuclear medicine scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, Panagiotis; Kandarakis, Ioannis; Cavouras, Dionisis; Delis, Harry; Panayiotakis, George

    2006-01-01

    The aim of this study was to evaluate the effect of K-characteristic radiation on the performance of scintillator crystals incorporated in nuclear medicine detectors (LSO, BGO, GSO). K-characteristic radiation is produced within materials of at least one high atomic number element (e.g. Lu, Gd, Bi). This radiation may either be reabsorbed or it may escape the scintillator. In both cases the light emission efficiency of the scintillator may be affected resulting in either spatial or energy resolution degradation. A computational program, based on Monte Carlo methods, was developed in order to simulate the transport of K-characteristic radiation within the most commonly used scintillator materials. Crystal thickness was allowed to vary from 0.5 up to 15 mm. A monoenergetic pencil beam, with energy varying from 0.60 to 0.511 MeV was considered to fall on the center of the crystal surface. The dominant γ-ray interactions (elastic and inelastic scattering and photoelectric absorption) were taken into account in the simulation. Results showed that, depending on crystal thickness, incident photon energy and scintillator's intrinsic properties (L or K-fluorescence yield, effective atomic number and density), the scintillator's emission efficiency may be significantly reduced and affect spatial or energy resolution

  5. (U) Introduction to Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-20

    Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.

  6. Radiation transport in numerical astrophysics

    International Nuclear Information System (INIS)

    Lund, C.M.

    1983-02-01

    In this article, we discuss some of the numerical techniques developed by Jim Wilson and co-workers for the calculation of time-dependent radiation flow. Difference equations for multifrequency transport are given for both a discrete-angle representation of radiation transport and a Fick's law-like representation. These methods have the important property that they correctly describe both the streaming and diffusion limits of transport theory in problems where the mean free path divided by characteristic distances varies from much less than one to much greater than one. They are also stable for timesteps comparable to the changes in physical variables, rather than being limited by stability requirements

  7. Monte Carlo simulation of nuclear energy study (II). Annual report on Nuclear Code Evaluation Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)

  8. General-purpose Monte Carlo codes for neutron and photon transport calculations. MVP version 3

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu

    2017-01-01

    JAEA has developed a general-purpose neutron/photon transport Monte Carlo code MVP. This paper describes the recent development of the MVP code and reviews the basic features and capabilities. In addition, capabilities implemented in Version 3 are also described. (author)

  9. Monte Carlo simulation of ballistic transport in high-mobility channels

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R [Institut d' Electronique du Sud (CNRS UMR 5214) - Universite Montpellier II (France); Rodilla, H; Gonzalez, T; Mateos, J, E-mail: sabatini@ies.univ-montp2.f [Departamento de Fisica Aplicada - Universidad de Salamanca (Spain)

    2009-11-15

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10{sup 5} m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  10. Monte Carlo simulation of ballistic transport in high-mobility channels

    International Nuclear Information System (INIS)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R; Rodilla, H; Gonzalez, T; Mateos, J

    2009-01-01

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10 5 m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  11. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo

  12. Monte-Carlo simulation of complex vapor-transport systems for RIB applications

    International Nuclear Information System (INIS)

    Zhang, Y.; Alton, G.D.

    2005-01-01

    In order to minimize decay losses of short-lived radioactive species at ISOL based RIB facilities, effusive-flow particle transit times between target and ion source must be as short as practically achievable. A Monte-Carlo code has been developed for simulating the effusive-flow of neutral particles through vapor-transport systems independent of materials of construction. The code provides average distance traveled and time information associated with the transit of individual particles through a system. It offers a cost effective and accurate means for arriving at vapor-transport system designs. In this report, the code will be described and results obtained by its use in evaluating several prototype vapor-transport systems using specular reflection, cosine and isotropic particle re-emission about the normal to the surface models following adsorption. Simulation results obtained with an isotropic distribution are in close agreement with experimental measurements of the properties of prototype vapor-transport systems fabricated at the Holifield Radioactive Ion Beam Facility

  13. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  14. Stochastic calculations for radiation risk assessment: a Monte-Carlo approach to the simulation of radiocesium transport in the pasture-cow-milk food chain

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, M; Eisfeld, K; Paretzke, H; Wirth, E [Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz

    1981-05-01

    The effects of introducing probability distributions of the parameters in radionuclide transport models are investigated. Results from a Monte-Carlo simulation were presented for the transport of /sup 137/Cs via the pasture-cow-milk pathway, taking into the account the uncertainties and naturally occurring fluctuations in the rate constants. The results of the stochastic model calculations characterize the activity concentrations at a given time t and provide a great deal more information for analysis of the environmental transport of radionuclides than deterministic calculations in which the variation of parameters is not taken into consideration. Moreover the stochastic model permits an estimate of the variation of the physico-chemical behaviour of radionuclides in the environment in a more realistic way than by using only the highest transfer coefficients in deterministic approaches, which can lead to non-realistic overestimates of the probability with which high activity levels will be encountered.

  15. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...

  16. The application of Monte Carlo method to electron and photon beams transport; Zastosowanie metody Monte Carlo do analizy transportu elektronow i fotonow

    Energy Technology Data Exchange (ETDEWEB)

    Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.

  17. Monte Carlo technique applications in field of radiation dosimetry at ENEA radiation protection institute: A Review

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Casalini, L.; Morelli, B.

    1994-12-01

    The present report summarizes the activities concerned with numerical dosimetry as carried out at the Radiation Protection Institute of ENEA (Italian Agency for New Technologies, Energy and the Environment) on photon dosimetric quantities. The first part is concerned with MCNP Monte Carlo calculation of field parameters and operational quantities for the ICRU sphere with reference photon beams for the design of personal dosemeters. The second part is related with studies on the ADAM anthropomorphic phantom using the SABRINA and MCNP codes. The results of other Monte Carlo studies carried out on electron conversion factors for various tissue equivalent slab phantoms are about to be published in other ENEA reports. The report has been produced in the framework of the EURADOS WG4 (numerical dosimetry) activities within a collaboration between the ENEA Environmental Department and ENEA Energy Department

  18. Investigation of pattern recognition techniques for the indentification of splitting surfaces in Monte Carlo particle transport calculations

    International Nuclear Information System (INIS)

    Macdonald, J.L.

    1975-08-01

    Statistical and deterministic pattern recognition systems are designed to classify the state space of a Monte Carlo transport problem into importance regions. The surfaces separating the regions can be used for particle splitting and Russian roulette in state space in order to reduce the variance of the Monte Carlo tally. Computer experiments are performed to evaluate the performance of the technique using one and two dimensional Monte Carlo problems. Additional experiments are performed to determine the sensitivity of the technique to various pattern recognition and Monte Carlo problem dependent parameters. A system for applying the technique to a general purpose Monte Carlo code is described. An estimate of the computer time required by the technique is made in order to determine its effectiveness as a variance reduction device. It is recommended that the technique be further investigated in a general purpose Monte Carlo code. (auth)

  19. Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)

    International Nuclear Information System (INIS)

    Kirk, B.L.; West, J.T.

    1984-06-01

    The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided

  20. The electron transport problem sampling by Monte Carlo individual collision technique

    International Nuclear Information System (INIS)

    Androsenko, P.A.; Belousov, V.I.

    2005-01-01

    The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)

  1. Monte Carlo simulation of neutron transport phenomena

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2009-01-01

    Neutron transport is one of the central problems in nuclear reactor related studies and other applied sciences. Some of the major applications of neutron transport include nuclear reactor design and safety, criticality safety of fissile material handling, neutron detector design and development, nuclear medicine, assessment of radiation damage to materials, nuclear well logging, forensic analysis etc. Most reactor and dosimetry studies assume that neutrons diffuse from regions of high to low density just like gaseous molecules diffuse to regions of low concentration or heat flow from high to low temperature regions. However while treatment of gaseous or heat diffusion is quite accurately modeled, treatment of neutron transport as simple diffusion is quite limited. In simple diffusion, the neutron trajectories are irregular, random and zigzag - where as in neutron transport low reaction cross sections (1 barn- 10 -24 cm 2 ) lead to long mean free paths which again depend on the nature and irregularities of the medium. Hence a more accurate representation of the neutron transport evolved based on the Boltzmann equation of kinetic gas theory. In fact the neutron transport equation is a linearized version of the Boltzmann gas equation based on neutron conservation with seven independent variables. The transport equation is difficult to solve except in simple cases amenable to numerical methods. The diffusion (equation) approximation follows from removing the angular dependence of the neutron flux

  2. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  3. Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2002-01-01

    Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.

  4. Application of artificial intelligence techniques to the acceleration of Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Maconald, J.L.; Cashwell, E.D.

    1978-09-01

    The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems

  5. Effects of changing the random number stride in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1991-01-01

    This paper reports on a common practice in Monte Carlo radiation transport codes which is to start each random walk a specified number of steps up the random number sequence from the previous one. This is called the stride in the random number sequence between source particles. It is used for correlated sampling or to provide tree-structured random numbers. A new random number generator algorithm for the major Monte Carlo code MCNP has been written to allow adjustment of the random number stride. This random number generator is machine portable. The effects of varying the stride for several sample problems are examined

  6. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  7. Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.; Zio, E.

    2005-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)

  8. Monte Carlo investigation of anomalous transport in presence of a discontinuity and of an advection field

    Science.gov (United States)

    Marseguerra, M.; Zoia, A.

    2007-04-01

    Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.

  9. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    Science.gov (United States)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  10. Evaluation of Monte Carlo electron-Transport algorithms in the integrated Tiger series codes for stochastic-media simulations

    International Nuclear Information System (INIS)

    Franke, B.C.; Kensek, R.P.; Prinja, A.K.

    2013-01-01

    Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)

  11. Monte Carlo investigation of minority electron transport in InP

    International Nuclear Information System (INIS)

    Osman, M.A.; Grubin, H.L.

    1989-01-01

    This paper discusses the investigation of the transport of minority electrons in p-type InP for acceptor doping level of 10 18 cm 3 using Monte Carlo procedures. It is found that the velocity of minority electrons are significantly lower than that of majority electrons for fields below 15 kV/cm and slightly higher at higher fields. The study shows that the interaction between the electrons and majority holes leads to reducing the mobility of electrons from 2000 cm 2 /Vs to 1500 cm 2 /Vs

  12. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  13. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    Science.gov (United States)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  14. Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2006-01-01

    The computer code system PENELOPE (version 2006) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. These proceedings contain the corresponding manual and teaching notes of the PENELOPE-2006 workshop and training course, held on 4-7 July 2006 in Barcelona, Spain. (author)

  15. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  16. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír

    2013-01-01

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239 Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  17. Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs

    Science.gov (United States)

    Chhotray, Atul; Lazzati, Davide

    2018-05-01

    We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.

  18. Monte Carlo simulation for IRRMA

    International Nuclear Information System (INIS)

    Gardner, R.P.; Liu Lianyan

    2000-01-01

    Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors

  19. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  20. A method for photon beam Monte Carlo multileaf collimator particle transport

    Science.gov (United States)

    Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe

    2002-09-01

    Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV

  1. A method for photon beam Monte Carlo multileaf collimator particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, Jeffrey V. [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)]. E-mail: jsiebers@vcu.edu; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)

    2002-09-07

    Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within {+-}1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within {+-}1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV

  2. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  3. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  4. Radiation Modeling with Direct Simulation Monte Carlo

    Science.gov (United States)

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  5. The electron transport problem sampling by Monte Carlo individual collision technique

    Energy Technology Data Exchange (ETDEWEB)

    Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)

    2005-07-01

    The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)

  6. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform.

    Science.gov (United States)

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2009-09-07

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min(-1) at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.

  7. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E; Armour, M; Wong, J W [Deptartment of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States); Verhaegen, F [Department of Radiation Oncology (MAASTRO Physics), GROW School, Maastricht University Medical Center, Maastricht (Netherlands)

    2009-09-07

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min{sup -1} at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.

  8. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    Lizot, M.T.; Perrin, M.L.; Sert, G.; Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R.; Shaw, K.B.; Hughes, J.S.; Gelder, R.

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  9. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  10. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  11. Parallel Monte Carlo Particle Transport and the Quality of Random Number Generators: How Good is Good Enough?

    International Nuclear Information System (INIS)

    Procassini, R J; Beck, B R

    2004-01-01

    It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results

  12. Current status of radiation transport tools for proliferation and terrorism prevention

    International Nuclear Information System (INIS)

    Sale, K.E.

    2004-01-01

    Full text: We will present the current status and future plans for the set of calculational tools and databases developed and maintained at LLNL. The calculational tools include the Monte Carlo codes TART 1) and COG 2) as well as the deterministic code ARDRA 3) . In addition to these codes we use currently there is a major development effort for a new massively parallel transport code. An important part of the capability we're developing is a sophisticated user interface, based on a commercial 3-D modeling product, to improve the model development process. A major part of this user interface tool is being developed by Strela 4) under the Nuclear Cities Initiative. Strela has developed a hub-and-spoke technology for code input interconversions (between COG, TART and MCNP) and will produce the plug-ins that extend the capabilities of the 3-D modeler for use as a radiation transport input generator. The major advantages of this approach are the built-in user interface for 3-D modeling and the ability to read a large variety of CAD-file formats. In addition to supporting our current radiation transport codes and developing new capabilities we are working on some nuclear data needs for homeland security. These projects are carried out and the Lawrence Berkeley National Laboratory 88' cyclotron and at the Institute for Nuclear Research of the Nation Academy of Science of Ukraine under and STCU contract. Reference: 1. http://www.llnl.gov/cullen1/mc/htm; 2. http://www-phys.llnl.gov/N_Div/COG/ETR/ETR_9306.html; 3. http://www.llnl.gov/CASC/asciturb/talks/PPT-HTML.131596/tsld030.htm; 4. http://strela.snz.ru/

  13. Optimal Spatial Subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation

    International Nuclear Information System (INIS)

    Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin

    2015-01-01

    Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes

  14. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation

    DEFF Research Database (Denmark)

    Nathan, R.P.; Thomas, P.J.; Jain, M.

    2003-01-01

    and identify the likely size of these effects on D-e distributions. The study employs the MCNP 4C Monte Carlo electron/photon transport model, supported by an experimental validation of the code in several case studies. We find good agreement between the experimental measurements and the Monte Carlo...

  15. Implementation and testing of a multivariate inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John; Mitchell, Dean J.

    2012-01-01

    Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver's essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal. - Highlights: ► Inverse problems, specifically applied to identifying and characterizing radiation sources . ► Radiation transport. ► Analysis of gamma spectroscopy and neutron multiplicity counting measurements. ► Experimental testing of the inverse solver against measurements of plutonium.

  16. Using Static Percentiles of AE9/AP9 to Approximate Dynamic Monte Carlo Runs for Radiation Analysis of Spiral Transfer Orbits

    Science.gov (United States)

    Kwan, Betty P.; O'Brien, T. Paul

    2015-06-01

    The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.

  17. Error reduction techniques for Monte Carlo neutron transport calculations

    International Nuclear Information System (INIS)

    Ju, J.H.W.

    1981-01-01

    Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas

  18. Adaptively Learning an Importance Function Using Transport Constrained Monte Carlo

    International Nuclear Information System (INIS)

    Booth, T.E.

    1998-01-01

    It is well known that a Monte Carlo estimate can be obtained with zero-variance if an exact importance function for the estimate is known. There are many ways that one might iteratively seek to obtain an ever more exact importance function. This paper describes a method that has obtained ever more exact importance functions that empirically produce an error that is dropping exponentially with computer time. The method described herein constrains the importance function to satisfy the (adjoint) Boltzmann transport equation. This constraint is provided by using the known form of the solution, usually referred to as the Case eigenfunction solution

  19. Machine and radiation protection challenges of high energy/intensity accelerators: the role of Monte Carlo calculations

    Science.gov (United States)

    Cerutti, F.

    2017-09-01

    The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.

  20. Verification of the shift Monte Carlo code with the C5G7 reactor benchmark

    International Nuclear Information System (INIS)

    Sly, N. C.; Mervin, B. T.; Mosher, S. W.; Evans, T. M.; Wagner, J. C.; Maldonado, G. I.

    2012-01-01

    Shift is a new hybrid Monte Carlo/deterministic radiation transport code being developed at Oak Ridge National Laboratory. At its current stage of development, Shift includes a parallel Monte Carlo capability for simulating eigenvalue and fixed-source multigroup transport problems. This paper focuses on recent efforts to verify Shift's Monte Carlo component using the two-dimensional and three-dimensional C5G7 NEA benchmark problems. Comparisons were made between the benchmark eigenvalues and those output by the Shift code. In addition, mesh-based scalar flux tally results generated by Shift were compared to those obtained using MCNP5 on an identical model and tally grid. The Shift-generated eigenvalues were within three standard deviations of the benchmark and MCNP5-1.60 values in all cases. The flux tallies generated by Shift were found to be in very good agreement with those from MCNP. (authors)

  1. MORSE-C, Neutron Transport, Gamma Transport for Criticality Calculation by Monte-Carlo Method

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MORSE-C is a Monte-Carlo code to solve the multiple energy group form of the Boltzmann transport equation in order to obtain the eigenvalue (multiplication) when fissionable materials are present. Cross sections for up to 100 energy groups may be employed. The angular scattering is treated by the usual Legendre expansion as used in the discrete ordinates codes. Up-scattering may be specified. The geometry is defined by relationships to general 1. or 2. degree surfaces. Array units may be specified. Output includes, besides the usual values of input quantities, plots of the geometry, calculated volumes and masses, and graphs of results to assist the user in determining the correctness of the problem's solution

  2. A fundamental study of ''contribution'' transport theory and channel theory applications

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    The objective of this three-year study is to develop a technique called ''channel theory'' that can be used in interpreting particle transport analysis such as frequently required in radiation shielding design and assessment. Channel theory is a technique used to provide insight into the mechanisms by which particles emitted from a source are transported through a complex system and register a response on some detector. It is based on the behavior of a pseudo particle called a ''contributon,'' which is the response carrier through space and energy channels that connect the source and detector. ''Contributons'' are those particles among all the ones contained in the system which will eventually contribute some amount of response to the detector. The specific goals of this projects are to provide a more fundamental theoretical understanding of the method, and to develop computer programs to apply the techniques to practical problems encountered in radiation transport analysis. The overall project can be divided into three components to meet these objectives: (a) Theoretical Development, (b) Code Development, and (c) Sample Applications. During the present third year of this study, an application of contributon theory to the analysis of radiation heating in a nuclear rocket has been completed, and a paper on the assessment of radiation damage response of an LWR pressure vessel and analysis of radiation propagation through space and energy channels in air at the Hiroshima weapon burst was accepted for publication. A major effort was devoted to developing a new ''Contributon Monte Carlo'' method, which can improve the efficiency of Monte Carlo calculations of radiation transport by tracking only contributons. The theoretical basis for Contributon Monte Carlo has been completed, and the implementation and testing of the technique is presently being performed

  3. A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    OpenAIRE

    Mendenhall, Marcus H.; Weller, Robert A.

    2011-01-01

    In Monte Carlo particle transport codes, it is often important to adjust reaction cross sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analogous Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross section change. This makes it possible t...

  4. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    International Nuclear Information System (INIS)

    Coulot, J

    2003-01-01

    Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor remarks to

  5. Use of Existing CAD Models for Radiation Shielding Analysis

    Science.gov (United States)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  6. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  7. Machine and radiation protection challenges of high energy/intensity accelerators: the role of Monte Carlo calculations

    Directory of Open Access Journals (Sweden)

    Cerutti F.

    2017-01-01

    Full Text Available The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.

  8. Available computer codes and data for radiation transport analysis

    International Nuclear Information System (INIS)

    Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.

    1975-01-01

    The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  9. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  10. Cross sections needed for investigations into track phenomena and Monte-Carlo calculations

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1983-01-01

    Investigations into basic radiation action mechanisms as well as into applied radiation transport problems (e.g. electron microscopy) greatly benefit from detailed computer simulations of charged particle track structures in matter. The first and in fact most important and most difficult step in any such calculation is the derivation of reliable cross sections for the most relevant interaction processes in the material(s) under consideration. The second step in radiation transport calculations is the testing of results or intermediate results for quantitative or qualitative consistency with other experimental or theoretical information (e.g. yields, backscatter factors). This paper discusses the types of the most important collision cross sections for studies on track phenomena by detailed Monte-Carlo calculations, the necessary accuracy of such data and various means of consistency checks of calculated results. This will be done mainly with examples taken from radiation physics as applied to dosimetric and biological problems (i.e. to gaseous and condensed targets). 12 references, 8 figures

  11. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  12. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  13. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  14. Utilizing Monte-Carlo radiation transport and spallation cross sections to estimate nuclide dependent scaling with altitude

    Science.gov (United States)

    Argento, D.; Reedy, R. C.; Stone, J.

    2010-12-01

    Cosmogenic Nuclides (CNs) are a critical new tool for geomorphology, allowing researchers to date Earth surface events and measure process rates [1]. Prior to CNs, many of these events and processes had no absolute method for measurement and relied entirely on relative methods [2]. Continued improvements in CN methods are necessary for expanding analytic capability in geomorphology. In the last two decades, significant progress has been made in refining these methods and reducing analytic uncertainties [1,3]. Calibration data and scaling methods are being developed to provide a self consistent platform for use in interpreting nuclide concentration values into geologic data [4]. However, nuclide dependent scaling has been difficult to address due to analytic uncertainty and sparseness in altitude transects. Artificial target experiments are underway, but these experiments take considerable time for nuclide buildup in lower altitudes. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray radiation impinging on the upper atmosphere and track the resulting secondary particles through a model of the Earth’s atmosphere and lithosphere. To address the issue of nuclide dependent scaling, the neutron flux values determined by the MCNPX simulation are folded in with estimated cross-section values [5,6]. Preliminary calculations indicate that scaling of nuclide production potential in free air seems to be a function of both altitude and nuclide production pathway. At 0 g/cm2 (sea-level) all neutron spallation pathways have attenuation lengths within 1% of 130 g/cm2. However, the differences in attenuation length are exacerbated with increasing altitude. At 530 g/cm2 atmospheric height (~5,500 m), the apparent attenuation lengths for aggregate SiO2(n,x)10Be, aggregate SiO2(n,x)14C and K(n,x)36Cl become 149.5 g/cm2, 151 g/cm2 and 148 g/cm2 respectively. At 700 g/cm2 atmospheric height (~8,400m - close to the highest

  15. Automatic modeling for the Monte Carlo transport code Geant4 in MCAM

    International Nuclear Information System (INIS)

    Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team

    2014-01-01

    Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in geometry description markup language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. The conversion program was integrated into Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)

  16. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code

    International Nuclear Information System (INIS)

    Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.

    2003-01-01

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k eff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  17. Monte Carlo study of electron-plasmon scattering effects on hot electron transport in GaAs

    International Nuclear Information System (INIS)

    Popov, V.V.; Bagaeva, T.Yu.; Solodkaya, T.I.

    1994-07-01

    It is shown using Monte Carlo simulation that electron-plasmon scattering affects substantially the hot-electron energy distribution function and transport properties in bulk GaAs. However, this effect is found to be much less than that predicted in earlier paper of other authors. (author). 5 refs, 7 figs

  18. Radiative Transfer Reconsidered as a Quantum Kinetic Theory

    Indian Academy of Sciences (India)

    Radiative transfer—quantum kinetic theory—anomalous dispersion. 1. ... able for the elaboration of transport codes (e.g. based on the Monte-Carlo technique ... this function is not a true probability density function but rather a quasiprobability.

  19. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics; Introduccion a la simulacion con el codigo de Monte Carlo MCNP y sus aplicaciones en Fisica Medica

    Energy Technology Data Exchange (ETDEWEB)

    Parreno Z, F.; Paucar J, R.; Picon C, C. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)

    1998-12-31

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  20. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code; Notice d'utilisation du code Tripoli-4, version 4.3: code de transport de particules par la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B

    2003-07-01

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k{sub eff} (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  1. Monte Carlo method to characterize radioactive waste drums

    International Nuclear Information System (INIS)

    Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.

    2013-01-01

    Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)

  2. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  3. MC 93 - Proceedings of the International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics

    Science.gov (United States)

    Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi

    1994-01-01

    The Table of Contents for the book is as follows: * Preface * Heavy Fragment Production for Hadronic Cascade Codes * Monte Carlo Simulations of Space Radiation Environments * Merging Parton Showers with Higher Order QCD Monte Carlos * An Order-αs Two-Photon Background Study for the Intermediate Mass Higgs Boson * GEANT Simulation of Hall C Detector at CEBAF * Monte Carlo Simulations in Radioecology: Chernobyl Experience * UNIMOD2: Monte Carlo Code for Simulation of High Energy Physics Experiments; Some Special Features * Geometrical Efficiency Analysis for the Gamma-Neutron and Gamma-Proton Reactions * GISMO: An Object-Oriented Approach to Particle Transport and Detector Modeling * Role of MPP Granularity in Optimizing Monte Carlo Programming * Status and Future Trends of the GEANT System * The Binary Sectioning Geometry for Monte Carlo Detector Simulation * A Combined HETC-FLUKA Intranuclear Cascade Event Generator * The HARP Nucleon Polarimeter * Simulation and Data Analysis Software for CLAS * TRAP -- An Optical Ray Tracing Program * Solutions of Inverse and Optimization Problems in High Energy and Nuclear Physics Using Inverse Monte Carlo * FLUKA: Hadronic Benchmarks and Applications * Electron-Photon Transport: Always so Good as We Think? Experience with FLUKA * Simulation of Nuclear Effects in High Energy Hadron-Nucleus Collisions * Monte Carlo Simulations of Medium Energy Detectors at COSY Jülich * Complex-Valued Monte Carlo Method and Path Integrals in the Quantum Theory of Localization in Disordered Systems of Scatterers * Radiation Levels at the SSCL Experimental Halls as Obtained Using the CLOR89 Code System * Overview of Matrix Element Methods in Event Generation * Fast Electromagnetic Showers * GEANT Simulation of the RMC Detector at TRIUMF and Neutrino Beams for KAON * Event Display for the CLAS Detector * Monte Carlo Simulation of High Energy Electrons in Toroidal Geometry * GEANT 3.14 vs. EGS4: A Comparison Using the DØ Uranium/Liquid Argon

  4. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1991-01-01

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  5. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units; Desenvolvimento de um software de Monte Carlo para transporte de fotons em estruturas de voxels usando unidades de processamento grafico

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, Murillo

    2014-09-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  6. A multigroup treatment of radiation transport

    International Nuclear Information System (INIS)

    Tahir, N.A.; Laing, E.W.; Nicholas, D.J.

    1980-12-01

    A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)

  7. Convergence of the Bouguer-Beer law for radiation extinction in particulate media

    Science.gov (United States)

    Frankel, A.; Iaccarino, G.; Mani, A.

    2016-10-01

    Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer-Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible.

  8. Subgroup approximation in Monte Carlo neutron transport calculation in resonance region; Primena podgrupe aproksimacije u Monte Carlo proracunima transporta neutrona u rezonantnoj oblasti energije

    Energy Technology Data Exchange (ETDEWEB)

    Belicev, P [Vojnotehnicki Inst., Belgrade (Yugoslavia)

    1988-07-01

    An outline of the problems encountered in the multigroup calculations of the neutron transport in the resonance region is given. The difference between subgroup and multigroup approximation is described briefly. The features of the Monte Carlo code SUBGR are presented. The results of the calculations of the neutron transmission and albedo for infinite iron slabs are given. (author)

  9. The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere

    International Nuclear Information System (INIS)

    Cupini, E.; Borgia, M.G.; Premuda, M.

    1997-03-01

    The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department

  10. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    Vehicle Code System (VCS), the Monte Carlo Adjoint SHielding (MASH), and the Monte Carlo n- Particle ( MCNP ) code. Of the three, the oldest and still most...widely utilized radiation transport code is MCNP . First created at Los Alamos National Laboratory (LANL) in 1957, the code simulated neutral...particle types, and previous versions of MCNP were repeatedly validated using both simple and complex 10 geometries [12, 13]. Much greater discussion and

  11. Radiological emergency: road map for radiation accident victim transport

    International Nuclear Information System (INIS)

    Costa, V.S.G.; Alcantara, Y.P.; Lima, C.M.A.; Silva, F. C. A. da

    2017-01-01

    During a radiological or nuclear emergency, a number of necessary actions are taken, both within the radiation protection of individuals and the environment, involving many institutions and highly specialized personnel. Among them it is possible to emphasize the air transportation of radiation accident victims.The procedures and measures for the safe transport of these radiation accident victims are generally the responsibility of the armed forces, specifically the Aeronautics, with the action denominated 'Aeromedical Military Evacuation of Radiation Accident Victims'. The experience with the Radiological Accident of Goiânia demonstrated the importance of adequate preparation and response during a radiological emergency and the need for procedures and measures with regard to the transport of radiation victims are clearly defined and clearly presented for the effectiveness of the actions. This work presents the necessary actions for the transport of radiation accident victim during a radiological emergency, through the road map technique, which has been widely used in scientific technical area to facilitate understanding and show the way to be followed to reach the proposed objectives

  12. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Liu Yue; Yue Qian; Ma Hao; Cheng Jianping

    2012-01-01

    Muon radiation background of China Jinping Underground Laboratory (CJPL) was simulated by Monte Carlo method. According to the Gaisser formula and the MUSIC soft, the model of cosmic ray muons was established. Then the yield and the average energy of muon-induced photons and muon-induced neutrons were simulated by FLUKA. With the single-energy approximation, the contribution to the radiation background of shielding structure by secondary photons and neutrons was evaluated. The estimation results show that the average energy of residual muons is 369 GeV and the flux is 3.17 × 10 -6 m -2 · s -1 . The fluence rate of secondary photons is about 1.57 × 10 -4 m -2 · s -1 , and the fluence rate of secondary neutrons is about 8.37 × 10 -7 m -2 · s -1 . The muon radiation background of CJPL is lower than those of most other underground laboratories in the world. (authors)

  13. Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Smathers, James; Deye, James

    2003-01-01

    Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies. Based on these discussions, the workshop developed recommendations for future NCI-funded research and development efforts. This paper briefly summarizes the issues presented at the workshop and the recommendations developed by the group

  14. Comparative study using Monte Carlo methods of the radiation detection efficiency of LSO, LuAP, GSO and YAP scintillators for use in positron emission imaging (PET)

    International Nuclear Information System (INIS)

    Nikolopoulos, Dimitrios; Kandarakis, Ioannis; Tsantilas, Xenophon; Valais, Ioannis; Cavouras, Dionisios; Louizi, Anna

    2006-01-01

    The radiation detection efficiency of four scintillators employed, or designed to be employed, in positron emission imaging (PET) was evaluated as a function of the crystal thickness by applying Monte Carlo Methods. The scintillators studied were the LuSiO 5 (LSO), LuAlO 3 (LuAP), Gd 2 SiO 5 (GSO) and the YAlO 3 (YAP). Crystal thicknesses ranged from 0 to 50 mm. The study was performed via a previously generated photon transport Monte Carlo code. All photon track and energy histories were recorded and the energy transferred or absorbed in the scintillator medium was calculated together with the energy redistributed and retransported as secondary characteristic fluorescence radiation. Various parameters were calculated e.g. the fraction of the incident photon energy absorbed, transmitted or redistributed as fluorescence radiation, the scatter to primary ratio, the photon and energy distribution within each scintillator block etc. As being most significant, the fraction of the incident photon energy absorbed was found to increase with increasing crystal thickness tending to form a plateau above the 30 mm thickness. For LSO, LuAP, GSO and YAP scintillators, respectively, this fraction had the value of 44.8, 36.9 and 45.7% at the 10 mm thickness and 96.4, 93.2 and 96.9% at the 50 mm thickness. Within the plateau area approximately (57-59)% (59-63)% (52-63)% and (58-61)% of this fraction was due to scattered and reabsorbed radiation for the LSO, GSO, YAP and LuAP scintillators, respectively. In all cases, a negligible fraction (<0.1%) of the absorbed energy was found to escape the crystal as fluorescence radiation

  15. Calculation of the secondary gamma radiation by the Monte Carlo method at displaced sampling from distributed sources

    International Nuclear Information System (INIS)

    Petrov, Eh.E.; Fadeev, I.A.

    1979-01-01

    A possibility to use displaced sampling from a bulk gamma source in calculating the secondary gamma fields by the Monte Carlo method is discussed. The algorithm proposed is based on the concept of conjugate functions alongside the dispersion minimization technique. For the sake of simplicity a plane source is considered. The algorithm has been put into practice on the M-220 computer. The differential gamma current and flux spectra in 21cm-thick lead have been calculated. The source of secondary gamma-quanta was assumed to be a distributed, constant and isotropic one emitting 4 MeV gamma quanta with the rate of 10 9 quanta/cm 3 xs. The calculations have demonstrated that the last 7 cm of lead are responsible for the whole gamma spectral pattern. The spectra practically coincide with the ones calculated by the ROZ computer code. Thus the algorithm proposed can be offectively used in the calculations of secondary gamma radiation transport and reduces the computation time by 2-4 times

  16. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  17. Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements

    International Nuclear Information System (INIS)

    Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.

    2011-01-01

    Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.

  18. Radiation induced low-energy electron transport in a tissue environment

    International Nuclear Information System (INIS)

    Toburen, L.H.; Dingfelder, M.; Ozturk, N.; Christou, C.; Shinpaugh, J.L.; Friedland, W.; Wilson, W.E.; Paretzke, H.G.

    2003-01-01

    Monte Carlo (MC) track simulation codes are used extensively in radiobiology to quantify the spatial distributions of interactions initiated by the absorption of ionizing radiation. The spatial patterns of ionization and excitation are instrumental for assessing the formation of damage clusters in DNA and chromosomes leading to such biologic endpoints as cellular transformation and mutation. The MC codes rely on an extensive database of elastic and inelastic scattering cross sections to follow the production and slowing of secondary electrons. Because of inherent uncertainties in this database we are exploring the sensitivity of MC results to the details of the cross sections used with emphasis on low-energy electrons, i.e., track ends, that are anticipated to play a dominant role in damage cluster formation. Simulations of electron transport using gas or liquid based interaction cross sections illustrate substantial difference in the spectra of electrons with energies less than about 50 eV. In addition, the electron yields from MC simulations appear to be nearly a factor of five larger than our recent measurements of electron transport spectra in water (ice) at electron energies of about 10 eV. Examples of the changes in electron transport spectra for variations in the electron scattering cross sections used for the MC calculations will be illustrated and compared with an evolving database of measured spectra of electrons from ion induced secondary electron transport in thin foils. These measurements provide guidance for assessment of elastic and elastic cross sections appropriate to condensed phase transport. This work is supported in part by the U.S. Department of Energy, Grant No. DE-FG02-01ER-63233; the National Cancer Institute, Grant No. 1R01CA93351-01A1; and the European Community under Contract No. FIGH-CT-1999-00005

  19. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  20. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  1. ITS Version 3.0: Powerful, user-friendly software for radiation modelling

    International Nuclear Information System (INIS)

    Kensek, R.P.; Halbleib, J.A.; Valdez, G.D.

    1993-01-01

    ITS (the Integrated Tiger Series) is a powerful, but user-friendly, software package permitting state-of-the-art modelling of electron and/or photon radiation effects. The programs provide Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. The ITS system combines operational simplicity and physical accuracy in order to provide experimentalist and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems

  2. Radiation shielding techniques and applications. 4. Two-Phase Monte Carlo Approach to Photon Streaming Through Three-Legged Penetrations

    International Nuclear Information System (INIS)

    White, Travis; Hack, Joe; Nathan, Steve; Barnett, Marvin

    2001-01-01

    solutions for scattering of neutrons through multi-legged penetrations are readily available in the literature; similar analytical solutions for photon scattering through penetrations, however, are not. Therefore, computer modeling must be relied upon to perform our analyses. The computer code typically used by Westinghouse SMS in the evaluation of photon transport through complex geometries is the MCNP Monte Carlo computer code. Yet, geometries of this nature can cause problems even with the Monte Carlo codes. Striking a balance between how the code handles bulk transport through the wall with transport through the penetration void, particularly with the use of typical variance reduction methods, is difficult when trying to ensure that all the important regions of the model are sampled appropriately. The problem was broken down into several roughly independent cases. First, scatter through the penetration was considered. Second, bulk transport through the hot leg of the duct and then through the remaining thickness of wall was calculated to determine the amount of supplemental shielding required in the wall. Similar analyses were performed for the middle and cold legs of the penetration. Finally, additional external shielding from radiation streaming through the duct was determined for cases where the minimum offset distance was not feasible. Each case was broken down further into two phases. In the first phase of each case, photons were transported from the source material to an area at the face of the wall, or the opening of the duct, where photon energy and angular distributions were tallied, representing the source incident on the wall or opening. Then, a simplified model for each case was developed and analyzed using the data from the first phase and the new source term. (authors)

  3. DOMINO, Coupling of Discrete Ordinate Program DOT with Monte-Carlo Program MORSE

    International Nuclear Information System (INIS)

    1974-01-01

    1 - Nature of physical problem solved: DOMINO is a general purpose code for coupling discrete ordinates and Monte Carlo radiation transport calculations. 2 - Method of solution: DOMINO transforms the angular flux as a function of energy group, mesh interval and discrete angle into current and subsequently into normalized probability distributions. 3 - Restrictions on the complexity of the problem: The discrete ordinates calculation is limited to an r-z geometry

  4. Monte Carlo modeling of transport in PbSe nanocrystal films

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, I., E-mail: icarbone@ucsc.edu; Carter, S. A. [University of California, Santa Cruz, California 95060 (United States); Zimanyi, G. T. [University of California, Davis, California 95616 (United States)

    2013-11-21

    A Monte Carlo hopping model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated hopping events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of particle size, charging, interparticle coupling, and energetic disorder on electron and hole mobilities were investigated. Results of simulated field-effect measurements confirm that electron mobilities and conductivities at constant carrier densities increase with particle diameter by an order of magnitude up to 5 nm and begin to decrease above 6 nm. We find that as particle size increases, fewer hops are required to traverse the same distance and that site energy disorder significantly inhibits transport in films composed of smaller nanoparticles. The dip in mobilities and conductivities at larger particle sizes can be explained by a decrease in tunneling amplitudes and by charging penalties that are incurred more frequently when carriers are confined to fewer, larger nanoparticles. Using a nearly identical set of parameter values as the electron simulations, hole mobility simulations confirm measurements that increase monotonically with particle size over two orders of magnitude.

  5. Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations

    KAUST Repository

    Efendiev, Yalchin R.; Iliev, Oleg; Kronsbein, C.

    2013-01-01

    In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed

  6. GPU-based high performance Monte Carlo simulation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br

    2009-07-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  7. GPU-based high performance Monte Carlo simulation in neutron transport

    International Nuclear Information System (INIS)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2009-01-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  8. BRAND program complex for neutron-physical experiment simulation by the Monte-Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.

    1984-01-01

    Possibilities of the BRAND program complex for neutron and γ-radiation transport simulation by the Monte-Carlo method are described in short. The complex includes the following modules: geometric module, source module, detector module, modules of simulation of a vector of particle motion direction after interaction and a free path. The complex is written in the FORTRAN langauage and realized by the BESM-6 computer

  9. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    International Nuclear Information System (INIS)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold

    2016-01-01

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  10. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model.

    Science.gov (United States)

    Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold

    2016-07-01

    The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and

  11. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2016-07-15

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  12. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  13. Radiation transport Part B: Applications with examples

    International Nuclear Information System (INIS)

    Beutler, D.E.

    1997-01-01

    In the previous sections Len Lorence has described the need, theory, and types of radiation codes that can be applied to model the results of radiation effects tests or working environments for electronics. For the rest of this segment, the author will concentrate on the specific ways the codes can be used to predict device response or analyze radiation test results. Regardless of whether one is predicting responses in a working or test environment, the procedures are virtually the same. The same can be said for the use of 1-, 2-, or 3-dimensional codes and Monte Carlo or discrete ordinates codes. No attempt is made to instruct the student on the specifics of the code. For example, the author will not discuss the details, such as the number of meshes, energy groups, etc. that are appropriate for a discrete ordinates code. For the sake of simplicity, he will restrict himself to the 1-dimensional code CEPXS/ONELD. This code along with a wide variety of other radiation codes can be obtained form the Radiation Safety Information Computational Center (RSICC) for a nominal handling fee

  14. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  15. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  16. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    Parreno Z, F.; Paucar J, R.; Picon C, C.

    1998-01-01

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  17. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.

    2004-01-01

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  18. Radiation protection studies for medical particle accelerators using FLUKA Monte Carlo code

    International Nuclear Information System (INIS)

    Infantino, Angelo; Mostacci, Domiziano; Cicoria, Gianfranco; Lucconi, Giulia; Pancaldi, Davide; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-01-01

    Radiation protection (RP) in the use of medical cyclotrons involves many aspects both in the routine use and for the decommissioning of a site. Guidelines for site planning and installation, as well as for RP assessment, are given in international documents; however, the latter typically offer analytic methods of calculation of shielding and materials activation, in approximate or idealised geometry set-ups. The availability of Monte Carlo (MC) codes with accurate up-to-date libraries for transport and interaction of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of modern computers, makes the systematic use of simulations with realistic geometries possible, yielding equipment and site-specific evaluation of the source terms, shielding requirements and all quantities relevant to RP at the same time. In this work, the well-known FLUKA MC code was used to simulate different aspects of RP in the use of biomedical accelerators, particularly for the production of medical radioisotopes. In the context of the Young Professionals Award, held at the IRPA 14 conference, only a part of the complete work is presented. In particular, the simulation of the GE PETtrace cyclotron (16.5 MeV) installed at S. Orsola-Malpighi University Hospital evaluated the effective dose distribution around the equipment; the effective number of neutrons produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of "4"1Ar. The simulations were validated, in terms of physical and transport parameters to be used at the energy range of interest, through an extensive measurement campaign of the neutron environmental dose equivalent using a rem-counter and TLD dosemeters. The validated model was then used in the design and the licensing request of a new Positron Emission Tomography facility. (authors)

  19. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  20. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  1. ipole: Semianalytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  2. Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program

    International Nuclear Information System (INIS)

    Moskowitz, B.S.

    2000-01-01

    This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems

  3. Comparative study between c-Si and CZT semiconducting detectors using the mathematical simulation of the radiation transport through matter

    International Nuclear Information System (INIS)

    Dona, O.; Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C.

    2007-01-01

    Using the code system MCNP-X, based on the Monte Carlo statistical method, a comparative study of some properties of the crystalline silicon and CZT semiconducting detectors was carried out. This program, conceived to simulate the transport of several types of particles through matter, allowed the study of spatial distribution of the radiation energy deposition in detectors and evaluate the devices quantum efficiency. A quantitative estimation of the number of charge carriers generated in active zone of the detector was also presented. The results of the displacement cross sections calculation and the devices resistance to the radiacional damage are discussed. (Author)

  4. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  5. Testing results of Monte Carlo sampling processes in MCSAD

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Correa, C.; Demydenko, C.

    2009-01-01

    The Monte Carlo Simulation of Atom Displacements (MCSAD) is a code implemented by the authors to simulate the complete process of atom displacement (AD) formation. This code makes use of the Monte Carlo (MC) method to sample all the processes involved in the gamma and electronic radiation transport through matter. The kernel of the calculations applied to this code relies on a model based on an algorithm developed by the authors, which firstly splits out multiple electron elastic scattering events from those single ones at higher scattering angles and then, from the last one, sampling those leading to AD at high transferred atomic recoil energies. Some tests have been developed to check the sampling algorithms with the help of the corresponding theoretical distribution functions. Satisfactory results have been obtained, which indicate the strength of the methods and subroutines used in the code. (Author)

  6. Transport of radioactivity and radiation

    International Nuclear Information System (INIS)

    De Beer, G.P.

    1988-01-01

    The movement of radioactivity and radiation is of prime importance in a wide variety of fields and the present advanced degree of knowledge of transport mechanisms is due largely to the application of sophisticated computer techniques

  7. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  8. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    Science.gov (United States)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  9. Development of aerial gamma radiation survey system, 4

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Moriuchi, Shigeru

    1985-02-01

    Field experiments have been performed by JAERI since 1982 to obtain fundamental data required for development of aerial radiation survey system. In order to supplement the fundamental radiation data, theoretical calculations have been carried out. The utilized Monte Carlo transport program was verified by simulative calculations of the field experiments, and characteristics data on environmental gamma rays have been accumulated. In this report, the field experiments in 1981 and 1982 were simulated making use of the Monte Carlo transport calculation code YURI developed in JAERI. Comparisons were made between experimental and calculated results for exposure rate and flux density originated from terrestrial sources, and from a point source at height of 2.5 m above the ground. Good agreements between the data verified the transport program. As fundamental characteristics data on environmental gamma rays, spatial distributions of exposure, fluence, energy spectra, angular spectra and average energy were reported and discussed, for terrestrial sources of 40 K, 232 Th-series and 238 U-series, for a plane source on the ground and for a point source at 2.5 m above the ground. (author)

  10. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.

  11. DIAPHANE: A portable radiation transport library for astrophysical applications

    Science.gov (United States)

    Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio

    2018-05-01

    One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.

  12. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-d chord-based transport techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)

  13. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  14. Monte-Carlo estimation of the inflight performance of the GEMS satellite x-ray polarimeter

    Science.gov (United States)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steven; Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah

    2014-07-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  15. Coupling photon Monte Carlo simulation and CAD software. Application to X-ray nondestructive evaluation

    International Nuclear Information System (INIS)

    Tabary, J.; Gliere, A.

    2001-01-01

    A Monte Carlo radiation transport simulation program, EGS Nova, and a computer aided design software, BRL-CAD, have been coupled within the framework of Sindbad, a nondestructive evaluation (NDE) simulation system. In its current status, the program is very valuable in a NDE laboratory context, as it helps simulate the images due to the uncollided and scattered photon fluxes in a single NDE software environment, without having to switch to a Monte Carlo code parameters set. Numerical validations show a good agreement with EGS4 computed and published data. As the program's major drawback is the execution time, computational efficiency improvements are foreseen. (orig.)

  16. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.; Du, X.; Liu, T.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  17. Monte Carlo modelling of impurity ion transport for a limiter source/sink

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Farrell, C.; Hoskins, S.; Wood, L.

    1988-01-01

    In relating the impurity influx Φ I (0) (atoms per second) into a plasma from the edge to the central impurity ion density n I (0) (ions·m -3 ), it is necessary to know the value of τ I SOL , the average dwell time of impurity ions in the scrape-off layer. It is usually assumed that τ I SOL =L c /c s , the hydrogenic dwell time, where L c is the limiter connection length and c s is the hydrogenic ion acoustic speed. Monte Carlo ion transport results are reported here which show that, for a wall (uniform) influx, τ I SOL is longer than L c /c s , while for a limiter influx it is shorter. Thus for a limiter influx n I (0) is predicted to be smaller than the reference value. Impurities released from the limiter form ever large 'clouds' of successively higher ionization stages. These are reproduced by the Monte Carlo code as are the cloud shapes for a localized impurity injection far from the limiter. (author). 23 refs, 18 figs, 6 tabs

  18. Evaluation of occupational exposure in interventionist procedures using Monte Carlo Method; Avaliacao das exposicoes dos envolvidos em procedimentos intervencionistas usando metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, William S.; Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V.E., E-mail: williathan@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Belinato, Walmir; Maia, Ana F. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Fisica

    2014-07-01

    This study presents a computational model of exposure for a patient, cardiologist and nurse in a typical scenario of cardiac interventional procedures. In this case a set of conversion coefficient (CC) for effective dose (E) in terms of kerma-area product (KAP) for all individuals involved using seven different energy spectra and eight beam projections. The CC was also calculated for the entrance skin dose (ESD) normalized to the PKA for the patient. All individuals were represented by anthropomorphic phantoms incorporated in a radiation transport code based on Monte Carlo simulation. (author)

  19. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    Science.gov (United States)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  20. Monte Carlo simulation of particle-induced bit upsets

    Science.gov (United States)

    Wrobel, Frédéric; Touboul, Antoine; Vaillé, Jean-Roch; Boch, Jérôme; Saigné, Frédéric

    2017-09-01

    We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER) for a given device in a given environment.

  1. Monte Carlo simulation of particle-induced bit upsets

    Directory of Open Access Journals (Sweden)

    Wrobel Frédéric

    2017-01-01

    Full Text Available We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER for a given device in a given environment.

  2. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    Noack, K.

    1982-01-01

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  3. Cost effective distributed computing for Monte Carlo radiation dosimetry

    International Nuclear Information System (INIS)

    Wise, K.N.; Webb, D.V.

    2000-01-01

    Full text: An inexpensive computing facility has been established for performing repetitive Monte Carlo simulations with the BEAM and EGS4/EGSnrc codes of linear accelerator beams, for calculating effective dose from diagnostic imaging procedures and of ion chambers and phantoms used for the Australian high energy absorbed dose standards. The facility currently consists of 3 dual-processor 450 MHz processor PCs linked by a high speed LAN. The 3 PCs can be accessed either locally from a single keyboard/monitor/mouse combination using a SwitchView controller or remotely via a computer network from PCs with suitable communications software (e.g. Telnet, Kermit etc). All 3 PCs are identically configured to have the Red Hat Linux 6.0 operating system. A Fortran compiler and the BEAM and EGS4/EGSnrc codes are available on the 3 PCs. The preparation of sequences of jobs utilising the Monte Carlo codes is simplified using load-distributing software (enFuzion 6.0 marketed by TurboLinux Inc, formerly Cluster from Active Tools) which efficiently distributes the computing load amongst all 6 processors. We describe 3 applications of the system - (a) energy spectra from radiotherapy sources, (b) mean mass-energy absorption coefficients and stopping powers for absolute absorbed dose standards and (c) dosimetry for diagnostic procedures; (a) and (b) are based on the transport codes BEAM and FLURZnrc while (c) is a Fortran/EGS code developed at ARPANSA. Efficiency gains ranged from 3 for (c) to close to the theoretical maximum of 6 for (a) and (b), with the gain depending on the amount of 'bookkeeping' to begin each task and the time taken to complete a single task. We have found the use of a load-balancing batch processing system with many PCs to be an economical way of achieving greater productivity for Monte Carlo calculations or of any computer intensive task requiring many runs with different parameters. Copyright (2000) Australasian College of Physical Scientists and

  4. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  5. Creating and using a type of free-form geometry in Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Wessol, D.E.; Wheeler, F.J.

    1993-01-01

    While the reactor physicists were fine-tuning the Monte Carlo paradigm for particle transport in regular geometries, the computer scientists were developing rendering algorithms to display extremely realistic renditions of irregular objects ranging from the ubiquitous teakettle to dynamic Jell-O. Even though the modeling methods share a common basis, the initial strategies each discipline developed for variance reduction were remarkably different. Initially, the reactor physicist used Russian roulette, importance sampling, particle splitting, and rejection techniques. In the early stages of development, the computer scientist relied primarily on rejection techniques, including a very elegant hierarchical construction and sampling method. This sampling method allowed the computer scientist to viably track particles through irregular geometries in three-dimensional space, while the initial methods developed by the reactor physicists would only allow for efficient searches through analytical surfaces or objects. As time goes by, it appears there has been some merging of the variance reduction strategies between the two disciplines. This is an early (possibly first) incorporation of geometric hierarchical construction and sampling into the reactor physicists' Monte Carlo transport model that permits efficient tracking through nonuniform rational B-spline surfaces in three-dimensional space. After some discussion, the results from this model are compared with experiments and the model employing implicit (analytical) geometric representation

  6. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  7. Imprecision of dose predictions for radionuclides released to the atmosphere: an application of the Monte Carlo-simulation-technique for iodine transported via the pasture-cow-milk pathway

    International Nuclear Information System (INIS)

    Schwarz, G.; Hoffman, F.O.

    1979-01-01

    The shortcomings of using mathematical models to determine compliance with regulatory standards are discussed. Methods to determine the reliability of radiation assessment models are presented. Since field testing studies are impractical, a deficiency method, which analyzes the variability of input parameters and the impact of their variability on the predicted dose, is used. The Monte Carlo technique is one of these methods. This technique is based on statistical properties of the model output when input parameters inserted in the model are selected at random from a prescribed distribution. The one big assumption one must make is that the model is a correct formulation of reality. The Gaussian plume model for atmospheric transport of airborne effluents was used to study the pasture-cow-milk-man exposure pathway and the dose calculated from radioiodine ( 131 I) transported over this pathway

  8. Imprecision of dose predictions for radionuclides released to the atmosphere: an application of the Monte Carlo-simulation-technique for iodine transported via the pasture-cow-milk pathway

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, G.; Hoffman, F.O.

    1979-01-01

    The shortcomings of using mathematical models to determine compliance with regulatory standards are discussed. Methods to determine the reliability of radiation assessment models are presented. Since field testing studies are impractical, a deficiency method, which analyzes the variability of input parameters and the impact of their variability on the predicted dose, is used. The Monte Carlo technique is one of these methods. This technique is based on statistical properties of the model output when input parameters inserted in the model are selected at random from a prescribed distribution. The one big assumption one must make is that the model is a correct formulation of reality. The Gaussian plume model for atmospheric transport of airborne effluents was used to study the pasture-cow-milk-man exposure pathway and the dose calculated from radioiodine (/sup 131/I) transported over this pathway. (DMC)

  9. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  10. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  11. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  12. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  13. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft University of Technology, Interfaculty Reactor Institute, Delft (Netherlands)

    2000-07-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  14. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2000-01-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  15. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  16. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    CERN Document Server

    Ilic, R D; Stankovic, S J

    2002-01-01

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...

  17. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  18. Monte Carlo study of the mechanisms of transport of fast neutrons in various media

    International Nuclear Information System (INIS)

    Ku, L.

    1976-01-01

    The technique of analyzing Monte Carlo histories was used to study the details of neutron transport and slowing down mechanisms. The statistical properties of life histories of ''exceptional'' neutrons, i.e., those staying closer to the source or penetrating to larger distances from the source, were compared to those of the general population. The macroscopic behavior of ''exceptional'' neutrons was also related to the interaction mechanics and to the microscopic properties of the medium

  19. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    International Nuclear Information System (INIS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-01-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves

  20. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  1. Radiation inactivation studies of renal brush border water and urea transport

    International Nuclear Information System (INIS)

    Verkman, A.S.; Dix, J.A.; Seifter, J.L.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1985-01-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme or transport kinetics. BBMV alkaline phosphatase activity gave linear ln(activity) vs. radiation dose plots with a target size of 68 +/- 3 kDa, similar to previously reported values. Water and solute transport were measured using the stopped-flow light-scattering technique. The rates of acetamide and osmotic water transport did not depend on radiation dose (0-7 Mrad), suggesting that transport of these substances does not require a protein carrier. In contrast, urea and thiourea transport gave linear ln(activity) vs. dose curves with a target size of 125-150 kDa; 400 mM urea inhibited thiourea flux by -50% at 0 and 4.7 Mrad, showing that radiation does not affect inhibitor binding to surviving transporters. These studies suggest that BBMV urea transport requires a membrane protein, whereas osmotic water transport does not

  2. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  3. Basic physical and chemical information needed for development of Monte Carlo codes

    International Nuclear Information System (INIS)

    Inokuti, M.

    1993-01-01

    It is important to view track structure analysis as an application of a branch of theoretical physics (i.e., statistical physics and physical kinetics in the language of the Landau school). Monte Carlo methods and transport equation methods represent two major approaches. In either approach, it is of paramount importance to use as input the cross section data that best represent the elementary microscopic processes. Transport analysis based on unrealistic input data must be viewed with caution, because results can be misleading. Work toward establishing the cross section data, which demands a wide scope of knowledge and expertise, is being carried out through extensive international collaborations. In track structure analysis for radiation biology, the need for cross sections for the interactions of electrons with DNA and neighboring protein molecules seems to be especially urgent. Finally, it is important to interpret results of Monte Carlo calculations fully and adequately. To this end, workers should document input data as thoroughly as possible and report their results in detail in many ways. Workers in analytic transport theory are then likely to contribute to the interpretation of the results

  4. Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage

    Energy Technology Data Exchange (ETDEWEB)

    T.J. Urbatsch; T.M. Evans

    2006-02-15

    We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

  5. Application of the three-dimensional Oak Ridge transport code

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Emmett, M.B.; Cramer, S.N.

    1984-01-01

    TORT, a 3-d extension of the DOT discrete ordinates transport code is now in production use for studies of radiation penetration into large concrete and masonry structures. This paper discusses certain features of the new code and shows representative results, including comparisons with Monte Carlo calculations

  6. Review of the theory and applications of Monte Carlo methods. Proceedings of a seminar-workshop, Oak Ridge, Tennessee, April 21-23, 1980

    International Nuclear Information System (INIS)

    Trubey, D.K.; McGill, B.L.

    1980-08-01

    This report consists of 24 papers which were presented at the seminar on Theory and Application of Monte Carlo Methods, held in Oak Ridge on April 21-23, plus a summary of the three-man panel discussion which concluded the seminar and two papers which were not given orally. These papers constitute a current statement of the state of the art of the theory and application of Monte Carlo methods for radiation transport problems in shielding and reactor physics

  7. Review of the theory and applications of Monte Carlo methods. Proceedings of a seminar-workshop, Oak Ridge, Tennessee, April 21-23, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D.K.; McGill, B.L. (eds.)

    1980-08-01

    This report consists of 24 papers which were presented at the seminar on Theory and Application of Monte Carlo Methods, held in Oak Ridge on April 21-23, plus a summary of the three-man panel discussion which concluded the seminar and two papers which were not given orally. These papers constitute a current statement of the state of the art of the theory and application of Monte Carlo methods for radiation transport problems in shielding and reactor physics.

  8. Transport appraisal and Monte Carlo simulation by use of the CBA-DK model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2011-01-01

    calculation, where risk analysis is carried out using Monte Carlo simulation. Special emphasis has been placed on the separation between inherent randomness in the modeling system and lack of knowledge. These two concepts have been defined in terms of variability (ontological uncertainty) and uncertainty......This paper presents the Danish CBA-DK software model for assessment of transport infrastructure projects. The assessment model is based on both a deterministic calculation following the cost-benefit analysis (CBA) methodology in a Danish manual from the Ministry of Transport and on a stochastic...... (epistemic uncertainty). After a short introduction to deterministic calculation resulting in some evaluation criteria a more comprehensive evaluation of the stochastic calculation is made. Especially, the risk analysis part of CBA-DK, with considerations about which probability distributions should be used...

  9. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  10. SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques

    International Nuclear Information System (INIS)

    Ilic, Radovan D.

    2005-01-01

    1 - Description of program or function: SRNA-2K5 performs Monte Carlo transport simulation of proton in 3D source and 3D geometry of arbitrary materials. The proton transport based on condensed history model, and on model of compound nuclei decays that creates in nonelastic nuclear interaction by proton absorption. 2 - Methods: The SRNA-2K5 package is developed for time independent simulation of proton transport by Monte Carlo techniques for numerical experiments in complex geometry, using PENGEOM from PENELOPE with different material compositions, and arbitrary spectrum of proton generated from the 3D source. This package developed for 3D proton dose distribution in proton therapy and dosimetry, and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our and Russian MSDM models using ICRU 49 and ICRU 63 data. If protons trajectory is divided on great number of steps, protons passage can be simulated according to Berger's Condensed Random Walk model. Conditions of angular distribution and fluctuation of energy loss determinate step length. Physical picture of these processes is described by stopping power, Moliere's angular distribution, Vavilov's distribution with Sulek's correction per all electron orbits, and Chadwick's cross sections for nonelastic nuclear interactions, obtained by his GNASH code. According to physical picture of protons passage and with probabilities of protons transition from previous to next stage, which is prepared by SRNADAT program, simulation of protons transport in all SRNA codes runs according to usual Monte Carlo scheme: (i) proton from the spectrum prepared for random choice of energy, position and space angle is emitted from the source; (ii) proton is loosing average energy on the step; (iii) on that step, proton experience a great number of collisions, and it changes direction of movement randomly chosen from angular distribution; (iv) random fluctuation is added to average energy loss; (v

  11. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  12. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  13. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    Science.gov (United States)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  14. Virtual laboratory for radiation experiments

    International Nuclear Information System (INIS)

    Tiftikci, A.; Kocar, C.; Tombakoglu, M.

    2009-01-01

    Simulation of alpha, beta and gamma radiation detection and measurement experiments which are part of real nuclear physics laboratory courses was realized with Monte Carlo method and JAVA Programming Language. As being known, establishing this type of laboratories are very expensive. At the same time, highly radioactive sources used in some experiments carries risk for students and also for experimentalists. By taking into consideration of those problems, the aim of this study is to setup a virtual radiation laboratory with minimum cost and to speed up the training of radiation physics for students with no radiation risk. Software coded possesses the nature of radiation and radiation transport with the help of Monte Carlo method. In this software, experimental parameters can be changed manually by the user and experimental results can be followed synchronous in an MCA (Multi Channel Analyzer) or an SCA (Single Channel Analyzer). Results obtained in experiments can be analyzed by these MCA or SCA panels. Virtual radiation laboratory which is developed in this study with reliable results and unlimited experimentation capability seems as an useful educational material. Moreover, new type of experiments can be integrated to this software easily and as a result, virtual laboratory can be extended.

  15. Improvement of the symbolic Monte-Carlo method for the transport equation: P1 extension and coupling with diffusion

    International Nuclear Information System (INIS)

    Clouet, J.F.; Samba, G.

    2005-01-01

    We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)

  16. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  17. Algorithmic choices in WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    International Nuclear Information System (INIS)

    Bergmann, Ryan M.; Vujić, Jasmina L.

    2015-01-01

    Highlights: • WARP, a GPU-accelerated Monte Carlo neutron transport code, has been developed. • The NVIDIA OptiX high-performance ray tracing library is used to process geometric data. • The unionized cross section representation is modified for higher performance. • Reference remapping is used to keep the GPU busy as neutron batch population reduces. • Reference remapping is done using a key-value radix sort on neutron reaction type. - Abstract: In recent supercomputers, general purpose graphics processing units (GPGPUs) are a significant faction of the supercomputer’s total computational power. GPGPUs have different architectures compared to central processing units (CPUs), and for Monte Carlo neutron transport codes used in nuclear engineering to take advantage of these coprocessor cards, transport algorithms must be changed to execute efficiently on them. WARP is a continuous energy Monte Carlo neutron transport code that has been written to do this. The main thrust of WARP is to adapt previous event-based transport algorithms to the new GPU hardware; the algorithmic choices for all parts of which are presented in this paper. It is found that remapping history data references increases the GPU processing rate when histories start to complete. The main reason for this is that completed data are eliminated from the address space, threads are kept busy, and memory bandwidth is not wasted on checking completed data. Remapping also allows the interaction kernels to be launched concurrently, improving efficiency. The OptiX ray tracing framework and CUDPP library are used for geometry representation and parallel dataset-side operations, ensuring high performance and reliability

  18. Evaluation of speedup of Monte Carlo calculations of two simple reactor physics problems coded for the GPU/CUDA environment

    International Nuclear Information System (INIS)

    Ding, Aiping; Liu, Tianyu; Liang, Chao; Ji, Wei; Shephard, Mark S.; Xu, X George; Brown, Forrest B.

    2011-01-01

    Monte Carlo simulation is ideally suited for solving Boltzmann neutron transport equation in inhomogeneous media. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop system. The interest in adopting GPUs for Monte Carlo acceleration is rapidly mounting, fueled partially by the parallelism afforded by the latest GPU technologies and the challenge to perform full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem and an eigenvalue/criticality problem were developed for CPU and GPU environments, respectively, to evaluate issues associated with computational speedup afforded by the use of GPUs. The results suggest that a speedup factor of 30 in Monte Carlo radiation transport of neutrons is within reach using the state-of-the-art GPU technologies. However, for the eigenvalue/criticality problem, the speedup was 8.5. In comparison, for a task of voxelizing unstructured mesh geometry that is more parallel in nature, the speedup of 45 was obtained. It was observed that, to date, most attempts to adopt GPUs for Monte Carlo acceleration were based on naïve implementations and have not yielded the level of anticipated gains. Successful implementation of Monte Carlo schemes for GPUs will likely require the development of an entirely new code. Given the prediction that future-generation GPU products will likely bring exponentially improved computing power and performances, innovative hardware and software solutions may make it possible to achieve full-core Monte Carlo calculation within one hour using a desktop computer system in a few years. (author)

  19. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    1978-07-01

    The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron--photon transport. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation (such as ENDF/B-IV) are accounted for. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. Standard optional variance reduction schemes include geometry splitting and Russian roulette, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point detectors, track-length estimators, and source biasing. The standard output of MCNP includes two-way current as a function of energy, time, and angle with the normal, across any subset of bounding surfaces in the problem. Fluxes across any set of bounding surfaces are available as a function of time and energy. Similarly, the flux at designated points and the average flux in a cell (track length per unit volume) are standard tallies. Reactions such as fissions or absorptions may be obtained in a subset of geometric cells. The heating tallies give the energy deposition per starting particle. In addition, particles may be flagged when they cross specified surfaces or enter designated cells, and the contributions of these flagged particles to certain of the tallies are listed separately. All quantities printed out have their relative errors listed also. 11 figures, 27 tables

  20. Monte Carlo modeling of fiber-scintillator flow-cell radiation detector geometry

    International Nuclear Information System (INIS)

    Rucker, T.L.; Ross, H.H.; Tennessee Univ., Knoxville; Schweitzer, G.K.

    1988-01-01

    A Monte Carlo computer calculation is described which models the geometric efficiency of a fiber-scintillator flow-cell radiation detector designed to detect radiolabeled compounds in liquid chromatography eluates. By using special mathematical techniques, an efficiency prediction with a precision of 1% is obtained after generating only 1000 random events. Good agreement is seen between predicted and experimental efficiency except for very low energy beta emission where the geometric limitation on efficiency is overcome by pulse height limitations which the model does not consider. The modeling results show that in the test system, the detection efficiency for low energy beta emitters is limited primarily by light generation and collection rather than geometry. (orig.)

  1. Comparison of experimental and Monte-Carlo simulation of MeV particle transport through tapered/straight glass capillaries and circular collimators

    Energy Technology Data Exchange (ETDEWEB)

    Hespeels, F., E-mail: felicien.hespeels@unamur.be [University of Namur, PMR, 61 rue de Bruxelles, 5000 Namur (Belgium); Tonneau, R. [University of Namur, PMR, 61 rue de Bruxelles, 5000 Namur (Belgium); Ikeda, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Lucas, S. [University of Namur, PMR, 61 rue de Bruxelles, 5000 Namur (Belgium)

    2015-11-01

    Highlights: • Monte-Carlo simulation for beam transportation through collimations devices. • We confirm the focusing effect of tapered glass capillary. • We confirm the feasibility of using passive collimation devices for ion beam analysis application. - Abstract: This study compares the capabilities of three different passive collimation devices to produce micrometer-sized beams for proton and alpha particle beams (1.7 MeV and 5.3 MeV respectively): classical platinum TEM-like collimators, straight glass capillaries and tapered glass capillaries. In addition, we developed a Monte-Carlo code, based on the Rutherford scattering theory, which simulates particle transportation through collimating devices. The simulation results match the experimental observations of beam transportation through collimators both in air and vacuum. This research shows the focusing effects of tapered capillaries which clearly enable higher transmission flux. Nevertheless, the capillaries alignment with an incident beam is a prerequisite but is tedious, which makes the TEM collimator the easiest way to produce a 50 μm microbeam.

  2. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  3. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  4. Present status of transport code development based on Monte Carlo method

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki

    1985-01-01

    The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)

  5. Study of Radiation Shielding Analysis for Low-Intermediate Level Waste Transport Ship

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyung; Lee, Unjang; Song, Yangsoo; Kim, Sukhoon; Ko, Jaehoon [Korea Nuclear Engineering and Service Corporation, Seoul (Korea, Republic of)

    2007-07-01

    In Korea, it is planed to transport Low-Intermediate Level Radioactive Waste (LILW) from each nuclear power plant site to Kyongju LILW repository after 2009. Transport through the sea using ship is one of the most prospective ways of LILW transport for current situation in Korea. There are domestic and international regulations for radiation dose limit for radioactive material transport. In this article, radiation shielding analysis for LILW transport ship is performed using 3-D computer simulation code, MCNP. As a result, the thickness and materials for radiation shielding walls next to cargo in the LILW transport ship are determined.

  6. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1998-01-01

    Although the Monte Carlo method is considered to be the most accurate method available for solving radiation transport problems, its applicability is limited by its computational expense. Thus, biasing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are employed to make reactor shielding calculations feasible. To overcome this difficulty, the authors have developed a method for using the S N adjoint function for automated variance reduction of Monte Carlo calculations through source biasing and consistent transport biasing with the weight window technique. They describe the implementation of this method into the standard production Monte Carlo code MCNP and its application to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demonstrated and quantified. Important issues associated with this method and its efficient use are addressed and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are difficult to quantify but are possibly as important as the computational efficiency. In general, the automated variance reduction method presented is capable of increases in computational performance on the order of thousands, while at the same time significantly reducing the current requirements for user experience, time, and effort. Therefore, this method can substantially increase the applicability and reliability of Monte Carlo for large, real-world shielding applications

  7. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  8. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    Science.gov (United States)

    Anderson, James B.

    2016-12-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury-argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations.

  9. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    International Nuclear Information System (INIS)

    Anderson, James B

    2016-01-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury–argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations. (paper)

  10. Convergence of the Bouguer–Beer law for radiation extinction in particulate media

    International Nuclear Information System (INIS)

    Frankel, A.; Iaccarino, G.; Mani, A.

    2016-01-01

    Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer–Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible. - Highlights: • Transmission of radiation through turbulent particle distributions is computed. • The continuum representation of discrete particles is grid dependent. • Error of radiation transmission decreases for mild grid refinement. • Homogenization error increases when the grid and particle sizes are comparable.

  11. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  12. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  13. Neutron flux investigation on certain alternative fluids in a hybrid system by using MCNPX Monte Carlo transport code

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Inoenue Univ., Malatya (Turkey). Physics Dept.

    2014-04-15

    In this study, the molten salt-heavy metal mixtures 93-85 % Li{sub 20}Sn{sub 80} + 5 % SFG-PuO{sub 2} and 2-10 % UO{sub 2}, 93-85 % Li{sub 20}Sn{sub 80} + 5 % SFG-PuO{sub 2} and 2-10 % NpO{sub 2}, 93-85 % Li{sub 20}Sn{sub 80} + 5 % SFG-PuO{sub 2} and 2-10 % UCO were used as fluids. The fluids were used in the liquid first wall, blanket and shield zones of the designed hybrid reactor system. Four centimeter thick 9Cr2WVTa ferritic steel was used as the structural material. In this study, the effect of mixture components on the neutron flux was investigated in a designed fusion-fission hybrid reactor system. The neutron flux was investigated according to the mixture components, radial flux distribution and energy spectrum in the designed system. Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library. (orig.)

  14. Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum

    Science.gov (United States)

    Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.; hide

    2009-01-01

    Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.

  15. A user's manual for the three-dimensional Monte Carlo transport code SPARTAN

    International Nuclear Information System (INIS)

    Bending, R.C.; Heffer, P.J.H.

    1975-09-01

    SPARTAN is a general-purpose Monte Carlo particle transport code intended for neutron or gamma transport problems in reactor physics, health physics, shielding, and safety studies. The code used a very general geometry system enabling a complex layout to be described and allows the user to obtain physics data from a number of different types of source library. Special tracking and scoring techniques are used to improve the quality of the results obtained. To enable users to run SPARTAN, brief descriptions of the facilities available in the code are given and full details of data input and job control language, as well as examples of complete calculations, are included. It is anticipated that changes may be made to SPARTAN from time to time, particularly in those parts of the code which deal with physics data processing. The load module is identified by a version number and implementation date, and updates of sections of this manual will be issued when significant changes are made to the code. (author)

  16. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  17. R and D on automatic modeling methods for Monte Carlo codes FLUKA

    International Nuclear Information System (INIS)

    Wang Dianxi; Hu Liqin; Wang Guozhong; Zhao Zijia; Nie Fanzhi; Wu Yican; Long Pengcheng

    2013-01-01

    FLUKA is a fully integrated particle physics Monte Carlo simulation package. It is necessary to create the geometry models before calculation. However, it is time- consuming and error-prone to describe the geometry models manually. This study developed an automatic modeling method which could automatically convert computer-aided design (CAD) geometry models into FLUKA models. The conversion program was integrated into CAD/image-based automatic modeling program for nuclear and radiation transport simulation (MCAM). Its correctness has been demonstrated. (authors)

  18. ScintSim1: a new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    International Nuclear Information System (INIS)

    Mosleh-Shirazi, Mohammad Amin; Karbasi, Sareh; Zarrini-Monfared, Zinat; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. (author)

  19. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  20. SimpleGeO - new developments in the interactive creation and debugging of geometries for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Theis, Christian; Feldbaumer, Eduard; Forkel-Wirth, Doris; Jaegerhofer, Lukas; Roesler, Stefan; Vincke, Helmut; Buchegger, Karl Heinz

    2010-01-01

    Nowadays radiation transport Monte Carlo simulations have become an indispensable tool in various fields of physics. The applications are diversified and range from physics simulations, like detector studies or shielding design, to medical applications. Usually a significant amount of time is spent on the quite cumbersome and often error prone task of implementing geometries, before the actual physics studies can be performed. SimpleGeo is an interactive solid modeler which allows for the interactive creation and visualization of geometries for various Monte Carlo particle transport codes in 3D. Even though visual validation of the geometry is important, it might not reveal subtle errors like overlapping or undefined regions. These might eventually corrupt the execution of the simulation or even lead to incorrect results, the latter being sometimes hard to identify. In many cases a debugger is provided by the Monte Carlo package, but most often they lack interactive visual feedback, thus making it hard for the user to localize and correct the error. In this paper we describe the latest developments in SimpleGeo, which include debugging facilities that support immediate visual feedback, and apply various algorithms based on deterministic, Monte Carlo or Quasi Monte Carlo methods. These approaches allow for a fast and robust identification of subtle geometry errors that are also marked visually. (author)