The Monte Carlo event generator DPMJET-III
International Nuclear Information System (INIS)
Roesler, S.; Engel, R.
2001-01-01
A new version of the Monte Carlo event generator DPMJET is presented. It is a code system based on the Dual Parton Model and unifies all features of the DTUNUC-2, DPMJET-II and PHOJET1.12 event generators. DPMJET-III allows the simulation of hadron-hadron, hadron-nucleus, nucleus-nucleus, photon-hadron, photon-photon and photon-nucleus interactions from a few GeV up to the highest cosmic ray energies. (orig.)
Monte-Carlo event generation for the LHC
Siegert, Frank
This thesis discusses recent developments for the simulation of particle physics in the light of the start-up of the Large Hadron Collider. Simulation programs for fully exclusive events, dubbed Monte-Carlo event generators, are improved in areas related to the perturbative as well as non-perturbative regions of strong interactions. A short introduction to the main principles of event generation is given to serve as a basis for the following discussion. An existing algorithm for the correction of parton-shower emissions with the help of exact tree-level matrix elements is revisited and significantly improved as attested by first results. In a next step, an automated implementation of the POWHEG method is presented. It allows for the combination of parton showers with full next-to-leading order QCD calculations and has been tested in several processes. These two methods are then combined into a more powerful framework which allows to correct a parton shower with full next-to-leading order matrix elements and h...
Foam A General Purpose Cellular Monte Carlo Event Generator
Jadach, Stanislaw
2003-01-01
A general purpose, self-adapting, Monte Carlo (MC) event generator (simulator) is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or Cartesian product of them. The grid of cells, called ``foam'', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyper-plane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. As any MC generator, it can also be used for the MC integration. With the typical personal computer CPU, the program is able to perform adaptive integration/simulation at relatively small number of dimensions ($\\leq 16$). With the continu...
International Nuclear Information System (INIS)
Iga, Y.; Hamatsu, R.; Yamazaki, S.
1988-01-01
The Monte Carlo event generator for high energy hadron-nucleus (h-A) collisions has been developed which is based on the multi-chain model. The concept of formation zone and the cascade interactions of secondary particles are properly taken into account in this Monte Carlo code. Comparing the results of this code with experimental data, the importance of intranuclear cascade interactions becomes very clear. (orig.)
Validation of Monte Carlo event generators in the ATLAS Collaboration for LHC Run 2
The ATLAS collaboration
2016-01-01
This note reviews the main steps followed by the ATLAS Collaboration to validate the properties of particle-level simulated events from Monte Carlo event generators in order to ensure the correctness of all event generator configurations and production samples used in physics analyses. A central validation procedure is adopted which permits the continual validation of the functionality and the performance of the ATLAS event simulation infrastructure. Revisions and updates of the Monte Carlo event generators are also monitored. The methodology behind the validation and tools developed for that purpose, as well as various usage cases, are presented. The strategy has proven to play an essential role in identifying possible problems or unwanted features within a restricted timescale, verifying their origin and pointing to possible bug fixes before full-scale processing is initiated.
WINHAC - the Monte Carlo event generator for single W-boson production in hadronic collisions
International Nuclear Information System (INIS)
Placzek, W.; Jadach, P.
2009-01-01
The charged-current Drell-Yan process, i.e. single W-boson production with leptonic decays in hadronic collisions, will play an important role in the experimental programme at the LHC. It will be used for improved measurements of some Standard Model parameters (such as the W-boson mass and widths, etc.), for better determination of the Higgs-boson mass limits, in '' new physics '' searches, as a '' standard candle '' process, etc. In order to achieve all these goals, precise theoretical predictions for this process in terms of a Monte Carlo event generator are indispensable. In this talk the Monte Carlo event generator WINHAC for the charged-current Drell-Yan process will be presented. It features higher-order QED corrections within the exclusive Yennie-Frautschi-Suura exponentiation scheme with the 1 st order electroweak corrections. It is interfaced with PYTHIA for QCD/QED initial-state parton shower as well as hadronization. It includes options for proton-proton, proton-antiproton and nucleus-nucleus collisions. Moreover, it allows for longitudinally and transversely polarized W-boson production. It has been cross-checked numerically to high precision against independent programs/calculations. Some numerical results from WINHAC will also be presented. Finally, interplay between QCD and electroweak effects will briefly be discussed. (author)
An object-oriented framework for the hadronic Monte-Carlo event generators
International Nuclear Information System (INIS)
Amelin, N.; Komogorov, M.
1999-01-01
We advocate the development of an object-oriented framework for the hadronic Monte-Carlo (MC) event generators. The hadronic MC user and developer requirements are discussed as well as the hadronic model commonalities. It is argued that the development of a framework is in favour of taking into account of model commonalities since common means are stable and can be developed only at once. Such framework can provide different possibilities to have user session more convenient and productive, e.g., an easy access and edition of any model parameter, substitution of the model components by the alternative model components without changing the code, customized output, which offers either full information about history of generated event or specific information about reaction final state, etc. Such framework can indeed increase the productivity of a hadronic model developer, particularly, due to the formalization of the hadronic model component structure and model component collaborations. The framework based on the component approach opens a way to organize a library of the hadronic model components, which can be considered as the pool of hadronic model building blocks. Basic features, code structure and working examples of the first framework version for the hadronic MC models, which has been built as the starting point, are shortly explained
Report on the work of the 'Monte Carlo Event Generation' subgroup
International Nuclear Information System (INIS)
Abe, K.
1981-01-01
The work of the Monte Carlo Event Generation includes the preparation of programs, jet simulation, track generation in chambers, and the pattern recognition of tracks and track fitting. Some general results from the jet simulation by Ali et al. are given. The total energy used was 60 GeV, and the top quark mass was assumed to be 25 GeV. The multiplicity of charged particles and photons is shown. The multiplicity increased with the number of jets. The energy spectra and the trajectories of charged particles and photons were obtained. The distribution of the opening angle of any two photons is also presented. The track generation program used is GEANT from CERN. This program was adapted to the KEK computer. Pattern recognition and track fitting are based on the tracking device. The program considered was that by DELCO group at SLAC. The tracking device consists of a MWPC and a cylindrical drift chamber with wires along the beam direction Z and wires inclined at a stereo angle. Some comments on vertex detectors are given. (Kato, T.)
Automating methods to improve precision in Monte-Carlo event generation for particle colliders
International Nuclear Information System (INIS)
Gleisberg, Tanju
2008-01-01
The subject of this thesis was the development of tools for the automated calculation of exact matrix elements, which are a key for the systematic improvement of precision and confidence for theoretical predictions. Part I of this thesis concentrates on the calculations of cross sections at tree level. A number of extensions have been implemented in the matrix element generator AMEGIC++, namely new interaction models such as effective loop-induced couplings of the Higgs boson with massless gauge bosons, required for a number of channels for the Higgs boson search at LHC and anomalous gauge couplings, parameterizing a number of models beyond th SM. Further a special treatment to deal with complicated decay chains of heavy particles has been constructed. A significant effort went into the implementation of methods to push the limits on particle multiplicities. Two recursive methods have been implemented, the Cachazo-Svrcek-Witten recursion and the colour dressed Berends-Giele recursion. For the latter the new module COMIX has been added to the SHERPA framework. The Monte-Carlo phase space integration techniques have been completely revised, which led to significantly reduced statistical error estimates when calculating cross sections and a greatly improved unweighting efficiency for the event generation. Special integration methods have been developed to cope with the newly accessible final states. The event generation framework SHERPA directly benefits from those new developments, improving the precision and the efficiency. Part II was addressed to the automation of QCD calculations at next-to-leading order. A code has been developed, that, for the first time fully automates the real correction part of a NLO calculation. To calculate the correction for a m-parton process obeying the Catani-Seymour dipole subtraction method the following components are provided: 1. the corresponding m+1-parton tree level matrix elements, 2. a number dipole subtraction terms to remove
Automating methods to improve precision in Monte-Carlo event generation for particle colliders
Energy Technology Data Exchange (ETDEWEB)
Gleisberg, Tanju
2008-07-01
The subject of this thesis was the development of tools for the automated calculation of exact matrix elements, which are a key for the systematic improvement of precision and confidence for theoretical predictions. Part I of this thesis concentrates on the calculations of cross sections at tree level. A number of extensions have been implemented in the matrix element generator AMEGIC++, namely new interaction models such as effective loop-induced couplings of the Higgs boson with massless gauge bosons, required for a number of channels for the Higgs boson search at LHC and anomalous gauge couplings, parameterizing a number of models beyond th SM. Further a special treatment to deal with complicated decay chains of heavy particles has been constructed. A significant effort went into the implementation of methods to push the limits on particle multiplicities. Two recursive methods have been implemented, the Cachazo-Svrcek-Witten recursion and the colour dressed Berends-Giele recursion. For the latter the new module COMIX has been added to the SHERPA framework. The Monte-Carlo phase space integration techniques have been completely revised, which led to significantly reduced statistical error estimates when calculating cross sections and a greatly improved unweighting efficiency for the event generation. Special integration methods have been developed to cope with the newly accessible final states. The event generation framework SHERPA directly benefits from those new developments, improving the precision and the efficiency. Part II was addressed to the automation of QCD calculations at next-to-leading order. A code has been developed, that, for the first time fully automates the real correction part of a NLO calculation. To calculate the correction for a m-parton process obeying the Catani-Seymour dipole subtraction method the following components are provided: 1. the corresponding m+1-parton tree level matrix elements, 2. a number dipole subtraction terms to remove
International Nuclear Information System (INIS)
Berdnikov, Ya.A.; Berdnikov, A.Ya.; Kim, V.T.; Ivanov, A.E.; Suetin, D.P.; Tiangov, K.D.
2016-01-01
Hadron production in neutrino-nucleus interactions is implemented in Monte Carlo event generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons and their constituents are taken into account in HARDPING. Available data from WA/59 and SCAT collaborations on hadron production in neutrino-nucleus collisions is described by HARDPING with a reasonable agreement
HIJET: a Monte Carlo event generator for P-nucleus-nucleus collisions
International Nuclear Information System (INIS)
Ludlam, T.; Pfoh, A.; Shor, A.
1985-01-01
Comparisons are shown for the HIJET generated data and measured data for average multiplicities, rapidity distributions, and leading proton spectra in proton-nucleus and heavy ion reactions. The algorithm for the generator is one of an incident particle on a target of uniformly distributed nucleons. The dynamics of the interaction limit secondary interactions in that only the leading baryon may re-interact with the nuclear volume. Energy and four momentum are globally conserved in each event. 6 refs., 6 figs
Studies of vector boson transverse momentum simulation in Monte Carlo event generators
The ATLAS collaboration
2011-01-01
We present studies of event generator behaviours regarding vector boson production characteristics, in particular the transverse momentum, pT, of the $Z$ boson as measured by ATLAS, for discussion at the LPCC working group meeting on precision electroweak physics at the LHC. The results discussed focus on the poor descriptions of ATLAS $W$ and $Z$ pT spectra by the ATLAS AUET2B LO** tune of PYTHIA6, and by the shower-matched NLO generator combination POWHEG+PYTHIA6. We show that both standalone PYTHIA6 and POWHEG can be made to describe the Sudakov peak of the ATLAS $Z$ pT distribution by tuning of the PYTHIA parton shower -- different approaches are required in each case. Comparisons of other NLO generators to the $Z$ pT data are also shown.
Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.
2012-07-01
The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.
ISAJET: a Monte Carlo event generator for pp and anti pp interactions
International Nuclear Information System (INIS)
Paige, F.E.; Protopopescu, S.D.
1985-01-01
ISAJET is a Monte Carlo program which simulates pp and anti pp interactions at high energy. It is based on perturbative QCD plus phenomenological models for jet and beam jet fragmentation. This article describes ISAJET Version 5.00. 21 refs., 3 figs
ISAJET 5.30: A Monte Carlo event generator for pp and anti pp interactions
International Nuclear Information System (INIS)
Paige, F.E.; Protopopescu, S.D.
1986-09-01
ISAJET is a Monte Carlo program which simulates pp and anti pp interactions at high energy. It is based on perturbative QCD cross sections, leading order QCD radiative corrections for initial and final state partons, and phenomenological models for jet and beam jet fragmentation. This article describes ISAJET 5.30, which includes production of standard Higgs bosons and which will be released shortly
ISAJET 5.02: a Monte Carlo event generator for pp and anti pp interactions
International Nuclear Information System (INIS)
Paige, F.E.; Protopopescu, S.D.
1985-01-01
ISAJET is a Monte Carlo program which simulates pp and anti p p interactions at high energy. It is based on perturbative QCD cross sections, leading order QCD radiative corrections for initial and final state partons, and phenomenological models for jet and beam jet fragmentation. This article describes ISAJET 5.02, which is identical with Version 5.00 except for minor corrections. 27 refs., 7 figs
Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics
Ciappina, M. F.; Kirchner, T.; Schulz, M.
2010-04-01
We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double
Energy Technology Data Exchange (ETDEWEB)
Luo, Wen, E-mail: wenluo-ok@163.com [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Lan, Hao-yang [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Xu, Yi; Balabanski, Dimiter L. [Extreme Light Infrastructure-Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele (Romania)
2017-03-21
A data-based Monte Carlo simulation algorithm, Geant4-GENBOD, was developed by coupling the n-body Monte-Carlo event generator to the Geant4 toolkit, aiming at accurate simulations of specific photonuclear reactions for diverse photonuclear physics studies. Good comparisons of Geant4-GENBOD calculations with reported measurements of photo-neutron production cross-sections and yields, and with reported energy spectra of the {sup 6}Li(n,α)t reaction were performed. Good agreements between the calculations and experimental data were found and the validation of the developed program was verified consequently. Furthermore, simulations for the {sup 92}Mo(γ,p) reaction of astrophysics relevance and photo-neutron production of {sup 99}Mo/{sup 99m}Tc and {sup 225}Ra/{sup 225}Ac radioisotopes were investigated, which demonstrate the applicability of this program. We conclude that the Geant4-GENBOD is a reliable tool for study of the emerging experiment programs at high-intensity γ-beam laboratories, such as the Extreme Light Infrastructure – Nuclear Physics facility and the High Intensity Gamma-Ray Source at Duke University.
New approach to parton shower Monte Carlo event generators for precision QCD theory: HERWIRI1.0(31)
International Nuclear Information System (INIS)
Joseph, S.; Ward, B. F. L.; Majhi, S.; Yost, S. A.
2010-01-01
By implementing the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment we generate a new Monte Carlo (MC), HERWIRI1.0(31), for hadron-hadron scattering at high energies. We use MC data to illustrate the comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated by the new IR-improved DGLAP-CS kernels. The interface to MC-NLO, MC-NLO/HERWIRI, is illustrated. Comparisons with FNAL data and some discussion of possible implications for LHC phenomenology are also presented.
International Nuclear Information System (INIS)
Durand, D.; Gulminelli, F.; Lopez, O.; Vient, E.
1998-01-01
The results concerning the heavy ion collision simulations at Fermi energies by means of phenomenological models obtained in the last two years ar presented. The event generators are essentially following the phase of elaboration of analysis methods of data obtained by INDRA or NAUTILUS 4 π multidetectors. To identify and correctly quantify a phenomenon or a physical quantity it is necessary to verify by simulation the feasibility and validity of the analysis and also to estimate the bias introduced by the experimental filter. Many studies have shown this, for instance: the determination of the collision reaction plan for flow studies, determination of kinematical characteristics of the quasi-projectiles, and the excitation energy measurement stored in the hot nuclei. To Eugene, the currently utilised generator, several improvements were added: introduction of space-time correlations between the different products emitted in the decay of excited nuclei by calculating the trajectories of the particles in the final phase of the reaction; taking into account in the decay cascade of the discrete levels of the lighter fragments; the possibility of the schematically description of the explosion of the nucleus by simultaneous emission of multi-fragments. Thus, by comparing the calculations with the data relative to heavy systems studied with the NAUTILUS assembly it was possible to extract the time scales in the nuclear fragmentation. The utilisation of these event generators was extended to the analysis of INDRA data concerning the determination of the vaporization threshold in the collisions Ar + Ni and also the research of the expansion effects in the collisions Xe + Sn at 50 MeV/u
A Monte Carlo study on event-by-event transverse momentum fluctuation at RHIC
International Nuclear Information System (INIS)
Xu Mingmei
2005-01-01
The experimental observation on the multiplicity dependence of event-by-event transverse momentum fluctuation in relativistic heavy ion collisions is studied using Monte Carlo simulation. It is found that the Monte Carlo generator HIJING is unable to describe the experimental phenomenon well. A simple Monte Carlo model is proposed, which can recover the data and thus shed some light on the dynamical origin of the multiplicity dependence of event-by-event transverse momentum fluctuation. (authors)
LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events
Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V
2008-01-01
In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Wroclaw neutrino event generator
International Nuclear Information System (INIS)
Nowak, J A
2006-01-01
A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ resonance excitation and deep inelastic scattering
The GENIE neutrino Monte Carlo generator
International Nuclear Information System (INIS)
Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; Meregaglia, A.; Naples, D.; Pearce, G.; Rubbia, A.; Whalley, M.; Yang, T.
2010-01-01
GENIE is a new neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of ∼120000 lines of C++ code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4.
Higgs boson events and background lep. A Monte Carlo study
International Nuclear Information System (INIS)
Ekspong, G.; Hultqvist, K.
1982-06-01
Higgs boson production at LEP using e+ e- to Z 0 to H 0 + e+ e- has been studied by Monte Carlo generation of events with realistic errors of measurement added. The results show the recoil mass (Higgs boson mass) resolution to be reasonably good for boson masses bigger than 5 Ge V. The events are found to populate a phase space region free of physical background for all boson masses below about 35 GeV. For masses above 40 GeV the Higgs boson signal merges with the physical background produced by semileptonic decays of heavy flavour quarks while diminishing in strength to low levels. The geometrical acceptance of a detector like DELPHI is about 80 per cent for Higgs boson events. (Author)
Academic Training: Monte Carlo generators for the LHC
Françoise Benz
2005-01-01
2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Monte Carlo generators for the LHC T. SJOSTRAND / CERN-PH, Lund Univ. SE Event generators today are indispensable as tools for the modelling of complex physics processes, that jointly lead to the production of hundreds of particles per event at LHC energies. Generators are used to set detector requirements, to formulate analysis strategies, or to calculate acceptance corrections. These lectures describe the physics that goes into the construction of an event generator, such as hard processes, initial- and final-state radiation, multiple interactions and beam remnants, hadronization and decays, and how these pieces come together. The current main generators are introduced, and are used to illustrate uncertainties in the physics modelling. Some trends for the future are outlined. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch
Underlying Event studies and Monte Carlo tunes for inelastic pp events with the ATLAS detector
Nurse, E; The ATLAS collaboration
2010-01-01
Studies of the momentum flow in inelastic collisions at 900 GeV and 7 TeV recorded with a minimum bias trigger strategy are reported. A single high pT track is selected, and the distribution of other tracks in the event is evaluated relative to this reference track. The evolution of the charged momentum flow in the rest of the event, as a function of the pT of the reference track, gives important information about the transition from minimum bias event structure to the full underlying event observed in high-pT collision events. Results are presented after correction and unfolding of detector effects to allow simpler comparison to Monte Carlo models. In addition, the PYTHIA Monte Carlo generator has been tuned to ATLAS measurements at 900 GeV and 7 TeV. Standard distributions from Minimum Bias events, as well as the Underlying Event studies are included in the first tunes to ATLAS measurements at the LHC. The tunes aim for one consistent description of the new measurements as well as data from the Tevatron and...
Event generators for address event representation transmitters
Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe
2005-06-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were
Studying the information content of TMDs using Monte Carlo generators
Energy Technology Data Exchange (ETDEWEB)
Avakian, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Matevosyan, H. [The Univ. of Adelaide, Adelaide (Australia); Pasquini, B. [Univ. of Pavia, Pavia (Italy); Schweitzer, P. [Univ. of Connecticut, Storrs, CT (United States)
2015-02-05
Theoretical advances in studies of the nucleon structure have been spurred by recent measurements of spin and/or azimuthal asymmetries worldwide. One of the main challenges still remaining is the extraction of the parton distribution functions, generalized to describe transverse momentum and spatial distributions of partons from these observables with no or minimal model dependence. In this topical review we present the latest developments in the field with emphasis on requirements for Monte Carlo event generators, indispensable for studies of the complex 3D nucleon structure, and discuss examples of possible applications.
International Nuclear Information System (INIS)
Durand, D.; Lopez, O.; Nguyen, A.D.
1997-01-01
The utilization and development of SIMON generator work was conducted at LPC.This generator was conceived for simple and versatile simulations of different processes occurring in the nuclear collisions at Fermi Energies. At present it is utilized in a large number of French foreign laboratories. Particularly, certain analyses of INDRA data have been done by use of this generator: estimation of collective energy in the Xe + Sn and Gd + U central collisions; shape and space-time correlation analysis in fragment-fragment and particle-fragment output of the same system; calorimetric study of the Xe + Sn and Ar + Ni system; study of the vaporization for the Ar + Ni system. Recently a number of items were improved or modified, among which: the initial configuration was allowed to be non-spherical what permits the analysis of the semi-central collisions; a so-called pre-fragmentation emission may be included to estimate different time constants implied in the fragmentation process
Kersevan, Borut Paul; Richter-Waş, Elzbieta
2013-03-01
The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far. The program itself provides a library of the massive matrix elements (coded by MADGRAPH) and native phase space modules for generation of a set of selected processes. The hard process event can be completed by the initial and the final state radiation, hadronisation and decays through the existing interface with either PYTHIA, HERWIG or ARIADNE event generators and (optionally) TAUOLA and PHOTOS. Interfaces to all these packages are provided in the distribution version. The phase-space generation is based on the multi-channel self-optimising approach using the modified Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space was obtained by using a modified ac-VEGAS algorithm. An additional improvement in the recent versions is the inclusion of the consistent prescription for matching the matrix element calculations with parton showering for a select list of processes. Catalogue identifier: ADQQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3853309 No. of bytes in distributed program, including test data, etc.: 68045728 Distribution format: tar.gz Programming language: FORTRAN 77 with popular extensions (g77, gfortran). Computer: All running Linux. Operating system: Linux. Classification: 11.2, 11.6. External routines: CERNLIB (http://cernlib.web.cern.ch/cernlib/), LHAPDF (http://lhapdf.hepforge.org/) Catalogue identifier of previous version: ADQQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 149(2003)142 Does
The HepMC C++ Monte Carlo Event Record for High Energy Physics
Dobbs, M
2000-01-01
HepMC is an Object Oriented event record written in C++ for High Energy Physics Monte Carlo Event Generators. Many extensions from HEPEVT, the Fortran HEP standard, are supported: the number of entries is unlimited, spin density matrices can be stored with each vertex, flow patterns (such as colour) can be stored and traced, random number generator states can be stored, and an arbitrary number of event weights can be included. Particles and vertices are stored separately in a graph structure, reflecting the evolution of a physics event. The added information supports the modularisation of event generators. The event record has been kept as simple as possible with minimal internal/external dependencies. Event information is accessed by means of iterators supplied with HepMC.
Event generators in particle physics
International Nuclear Information System (INIS)
Sjostrand, Torbjorn
1994-01-01
This presentation gives an introduction to the topic of event generators in particle physics . The emphasis is on the physics aspects that have to be considered in the construction of a generator, and what lessons we have learned from comparisons with data. A brief survey of existing generators is also included. As illustration, a few topics of current interest are covered in a bit more detail: QCD uncertainties in W mass determinations and γp/γγ physics. (author)
Next generation multi-particle event generators for the MSSM
International Nuclear Information System (INIS)
Reuter, J.; Kilian, W.; Hagiwara, K.; Krauss, F.; Schumann, S.; Rainwater, D.
2005-12-01
We present a next generation of multi-particle Monte Carlo (MC) Event generators for LHC and ILC for the MSSM, namely the three program packages Madgraph/MadEvent, WHiZard/O'Mega and Sherpa/Amegic++. The interesting but difficult phenomenology of supersymmetric models at the upcoming colliders demands a corresponding complexity and maturity from simulation tools. This includes multi-particle final states, reducible and irreducible backgrounds, spin correlations, real emission of photons and gluons, etc., which are incorporated in the programs presented here. The framework of a model with such a huge particle content and as complicated as the MSSM makes strenuous tests and comparison of codes inevitable. Various tests show agreement among the three different programs; the tables of cross sections produced in these tests may serve as a future reference for other codes. Furthermore, first MSSM physics analyses performed with these programs are presented here. (orig.)
Monte-Carlo approach to the generation of adversary paths
International Nuclear Information System (INIS)
1977-01-01
This paper considers the definition of a threat as the sequence of events that might lead to adversary success. A nuclear facility is characterized as a weighted, labeled, directed graph, with critical adversary paths. A discrete-event, Monte-Carlo simulation model is used to estimate the probability of the critical paths. The model was tested for hypothetical facilities, with promising results
The CCFM Monte Carlo generator CASCADE Version 2.2.03
International Nuclear Information System (INIS)
Jung, H.; Baranov, S.; Deak, M.; Grebenyuk, A.; Hentschinski, M.; Knutsson, A.; Kraemer, M.; Hautmann, F.; Kutak, K.; Lipatov, A.; Zotov, N.
2010-01-01
Cascade is a full hadron level Monte Carlo event generator for ep, γp and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off-shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)
The CCFM Monte Carlo Generator CASCADE version 2.2.0
Energy Technology Data Exchange (ETDEWEB)
Jung, H. [DESY, Hamburg (Germany); Antwerp Univ. (Belgium); Baranov, S. [Lebedev Physics Inst. (Russian Federation); Deak, M. [Madrid Univ. (ES). Inst. de Fisica Teorica UAM/CSIC] (and others)
2010-08-15
CASCADE is a full hadron level Monte Carlo event generator for ep, {gamma}p and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)
Modern particle physics event generation with WHIZARD
International Nuclear Information System (INIS)
Reuter, J.; Bach, F.; Chokoufe, B.; Kilian, W.; Sekulla, M.; Ohl, T.; Weiss, C.; Siegen Univ.
2014-01-01
We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis is given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development are discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.
Modern Particle Physics Event Generation with WHIZARD
Reuter, J.; Bach, F.; Chokoufé, B.; Kilian, W.; Ohl, T.; Sekulla, M.; Weiss, C.
2015-05-01
We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.
Modern Particle Physics Event Generation with WHIZARD
International Nuclear Information System (INIS)
Reuter, J; Bach, F; Chokoufé, B; Weiss, C; Kilian, W; Sekulla, M; Ohl, T
2015-01-01
We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements. (paper)
Elegent—An elastic event generator
Kašpar, J.
2014-03-01
Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy √{s}. These distributions at ISR, Spp¯S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon-nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but
Study on random number generator in Monte Carlo code
International Nuclear Information System (INIS)
Oya, Kentaro; Kitada, Takanori; Tanaka, Shinichi
2011-01-01
The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)
PEPSI — a Monte Carlo generator for polarized leptoproduction
Mankiewicz, L.; Schäfer, A.; Veltri, M.
1992-09-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.
PEPSI - a Monte Carlo generator for polarized leptoproduction
International Nuclear Information System (INIS)
Mankiewicz, L.
1992-01-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the Lepto 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S . PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons. (orig.)
General-purpose event generators for LHC physics
Buckley, Andy; Gieseke, Stefan; Grellscheid, David; Hoche, Stefan; Hoeth, Hendrik; Krauss, Frank; Lonnblad, Leif; Nurse, Emily; Richardson, Peter; Schumann, Steffen; Seymour, Michael H.; Sjostrand, Torbjorn; Skands, Peter; Webber, Bryan
2011-01-01
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators ...
New ATLAS event generator tunes to 2010 data
The ATLAS collaboration
2011-01-01
This note describes the Monte Carlo event generator tunings for the Pythia 6 and Herwig/Jimmy generators in the ATLAS MC11 simulation production. New tunes have been produced for these generators, making maximal use of available published data from ATLAS and from the Tevatron and LEP experiments. Particular emphasis has been placed on improvement of the description of e+ e− event shape and jet rate data, and on description of hadron collider event shape observables in Pythia, as well as the established procedure of tuning the multiple parton interactions of both models to describe underlying event and minimum bias data. The tuning of Pythia is provided at this time for the MRST LO∗∗ PDF, while the purely MPI tune of Herwig/Jimmy is performed for ten different PDFs.
NiMax system for hadronic event generators in HEP
International Nuclear Information System (INIS)
Amelin, N.S.; Komogorov, M.E.
2001-01-01
We have suggested a new approach to the development and use of Monte Carlo event generators in high-energy physics (HEP). It is a component approach, when a complex numerical model is composed of standard components. Our approach opens a way to organize a library of HEP model components and provides a great flexibility for the construction of very powerful and realistic numerical models. To support this approach we have designed the NiMax software system (framework) written in C++
A united event grand canonical Monte Carlo study of partially doped polyaniline
Energy Technology Data Exchange (ETDEWEB)
Byshkin, M. S., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it; Correa, A. [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); Buonocore, F. [ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome (Italy); Di Matteo, A. [STMicroelectronics, Via Remo de Feo, 1 80022 Arzano, Naples (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy); Milano, G., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy)
2013-12-28
A Grand Canonical Monte Carlo scheme, based on united events combining protonation/deprotonation and insertion/deletion of HCl molecules is proposed for the generation of polyaniline structures at intermediate doping levels between 0% (PANI EB) and 100% (PANI ES). A procedure based on this scheme and subsequent structure relaxations using molecular dynamics is described and validated. Using the proposed scheme and the corresponding procedure, atomistic models of amorphous PANI-HCl structures were generated and studied at different doping levels. Density, structure factors, and solubility parameters were calculated. Their values agree well with available experimental data. The interactions of HCl with PANI have been studied and distribution of their energies has been analyzed. The procedure has also been extended to the generation of PANI models including adsorbed water and the effect of inclusion of water molecules on PANI properties has also been modeled and discussed. The protocol described here is general and the proposed United Event Grand Canonical Monte Carlo scheme can be easily extended to similar polymeric materials used in gas sensing and to other systems involving adsorption and chemical reactions steps.
Stochastic generation of hourly rainstorm events in Johor
International Nuclear Information System (INIS)
Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli
2015-01-01
Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor
Stochastic generation of hourly rainstorm events in Johor
Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli
2015-02-01
Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972-2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.
Stochastic generation of hourly rainstorm events in Johor
Energy Technology Data Exchange (ETDEWEB)
Nojumuddin, Nur Syereena; Yusof, Fadhilah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Yusop, Zulkifli [Institute of Environmental and Water Resources Management, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)
2015-02-03
Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.
Weight window/importance generator for Monte Carlo streaming problems
International Nuclear Information System (INIS)
Booth, T.E.
1983-01-01
A Monte Carlo method for solving highly angle dependent streaming problems is described. The method uses a DXTRAN-like angle biasing scheme, a space-angle weight window to reduce weight fluctuations introduced by the angle biasing, and a space-angle importance generator to set parameters for the space-angle weight window. Particle leakage through a doubly-bent duct is calculated to demonstrate the method's use
A Monte Carlo program for generating hadronic final states
International Nuclear Information System (INIS)
Angelini, L.; Pellicoro, M.; Nitti, L.; Preparata, G.; Valenti, G.
1991-01-01
FIRST is a computer program to generate final states from high energy hadronic interactions using the Monte Carlo technique. It is based on a theoretical model in which the high degree of universality in such interactions is related with the existence of highly excited quark-antiquark bound states, called fire-strings. The program handles the decay of both fire-strings and unstable particles produced in the intermediate states. (orig.)
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Improved diffusion coefficients generated from Monte Carlo codes
International Nuclear Information System (INIS)
Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.
2013-01-01
Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)
Direct aperture optimization for IMRT using Monte Carlo generated beamlets
International Nuclear Information System (INIS)
Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl
2006-01-01
This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods
MadEvent: automatic event generation with MadGraph
International Nuclear Information System (INIS)
Maltoni, Fabio; Stelzer, Tim
2003-01-01
We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders. (author)
Fitting experimental data by using weighted Monte Carlo events
International Nuclear Information System (INIS)
Stojnev, S.
2003-01-01
A method for fitting experimental data using modified Monte Carlo (MC) sample is developed. It is intended to help when a single finite MC source has to fit experimental data looking for parameters in a certain underlying theory. The extraction of the searched parameters, the errors estimation and the goodness-of-fit testing is based on the binned maximum likelihood method
Neutron monitor generated data distributions in quantum variational Monte Carlo
Kussainov, A. S.; Pya, N.
2016-08-01
We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.
Monte Carlo generation of dosimetric parameters for eye plaque dosimetry
International Nuclear Information System (INIS)
Cutajar, D.L.; Green, J.A.; Guatelli, S.; Rosenfeld, A.B.
2010-01-01
Full text: The Centre for Medical Radiation Physics have undertaken the dcvelopment of a quality assurance tool, using silicon pixelated detectors, for the calibration of eye plaques prior to insertion. Dosimetric software to correlate the measured and predicted dose rates has been constructed. The dosimetric parameters within the software, for both 1-125 and Ru-I 06 based eye plaques, were optimised using the Geant4 Monte Carlo toolkit. Methods For 1-125 based plaques, an novel application was developed to generate TG-43 parameters for any seed input. TG-43 parameters were generated for an Oncura model 6711 seed, with data points every millimetre up to 25 mm in the radial direction, and every 5 degrees in polar angle, and correlated to published data. For the Ru106 based plaques, an application was developed to generate dose rates about a Bebig model CCD plaque. Toroids were used to score the deposited dose, taking advantage of the cylindrical symmetry of the plaque, with radii in millimetre increments up to 25 mm, and depth from the plaque surface in millimetre increments up to 25 mm. Results TheTG43 parameters generated for the 6711 seed correlate well with published TG43 data at the given intervals, with radial dose function within 3%, and anisotropy function within 5% for angles greater than 30 degrees. The Ru-l 06 plaque data correlated well with the Bebig protocol of measurement. Conclusion Geant4 is a useful Monte Carlo tool for the generation of dosimetric data for eye plaque dosimetry. which may improve the quality assurance of eye plaque treatment. (author)
Testing random number generators for Monte Carlo applications
International Nuclear Information System (INIS)
Sim, L.H.
1992-01-01
Central to any system for modelling radiation transport phenomena using Monte Carlo techniques is the method by which pseudo random numbers are generated. This method is commonly referred to as the Random Number Generator (RNG). It is usually a computer implemented mathematical algorithm which produces a series of numbers uniformly distributed on the interval [0,1]. If this series satisfies certain statistical tests for randomness, then for practical purposes the pseudo random numbers in the series can be considered to be random. Tests of this nature are important not only for new RNGs but also to test the implementation of known RNG algorithms in different computer environments. Six RNGs have been tested using six statistical tests and one visual test. The statistical tests are the moments, frequency (digit and number), serial, gap, and poker tests. The visual test is a simple two dimensional ordered pair display. In addition the RNGs have been tested in a specific Monte Carlo application. This type of test is often overlooked, however it is important that in addition to satisfactory performance in statistical tests, the RNG be able to perform effectively in the applications of interest. The RNGs tested here are based on a variety of algorithms, including multiplicative and linear congruential, lagged Fibonacci, and combination arithmetic and lagged Fibonacci. The effect of the Bays-Durham shuffling algorithm on the output of a known bad RNG has also been investigated. 18 refs., 11 tabs., 4 figs. of
Monte Carlo calculation of the cross-section of single event upset induced by 14MeV neutrons
International Nuclear Information System (INIS)
Li, H.; Deng, J.Y.; Chang, D.M.
2005-01-01
High-density static random access memory may experience single event upsets (SEU) in neutron environments. We present a new method to calculate the SEU cross-section. Our method is based on explicit generation and transport of the secondary reaction products and detailed accounting for energy loss by ionization. Instead of simulating the behavior of the circuit, we use the Monte Carlo method to simulate the process of energy deposition in sensitive volumes. Thus, we do not need to know details about the circuit. We only need a reasonable guess for the size of the sensitive volumes. In the Monte Carlo simulation, the cross-section of SEU induced by 14MeV neutrons is calculated. We can see that the Monte Carlo simulation not only can provide a new method to calculate SEU cross-section, but also can give a detailed description about random process of the SEU
General-purpose event generators for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Buckley, Andy [PPE Group, School of Physics and Astronomy, University of Edinburgh, EH25 9PN (United Kingdom); Butterworth, Jonathan [Department of Physics and Astronomy, University College London, WC1E 6BT (United Kingdom); Gieseke, Stefan [Institute for Theoretical Physics, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Grellscheid, David [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Hoeth, Hendrik; Krauss, Frank [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Loennblad, Leif [Department of Astronomy and Theoretical Physics, Lund University (Sweden); PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Nurse, Emily [Department of Physics and Astronomy, University College London, WC1E 6BT (United Kingdom); Richardson, Peter [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Schumann, Steffen [Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg (Germany); Seymour, Michael H. [School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Sjoestrand, Torbjoern [Department of Astronomy and Theoretical Physics, Lund University (Sweden); Skands, Peter [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Webber, Bryan, E-mail: webber@hep.phy.cam.ac.uk [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2011-07-15
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists seeking a deeper insight into the tools available for signal and background simulation at the LHC.
General-purpose event generators for LHC physics
International Nuclear Information System (INIS)
Buckley, Andy; Butterworth, Jonathan; Gieseke, Stefan; Grellscheid, David; Hoeche, Stefan; Hoeth, Hendrik; Krauss, Frank; Loennblad, Leif; Nurse, Emily; Richardson, Peter; Schumann, Steffen; Seymour, Michael H.; Sjoestrand, Torbjoern; Skands, Peter; Webber, Bryan
2011-01-01
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists seeking a deeper insight into the tools available for signal and background simulation at the LHC.
General-purpose event generators for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Buckley, Andy; /Edinburgh U.; Butterworth, Jonathan; /University Coll. London; Gieseke, Stefan; /Karlsruhe U., ITP; Grellscheid, David; /Durham U., IPPP; Hoche, Stefan; /SLAC; Hoeth, Hendrik; Krauss, Frank; /Durham U., IPPP; Lonnblad, Leif; /Lund U., Dept. Theor. Phys. /CERN; Nurse, Emily; /University Coll. London; Richardson, Peter; /Durham U., IPPP; Schumann, Steffen; /Heidelberg U.; Seymour, Michael H.; /Manchester U.; Sjostrand, Torbjorn; /Lund U., Dept. Theor. Phys.; Skands, Peter; /CERN; Webber, Bryan; /Cambridge U.
2011-03-03
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.
Top quark event modelling and generators
Rahmat, Rahmat
2016-01-01
State-of-the-art theoretical predictions accurate to next-to-leading order QCD interfaced with Pythia8 and Herwig++ event generators are tested by comparing the unfolded ttbar differential data collected with the CMS detector at 8 TeV. These predictions are also compared with the underlying event activity distributions in ttbar events using CMS proton-proton data collected in 2015 at a center of mass energy of 13 TeV.
The ATLAS collaboration
2017-01-01
A study of the performance of various colour reconnection models included in the Pythia8 Monte Carlo event generator is performed using leading charged-particle underlying event data in three centre-of-mass energies from Run 1 and Run 2, measured in ATLAS. Each model can be tuned to describe the data reasonably well.
The GENIE Neutrino Monte Carlo Generator: Physics and User Manual
Energy Technology Data Exchange (ETDEWEB)
Andreopoulos, Costas [Univ. of Liverpool (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Particle Physics Dept.; Barry, Christopher [Univ. of Liverpool (United Kingdom). Dept. of Physics; Dytman, Steve [Univ. of Pittsburgh, PA (United States). Dept. of Physics and Astronomy; Gallagher, Hugh [Tufts Univ., Medford, MA (United States). Dept. of Physics and Astronomy; Golan, Tomasz [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy; Hatcher, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, Gabriel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, Julia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2015-10-20
GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.
PEPSI: a Monte Carlo generator for polarized leptoproduction
International Nuclear Information System (INIS)
Mankiewicz, L.
1992-01-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)
EVENT GENERATOR FOR RHIC SPIN PHYSICS
International Nuclear Information System (INIS)
SAITO, N.; SCHAEFER, A.
1999-01-01
This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensable tools for high energy physics programs in general, especially in the process of: planning the experimental programs; developing algorithms to extract the physics signals of interest; estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail
e+e- event generator EPOCS user's manual
International Nuclear Information System (INIS)
Kato, Kiyoshi; Munehisa, Tomo.
1987-07-01
EPOCS(Electron POsitron Collision Simulator) is a Monte-Carlo event generator for high energy e + e - annihilation. This program generates events based on the standard model, i.e., quantum chromodynamics (QCD) and electro-weak theory. It works at the center-of-mass energy below W + W - production, i.e., in the energy region of TRISTAN, SLC and LEP. For these high energy machines one of the important subjects is the exploration for the top quark. The production and hadronization of the top quark is included in EPOCS. Besides the top quark, we expect 'new' physics in this high energy region. EPOCS has enough flexibility for users to cope with a new idea. Users can register a new particle, modify the built-in particle data, define new primary interactions and so on. The event generator has a number of parameters, both physical parameters and control parameters. Users can control most of these parameters in EPOCS at will. (author)
Unweighted event generation in hadronic WZ production at first order in QCD
Dobbs, M
2000-01-01
We present an algorithm for unweighted event generation in the partonic process pp -> WZ(j) with leptonic decays at next-to-leading order in QCD. Monte Carlo programs for processes such as this frequently generate events with negative weights in certain regions of phase space. For simulations of experimental data one would like to have unweighted events only. We demonstrate how the phase space from the matrix elements can be combined to achieve unweighted event generation using a second stage Monte Carlo integration over a volume of real emissions (jets). Observable quantities are kept fixed in the laboratory frame throughout the integration. The algorithm is applicable to a broader class of processes and is CPU intensive.
Unweighted event generation in hadronic WZ production at order $(\\alpha_{S})$
Dobbs, Matt; Lefebvre, Michel
2001-01-01
We present an algorithm for unweighted event generation in the partonic process pp -> WZ (j) with leptonic decays at next-to-leading order in alpha_S. Monte Carlo programs for processes such as this frequently generate events with negative weights in certain regions of phase space. For simulations of experimental data one would like to have unweighted events only. We demonstrate how the phase space from the matrix elements can be combined to achieve unweighted event generation using a second stage Monte Carlo integration over a volume of real emissions (jets). Observable quantities are kept fixed in the laboratory frame throughout the integration. The algorithm is applicable to a broader class of processes and is CPU intensive.
Monte Carlos of the new generation: status and progress
International Nuclear Information System (INIS)
Frixione, Stefano
2005-01-01
Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron
Monte-Carlo event generation for the ep collider
International Nuclear Information System (INIS)
Grant, A.L.
1979-01-01
In the present note, an attempt has been made to construct two models which might be expected to correspond to possible extremes of the configuration of the experimental data. The reality of the e p collider might be expected to lie between these two models. (orig.)
International Nuclear Information System (INIS)
Chakraborty, Brahmananda
2009-01-01
Random number plays an important role in any Monte Carlo simulation. The accuracy of the results depends on the quality of the sequence of random numbers employed in the simulation. These include randomness of the random numbers, uniformity of their distribution, absence of correlation and long period. In a typical Monte Carlo simulation of particle transport in a nuclear reactor core, the history of a particle from its birth in a fission event until its death by an absorption or leakage event is tracked. The geometry of the core and the surrounding materials are exactly modeled in the simulation. To track a neutron history one needs random numbers for determining inter collision distance, nature of the collision, the direction of the scattered neutron etc. Neutrons are tracked in batches. In one batch approximately 2000-5000 neutrons are tracked. The statistical accuracy of the results of the simulation depends on the total number of particles (number of particles in one batch multiplied by the number of batches) tracked. The number of histories to be generated is usually large for a typical radiation transport problem. To track a very large number of histories one needs to generate a long sequence of independent random numbers. In other words the cycle length of the random number generator (RNG) should be more than the total number of random numbers required for simulating the given transport problem. The number of bits of the machine generally limits the cycle length. For a binary machine of p bits the maximum cycle length is 2 p . To achieve higher cycle length in the same machine one has to use either register arithmetic or bit manipulation technique
Shielding evaluation of neutron generator hall by Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)
2017-04-01
A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)
International Nuclear Information System (INIS)
Hukushima, K; Iba, Y
2008-01-01
We develop a recently proposed importance-sampling Monte Carlo algorithm for sampling rare events and quenched variables in random disordered systems. We apply it to a two dimensional bond-diluted Ising model and study the Griffiths singularity which is considered to be due to the existence of rare large clusters. It is found that the distribution of the inverse susceptibility has an exponential tail down to the origin which is considered the consequence of the Griffiths singularity
Event generators for {{\\eta }}/{{{\\eta }}}^{^{\\prime} } decays at BESIII
Qin, Nian; Zhang, Zhen-Yu; Fang, Shuang-Shi; Zhou, Xiang; Du, Lin-Lin; Qiao, Hao-Xue
2018-01-01
The light unflavoured meson {{η }}/{{{η }}}^{\\prime } decays are valuable for testing non-perturbative quantum chromodynamics and exploring new physics beyond the Standard Model. This paper describes a series of event generators, including {{η }}/{{{η }}}^{\\prime }\\to {{γ }}{{{l}}}+{{{l}}}-, {{η }}/{{{η }}}^{\\prime }\\to {{γ }}{{{π }}}+{{{π }}}-, {{{η }}}^{\\prime }\\to {{ω }}{{{e}}}+{{{e}}}-, {{η }}\\to {{{π }}}+{{{π }}}-{{{π }}}0, {{η }}/{{{η }}}^{\\prime }\\to {{{π }}}0{{{π }}}0{{{π }}}0, {{{η }}}^{\\prime }\\to {{η }}{{π }}{{π }} and {{{η }}}^{\\prime }\\to {{{π }}}+{{{π }}}-{{{π }}}+{{{π }}}-/{{{π }}}+{{{π }}}-{{{π }}}0{{{π }}}0, which have been developed for investigating {{η }}/{{{η }}}^{\\prime } decay dynamics. For most of these generators, their usability has been validated in BESIII analyses for determining the detection efficiency, and background studies. The consistency between data and Monte Carlo shows that these generators work well in the BESIII simulation, and will also be useful for ongoing BESIII analyses and other experiments for studying {{η }}/{{{η }}}^{\\prime } physics. Supported by National Natural Science Foundation of China (NSFC) (11205117, 11575133, 11675184), the China Scholarship Council (201506275156), the Wuhan University PhD Short-time Mobility Program 2016, the Joint Funds of the NSFC and Henan Province (U1504112)
Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)
Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.
2009-05-01
HYDJET++ is a Monte Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin and Snigirev, EPJC 45 (2006) 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte Carlo simulation procedure, C++ code FAST MC (Amelin et al., PRC 74 (2006) 064901; PRC 77 (2008) 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC. Program summaryProgram title: HYDJET++, version 2 Catalogue identifier: AECR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 100 387 No. of bytes in distributed program, including test data, etc.: 797 019 Distribution format: tar.gz Programming language: C++ (however there is a Fortran-written part which is included in the generator structure as a separate directory) Computer: Hardware independent (both C++ and Fortran compilers and ROOT environment [1] ( http://root.cern.ch/) should be installed
Event generator tunes obtained from underlying event and multiparton scattering measurements
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; Mahrous, Ayman; Mohammed, Yasser; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fantinel, Sergio; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Gecit, Fehime Hayal; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozcan, Merve; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Bravo, Cameron; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Schnaible, Christian; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2016-03-17
New sets of parameters (``tunes'') for the underlying-event (UE) modeling of the PYTHIA8, PYTHIA6 and HERWIG++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE data at $\\sqrt{s} =$ 7 TeV and to UE data from the CDF experiment at lower $\\sqrt{s}$, are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13 TeV. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons of the UE tunes to ``minimum bias'' (MB) events, multijet, and Drell--Yan ($ \\mathrm{ q \\bar{q} } \\rightarrow \\mathrm{Z} / \\gamma^* \\rightarrow$ lepton-antilepton + jets) observables at 7 and 8 TeV are presented, as well as predictions of MB and UE observables at 13 TeV.
Automatic Monte-Carlo tuning for minimum bias events at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kama, Sami
2010-06-22
The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10{sup 34} cm{sup -2}s{sup -1}. At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN{sub ch}/d{eta}, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and
Automatic Monte-Carlo tuning for minimum bias events at the LHC
International Nuclear Information System (INIS)
Kama, Sami
2010-01-01
The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10 34 cm -2 s -1 . At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN ch /dη, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and CMS show higher
Generation of Random Numbers and Parallel Random Number Streams for Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
L. Yu. Barash
2012-01-01
Full Text Available Modern methods and libraries for high quality pseudorandom number generation and for generation of parallel random number streams for Monte Carlo simulations are considered. The probability equidistribution property and the parameters when the property holds at dimensions up to logarithm of mesh size are considered for Multiple Recursive Generators.
Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units
Demchik, Vadim
2011-03-01
Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is presented.
Murthy, K. P. N.
2001-01-01
An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...
On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy
Energy Technology Data Exchange (ETDEWEB)
Mattelaer, Olivier [Durham University, Institute for Particle Physics Phenomenology (IPPP), Durham (United Kingdom)
2016-12-15
Accurate Monte Carlo simulations for high-energy events at CERN's Large Hadron Collider, are very expensive, both from the computing and storage points of view. We describe a method that allows to consistently re-use parton-level samples accurate up to NLO in QCD under different theoretical hypotheses. We implement it in MadGraph5{sub a}MC rate at NLO and show its validation by applying it to several cases of practical interest for the search of new physics at the LHC. (orig.)
Cosmic rays Monte Carlo simulations for the Extreme Energy Events Project
Abbrescia, M; Aiola, S; Antolini, R; Avanzini, C; Baldini Ferroli, R; Bencivenni, G; Bossini, E; Bressan, E; Chiavassa, A; Cicalò, C; Cifarelli, L; Coccia, E; De Gruttola, D; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Dreucci, M; Fabbri, F L; Frolov, V; Garbini, M; Gemme, G; Gnesi, I; Gustavino, C; Hatzifotiadou, D; La Rocca, P; Li, S; Librizzi, F; Maggiora, A; Massai, M; Miozzi, S; Panareo, M; Paoletti, R; Perasso, L; Pilo, F; Piragino, G; Regano, A; Riggi, F; Righini, G C; Sartorelli, G; Scapparone, E; Scribano, A; Selvi, M; Serci, S; Siddi, E; Spandre, G; Squarcia, S; Taiuti, M; Tosello, F; Votano, L; Williams, M C S; Yánez, G; Zichichi, A; Zuyeuski, R
2014-01-01
The Extreme Energy Events Project (EEE Project) is an innovative experiment to study very high energy cosmic rays by means of the detection of the associated air shower muon component. It consists of a network of tracking detectors installed inside Italian High Schools. Each tracking detector, called EEE telescope, is composed of three Multigap Resistive Plate Chambers (MRPCs). At present, 43 telescopes are installed and taking data, opening the way for the detection of far away coincidences over a total area of about 3 × 10 5 km 2 . In this paper we present the Monte Carlo simulations that have been performed to predict the expected coincidence rate between distant EEE telescopes.
Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport
Directory of Open Access Journals (Sweden)
Paul K. Romano
2017-09-01
Full Text Available The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, the vector speedup is also limited by differences in the execution time for events being carried out in a single event-iteration.
A Hybrid Monte Carlo importance sampling of rare events in Turbulence and in Turbulent Models
Margazoglou, Georgios; Biferale, Luca; Grauer, Rainer; Jansen, Karl; Mesterhazy, David; Rosenow, Tillmann; Tripiccione, Raffaele
2017-11-01
Extreme and rare events is a challenging topic in the field of turbulence. Trying to investigate those instances through the use of traditional numerical tools turns to be a notorious task, as they fail to systematically sample the fluctuations around them. On the other hand, we propose that an importance sampling Monte Carlo method can selectively highlight extreme events in remote areas of the phase space and induce their occurrence. We present a brand new computational approach, based on the path integral formulation of stochastic dynamics, and employ an accelerated Hybrid Monte Carlo (HMC) algorithm for this purpose. Through the paradigm of stochastic one-dimensional Burgers' equation, subjected to a random noise that is white-in-time and power-law correlated in Fourier space, we will prove our concept and benchmark our results with standard CFD methods. Furthermore, we will present our first results of constrained sampling around saddle-point instanton configurations (optimal fluctuations). The research leading to these results has received funding from the EU Horizon 2020 research and innovation programme under Grant Agreement No. 642069, and from the EU Seventh Framework Programme (FP7/2007-2013) under ERC Grant Agreement No. 339032.
User-Generated Social Media Events in Tourism
Mariné Roig, Estela; Martín Fuentes, Eva; Daries Ramón, Natalia
2017-01-01
Social media and mobile technologies have revolutionised communication and particular attention has been given to user-generated content (UGC) and the formation of online communities; however, little attention has been given to tourist events entirely generated by users through social media. This paper aims to define and characterise the phenomenon of tourism user-generated events (UGEs) through social media around the user's new empowered role and to assess user-generated social media events...
Alves Júnior, A. A.; Sokoloff, M. D.
2017-10-01
MCBooster is a header-only, C++11-compliant library that provides routines to generate and perform calculations on large samples of phase space Monte Carlo events. To achieve superior performance, MCBooster is capable to perform most of its calculations in parallel using CUDA- and OpenMP-enabled devices. MCBooster is built on top of the Thrust library and runs on Linux systems. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of performance in a variety of environments
Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport
Energy Technology Data Exchange (ETDEWEB)
Romano, Paul K.; Siegel, Andrew R.
2017-04-16
The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of two parameters: the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size in order to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, however, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration. For some problems, this implies that vector effciencies over 50% may not be attainable. While there are many factors impacting performance of an event-based algorithm that are not captured by our model, it nevertheless provides insights into factors that may be limiting in a real implementation.
Automated Testing with Targeted Event Sequence Generation
DEFF Research Database (Denmark)
Jensen, Casper Svenning; Prasad, Mukul R.; Møller, Anders
2013-01-01
Automated software testing aims to detect errors by producing test inputs that cover as much of the application source code as possible. Applications for mobile devices are typically event-driven, which raises the challenge of automatically producing event sequences that result in high coverage...
Application of MCAM in generating Monte Carlo model for ITER port limiter
International Nuclear Information System (INIS)
Lu Lei; Li Ying; Ding Aiping; Zeng Qin; Huang Chenyu; Wu Yican
2007-01-01
On the basis of the pre-processing and conversion functions supplied by MCAM (Monte-Carlo Particle Transport Calculated Automatic Modeling System), this paper performed the generation of ITER Port Limiter MC (Monte-Carlo) calculation model from the CAD engineering model. The result was validated by using reverse function of MCAM and MCNP PLOT 2D cross-section drawing program. the successful application of MCAM to ITER Port Limiter demonstrates that MCAM is capable of dramatically increasing the efficiency and accuracy to generate MC calculation models from CAD engineering models with complex geometry comparing with the traditional manual modeling method. (authors)
2017-01-01
This note complements the paper titled: ``Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\\sqrt{s}$~=~0.9, 2.76 and 7~TeV'' with additional material related to Monte Carlo simulations necessary to compare the results with lower energy experiments. It describes a coalescence-based afterburner for QCD-inspired event generators, which allows the generation of light nuclei, hyper-nuclei and their charge conjugates in proton--proton (pp) collisions at LHC energies. The event generators with the afterburner are able to reproduce the differential cross sections of light (anti-)nuclei ($A<4)$ with the same degree of agreement as those of protons and anti-protons at the same momentum per nucleon. They also explain the transverse momentum dependence of the coalescence parameters as the result of hard scattering effects.
Monte Carlo study for the dynamical fluctuations inside a single jet in 2-jet events
International Nuclear Information System (INIS)
Zhang Kunshi; Liu Lianshou; Yin Jianwu; Chen Gang; Liu Chao
2002-01-01
The dynamical fluctuations inside a single jet in the 2-jet events produced in e + e - collisions at 91.2 GeV have been studied using Monte Carlo method. The results show that, the anisotropy of dynamical fluctuations inside a single jet changes remarkably with the variation of the cut parameter y cut . A transition point (γ p t = γ ψ ≠γ y ) exists, where the dynamical fluctuations are anisotropic in the longitudinal-transverse plan and isotropic in the transverse planes. It indicates that the y cut corresponding to the transition point is a physically reasonable cutting parameter for selecting jets and, meanwhile, the relative transverse momentum k t at the transition point is the scale for the determination of physical jets. This conclusion is in good agreement with the experimental fact that the third jet (gluon jet) was historically first discovered in the energy region 17-30 GeV in e + e - collisions
MadGraph/MadEvent. The new web generation
International Nuclear Information System (INIS)
Alwall, J.
2007-01-01
The new web-based version of the automatized process and event generator MadGraph/MadEvent is now available. Recent developments are: New models, notably MSSM, 2HDM and a framework for addition of user-defined models, inclusive sample generation and on-line hadronization and detector simulation. Event generation can be done on-line on any of our clusters. (author)
Radiative corrections and Monte Carlo generators for physics at flavor factories
Directory of Open Access Journals (Sweden)
Montagna Guido
2016-01-01
Full Text Available I review the state of the art of precision calculations and related Monte Carlo generators used in physics at flavor factories. The review describes the tools relevant for the measurement of the hadron production cross section (via radiative return, energy scan and in γγ scattering, luminosity monitoring, searches for new physics and physics of the τ lepton.
Efficient pseudo-random number generation for monte-carlo simulations using graphic processors
Mohanty, Siddhant; Mohanty, A. K.; Carminati, F.
2012-06-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Efficient pseudo-random number generation for Monte-Carlo simulations using graphic processors
International Nuclear Information System (INIS)
Mohanty, Siddhant; Mohanty, A K; Carminati, F
2012-01-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Study of variants for Monte Carlo generators of τ→3πν decays
Energy Technology Data Exchange (ETDEWEB)
Wąs, Zbigniew; Zaremba, Jakub, E-mail: jakub.zaremba@ifj.edu.pl [Institute of Nuclear Physics, PAN, ul. Radzikowskiego 152, Kraków (Poland)
2015-11-28
Low energy QCD (below 2 GeV) is a region of resonance dynamics, sometimes lacking a satisfactory description as compared to the precision of available experimental data. Hadronic τ decays offer a probe for such an energy regime. In general, the predictions for decays are model dependent, with parameters fitted to experimental results. The parameterizations differ by the amount of assumptions and theoretical requirements taken into account. Both model distributions and acquired data samples used for the fits are the results of a complex effort. In this paper, we investigate the main parameterizations of τ decay matrix elements for the one- and three-prong channels of three-pion τ decays. The differences in analytical forms of the currents and resulting distributions used for comparison with the experimental data are studied. We use invariant mass spectra of all possible pion pairs and the whole three-pion system. Also three-dimensional histograms spanned over all distinct squared invariant masses are used to represent the results of models and experimental data. We present distributions from TAUOLA Monte Carlo generation and a semi-analytical calculation. These are necessary steps in the development for fitting in an as model-independent way as possible, and to explore multi-million event experimental data samples. This includes the response of distributions to model variants, and/or numerical values of the parameters. The interference effects of the currents’ parts are also studied. For technical purposes, weighted events are introduced. Even though we focus on 3πν{sub τ} modes, technical aspects of our study are relevant for all τ decay modes into three hadrons.
Study of variants for Monte Carlo generators of τ → 3πν decays
Energy Technology Data Exchange (ETDEWEB)
Was, Zbigniew; Zaremba, Jakub [PAN, Institute of Nuclear Physics, Krakow (Poland)
2015-11-15
Low energy QCD (below 2 GeV) is a region of resonance dynamics, sometimes lacking a satisfactory description as compared to the precision of available experimental data. Hadronic τ decays offer a probe for such an energy regime. In general, the predictions for decays are model dependent, with parameters fitted to experimental results. The parameterizations differ by the amount of assumptions and theoretical requirements taken into account. Both model distributions and acquired data samples used for the fits are the results of a complex effort. In this paper, we investigate the main parameterizations of τ decays. The differences in analytical forms of the currents and resulting distributions used for comparison with the experimental data are studied. We use invariant mass spectra of all possible pion pairs and the whole three-pion system. Also three-dimensional histograms spanned over all distinct squared invariant masses are used to represent the results of models and experimental data. We present distributions from TAUOLA Monte Carlo generation and a semi-analytical calculation. These are necessary steps in the development for fitting in an as model-independent way as possible, and to explore multi-million event experimental data samples. This includes the response of distributions to model variants, and/or numerical values of the parameters. The interference effects of the currents' parts are also studied. For technical purposes, weighted events are introduced. Even though we focus on 3πν{sub τ} modes, technical aspects of our study are relevant for all τ decay modes into three hadrons. (orig.)
Ghersi, Dario; Parakh, Abhishek; Mezei, Mihaly
2017-12-05
Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Monte-Carlo Generation of Time Evolving Fission Chains
Energy Technology Data Exchange (ETDEWEB)
Verbeke, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Kenneth S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-08-01
About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (^{3}He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (^{252}Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.
International Nuclear Information System (INIS)
Warren, Kevin; Reed, Robert; Weller, Robert; Mendenhall, Marcus; Sierawski, Brian; Schrimpf, Ronald
2011-01-01
MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University's Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. In addition to basic radiation transport physics contained in the Geant4 core, MRED has the capability to track energy loss in tetrahedral geometric objects, includes a cross section biasing and track weighting technique for variance reduction, and additional features relevant to semiconductor device applications. The crucial element of predicting Single Event Upset (SEU) parameters using radiation transport software is the creation of a dosimetry model that accurately approximates the net collected charge at transistor contacts as a function of deposited energy. The dosimetry technique described here is the multiple sensitive volume (MSV) model. It is shown to be a reasonable approximation of the charge collection process and its parameters can be calibrated to experimental measurements of SEU cross sections. The MSV model, within the framework of MRED, is examined for heavy ion and high-energy proton SEU measurements of a static random access memory.
Monte Carlo next-event point flux estimation for RCP01
International Nuclear Information System (INIS)
Martz, R.L.; Gast, R.C.; Tyburski, L.J.
1991-01-01
Two next event point estimators have been developed and programmed into the RCP01 Monte Carlo program for solving neutron transport problems in three-dimensional geometry with detailed energy description. These estimators use a simplified but accurate flux-at-a-point tallying technique. Anisotropic scattering in the lab system at the collision site is accounted for by determining the exit energy that corresponds to the angle between the location of the collision and the point detector. Elastic, inelastic, and thermal kernel scattering events are included in this formulation. An averaging technique is used in both estimators to eliminate the well-known problem of infinite variance due to collisions close to the point detector. In a novel approach to improve the estimator's efficiency, a Russian roulette scheme based on anticipated flux fall off is employed where averaging is not appropriate. A second estimator successfully uses a simple rejection technique in conjunction with detailed tracking where averaging isn't needed. Test results show good agreement with known numeric solutions. Efficiencies are examined as a function of input parameter selection and problem difficulty
A Monte Carlo study of the acceptance to scattered events in a depth encoding PET camera
International Nuclear Information System (INIS)
Moisan, C.; Tupper, P.; Rogers, J.G.; DeJong, J.K.
1995-10-01
We present a Monte Carlo study of acceptance to scattered events in a Depth Encoding Large Aperture Camera (DELAC), a hypothetical PET scanner with the capacity to encode the depth-of-interaction (DOI) of incident γ-rays. The simulation is initially validated against the measured energy resolution and scatter fraction of the ECAT-953B scanner. It is then used to assess the response to scattered events in a PET camera made of position encoding blocks of the EXACT HR PLUS type, modified to have DOI resolution through a variation in the photopeak pulse height. The detection efficiency for 511 keV γ-rays, as well as for those that scattered in the object or left only part of their energy in the block, is studied for several combinations of DOI sensitivities and block thicknesses. The scatter fraction predicted by the simulation for DELACs of various ring radii is compared to that of the ECAT-953B as a function of the energy threshold. The results indicate that the poorer discrimination of object scatters with depth sensitive blocks does not lead to a dramatic increase of the scatter fraction. (author). 10 refs., 1 tab., 5 figs
An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm
Energy Technology Data Exchange (ETDEWEB)
Donev, A; Garcia, A L; Alder, B J
2007-07-30
A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.
The ATLAS collaboration
2014-01-01
Modeling of the fragmentation and decay of heavy flavor hadrons is compared for four Monte Carlo generators: Pythia8, Pythia6, Herwig ++ and Herwig. Heavy flavor hadron production fractions and fragmentation functions are studied using top-quark pair and high transverse momentum jet samples generated for pp collisions at $\\sqrt{s} = 8$ TeV. The performance of the generators for heavy flavor fragmentation is also validated using e+e− annihilation events generated at $\\sqrt{s} = 91.2$ GeV (for $b$-quarks) and $\\sqrt{s} = 10.53$GeV (for $c$-quarks). In addition, bottom and charm hadron decays for the four generators are compared both to results with EvtGen Monte Carlo model and to experimental measurements.
Generation and Verification of ENDF/B-VII.0 Cross section Libraries for Monte Carlo Calculations
International Nuclear Information System (INIS)
Park, Ho Jin; Kwak, Min Su; Joo, Han Gyu; Kim, Chang Hyo
2007-01-01
For Monte Carlo neutronics calculations, a continuous energy nuclear data library is needed. It can be generated from various evaluated nuclear data files such as ENDF/B using the ACER routine of the NJOY.code after a series of prior processing involving various other NJOY routines. Recently, a utility code, which generates the NJOY input decks in an automated mode, named ANJOYMC became available. The use of this code greatly reduces the user's effort and the possibility of input errors. In December 2006, the initial version of the ENDF/BVII nuclear data library was released. It was reported that the new data files have much better data which reduces the errors noted in the previous versions. Thus it is worthwhile to examine the performance of the new data files particularly using an independent Monte Carlo code, MCCARD and the ANJOYMC utility code. The verification of the newly generated library can be readily performed by analyzing numerous standard criticality benchmark problems
Monte Carlo simulations of a D-T neutron generator shielding for landmine detection
International Nuclear Information System (INIS)
Reda, A.M.
2011-01-01
Shielding for a D-T sealed neutron generator has been designed using the MCNP5 Monte Carlo radiation transport code. The neutron generator will be used in field for the detection of explosives, landmines, drugs and other 'threat' materials. The optimization of the detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. - Highlights: → A landmine detection system based on neutron fast/slow analysis has been designed. → Shielding for a D-T sealed neutron generator tube has been designed using Monte Carlo radiation transport code. → Detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. → The signal-to-background ratio optimized at one position for all depths.
A study of charm quark production in the NOMAD event generator
International Nuclear Information System (INIS)
Boyd, S.
1995-01-01
Although constructed primarily to aid in the search for neutrino oscillations, NOMAD, a counter experiment exposed to a ν m beam at the CERN SPS, is capable of making significant contributions to the study of charm quark production in ν m Deep Inelastic Scattering (DIS) processes. The analysis of such events, however, is dependent upon Monte Carlo simulations of the event kinematics and hence it is essential to understand the behaviour of such simulations. This talk compares data on charm production in the dimuon channel generated by the NOMAD Event Generator (NEGLIB) for an anti-neutrino beam with data collected in the CDHS experiment which ran at CERN in the period 1977-1980. Overall the two sets of data compare well, although some marked differences are observed. Several possible reasons are proposed and discussed
Photoproduction of multi-jet events at HERA: A Monte Carlo simulation
International Nuclear Information System (INIS)
Butterworth, J.M.; Forshaw, J.R.
1993-07-01
We study the regime of high-energy photoproduction, currently under exploration at the DESY ep Collider, HERA. In particular we discuss the possible production of more than one pair of 'back-to-back' jets which may occur at reasonably high-p T as a consequence of the high parton density regime opened up at HERA centre-of-mass energies. We describe the construction of a multi-jet event generator based upon leading order QCD perturbation theory and an eikonal formalism, and show that the effect of multiple parton interactions on event shapes at HERA could indeed be significant. (orig.)
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
Energy Technology Data Exchange (ETDEWEB)
Robles Pimentel, Edgar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Garcia Hernandez, Javier [Comision Federal de Electricidad, Mexico, D. F. (Mexico)
1997-12-31
In November 1995, the failure of the Unit 2 generator at the hydroelectric central station Ingeniero Carlos Ramirez Ulloa, El Caracol, occurred. The accident forced to carry out its overhaul. Here are presented the technical problems faced during the overhaul of the generator and analyzed the implemented solutions. [Espanol] En noviembre de 1995 ocurrio la falla del generador de la unidad 2 de la central hidroelectrica Ing. Carlos Ramirez Ulloa, El Caracol. El accidente obligo a llevar a cabo su rehabilitacion. Se presentan los problemas tecnicos enfrentados durante la rehabilitacion del generador y se discuten las soluciones implementadas.
Energy Technology Data Exchange (ETDEWEB)
Robles Pimentel, Edgar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Garcia Hernandez, Javier [Comision Federal de Electricidad, Mexico, D. F. (Mexico)
1998-12-31
In November 1995, the failure of the Unit 2 generator at the hydroelectric central station Ingeniero Carlos Ramirez Ulloa, El Caracol, occurred. The accident forced to carry out its overhaul. Here are presented the technical problems faced during the overhaul of the generator and analyzed the implemented solutions. [Espanol] En noviembre de 1995 ocurrio la falla del generador de la unidad 2 de la central hidroelectrica Ing. Carlos Ramirez Ulloa, El Caracol. El accidente obligo a llevar a cabo su rehabilitacion. Se presentan los problemas tecnicos enfrentados durante la rehabilitacion del generador y se discuten las soluciones implementadas.
International Nuclear Information System (INIS)
Both, J.P.; Nimal, J.C.; Vergnaud, T.
1990-01-01
We discuss an automated biasing procedure for generating the parameters necessary to achieve efficient Monte Carlo biasing shielding calculations. The biasing techniques considered here are exponential transform and collision biasing deriving from the concept of the biased game based on the importance function. We use a simple model of the importance function with exponential attenuation as the distance to the detector increases. This importance function is generated on a three-dimensional mesh including geometry and with graph theory algorithms. This scheme is currently being implemented in the third version of the neutron and gamma ray transport code TRIPOLI-3. (author)
Development of ANJOYMC Program for Automatic Generation of Monte Carlo Cross Section Libraries
International Nuclear Information System (INIS)
Kim, Kang Seog; Lee, Chung Chan
2007-03-01
The NJOY code developed at Los Alamos National Laboratory is to generate the cross section libraries in ACE format for the Monte Carlo codes such as MCNP and McCARD by processing the evaluated nuclear data in ENDF/B format. It takes long time to prepare all the NJOY input files for hundreds of nuclides with various temperatures, and there can be some errors in the input files. In order to solve these problems, ANJOYMC program has been developed. By using a simple user input deck, this program is not only to generate all the NJOY input files automatically, but also to generate a batch file to perform all the NJOY calculations. The ANJOYMC program is written in Fortran90 and can be executed under the WINDOWS and LINUX operating systems in Personal Computer. Cross section libraries in ACE format can be generated in a short time and without an error by using a simple user input deck
Energy Technology Data Exchange (ETDEWEB)
Campuzano Martinez, Ignacio Roberto; Gonzalez Vazquez, Alejandro Esteban; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Garcia Martinez, Javier; Sanchez Flores, Ernesto; Martinez Romero, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1999-12-31
The Hydroelectric Ing. Carlos Ramirez Ulloa Power Central has three 200 MW electric generators. The Central initiated its commercial operation in 1985. The electric generators had design problems that were properly corrected in an overhaul program that was initiated in 1996, with Unit 2 electric generator and completed in 1998 with Unit 1 electric generator. This paper presents the relevant aspects of the experience accumulated in the project. [Espanol] La central hidroelectrica Ing. Carlos Ramirez Ulloa cuenta con tres generadores de 200 MW cada uno. La central inicio su operacion comercial en 1985. Los generadores tenian problemas de diseno que fueron debidamente corregidos en un programa de rehabilitacion que inicio en 1996, con el generador de la unidad 2, y culmino en 1998 con el generador de la unidad 1. En este articulo se presentan los aspectos relevantes de la experiencia acumulada en el proyecto.
Energy Technology Data Exchange (ETDEWEB)
Campuzano Martinez, Ignacio Roberto; Gonzalez Vazquez, Alejandro Esteban; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Garcia Martinez, Javier; Sanchez Flores, Ernesto; Martinez Romero, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1998-12-31
The Hydroelectric Ing. Carlos Ramirez Ulloa Power Central has three 200 MW electric generators. The Central initiated its commercial operation in 1985. The electric generators had design problems that were properly corrected in an overhaul program that was initiated in 1996, with Unit 2 electric generator and completed in 1998 with Unit 1 electric generator. This paper presents the relevant aspects of the experience accumulated in the project. [Espanol] La central hidroelectrica Ing. Carlos Ramirez Ulloa cuenta con tres generadores de 200 MW cada uno. La central inicio su operacion comercial en 1985. Los generadores tenian problemas de diseno que fueron debidamente corregidos en un programa de rehabilitacion que inicio en 1996, con el generador de la unidad 2, y culmino en 1998 con el generador de la unidad 1. En este articulo se presentan los aspectos relevantes de la experiencia acumulada en el proyecto.
Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan
2016-04-01
We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.
Herwig: The Evolution of a Monte Carlo Simulation
CERN. Geneva
2015-01-01
Monte Carlo event generation has seen significant developments in the last 10 years starting with preparation for the LHC and then during the first LHC run. I will discuss the basic ideas behind Monte Carlo event generators and then go on to discuss these developments, focussing on the developments in Herwig(++) event generator. I will conclude by presenting the current status of event generation together with some results of the forthcoming new version of Herwig, Herwig 7.
Analysis of operation events for HFETR emergency diesel generator set
International Nuclear Information System (INIS)
Li Zhiqiang; Ji Xifang; Deng Hong
2015-01-01
By the statistic analysis of the historical failure data of the emergency diesel generator set, the specific mode, the attribute, and the direct and root origin for each failure are reviewed and summarized. Considering the current status of the emergency diesel generator set, the preventive measures and solutions in terms of operation, handling and maintenance are proposed, and the potential events for the emergency diesel generator set are analyzed. (authors)
Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo Simulation
International Nuclear Information System (INIS)
Hu Jun; Liu Fei; Cheng Guangxu; Zhang Zaoxiao
2011-01-01
Highlights: → A life prediction model for SG tubing was proposed. → The initial crack length for SCC was determined. → Two failure modes called rupture mode and leak mode were considered. → A probabilistic life prediction code based on Monte Carlo method was developed. - Abstract: The failure of steam generator tubing is one of the main accidents that seriously affects the availability and safety of a nuclear power plant. In order to estimate the probability of the failure, a probabilistic model was established to predict the whole life-span and residual life of steam generator (SG) tubing. The failure investigated was stress corrosion cracking (SCC) after the generation of one through-wall axial crack. Two failure modes called rupture mode and leak mode based on probabilistic fracture mechanics were considered in this proposed model. It took into account the variance in tube geometry and material properties, and the variance in residual stresses and operating conditions, all of which govern the propagations of cracks. The proposed model was numerically calculated by using Monte Carlo Simulation (MCS). The plugging criteria were first verified and then the whole life-span and residual life of the SG tubing were obtained. Finally, important sensitivity analysis was also carried out to identify the most important parameters affecting the life of SG tubing. The results will be useful in developing optimum strategies for life-cycle management of the feedwater system in nuclear power plants.
Monte Carlo Depletion with Critical Spectrum for Assembly Group Constant Generation
International Nuclear Information System (INIS)
Park, Ho Jin; Joo, Han Gyu; Shim, Hyung Jin; Kim, Chang Hyo
2010-01-01
The conventional two-step procedure has been used in practical nuclear reactor analysis. In this procedure, a deterministic assembly transport code such as HELIOS and CASMO is normally to generate multigroup flux distribution to be used in few-group cross section generation. Recently there are accuracy issues related with the resonance treatment or the double heterogeneity (DH) treatment for VHTR fuel blocks. In order to mitigate the accuracy issues, Monte Carlo (MC) methods can be used as an alternative way to generate few-group cross sections because the accuracy of the MC calculations benefits from its ability to use continuous energy nuclear data and detailed geometric information. In an earlier work, the conventional methods of obtaining multigroup cross sections and the critical spectrum are implemented into the McCARD Monte Carlo code. However, it was not complete in that the critical spectrum is not reflected in the depletion calculation. The purpose of this study is to develop a method to apply the critical spectrum to MC depletion calculations to correct for the leakage effect in the depletion calculation and then to examine the MC based group constants within the two-step procedure by comparing the two-step solution with the direct whole core MC depletion result
Event generation for next to leading order chargino production at the international linear collider
Energy Technology Data Exchange (ETDEWEB)
Robens, T.
2006-10-15
At the International Linear Collider (ILC), parameters of supersymmetry (SUSY) can be determined with an experimental accuracy matching the precision of next-to-leading order (NLO) and higher-order theoretical predictions. Therefore, these contributions need to be included in the analysis of the parameters. We present a Monte-Carlo event generator for simulating chargino pair production at the ILC at next-to-leading order in the electroweak couplings. We consider two approaches of including photon radiation. A strict fixed-order approach allows for comparison and consistency checks with published semianalytic results in the literature. A version with soft- and hard-collinear resummation of photon radiation, which combines photon resummation with the inclusion of the NLO matrix element for the production process, avoids negative event weights, so the program can simulate physical (unweighted) event samples. Photons are explicitly generated throughout the range where they can be experimentally resolved. In addition, it includes further higher-order corrections unaccounted for by the fixed-order method. Inspecting the dependence on the cutoffs separating the soft and collinear regions, we evaluate the systematic errors due to soft and collinear approximations for NLO and higher-order contributions. In the resummation approach, the residual uncertainty can be brought down to the per-mil level, coinciding with the expected statistical uncertainty at the ILC. We closely investigate the two-photon phase space for the resummation method. We present results for cross sections and event generation for both approaches. (orig.)
The ATLAS collaboration
2016-01-01
This note documents the Monte Carlo generators used by the ATLAS collaboration at the start of Run 2 for processes where a $W$ or $Z/\\gamma^*$ boson is produced in association with jets. The available event generators are briefly described and comparisons are made with ATLAS measurements of $W$ or $Z/\\gamma^*$+jets performed with Run 1 data, collected at the centre-of-mass energy of 7 TeV. The model predictions are then compared at the Run 2 centre-of-mass energy of 13~TeV. A comparison is also made with an early Run 2 ATLAS $Z/\\gamma^*$+jets data measurement. Investigations into tuning the parameters of the models and evaluating systematic uncertainties on the Monte Carlo predictions are also presented.
User-Generated Social Media Events in Tourism
Directory of Open Access Journals (Sweden)
Estela Marine-Roig
2017-12-01
Full Text Available Social media and mobile technologies have revolutionised communication and particular attention has been given to user-generated content (UGC and the formation of online communities; however, little attention has been given to tourist events entirely generated by users through social media. This paper aims to define and characterise the phenomenon of tourism user-generated events (UGEs through social media around the user’s new empowered role and to assess user-generated social media events’ online socialness. It is also our aim to provide a useful mixed-methodology analysis framework for UGEs in relation to social media and to highlight their interest for organisations. The methodological approach includes a quantitative model to store, analyse and compare events’ online socialness, which is combined with qualitative, participant observation at the events. This approach is applied to the analysis of three Instagram meetups organised by a specific online community at Catalan ski resorts. The paper’s results show the differential characteristic of tourism UGEs: user initiative and empowerment, full organisation and structure, great social media use and UGC production, brand dissemination, attraction capacity, strong online community bond and faithfulness. With UGEs, an event management paradigm shift occurs as organisations are no longer the main initiators and controllers of the event.
Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation
International Nuclear Information System (INIS)
Osaki, Márcia R.; Seleghim, Paulo
2017-01-01
Highlights: • The impacts of integrating new sugarcane conversion using bagasse and straw. • Industrial conversion of sugarcane into energy carriers: ethanol and electricity. • A reference sugarcane industrial was simulated by the Monte Carlo method. • Simultaneously optimal ethanol production and electricity generation occur at low burning bagasse rates. - Abstract: The main objective of this work is to assess the impacts of integrating new biomass conversion technologies into an existing sugarcane industrial processing plant in terms of its multi-objective optimal operating conditions. A typical sugarcane mill is identified and a second generation ethanol production pathway is incorporated to give the operator the possibility of controlling the ratio between the rates of burning bagasse and straw (sugarcane tops and leaves) to their second generation processing to achieve optimal ethanol and electricity outputs. A set of equations describing the associated conversion unit operations and chemical reactions is simulated by the Monte Carlo method and the corresponding operating envelope is constructed and statistically analyzed. These equations permit to calculate ethanol production and electricity generation in terms of a virtually infinite number of scenarios characterized by two controlled variables (burning bagasse and straw mass flow rates) and several uncontrolled variables (biomass composition, cellulose, hemicelluloses and lignin yields, fermentation efficiencies, etc.). Results reveal that the input variables have specific statistical characteristics when the corresponding operating states lay near the maximum energy limit (Pareto frontier). For example, since the objectives being optimized are intrinsically antagonistic, i.e. the increase of one dictates the decrease of the other, it is better to convert bagasse to ethanol via second generation pathway because of the high energy requirements of its dewatering prior to combustion and low heat
Absolute GPS Time Event Generation and Capture for Remote Locations
HIRES Collaboration
The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more
Sensor-Generated Time Series Events: A Definition Language
Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan
2012-01-01
There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.
Inclusion of GENIE as neutrino event generator for INO ICAL
Indian Academy of Sciences (India)
2017-02-22
Feb 22, 2017 ... be the largest experimental facility of basic science in India which will carry ..... further support the use of GENIE over Nuance, and also highlight the .... A neutrino event generator is a vital component in the simulation studies ...
Wood gasification energy micro-generation system in Brazil- a Monte Carlo viability simulation
Directory of Open Access Journals (Sweden)
GLAUCIA APARECIDA PRATES
2018-03-01
Full Text Available The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC. This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.
Energy Technology Data Exchange (ETDEWEB)
Tekiner, Hatice [Industrial Engineering, College of Engineering and Natural Sciences, Istanbul Sehir University, 2 Ahmet Bayman Rd, Istanbul (Turkey); Coit, David W. [Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Rd., Piscataway, NJ (United States); Felder, Frank A. [Edward J. Bloustein School of Planning and Public Policy, Rutgers University, Piscataway, NJ (United States)
2010-12-15
A new approach to the electricity generation expansion problem is proposed to minimize simultaneously multiple objectives, such as cost and air emissions, including CO{sub 2} and NO{sub x}, over a long term planning horizon. In this problem, system expansion decisions are made to select the type of power generation, such as coal, nuclear, wind, etc., where the new generation asset should be located, and at which time period expansion should take place. We are able to find a Pareto front for the multi-objective generation expansion planning problem that explicitly considers availability of the system components over the planning horizon and operational dispatching decisions. Monte-Carlo simulation is used to generate numerous scenarios based on the component availabilities and anticipated demand for energy. The problem is then formulated as a mixed integer linear program, and optimal solutions are found based on the simulated scenarios with a combined objective function considering the multiple problem objectives. The different objectives are combined using dimensionless weights and a Pareto front can be determined by varying these weights. The mathematical model is demonstrated on an example problem with interesting results indicating how expansion decisions vary depending on whether minimizing cost or minimizing greenhouse gas emissions or pollutants is given higher priority. (author)
MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES
Energy Technology Data Exchange (ETDEWEB)
Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)
2013-08-15
A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.
Monte-Carlo code PARJET to simulate e+e--annihilation events via QCD jets
International Nuclear Information System (INIS)
Ritter, S.
1983-01-01
The Monte-Carlo code PARJET simulates exclusive hadronic final states produced in e + e - -annihilation via a virtual photon by two steps: (i) the fragmentation of the original quark-antiquark pair into further partons using results of perturbative QCD in the leading logarithmic approximation (LLA), and (ii) the transition of these parton jets into hadrons on the basis of a chain decay model. Program summary and code description are given. (author)
International Nuclear Information System (INIS)
Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L; Soares, Edward J; Lemahieu, Ignace; Glick, Stephen J
2006-01-01
In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast
Maize transformation technology development for commercial event generation
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170
Maize transformation technology development for commercial event generation.
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
On the use of SERPENT Monte Carlo code to generate few group diffusion constants
Energy Technology Data Exchange (ETDEWEB)
Piovezan, Pamela, E-mail: pamela.piovezan@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Carluccio, Thiago; Domingos, Douglas Borges; Rossi, Pedro Russo; Mura, Luiz Felipe, E-mail: fermium@cietec.org.b, E-mail: thiagoc@ipen.b [Fermium Tecnologia Nuclear, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
The accuracy of diffusion reactor codes strongly depends on the quality of the groups constants processing. For many years, the generation of such constants was based on 1-D infinity cell transport calculations. Some developments using collision probability or the method of characteristics allow, nowadays, 2-D assembly group constants calculations. However, these 1-D and 2-D codes how some limitations as , for example, on complex geometries and in the neighborhood of heavy absorbers. On the other hand, since Monte Carlos (MC) codes provide accurate neutro flux distributions, the possibility of using these solutions to provide group constants to full-core reactor diffusion simulators has been recently investigated, especially for the cases in which the geometry and reactor types are beyond the capability of the conventional deterministic lattice codes. The two greatest difficulties on the use of MC codes to group constant generation are the computational costs and the methodological incompatibility between analog MC particle transport simulation and deterministic transport methods based in several approximations. The SERPENT code is a 3-D continuous energy MC transport code with built-in burnup capability that was specially optimized to generate these group constants. In this work, we present the preliminary results of using the SERPENT MC code to generate 3-D two-group diffusion constants for a PWR like assembly. These constants were used in the CITATION diffusion code to investigate the effects of the MC group constants determination on the neutron multiplication factor diffusion estimate. (author)
Generation reliability assessment in oligopoly power market using Monte Carlo simulation
International Nuclear Information System (INIS)
Haroonabadi, H.; Haghifam, M.R.
2007-01-01
This paper addressed issues regarding power generation reliability assessment (HLI) in deregulated power pool markets. Most HLI reliability evaluation methods are based on the loss of load (LOLE) approach which is among the most suitable indices to describe the level of generation reliability. LOLE refers to the time in which load is greater than the amount of available generation. While most reliability assessments deal only with power system constraints, this study considered HLI reliability assessment in an oligopoly power market using Monte Carlo simulation (MCS). It evaluated the sensitivity of the reliability index to different reserve margins and future margins. The reliability index was determined by intersecting the offer and demand curves of power plants and comparing them to other parameters. The paper described the fundamentals of an oligopoly power pool market and proposed an algorithm for HLI reliability assessment for such a market. The proposed method was assessed on the IEEE-Reliability Test System with satisfactory results. In all cases, generation reliability indices were evaluated with different reserve margins and various load levels. 19 refs., 7 figs., 1 appendix
New-generation Monte Carlo shell model for the K computer era
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio
2012-01-01
We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)
On the use of the Serpent Monte Carlo code for few-group cross section generation
International Nuclear Information System (INIS)
Fridman, E.; Leppaenen, J.
2011-01-01
Research highlights: → B1 methodology was used for generation of leakage-corrected few-group cross sections in the Serpent Monte-Carlo code. → Few-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. → 3D analysis of a PWR core was performed by a nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. → An excellent agreement in the results of 3D core calculations obtained with Helios and Serpent generated cross-section libraries was observed. - Abstract: Serpent is a recently developed 3D continuous-energy Monte Carlo (MC) reactor physics burnup calculation code. Serpent is specifically designed for lattice physics applications including generation of homogenized few-group constants for full-core core simulators. Currently in Serpent, the few-group constants are obtained from the infinite-lattice calculations with zero neutron current at the outer boundary. In this study, in order to account for the non-physical infinite-lattice approximation, B1 methodology, routinely used by deterministic lattice transport codes, was considered for generation of leakage-corrected few-group cross sections in the Serpent code. A preliminary assessment of the applicability of the B1 methodology for generation of few-group constants in the Serpent code was carried out according to the following steps. Initially, the two-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. Then, a 3D analysis of a Pressurized Water Reactor (PWR) core was performed by the nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. At this stage thermal-hydraulic (T-H) feedback was neglected. The DYN3D results were compared with those obtained from the 3D full core Serpent MC calculations. Finally, the full core DYN3D calculations were repeated taking into account T-H feedback and
Random number generators in support of Monte Carlo problems in physics
International Nuclear Information System (INIS)
Dyadkin, I.G.
1993-01-01
The ability to support a modern users' expectations of random number generators to solve problems in physics is analyzed. The capabilities of the newest concepts and the old pseudo-random algorithms are compared. The author is in favor of multiplicative generators. Due to the 64-bit arithmetic of a modern PC, multiplicative generators have a sufficient number of periods (up to 2 62 ) and are quicker to generate and to govern independent sequences for parallel processing. In addition they are able to replicate sub-sequences (without storing their seeds) for each standard trial in any code and to simulate spatial and planar directions and EXP(-x) distributions often needed as ''bricks'' for simulating events in physics. Hundreds of multipliers for multiplicative generators have been tabulated and tested, and the required speeds have been obtained. (author)
Total and inelastic cross sections in the PHOJET MC event generator
Energy Technology Data Exchange (ETDEWEB)
Fedynitch, Anatoli [CERN, Geneva (Switzerland); IKP, KIT, Karlsruhe (Germany); Engel, Ralph [IKP, KIT, Karlsruhe (Germany)
2013-07-01
The Monte-Carlo event generator PHOJET 1.12 has been successfully employed in experimental and technical fields of particle and cosmic ray physics for more than a decade. The latest official version, released in 2000, uses the total, elastic and diffractive cross-section data available during the Tevatron era as a basis for the extrapolation to higher energies. The employed model is based on Regge-arguments, typically resulting in reliable and stable predictions. However, recent LHC (min-bias) measurements of charged particle distributions and cross-sections showed, that a major rework of the underlying model is needed for a more accurate description of accelerator data. Here, we present the status of the ongoing work and give an outlook for the upcoming versions.
Les Houches guidebook to Monte Carlo generators for hadron collider physics
International Nuclear Information System (INIS)
Dobbs, Matt A.; Frixione, Stefano; Laenen, Eric; Tollefson, Kirsten
2004-01-01
Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool
Les Houches guidebook to Monte Carlo generators for hadron collider physics
Dobbs, M.A.; Laenen, Eric; Tollefson, K.; Baer, H.; Boos, E.; Cox, B.; Engel, R.; Giele, W.; Huston, J.; Ilyin, S.; Kersevan, B.; Krauss, F.; Kurihara, Y.; Lonnblad, L.; Maltoni, F.; Mangano, M.; Odaka, S.; Richardson, P.; Ryd, A.; Sjostrand, T.; Skands, Peter Z.; Was, Z.; Webber, B.R.; Zeppenfeld, D.
2005-01-01
Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.
Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan;
2005-01-01
Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.
Automated Monte Carlo biasing for photon-generated electrons near surfaces.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick
2009-09-01
This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.
Monte Carlo simulation of a medical linear accelerator for generation of phase spaces
International Nuclear Information System (INIS)
Oliveira, Alex C.H.; Santana, Marcelo G.; Lima, Fernando R.A.; Vieira, Jose W.
2013-01-01
Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation are linear accelerators (Linacs) which produce beams of X-rays in the range 5-30 MeV. Among the many algorithms developed over recent years for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC methods allow simulating the transport of ionizing radiation in complex configurations, such as detectors, Linacs, phantoms, etc. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. og millions of particles (photos, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). The objective of this work is to create a computational model of a 6 MeV Linac using the MC code Geant4 for generation of phase spaces. From the phase space, information was obtained to asses beam quality (photon and electron spectra and two-dimensional distribution of energy) and analyze the physical processes involved in producing the beam. (author)
New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation
International Nuclear Information System (INIS)
Sauvan, P.; Sanz, J.; Ogando, F.
2010-01-01
Several important research programs are dedicated to the development of facilities based on deuteron accelerators. In designing these facilities, the definition of a validated computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision is a very important issue. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculations use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in those facilities. We present a new computational tool, resulting from an extension of the MCNPX code, which improve significantly the treatment of problems where any secondary product (neutrons, photons, tritons, etc.) generated by low energy deuterons reactions could play a major role. Firstly, it handles deuteron evaluated data libraries, which allow describing better low deuteron energy interactions. Secondly, it includes a reduction variance technique for production of secondary particles by charged particle-induced nuclear interactions, which allow reducing drastically the computing time needed in transport and nuclear response calculations. Verification of the computational tool is successfully achieved. This tool can be very helpful in addressing design issues such as selection of the dedicated neutron production target and accelerator radioprotection analysis. It can be also helpful to test the deuteron cross-sections under development in the frame of different international nuclear data programs.
International Nuclear Information System (INIS)
Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.
2010-01-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.
Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado
2010-03-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
International Nuclear Information System (INIS)
Bacchetta, Alessandro; Jung, Hannes; Kutak, Krzysztof
2010-02-01
A method for tuning parameters in Monte Carlo generators is described and applied to a specific case. The method works in the following way: each observable is generated several times using different values of the parameters to be tuned. The output is then approximated by some analytic form to describe the dependence of the observables on the parameters. This approximation is used to find the values of the parameter that give the best description of the experimental data. This results in significantly faster fitting compared to an approach in which the generator is called iteratively. As an application, we employ this method to fit the parameters of the unintegrated gluon density used in the Cascade Monte Carlo generator, using inclusive deep inelastic data measured by the H1 Collaboration. We discuss the results of the fit, its limitations, and its strong points. (orig.)
Initial-state parton shower kinematics for NLO event generators
International Nuclear Information System (INIS)
Odaka, Shigeru; Kurihara, Yoshimasa
2007-01-01
We are developing a consistent method to combine tree-level event generators for hadron collision interactions with those including one additional QCD radiation from the initial-state partons, based on the limited leading-log (LLL) subtraction method, aiming at an application to NLO event generators. In this method, a boundary between non-radiative and radiative processes necessarily appears at the factorization scale (μ F ). The radiation effects are simulated using a parton shower (PS) in non-radiative processes. It is therefore crucial in our method to apply a PS which well reproduces the radiation activities evaluated from the matrix-element (ME) calculations for radiative processes. The PS activity depends on the applied kinematics model. In this paper we introduce two models for our simple initial-state leading-log PS: a model similar to the 'old' PYTHIA-PS and a p T -prefixed model motivated by ME calculations. PS simulations employing these models are tested using W-boson production at LHC as an example. Both simulations show a smooth matching to the LLL subtracted W+1 jet simulation in the p T distribution of W bosons, and the summed p T spectra are stable against a variation of μ F , despite that the p T -prefixed PS results in an apparently harder p T spectrum. (orig.)
MARTINI: An event generator for relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Schenke, Bjoern; Gale, Charles; Jeon, Sangyong
2009-01-01
We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications
International Nuclear Information System (INIS)
Bush, K; Popescu, I A; Zavgorodni, S
2008-01-01
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described. (note)
Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator
International Nuclear Information System (INIS)
Shypailo, R.J.; Ellis, K.J.
2009-01-01
Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)
Next-Generation Navigational Infrastructure and the ATLAS Event Store
van Gemmeren, P; The ATLAS collaboration; Nowak, M
2014-01-01
The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...
Next-Generation Navigational Infrastructure and the ATLAS Event Store
van Gemmeren, P; The ATLAS collaboration; Nowak, M
2013-01-01
The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...
Next-generation navigational infrastructure and the ATLAS event store
International Nuclear Information System (INIS)
Gemmeren, P van; Malon, D; Nowak, M
2014-01-01
The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigational infrastructure.
Hipse: an event generator for nuclear collisions at intermediate energies
International Nuclear Information System (INIS)
Lacroix, D.; Van Lauwe, A.; Durand, D.
2003-11-01
An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)
Im, Seohyun
2013-01-01
This dissertation aims to develop the Generator of the Event Structure Lexicon (GESL) which is a tool to automate annotating the event structure of verbs in text to support textual inference tasks related to lexically entailed subevents. The output of the GESL is the Event Structure Lexicon (ESL), which is a lexicon of verbs in text which includes…
International Nuclear Information System (INIS)
Procassini, R J; Beck, B R
2004-01-01
It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results
Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.
2004-01-01
We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.
A new version of the event generator Sibyll
Riehn, Felix; Fedynitch, Anatoli; Gaisser, Thomas K.; Stanev, Todor
2016-01-01
The event generator Sibyll can be used for the simulation of hadronic multiparticle production up to the highest cosmic ray energies. It is optimized for providing an economic description of those aspects of the expected hadronic final states that are needed for the calculation of air showers and atmospheric lepton fluxes. New measurements from fixed target and collider experiments, in particular those at LHC, allow us to test the predictive power of the model version 2.1, which was released more than 10 years ago, and also to identify shortcomings. Based on a detailed comparison of the model predictions with the new data we revisit model assumptions and approximations to obtain an improved version of the interaction model. In addition a phenomenological model for the production of charm particles is implemented as needed for the calculation of prompt lepton fluxes in the energy range of the astrophysical neutrinos recently discovered by IceCube. After giving an overview of the new ideas implemented in Sibyll...
Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.
Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P
2016-01-01
Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.
Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.
Directory of Open Access Journals (Sweden)
Satish K Guttikonda
Full Text Available Demand for the commercial use of genetically modified (GM crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.
Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented
A hadron-nucleus collision event generator for simulations at intermediate energies
Ackerstaff, K; Bollmann, R
2002-01-01
Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the DELTA sub 3 sub 3 -resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular d...
Generation of gamma-ray streaming kernels through cylindrical ducts via Monte Carlo method
International Nuclear Information System (INIS)
Kim, Dong Su
1992-02-01
Since radiation streaming through penetrations is often the critical consideration in protection against exposure of personnel in a nuclear facility, it has been of great concern in radiation shielding design and analysis. Several methods have been developed and applied to the analysis of the radiation streaming in the past such as ray analysis method, single scattering method, albedo method, and Monte Carlo method. But they may be used for order-of-magnitude calculations and where sufficient margin is available, except for the Monte Carlo method which is accurate but requires a lot of computing time. This study developed a Monte Carlo method and constructed a data library of solutions using the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, monoenergetic gamma-ray beam of unit intensity. The solution named as plane streaming kernel is the average dose rate at duct outlet and was evaluated for 20 source energies from 0 to 10 MeV, 36 source incident angles from 0 to 70 degrees, 5 duct radii from 10 to 30 cm, and 16 wall thicknesses from 0 to 100 cm. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the plane streaming kernel with acceptable error. Thus, the library of the plane streaming kernels can be used for the accurate and efficient analysis of radiation streaming through a straight cylindrical duct in concrete walls due to arbitrary distributions of gamma-ray sources
Energy Technology Data Exchange (ETDEWEB)
Remetti, Romolo; Lepore, Luigi [Sapienza University of Rome, Dept. SBAI, Via Antonio Scarpa 14, 00161 Rome (Italy); Cherubini, Nadia [ENEA CRE Casaccia, Nuclear Material Characterization Laboratory and Nuclear Waste Management, Via Anguillarese 301, 00123 Rome (Italy)
2017-01-11
An extensive use of Monte Carlo simulations led to the identification of a Thermo Scientific MP320 neutron generator MCNPX input deck. Such input deck is currently utilized at ENEA Casaccia Research Center for optimizing all the techniques and applications involving the device, in particular for explosives and drugs detection by fast neutrons. The working model of the generator was obtained thanks to a detailed representation of the MP320 internal components, and to the potentialities offered by the MCNPX code. Validation of the model was obtained by comparing simulated results vs. manufacturer's data, and vs. experimental tests. The aim of this work is explaining all the steps that led to those results, suggesting a procedure that might be extended to different models of neutron generators.
Remetti, Romolo; Lepore, Luigi; Cherubini, Nadia
2017-01-01
An extensive use of Monte Carlo simulations led to the identification of a Thermo Scientific MP320 neutron generator MCNPX input deck. Such input deck is currently utilized at ENEA Casaccia Research Center for optimizing all the techniques and applications involving the device, in particular for explosives and drugs detection by fast neutrons. The working model of the generator was obtained thanks to a detailed representation of the MP320 internal components, and to the potentialities offered by the MCNPX code. Validation of the model was obtained by comparing simulated results vs. manufacturer's data, and vs. experimental tests. The aim of this work is explaining all the steps that led to those results, suggesting a procedure that might be extended to different models of neutron generators.
Analysis of the Steam Generator Tubes Rupture Initiating Event
International Nuclear Information System (INIS)
Trillo, A.; Minguez, E.; Munoz, R.; Melendez, E.; Sanchez-Perea, M.; Izquierd, J.M.
1998-01-01
In PSA studies, Event Tree-Fault Tree techniques are used to analyse to consequences associated with the evolution of an initiating event. The Event Tree is built in the sequence identification stage, following the expected behaviour of the plant in a qualitative way. Computer simulation of the sequences is performed mainly to determine the allowed time for operator actions, and do not play a central role in ET validation. The simulation of the sequence evolution can instead be performed by using standard tools, helping the analyst obtain a more realistic ET. Long existing methods and tools can be used to automatism the construction of the event tree associated to a given initiator. These methods automatically construct the ET by simulating the plant behaviour following the initiator, allowing some of the systems to fail during the sequence evolution. Then, the sequences with and without the failure are followed. The outcome of all this is a Dynamic Event Tree. The work described here is the application of one such method to the particular case of the SGTR initiating event. The DYLAM scheduler, designed at the Ispra (Italy) JRC of the European Communities, is used to automatically drive the simulation of all the sequences constituting the Event Tree. Similarly to the static Event Tree, each time a system is demanded, two branches are open: one corresponding to the success and the other to the failure of the system. Both branches are followed by the plant simulator until a new system is demanded, and the process repeats. The plant simulation modelling allows the treatment of degraded sequences that enter into the severe accident domain as well as of success sequences in which long-term cooling is started. (Author)
Energy Technology Data Exchange (ETDEWEB)
Zeng, Ming; Li, Teng-Lin; Cang, Ji-Rong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi, E-mail: zengzhi@tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Fu, Jian-Qiang; Zeng, Wei-He; Cheng, Jian-Ping; Ma, Hao; Liu, Yi-Nong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)
2017-06-21
In neutrinoless double beta (0νββ) decay experiments, the diversity of topological signatures of different particles provides an important tool to distinguish double beta events from background events and reduce background rates. Aiming at suppressing the single-electron backgrounds which are most challenging, several groups have established Monte Carlo simulation packages to study the topological characteristics of single-electron events and 0νββ events and develop methods to differentiate them. In this paper, applying the knowledge of graph theory, a new topological signature called REF track (Refined Energy-Filtered track) is proposed and proven to be an accurate approximation of the real particle trajectory. Based on the analysis of the energy depositions along the REF track of single-electron events and 0νββ events, the REF energy deposition models for both events are proposed to indicate the significant differences between them. With these differences, this paper presents a new discrimination method, which, in the Monte Carlo simulation, achieved a single-electron rejection factor of 93.8±0.3 (stat.)% as well as a 0νββ efficiency of 85.6±0.4 (stat.)% with optimized parameters in CdZnTe.
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
Handling of the Generation of Primary Events in Gauss, the LHCb Simulation Framework
Corti, G; Brambach, T; Brook, N H; Gauvin, N; Harrison, K; Harrison, P; He, J; Ilten, P J; Jones, C R; Lieng, M H; Manca, G; Miglioranzi, S; Robbe, P; Vagnoni, V; Whitehead, M; Wishahi, J
2010-01-01
The LHCb simulation application, Gauss, consists of two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCb experimental program it is particularly important to model B meson decays: the EvtGen code developed in CLEO and BaBar has been chosen and customized for non coherent B production as occuring in pp collisions at the LHC. The initial proton-proton collision is provided by a different generator engine, currently Pythia 6 for massive production of signal and generic pp collisions events. Beam gas events, background events originating from proton halo, cosmics and calibration events for different detectors can be generated in addition to pp collisions. Different generator packages are available in the physics community or specifically developed in LHCb, and are used for the different purposes. Running conditions affecting the events generated such as the size of the luminous region, the number of collisions occuring in a bunc...
International Nuclear Information System (INIS)
Vithayasrichareon, Peerapat; MacGill, Iain F.
2012-01-01
This paper presents a novel decision-support tool for assessing future generation portfolios in an increasingly uncertain electricity industry. The tool combines optimal generation mix concepts with Monte Carlo simulation and portfolio analysis techniques to determine expected overall industry costs, associated cost uncertainty, and expected CO 2 emissions for different generation portfolio mixes. The tool can incorporate complex and correlated probability distributions for estimated future fossil-fuel costs, carbon prices, plant investment costs, and demand, including price elasticity impacts. The intent of this tool is to facilitate risk-weighted generation investment and associated policy decision-making given uncertainties facing the electricity industry. Applications of this tool are demonstrated through a case study of an electricity industry with coal, CCGT, and OCGT facing future uncertainties. Results highlight some significant generation investment challenges, including the impacts of uncertain and correlated carbon and fossil-fuel prices, the role of future demand changes in response to electricity prices, and the impact of construction cost uncertainties on capital intensive generation. The tool can incorporate virtually any type of input probability distribution, and support sophisticated risk assessments of different portfolios, including downside economic risks. It can also assess portfolios against multi-criterion objectives such as greenhouse emissions as well as overall industry costs. - Highlights: ► Present a decision support tool to assist generation investment and policy making under uncertainty. ► Generation portfolios are assessed based on their expected costs, risks, and CO 2 emissions. ► There is tradeoff among expected cost, risks, and CO 2 emissions of generation portfolios. ► Investment challenges include economic impact of uncertainties and the effect of price elasticity. ► CO 2 emissions reduction depends on the mix of
Generation of organic scintillators response function for fast neutrons using the Monte Carlo method
International Nuclear Information System (INIS)
Mazzaro, A.C.
1979-01-01
A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Türkmen, Mehmet, E-mail: tm@hacettepe.edu.tr [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey); Çolak, Üner [Energy Institute, Istanbul Technical University, Ayazağa Campus, Maslak, Istanbul (Turkey); Ergün, Şule [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey)
2015-12-15
Highlights: • Optimum core maps were generated for the ITU TRIGA Mark II Research Reactor. • Calculations were performed using a Monte Carlo based reactor physics code, MCNP. • Single-Objective and Multi-Objective Genetic Algorithms were used for the optimization. • k{sub eff} and ppf{sub max} were considered as the optimization objectives. • The generated core maps were compared with the fresh core map. - Abstract: The main purpose of this study is to present the results of Core Map (CM) generation calculations for the İstanbul Technical University TRIGA Mark II Research Reactor by using Genetic Algorithms (GA) coupled with a Monte Carlo (MC) based-particle transport code. Optimization problems under consideration are: (i) maximization of the core excess reactivity (ρ{sub ex}) using Single-Objective GA when the burned fuel elements with no fresh fuel elements are used, (ii) maximization of the ρ{sub ex} and minimization of maximum power peaking factor (ppf{sub max}) using Multi-Objective GA when the burned fuels with fresh fuels are used. The results were obtained when all the control rods are fully withdrawn. ρ{sub ex} and ppf{sub max} values of the produced best CMs were provided. Core-averaged neutron spectrum, and variation of neutron fluxes with respect to radial distance were presented for the best CMs. The results show that it is possible to find an optimum CM with an excess reactivity of 1.17 when the burned fuels are used. In the case of a mix of burned fuels and fresh fuels, the best pattern has an excess reactivity of 1.19 with a maximum peaking factor of 1.4843. In addition, when compared with the fresh CM, the thermal fluxes of the generated CMs decrease by about 2% while change in the fast fluxes is about 1%.Classification: J. Core physics.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)
2015-12-15
Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry
International Nuclear Information System (INIS)
Lee, Jae Bong; Park, Jae Hak; Kim, Hong Deok; Chung, Han Sub; Kim, Tae Ryong
2005-01-01
The growth of AVB wear in Model F steam generator tubes is predicted using the Monte Carlo Method and statistical approaches. The statistical parameters that represent the characteristics of wear growth and wear initiation are derived from In-Service Inspection (ISI) Non-Destructive Evaluation (NDE) data. Based on the statistical approaches, wear growth model are proposed and applied to predict wear distribution at the End Of Cycle (EOC). Probabilistic distributions of the number of wear flaws and maximum wear depth at EOC are obtained from the analysis. Comparing the predicted EOC wear flaw data with the known EOC data the usefulness of the proposed method is examined and satisfactory results are obtained
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Bong; Park, Jae Hak [Chungbuk National Univ., Cheongju (Korea, Republic of); Kim, Hong Deok; Chung, Han Sub; Kim, Tae Ryong [Korea Electtric Power Research Institute, Daejeon (Korea, Republic of)
2005-07-01
The growth of AVB wear in Model F steam generator tubes is predicted using the Monte Carlo Method and statistical approaches. The statistical parameters that represent the characteristics of wear growth and wear initiation are derived from In-Service Inspection (ISI) Non-Destructive Evaluation (NDE) data. Based on the statistical approaches, wear growth model are proposed and applied to predict wear distribution at the End Of Cycle (EOC). Probabilistic distributions of the number of wear flaws and maximum wear depth at EOC are obtained from the analysis. Comparing the predicted EOC wear flaw data with the known EOC data the usefulness of the proposed method is examined and satisfactory results are obtained.
Energy Technology Data Exchange (ETDEWEB)
Park, Ho Jin; Cho, Jin Young [KAERI, Daejeon (Korea, Republic of); Kim, Kang Seog [Oak Ridge National Laboratory, Oak Ridge (United States); Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)
2016-05-15
In this study, multi-group cross section libraries for the DeCART code were generated using a new procedure. The new procedure includes generating the RI tables based on the MC calculations, correcting the effective fission product yield calculations, and considering most of the fission products as resonant nuclides. KAERI (Korea Atomic Energy Research Institute) has developed the transport lattice code KARMA (Kernel Analyzer by Ray-tracing Method for fuel Assembly) and DeCART (Deterministic Core Analysis based on Ray Tracing) for a multi-group neutron transport analysis of light water reactors (LWRs). These codes adopt the method of characteristics (MOC) to solve the multi-group transport equation and resonance fixed source problem, the subgroup and the direct iteration method with resonance integral tables for resonance treatment. With the development of the DeCART and KARMA code, KAERI has established its own library generation system for a multi-group transport calculation. In the KAERI library generation system, the multi-group average cross section and resonance integral (RI) table are generated and edited using PENDF (point-wise ENDF) and GENDF (group-wise ENDF) produced by the NJOY code. The new method does not need additional processing because the MC method can handle any geometry information and material composition. In this study, the new method is applied to the dominant resonance nuclide such as U{sup 235} and U{sup 238} and the conventional method is applied to the minor resonance nuclides. To examine the newly generated multi-group cross section libraries, various benchmark calculations such as pin-cell, FA, and core depletion problem are performed and the results are compared with the reference solutions. Overall, the results by the new method agree well with the reference solution. The new procedure based on the MC method were verified and provided the multi-group library that can be used in the SMR nuclear design analysis.
Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation
International Nuclear Information System (INIS)
Baležentis, Tomas; Streimikiene, Dalia
2017-01-01
Highlights: • Two advanced optimization models were applied for EU energy policy scenarios development. • Several advanced MCDA were applied for energy policy scenarios ranking: WASPAS, ARAS, TOPSIS. • A Monte Carlo simulation was applied for sensitivity analysis of scenarios ranking. • New policy insights in terms of energy scenarios forecasting were provided based on research conducted. - Abstract: Integrated Assessment Models (IAMs) are omnipresent in energy policy analysis. Even though IAMs can successfully handle uncertainty pertinent to energy planning problems, they render multiple variables as outputs of the modelling. Therefore, policy makers are faced with multiple energy development scenarios and goals. Specifically, technical, environmental, and economic aspects are represented by multiple criteria, which, in turn, are related to conflicting objectives. Preferences of decision makers need to be taken into account in order to facilitate effective energy planning. Multi-criteria decision making (MCDM) tools are relevant in aggregating diverse information and thus comparing alternative energy planning options. The paper aims at ranking European Union (EU) energy development scenarios based on several IAMs with respect to multiple criteria. By doing so, we account for uncertainty surrounding policy priorities outside the IAM. In order to follow a sustainable approach, the ranking of policy options is based on EU energy policy priorities: energy efficiency improvements, increased use of renewables, reduction in and low mitigations costs of GHG emission. The ranking of scenarios is based on the estimates rendered by the two advanced IAMs relying on different approaches, namely TIAM and WITCH. The data are fed into the three MCDM techniques: the method of weighted aggregated sum/product assessment (WASPAS), the Additive Ratio Assessment (ARAS) method, and technique for order preference by similarity to ideal solution (TOPSIS). As MCDM techniques allow
International Nuclear Information System (INIS)
Zhang Feng; Hou Shuang; Jin Xiuyun
2010-01-01
The process of neutron interaction induced by D-T pulsed neutron generator and 241 Am-Be source was simulated by using Monte Carlo method. It is concluded that the thermal neutron count descend exponentially as the spacing increasing. The smaller porosity was, the smaller the differences between the two sources were. When the porosity reached 40%, the ratio of thermal neutron count generated by D-T pulsed neutron source was much larger than that generated by 241 Am-Be neutron source, and its distribution range was wider. The near spacing selected was 20-30 cm, and that of far spacing was about 60-70 cm. The detection depth by using D-T pulsed neutron source was almost unchanged under condition of the same sapcing, and the sensitivity of measurement to the formation porosity decreases. The results showed that it can not only guarantee the statistic of count, but also improve detection sensitivity and depth at the same time of increasing spacing. Therefore, 241 Am-Be neutron source can be replaced by D-T neutron tube in LWD tool. (authors)
International Nuclear Information System (INIS)
Cevallos R, L. E.; Guzman G, K. A.; Gallego, E.; Garcia F, G.; Vega C, H. R.
2017-10-01
The detection of hidden explosive material is very important for national security. Using Monte Carlo methods, with the code MCNP6, several proposed configurations of a detection system with a Deuterium-Deuterium (D-D) generator, in conjunction with NaI (Tl) scintillation detectors, have been evaluated to intercept hidden explosives. The response of the system to various explosive samples such as Rdx and ammonium nitrate are analyzed as the main components of home-military explosives. The D-D generator produces fast neutrons of 2.5 MeV in a maximum field of 10 10 n/s (Dd-110) which is surrounded with high density polyethylene in order to thermalized the fast neutrons making them interact with the sample inspected, giving rise to the emission of gamma rays that generates a characteristic spectrum of the elements that constitute it, being able in this way to determine its chemical composition and identify the type of substance. The necessary shielding is evaluated to estimate the admissible operation dose, with thicknesses of lead and borated polyethylene, in order to place it at some point of the Laboratory of Neutron Measurements of the Polytechnic University of Madrid where the shielding is optimal. The results show that its functionality is promising in the field of national security for the explosives inspection. (Author)
Jing, Helen G; Madore, Kevin P; Schacter, Daniel L
2017-12-01
A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Turner, Adam C.; Zhang Di; Kim, Hyun J.; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-01-01
The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called ''equivalent'' source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL 1 and HVL 2 ) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL 1 and HVL 2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL 1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types
International Nuclear Information System (INIS)
Hirao, Toshio
2007-01-01
Single-event upset (SEU) is triggered when an amount of electric charges induced by energetic ion incidence exceeds a value known as a critical charge in a very short time period. Therefore, accurate evaluation of electric charge and understanding of basic mechanism of SEU are necessary for the improvement of SEU torrance of electronic devices. In this paper, the collected charges for the single event transient current induced on semiconductor by heavy ion microbeams, and application to use microbeam for single event studies are presented. (author)
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
M073: Monte Carlo generated spectra for QA/QC of automated NAA routine
International Nuclear Information System (INIS)
Jackman, K.R.; Biegalski, S.R.
2004-01-01
A quality check for an automated system of analyzing large sets of neutron activated samples has been developed. Activated samples are counted with an HPGe detector, in conjunction with an automated sample changer and spectral analysis tools, controlled by the Canberra GENIE 2K and REXX software. After each sample is acquired and analyzed, a Microsoft Visual Basic program imports the results into a template Microsoft Excel file where the final concentrations, uncertainties, and detection limits are determined. Standard reference materials are included in each set of 40 samples as a standard quality assurance/quality control (QA/QC) test. A select group of sample spectra are also visually reviewed to check the peak fitting routines. A reference spectrum was generated in MCNP 4c2 using an F8, pulse height, tally with a detector model of the actual detector used in counting. The detector model matches the detector resolution, energy calibration, and counting geometry. The generated spectrum also contained a radioisotope matrix that was similar to what was expected in the samples. This spectrum can then be put through the automated system and analyzed along with the other samples. The automated results are then compared to expected results for QA/QC assurance.
Monte Carlo generated spectra for QA/QC of automated NAA routine
International Nuclear Information System (INIS)
Jackman, K.R.; Biegalski, S.R.
2007-01-01
A quality check for an automated system of analyzing large sets of neutron activated samples has been developed. Activated samples are counted with an HPGe detector, in conjunction with an automated sample changer and spectral analysis tools, controlled by the Canberra GENIE 2K and REXX software. After each sample is acquired and analyzed, a Microsoft Visual Basic program imports the results into a template Microsoft Excel file where the final concentrations, uncertainties, and detection limits are determined. Standard reference materials are included in each set of 40 samples as a standard quality assurance/quality control (QA/QC) test. A select group of sample spectra are also visually reviewed to check the peak fitting routines. A reference spectrum was generated in MCNP 4c2 using an F8, pulse-height, tally with a detector model of the actual detector used in counting. The detector model matches the detector resolution, energy calibration, and counting geometry. The generated spectrum also contained a radioisotope matrix that was similar to what was expected in the samples. This spectrum can then be put through the automated system and analyzed along with the other samples. The automated results are then compared to expected results for QA/QC assurance. (author)
GC Side Event: Future of Nuclear Energy: Engaging the Young Generation. Presentations
International Nuclear Information System (INIS)
2017-01-01
This event presented the IAEA’s programmes for the education and training of a new generation of nuclear professionals. It also featured the annual European Master of Science in Nuclear Engineering (EMSNE) award ceremony
Monte-Carlo simulation of primary electrons in the matter for the generation of x-rays
International Nuclear Information System (INIS)
Bendjama, H.; Laib, Y.; Allag, A.; Drai, R.
2006-01-01
The x-rays imagining chains components from the source to the detector, rest on the first part of simulation to the energy production of x-rays emission (source), which suggest us to identified the losses energies result from interaction between the fast electrons and the particles of metal : the energies losses due to 'collisional losses' (ionization, excitation) and radiative losses. For the medium and the primary electron energy which interests us, the electrons slowing down in the matter results primarily from the inelastic collisions; whose interest is to have to simulate the x-rays characteristic spectrum. We used a Monte-Carlo method to simulate the energy loss and the transport of primary electrons. This type of method requires only the knowledge of the cross sections attached to the description of all the elementary events. In this work, we adopted the differential cross section of Mott and the total cross section of inner-shell ionization according to the formulation of Gryzinski, to simulate the energy loss and the transport of primary electrons respectively. The simulation allows to follow the electrons until their energy reaches the atomic ionization potential of the irradiated matter. The differential cross section of Mott gives us a very good representation of the pace of the distribution of the energy losses. The transport of primary electron is approximately reproduced
Phillips, Anna C.; Carroll, Douglas; Der, Geoffrey
2015-01-01
Background and Objectives: Stressful life events are known to contribute to development of depression, however, it is possible this link is bi-directional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Design: Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Methods:...
Phillips, Anna C; Carroll, Douglas; Der, Geoff
2015-01-01
Stressful life events are known to contribute to development of depression; however, it is possible this link is bidirectional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Stressful life events, depression, and anxiety symptoms were measured twice five years apart. Cross-lagged panel analysis examined the mutual influences of stressful life events on depression and on anxiety over time. Life events predicted later depressive symptomatology (p = .01), but the depression predicting life events relationship was less strong (p = .06), whereas earlier anxiety predicted life events five years later (p = .001). There was evidence of sex differences in the extent to which life events predicted later anxiety. This study provides evidence of stress causation for depression and weaker evidence for stress generation. In contrast, there was strong evidence of stress generation for anxiety but weaker evidence for stress causation, and that differed for men and women.
Multi-Group Covariance Data Generation from Continuous-Energy Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
Lee, Dong Hyuk; Shim, Hyung Jin
2015-01-01
The sensitivity and uncertainty (S/U) methodology in deterministic tools has been utilized for quantifying uncertainties of nuclear design parameters induced by those of nuclear data. The S/U analyses which are based on multi-group cross sections can be conducted by an simple error propagation formula with the sensitivities of nuclear design parameters to multi-group cross sections and the covariance of multi-group cross section. The multi-group covariance data required for S/U analysis have been produced by nuclear data processing codes such as ERRORJ or PUFF from the covariance data in evaluated nuclear data files. However in the existing nuclear data processing codes, an asymptotic neutron flux energy spectrum, not the exact one, has been applied to the multi-group covariance generation since the flux spectrum is unknown before the neutron transport calculation. It can cause an inconsistency between the sensitivity profiles and the covariance data of multi-group cross section especially in resolved resonance energy region, because the sensitivities we usually use are resonance self-shielded while the multi-group cross sections produced from an asymptotic flux spectrum are infinitely-diluted. In order to calculate the multi-group covariance estimation in the ongoing MC simulation, mathematical derivations for converting the double integration equation into a single one by utilizing sampling method have been introduced along with the procedure of multi-group covariance tally
Directory of Open Access Journals (Sweden)
TEMITOPE RAPHAEL AYODELE
2016-04-01
Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.
De Beer, R.; Van Ormondt, D.
2014-01-01
Work in context of European Union TRANSACT project. We have developed a Java/JNI/C/Fortran based software application, called MonteCarlo, with which the users can carry out Monte Carlo studies in the field of \\emph{in vivo} MRS. The application is supposed to be used as a tool for supporting the
International Nuclear Information System (INIS)
Rotaru, M.
2005-01-01
The tt-bar production using MC events with one charged lepton (electron), neutrino and jets from pp-bar collisions at a center-of-mass energy of 1.96 TeV was investigated. The aim of this work was to compare the rate of events in central (|η|<1.1) and plug (1.1<|η|<2.8) region. (author)
HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics
Shao, Hua-Sheng
2016-01-01
We present an upgraded version (denoted as version 2.0) of the program HELAC-Onia for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster enviroment for parallel computations via Python scripts. We have interfaced HELAC-Onia to the parton shower Monte Carlo programs Pythia 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A futher update is the possiblity to generate one-dimensional or two-dimensional plots encoded in the analysis file...
HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics
Shao, Hua-Sheng
2016-01-01
We present an upgraded version (denoted as version 2.0) of the program HELAC-ONIA for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster environment for parallel computations via PYTHON scripts. We have interfaced HELAC-ONIA to the parton shower Monte Carlo programs PYTHIA 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A further update is the possibility to generate one-dimensional or two-dimensional plots encoded in the analysis files on the fly. Some dedicated examples are given at the end of the writeup.
QCD event generators with next-to-leading order matrix-elements and parton showers
International Nuclear Information System (INIS)
Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.
2003-01-01
A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method
Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.
Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P
2018-01-04
Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was
International Nuclear Information System (INIS)
Yang, Ying-Hsien; Lin, Sue-Jane; Lewis, Charles
2009-01-01
Life Cycle Assessment (LCA) is a rather common tool for reducing environmental impacts while striving for cleaner processes. This method yields reliable information when input data is sufficient; however, in uncertain systems Monte Carlo (MC) simulation is used as a means to compensate for insufficient data. The MC optimization model was constructed from environmental emissions, process parameters and operation constraints. The results of MC optimization allow for the prediction of environmental performance and the opportunity for environmental improvement. The case study presented here focuses on the acidification improvement regarding uncertain emissions and on the available operation of Taiwan's power plants. The boundary definitions of LCA were established for generation, fuel refining and mining. The model was constructed according to objective functional minimization of acidification potential, base loading, fuel cost and generation mix constraints. Scenario simulations are given the different variation of fuel cost ratios for Taiwan. The simulation results indicate that fuel cost was the most important parameter influencing the acidification potential for seven types of fired power. Owing to the low operational loading, coal-fired power is the best alternative for improving acidification. The optimal scenario for acidification improvement occurred at 15% of the fuel cost. The impact decreased from 1.39 to 1.24 kg SO 2 -eq./MWh. This reduction benefit was about 10.5% lower than the reference year. Regarding eco-efficiency at an optimum scenario level of 5%, the eco-efficiency value was - 12.4 $US/kg SO 2 -eq. Considering the environmental and economical impacts, results indicated that the ratio of coal-fired steam turbine should be reduced. (author)
Glavinovíc, M I
1999-02-01
The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding
Co-Design of Event Generator and Dynamic Output Feedback Controller for LTI Systems
Directory of Open Access Journals (Sweden)
Dan Ma
2015-01-01
Full Text Available This paper presents a co-design method of the event generator and the dynamic output feedback controller for a linear time-invariant (LIT system. The event-triggered condition on the sensor-to-controller and the controller-to-actuator depends on the plant output and the controller output, respectively. A sufficient condition on the existence of the event generator and the dynamic output feedback controller is proposed and the co-design problem can be converted into the feasibility of linear matrix inequalities (LMIs. The LTI system is asymptotically stable under the proposed event-triggered controller and also reduces the computing resources with respect to the time-triggered one. In the end, a numerical example is given to illustrate the effectiveness of the proposed approach.
Uusijärvi, Helena; Chouin, Nicolas; Bernhardt, Peter; Ferrer, Ludovic; Bardiès, Manuel; Forssell-Aronsson, Eva
2009-08-01
Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from
Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.
Shan, Qing; Chu, Shengnan; Jia, Wenbao
2015-11-01
Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prevention and mitigation of steam generator water hammer events in PWRs
International Nuclear Information System (INIS)
Han, J.T.; Anderson, N.
1983-01-01
Water hammer in nuclear power plants is an unresolved safety issue under study by the Nuclear Regulatory Commission (NRC). This article summarizes (1) the causes of steam generator water hammer (SGWH) events in pressurized-water reactors (PWRs), (2) various methods used to prevent or mitigate SGWH events, and (3) modifications that have been made at each operating PWR. The NRC staff considers the issue of SGWH in top feedring designs to be technically resolved. This article does not address technical findings relevant to water hammer in preheat-type steam generators
AUTHOR|(SzGeCERN)676067
The start of the Large Hadron Collider provides an unprecedent opportunity for the exploration of physics at the \\TeV{} scale. It is expected to perform precise tests of the structure of the Standard Model and to hint at the structure of the physical laws at a more fundamental level. \\paragraph{} The first part of this work describes a tune of the initial- and final-state radiation parameters in the \\textsc{Pythia8} Monte Carlo generator, using ATLAS measurements of \\ttbar{} production at $\\sqrt{s}=7$ \\TeV{}. The results are compared to previous tunes to the $Z$ boson transverse momentum at the LHC, and to the LEP event shapes in $Z$ boson hadronic decays, testing of the universality of the parton shower model. The tune of Pythia8 to the \\ttbar{} measurements is applied to the next-to-leading order generators MadGraph5\\_aMC@NLO and Powheg, and additional parameters of these generators are tuned to the \\ttbar{} data. For the first time in the context of Monte Carlo tuning, the correlation of the experimental ...
A trick to improve the efficiency of generating unweighted B events from BCVEGPY
Wang, Xian-You; Wu, Xing-Gang
2012-02-01
In the present paper, we provide an addendum to improve the efficiency of generating unweighted events within PYTHIA environment for the generator BCVEGPY2.1 [C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 174 (2006) 241]. This trick is helpful for experimental simulation. Moreover, the BCVEGPY output has also been improved, i.e. one Les Houches Event common block has been added so as to generate a standard Les Houches Event file that contains the information of the generated B meson and the accompanying partons, which can be more conveniently used for further simulation. New version program summaryTitle of program: BCVEGPY2.1a Catalogue identifier: ADTJ_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTJ_v2_2.html Program obtained from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 166 133 No. of bytes in distributed program, including test data, etc.: 1 655 390 Distribution format: tar.gz Programming language used: FORTRAN 77/90 Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating systems: LINUX RAM: About 2.0 MB Classification: 11.2, 11.5 Catalogue identifier of previous version: ADTJ_v2_1 Reference in CPC: Comput. Phys. Commun. 175 (2006) 624 Does the new version supersede the old program: No Nature of physical problem: Hadronic Production of B meson and its excited states Method of solution: To generate weighted and unweighted B events within PYTHIA environment effectively. Restrictions on the complexity of the problem: Hadronic production of ( cb¯)-quarkonium via the gluon-gluon fusion mechanism are given by the 'complete calculation approach'. The simulation of B events is done within PYTHIA environment. Reasons for new version: More and more data are accumulated at the large hadronic collider, it would be possible to make
International Nuclear Information System (INIS)
Jeong, Ji Hwan; Kweon, Young Chul
2002-01-01
A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet
Assessing hail risk for a building portfolio by generating stochastic events
Nicolet, Pierrick; Choffet, Marc; Demierre, Jonathan; Imhof, Markus; Jaboyedoff, Michel; Nguyen, Liliane; Voumard, Jérémie
2015-04-01
Among the natural hazards affecting buildings, hail is one of the most costly and is nowadays a major concern for building insurance companies. In Switzerland, several costly events were reported these last years, among which the July 2011 event, which cost around 125 million EUR to the Aargauer public insurance company (North-western Switzerland). This study presents the new developments in a stochastic model which aims at evaluating the risk for a building portfolio. Thanks to insurance and meteorological radar data of the 2011 Aargauer event, vulnerability curves are proposed by comparing the damage rate to the radar intensity (i.e. the maximum hailstone size reached during the event, deduced from the radar signal). From these data, vulnerability is defined by a two-step process. The first step defines the probability for a building to be affected (i.e. to claim damages), while the second, if the building is affected, attributes a damage rate to the building from a probability distribution specific to the intensity class. To assess the risk, stochastic events are then generated by summing a set of Gaussian functions with 6 random parameters (X and Y location, maximum hailstone size, standard deviation, eccentricity and orientation). The location of these functions is constrained by a general event shape and by the position of the previously defined functions of the same event. For each generated event, the total cost is calculated in order to obtain a distribution of event costs. The general events parameters (shape, size, …) as well as the distribution of the Gaussian parameters are inferred from two radar intensity maps, namely the one of the aforementioned event, and a second from an event which occurred in 2009. After a large number of simulations, the hailstone size distribution obtained in different regions is compared to the distribution inferred from pre-existing hazard maps, built from a larger set of radar data. The simulation parameters are then
Susy Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators
International Nuclear Information System (INIS)
Skands, P.; Allanach, B.C.; Baer, H.
2003-11-01
An accord specifying generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators. (orig.)
NiMax: a new approach to develop hadronic event generators in HEP
International Nuclear Information System (INIS)
Amelin, N.; Komogorov, M.
2000-01-01
The NiMax framework is a new approach to develop, assemble and use hadronic event generators in HEP. There are several important concepts of the NiMax architecture: the components, the data file, the application domain module, the control system and the project. Here we describe these concepts stressing their functionality
Bb4l event generator, interferences and off-shell effects
Peyruchat, Leo Paul
2017-01-01
Proton-proton collisions happening in LHC create lots of data. To understand the underlying physics behind these events, the real data must be compared to simulated events. A new generator,called the bb4l model, is able to simulate collisions happening in LHC with new interesting features regarding process creating two W bosons and two b quarks. One of them is that it takes interferences between different processes into account. Such effects have always been neglected in the case of top pair or single top production, but with the increasing sensitivity of the detectors it is becoming important to know precisely their amplitude. The goal of this study is to separate events generated with bb4l into different categories, and then to look at many variables and look for differences between categories.
Monte Carlo and Quasi-Monte Carlo Sampling
Lemieux, Christiane
2009-01-01
Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.
Event-Driven Technology to Generate Relevant Collections of Near-Realtime Data
Graves, S. J.; Keiser, K.; Nair, U. S.; Beck, J. M.; Ebersole, S.
2017-12-01
Getting the right data when it is needed continues to be a challenge for researchers and decision makers. Event-Driven Data Delivery (ED3), funded by the NASA Applied Science program, is a technology that allows researchers and decision makers to pre-plan what data, information and processes they need to have collected or executed in response to future events. The Information Technology and Systems Center at the University of Alabama in Huntsville (UAH) has developed the ED3 framework in collaboration with atmospheric scientists at UAH, scientists at the Geological Survey of Alabama, and other federal, state and local stakeholders to meet the data preparedness needs for research, decisions and situational awareness. The ED3 framework supports an API that supports the addition of loosely-coupled, distributed event handlers and data processes. This approach allows the easy addition of new events and data processes so the system can scale to support virtually any type of event or data process. Using ED3's underlying services, applications have been developed that monitor for alerts of registered event types and automatically triggers subscriptions that match new events, providing users with a living "album" of results that can continued to be curated as more information for an event becomes available. This capability can allow users to improve capacity for the collection, creation and use of data and real-time processes (data access, model execution, product generation, sensor tasking, social media filtering, etc), in response to disaster (and other) events by preparing in advance for data and information needs for future events. This presentation will provide an update on the ED3 developments and deployments, and further explain the applicability for utilizing near-realtime data in hazards research, response and situational awareness.
Quality of Life and Stressful Life Events in First and Second Generation Immigrant Adolescents
Directory of Open Access Journals (Sweden)
Ida Lemos
2013-09-01
Full Text Available The aim of this study was to examine differences in quality of life and stressful life events, in first and second generation immigrant adolescents living in Algarve. A total of 172 immigrant adolescents participated in the study, completing the kidscreen-52, the stressful and negative life events inventory and a socio-demographic questionnaire. Results suggest that younger immigrant adolescents report more physical well-being and a higher mood level. Concerning gender differences, girls scored higher than boys in physical well-being, mood and self-perception, but no differences were found on the other kidscreen subscales. First generation immigrants scored significantly higher than second generation ones on the general quality of life index, psychological well-being, autonomy, financial resources and school environment. However, the second-generation immigrants did not seem to be more exposed to stressful life events than the first-generation group. When selecting relevant variables for well-being promotion and for intervention, we must consider that immigrants are more exposed to economic vulnerability, may experience difficulties in adapting to a different school context, and are at higher risk of social exclusion.
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analogue of the Polyakov string is considered in the work. An algorithm is proposed which enables one to study the model by means of the Monte Carlo method in the grand canonical ensemble. Preliminary results are presented on the evaluation of the critical index γ
International Nuclear Information System (INIS)
Turner, J.E.; Modolo, J.T.; Sordi, G.M.A.A.; Hamm, R.N.; Wright, H.A.
1979-01-01
PHOEL provides a source term for a Monte Carlo code which calculates the electron transport and energy degradation in liquid water. This code is used to study the relative biological effectiveness (RBE) of low-LET radiation at low doses. The basic numerical data used and their mathematical treatment are described as well as the operation of the code [pt
Modeling the Process of Event Sequence Data Generated for Working Condition Diagnosis
Directory of Open Access Journals (Sweden)
Jianwei Ding
2015-01-01
Full Text Available Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of telemetry data in the process. The main task of surveillance focuses on analyzing these routinely collected telemetry data to help analyze the working condition in the equipment. However, with the rapid increase in the volume of telemetry data, it is a nontrivial task to analyze all the telemetry data to understand the working condition of the equipment without any a priori knowledge. In this paper, we proposed a probabilistic generative model called working condition model (WCM, which is capable of simulating the process of event sequence data generated and depicting the working condition of equipment at runtime. With the help of WCM, we are able to analyze how the event sequence data behave in different working modes and meanwhile to detect the working mode of an event sequence (working condition diagnosis. Furthermore, we have applied WCM to illustrative applications like automated detection of an anomalous event sequence for the runtime of equipment. Our experimental results on the real data sets demonstrate the effectiveness of the model.
MBR Monte Carlo Simulation in PYTHIA8
Ciesielski, R.
We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.
Monte Carlo applications to radiation shielding problems
International Nuclear Information System (INIS)
Subbaiah, K.V.
2009-01-01
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation
Event generator for RHIC spin physics. Proceedings of RIKEN BNL Research Center workshop: Volume 11
International Nuclear Information System (INIS)
1998-01-01
A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 ≤ √s ≤ 500 GeV, high polarization, 70%, and high luminosity, 2 x 10 32 cm -2 sec -1 or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions is being improved continuously. This workshop aims at getting this process well under way for the spin physics program at RHIC, based on the first development in this direction, SPHINX
Search for a QGP with a TPC spectrometer, and QGP signals predicted by new event generator
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1988-01-01
The BNL/CCNY/Johns Hopkins/Rice Collaboration has developed and successfully tested a TPC Magnetic Spectrometer to search for OGP signals produced by ion beams at AGS. Test data with 14.5 GeV/c /times/ A Oxygen ions incident on a Pb target has been obtained. These include a 78-prong nuclear interaction in the MPS magnet which was pattern recognized with an efficiency ∼75%. A cascade and plasma event generator has also been developed, the predictions of which are used to illustrate how our technique can detect possible plasma signals at AGS and RHIC. A 4π tracking TPC magnetic spectrometer has been proposed for RHIC. The new event generator predicts striking central rapidity bump QGP signals at RHIC for p, /bar p/, π/sup +-/, K/sup +-/, etc., produced by 100 GeV/c /times/ A Au on Au collisions and these are presented. 2 refs., 13 figs., 1 tab
Material control study: a directed graph and fault tree procedure for adversary event set generation
International Nuclear Information System (INIS)
Lambert, H.E.; Lim, J.J.; Gilman, F.M.
1978-01-01
In work for the United States Nuclear Regulatory Commission, Lawrence Livermore Laboratory is developing an assessment procedure to evaluate the effectiveness of a potential nuclear facility licensee's material control (MC) system. The purpose of an MC system is to prevent the theft of special nuclear material such as plutonium and highly enriched uranium. The key in the assessment procedure is the generation and analysis of the adversary event sets by a directed graph and fault-tree methodology
Anderson localisation and optical-event horizons in rogue-soliton generation.
Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio
2017-03-06
We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.
EVENT GENERATION OF STANDARD MODEL HIGGS DECAY TO DIMUON PAIRS USING PYTHIA SOFTWARE
Yusof, Adib
2015-01-01
My project for CERN Summer Student Programme 2015 is on Event Generation of Standard Model Higgs Decay to Dimuon Pairs using Pythia Software. Briefly, Pythia or specifically, Pythia 8.1 is a program for the generation of high-energy Physics events that is able to describe the collisions at any given energies between elementary particles such as Electron, Positron, Proton as well as anti-Proton. It contains theory and models for a number of Physics aspects, including hard and soft interactions, parton distributions, initial-state and final-state parton showers, multiparton interactions, fragmentation and decay. All programming code is to be written in C++ language for this version (the previous version uses FORTRAN) and can be linked to ROOT software for displaying output in form of histogram. For my project, I need to generate events for standard model Higgs Boson into Muon and anti-Muon pairs (H→μ+ μ) to study the expected significance value for this particular process at centre-of-mass energy of 13 TeV...
Influenza preparedness and the bureaucratic reflex: anticipating and generating the 2009 H1N1 event.
Barker, Kezia
2012-07-01
This paper draws together work on the event to problematise the generative implications of anticipatory governance in the management of emerging infectious disease. Through concerns for preparedness, the need to anticipate outbreaks of disease has taken on a new urgency. With the identification of the H1N1 virus circulating amongst human populations in 2009, public health measures and security practices at regional, national and international levels were rapidly put into play. However, as the ensuing event demonstrated, the social, political and economic disruptions of emerging infectious diseases can be matched by those of anticipatory actions. I argue that the event-making potential of surveillance practices and the pre-determined arrangements of influenza preparedness planning, when triggered by the H1N1 virus, caused an event acceleration through the hyper-sensitised global health security architecture. In the UK, this led to a bureaucratic reflex, a security response event that overtook the present actualities of the disease. This raises questions about the production of forms of insecurity by the security apparatus itself. Copyright © 2012. Published by Elsevier Ltd.
BEEC: An event generator for simulating the Bc meson production at an e+e- collider
Yang, Zhi; Wu, Xing-Gang; Wang, Xian-You
2013-12-01
The Bc meson is a doubly heavy quark-antiquark bound state and carries flavors explicitly, which provides a fruitful laboratory for testing potential models and understanding the weak decay mechanisms for heavy flavors. In view of the prospects in Bc physics at the hadronic colliders such as Tevatron and LHC, Bc physics is attracting more and more attention. It has been shown that a high luminosity e+e- collider running around the Z0-peak is also helpful for studying the properties of Bc meson and has its own advantages. For this purpose, we write down an event generator for simulating Bc meson production through e+e- annihilation according to relevant publications. We name it BEEC, in which the color-singlet S-wave and P-wave (cb¯)-quarkonium states together with the color-octet S-wave (cb¯)-quarkonium states can be generated. BEEC can also be adopted to generate the similar charmonium and bottomonium states via the semi-exclusive channels e++e-→|(QQ¯)[n]>+Q+Q¯ with Q=b and c respectively. To increase the simulation efficiency, we simplify the amplitude as compact as possible by using the improved trace technology. BEEC is a Fortran program written in a PYTHIA-compatible format and is written in a modular structure, one may apply it to various situations or experimental environments conveniently by using the GNU C compiler make. A method to improve the efficiency of generating unweighted events within PYTHIA environment is proposed. Moreover, BEEC will generate a standard Les Houches Event data file that contains useful information of the meson and its accompanying partons, which can be conveniently imported into PYTHIA to do further hadronization and decay simulation. Catalogue identifier: AEQC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQC_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in
Energy Technology Data Exchange (ETDEWEB)
Kančev, Duško, E-mail: dusko.kancev@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Duchac, Alexander; Zerger, Benoit [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Maqua, Michael [Gesellschaft für Anlagen-und-Reaktorsicherheit (GRS) mbH, Schwetnergasse 1, 50667 Köln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17 - 92262 Fontenay-aux-Roses Cedex (France)
2014-07-01
Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing
International Nuclear Information System (INIS)
Kančev, Duško; Duchac, Alexander; Zerger, Benoit; Maqua, Michael; Wattrelos, Didier
2014-01-01
Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing
Monte Carlo simulation of virtual compton scattering at MAMI
International Nuclear Information System (INIS)
D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.
1996-01-01
The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)
Monte Carlo principles and applications
Energy Technology Data Exchange (ETDEWEB)
Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center
1976-03-01
The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.
Trait Affect, Emotion Regulation, and the Generation of Negative and Positive Interpersonal Events.
Hamilton, Jessica L; Burke, Taylor A; Stange, Jonathan P; Kleiman, Evan M; Rubenstein, Liza M; Scopelliti, Kate A; Abramson, Lyn Y; Alloy, Lauren B
2017-07-01
Positive and negative trait affect and emotion regulatory strategies have received considerable attention in the literature as predictors of psychopathology. However, it remains unclear whether individuals' trait affect is associated with responses to state positive affect (positive rumination and dampening) or negative affect (ruminative brooding), or whether these affective experiences contribute to negative or positive interpersonal event generation. Among 304 late adolescents, path analyses indicated that individuals with higher trait negative affect utilized dampening and brooding rumination responses, whereas those with higher trait positive affect engaged in rumination on positive affect. Further, there were indirect relationships between trait negative affect and fewer positive and negative interpersonal events via dampening, and between trait positive affect and greater positive and negative interpersonal events via positive rumination. These findings suggest that individuals' trait negative and positive affect may be associated with increased utilization of emotion regulation strategies for managing these affects, which may contribute to the occurrence of positive and negative events in interpersonal relationships. Copyright © 2017. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Garshasbi, Samira; Kurnitski, Jarek; Mohammadi, Yousef
2016-01-01
Graphical abstract: The energy consumption and renewable generation in a cluster of NZEBs are modeled by a novel hybrid Genetic Algorithm and Monte Carlo simulation approach and used for the prediction of instantaneous and cumulative net energy balances and hourly amount of energy taken from and supplied to the central energy grid. - Highlights: • Hourly energy consumption and generation by a cluster of NZEBs was simulated. • Genetic Algorithm and Monte Carlo simulation approach were employed. • Dampening effect of energy used by a cluster of buildings was demonstrated. • Hourly amount of energy taken from and supplied to the grid was simulated. • Results showed that NZEB cluster was 63.5% grid dependant on annual bases. - Abstract: Employing a hybrid Genetic Algorithm (GA) and Monte Carlo (MC) simulation approach, energy consumption and renewable energy generation in a cluster of Net Zero Energy Buildings (NZEBs) was thoroughly investigated with hourly simulation. Moreover, the cumulative energy consumption and generation of the whole cluster and each individual building within the simulation space were accurately monitored and reported. The results indicate that the developed simulation algorithm is able to predict the total instantaneous and cumulative amount of energy taken from and supplied to the central energy grid over any time period. During the course of simulation, about 60–100% of total daily generated renewable energy was consumed by NZEBs and up to 40% of that was fed back into the central energy grid as surplus energy. The minimum grid dependency of the cluster was observed in June and July where 11.2% and 9.9% of the required electricity was supplied from the central energy grid, respectively. On the other hand, the NZEB cluster was strongly grid dependant in January and December by importing 70.7% and 76.1% of its required energy demand via the central energy grid, in the order given. Simulation results revealed that the cluster was 63
Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP
International Nuclear Information System (INIS)
Seok, Jeong Park; Cheol, Woo Kim; Chul, Jin Choi; Jong, Tae Seo
2001-01-01
For an optimum recovery from a Steam Generator Tube Rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube(s) as early as possible in order to minimize the radioactive material release. However, the Reactor Coolant System (RCS) cooldown and depressurization to the Residual Heat Removal (RHR) System operation conditions using the intact SG only can not be readily achievable unless the affected SG is properly cooled since the isolated SG remains at high temperature even though the RCS has been cooled down. Therefore, a study on the intentional back flow from the ruptured SG secondary side to the RCS was performed to evaluate its effectiveness on the ruptured SG cooldown during a SGTR event for the pressurized light water reactor, especially for the Korean Standard Nuclear Power Plant (KSNP). In order to evaluate the intentional back flow effect, a series of analyses was conducted by using RELAP5/MOD3 computer code. In these analyses, the primary and secondary systems of KSNP are modeled including the major Nuclear Steam Supply System (NSSS) components such as the reactor vessel, steam generators, hot and cold legs, pressurizer, and reactor coolant pumps. Also, the key safety systems and control systems are modeled. Using this model, two possible methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated: the first method is a tube uncover method, and the second method is a SG drain (back flow) and fill method. (author)
Smith, Denis; Toft, Brian
2005-05-01
The role of organizational factors in the generation of adverse events, and the manner in which such factors can also inhibit an organization's abilities to learn, have become important agenda items within health care. The government report 'An organization with a memory' highlighted many of the problems facing health care and suggested changes that need to be made if the sector is to learn effective lessons and prevent adverse events from occurring. This paper seeks to examine some of these organizational factors in more detail and suggests issues that managers need to consider as part of their wider strategies for the prevention and management of risk. The paper sets out five core elements that are held to be importance in shaping the manner in which the potential for risk is incubated within organizations. Although the paper focuses its attention on health care, the points made have validity across the public sector and into private sector organizations.
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows
Directory of Open Access Journals (Sweden)
Igor V. Karyakin
2016-02-01
Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.
International Nuclear Information System (INIS)
Candelore, N.R.; Kerrick, W.E.; Johnson, E.G.; Gast, R.C.; Dei, D.E.; Fields, D.L.
1982-09-01
The PACER Monte Carlo program for the CDC-7600 performs fixed source or eigenvalue calculations of spatially dependent neutron spectra in rod-lattice geometries. The neutron flux solution is used to produce few group, flux-weighted cross sections spatially averaged over edit regions. In general, PACER provides environmentally dependent flux-weighted few group microscopic cross sections which can be made time (depletion) dependent. These cross sections can be written in a standard POX output file format. To minimize computer storage requirements, PACER allows separate spectrum and edit options. PACER also calculates an explicit (n, 2n) cross section. The PACER geometry allows multiple rod arrays with axial detail. This report provides details of the neutron kinematics and the input required
Directory of Open Access Journals (Sweden)
Anna Russo
Full Text Available Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
ATLAS Monte Carlo tunes for MC09
The ATLAS collaboration
2010-01-01
This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.
On transient events in the upper atmosphere generated away of thunderstorm regions
Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.
2011-12-01
Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their
International Nuclear Information System (INIS)
Deepa, A.K.; Jakhete, A.P.; Mehta, D.; Kaushik, C.P.
2011-01-01
High Level Liquid waste (HLW) generated during reprocessing of spent fuel contains most of the radioactivity present in the spent fuel resulting in the need for isolation and surveillance for extended period of time. Major components in HLW are the corrosion products, fission products such as 137 Cs, 90 Sr, 106 Ru, 144 Ce, 125 Sb etc, actinides and various chemicals used during reprocessing of spent fuel. Fresh HLW having an activity concentration of around 100Ci/l is to be vitrified into borosilicate glass and packed in canisters which are placed in S.S overpacks for better confinement. These overpacks contain around 0.7 Million Curies of activity. Characterisation of activity in HLW and activity profile of radionuclides for various cooling periods sets the base for the study. For transporting the vitrified waste product (VWP), two most important parameters is the shield thickness of the transportation cask and the heat generation in the waste product. This paper describes the methodology used in the estimation of lead thickness for the transportation cask using the Monte Carlo Technique. Heat generation due to decay of fission products results in the increase in temperature of the vitrified waste product during interim storage and disposal. Glass being the material, not having very high thermal conductivity, temperature difference between the canister and surrounding bears significance in view of the possibility of temperature based devitrification of VWP. The heat generation in the canister and the overpack containing vitrified glass is also estimated using MCNP. (author)
International Nuclear Information System (INIS)
Shimada, Yoshio
2011-01-01
Up to 2009, the author and a colleague conducted trend analyses of problem events related to main generators, emergency diesel generators, breakers, motors and transformers which are more likely to cause problems than other electric components in nuclear power plants. Among the electric components with high frequency of defect occurrence, i.e., emergency diesel generators, several years have passed since the last analyses. These are very important components needed to stop a nuclear reactor safely and to cool it down during external power supply loses. Then trend analyses were conducted for the second time. The trend analyses were performed on 80 problem events with emergency diesel generators which had occurred in U.S. nuclear power plants in the five years from 2005 through 2009 among events reported in the Licensee Event Reports (LERs: event reports submitted to NRC by U.S. nuclear power plants) which have been registered in the nuclear information database of the Institute of Nuclear Safety System, Inc. (INSS) , as well as 40 events registered in the Nuclear Information Archives (NUCIA), which occurred in Japanese nuclear power plants in the same time period. It was learned from the trend analyses of the problem events with emergency diesel generators that frequency of defect occurrence are high in both Japanese and US plants during plant operations and functional tests (that is, defects can be discovered effectively in advance), so that implementation of periodical functional tests under plant operation is an important task for the future. (author)
Amir, Sahar Z.
2013-01-01
expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding
Eruptive event generator based on the Gibson-Low magnetic configuration
Borovikov, D.; Sokolov, I. V.; Manchester, W. B.; Jin, M.; Gombosi, T. I.
2017-08-01
Coronal mass ejections (CMEs), a kind of energetic solar eruptions, are an integral subject of space weather research. Numerical magnetohydrodynamic (MHD) modeling, which requires powerful computational resources, is one of the primary means of studying the phenomenon. With increasing accessibility of such resources, grows the demand for user-friendly tools that would facilitate the process of simulating CMEs for scientific and operational purposes. The Eruptive Event Generator based on Gibson-Low flux rope (EEGGL), a new publicly available computational model presented in this paper, is an effort to meet this demand. EEGGL allows one to compute the parameters of a model flux rope driving a CME via an intuitive graphical user interface. We provide a brief overview of the physical principles behind EEGGL and its functionality. Ways toward future improvements of the tool are outlined.
Possible Improvements to MCNP6 and its CEM/LAQGSM Event-Generators
Energy Technology Data Exchange (ETDEWEB)
Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-04
This report is intended to the MCNP6 developers and sponsors of MCNP6. It presents a set of suggested possible future improvements to MCNP6 and to its CEM03.03 and LAQGSM03.03 event-generators. A few suggested modifications of MCNP6 are quite simple, aimed at avoiding possible problems with running MCNP6 on various computers, i.e., these changes are not expected to change or improve any results, but should make the use of MCNP6 easier; such changes are expected to require limited man-power resources. On the other hand, several other suggested improvements require a serious further development of nuclear reaction models, are expected to improve significantly the predictive power of MCNP6 for a number of nuclear reactions; but, such developments require several years of work by real experts on nuclear reactions.
Improved Monte Carlo Method for PSA Uncertainty Analysis
International Nuclear Information System (INIS)
Choi, Jongsoo
2016-01-01
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard
Improved Monte Carlo Method for PSA Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Choi, Jongsoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard.
Demblon, Julie; D'Argembeau, Arnaud
2014-02-01
Recent research suggests that many imagined future events are not represented in isolation, but instead are embedded in broader event sequences-referred to as event clusters. It remains unclear, however, whether the production of event clusters reflects the underlying organizational structure of prospective thinking or whether it is an artifact of the event-cuing task in which participants are explicitly required to provide chains of associated future events. To address this issue, the present study examined whether the occurrence of event clusters in prospective thought is apparent when people are left to think freely about events that might happen in their personal future. The results showed that the succession of events participants spontaneously produced when envisioning their future frequently included event clusters. This finding provides more compelling evidence that prospective thinking involves higher-order autobiographical knowledge structures that organize imagined events in coherent themes and sequences. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparative Analyses on OPR1000 Steam Generator Tube Rupture Event Emergency Operational Guideline
International Nuclear Information System (INIS)
Lee, Sang Won; Bae, Yeon Kyoung; Kim, Hyeong Teak
2006-01-01
The Steam Generator Tube Rupture (SGTR) event is one of the important scenarios in respect to the radiation release to the environment. When the SGTR occurs, containment integrity is not effective because of the direct bypass of containment via the ruptured steam generator to the MSSV and MSADV. To prevent this path, the Emergency Operational Guideline of OPR1000 indicates the use of Turbine Bypass Valves (TBVs) as an effective means to depressurize the main steam line and prevent the lifting of MSSV. However, the TBVs are not operable when the offsite power is not available (LOOP). In this situation, the RCS cool-down is achieved by opening the both intact and ruptured SG MSADV. But this action causes the large amount of radiation release to the environment. To minimize the radiation release to the environment, KSNP EOG adopts the improved strategy when the SGTR concurrently with LOOP is occurred. However, these procedures show some duplicated procedure and branch line that might confusing the operator for optimal recovery action. So, in this paper, the comparative analysis on SGTR and SGTR with LOOP is performed and optimized procedure is proposed
A hypothesis generation model of initiating events for nuclear power plant operators
International Nuclear Information System (INIS)
Sawhney, R.S.; Dodds, H.L.; Schryver, J.C.; Knee, H.E.
1989-01-01
The goal of existing alarm-filtering models is to provide the operator with the most accurate assessment of patterns of annunciated alarms. Some models are based on event-tree analysis, such as DuPont's Diagnosis of Multiple Alarms. Other models focus on improving hypothesis generation by deemphasizing alarms not relevant to the current plant scenario. Many such models utilize the alarm filtering system as a basis of dynamic prioritization. The Lisp-based alarm analysis model presented in this paper was developed for the Advanced Controls Program at Oak Ridge National Laboratory to dynamically prioritize hypotheses via an AFS by incorporating an unannunciated alarm analysis with other plant-based concepts. The objective of this effort is to develop an alarm analysis model that would allow greater flexibility and more accurate hypothesis generation than the prototype fault diagnosis model utilized in the Integrated Reactor Operator/System (INTEROPS) model. INTEROPS is a time-based predictive model of the nuclear power plant operator, which utilizes alarm information in a manner similar to the human operator. This is achieved by recoding the knowledge base from the personal computer-based expert system shell to a common Lisp structure, providing the ability to easily modify both the manner in which the knowledge is structured as well as the logic by which the program performs fault diagnosis
Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn
2011-09-01
The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of
International Nuclear Information System (INIS)
Brown, F.B.
1981-01-01
Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes
International Nuclear Information System (INIS)
Parsons, David; Robar, James L.; Sawkey, Daren
2014-01-01
Purpose: The focus of this work was the demonstration and validation of VirtuaLinac with clinical photon beams and to investigate the implementation of low-Z targets in a TrueBeam linear accelerator (Linac) using Monte Carlo modeling. Methods: VirtuaLinac, a cloud based web application utilizing Geant4 Monte Carlo code, was used to model the Linac treatment head components. Particles were propagated through the lower portion of the treatment head using BEAMnrc. Dose distributions and spectral distributions were calculated using DOSXYZnrc and BEAMdp, respectively. For validation, 6 MV flattened and flattening filter free (FFF) photon beams were generated and compared to measurement for square fields, 10 and 40 cm wide and at d max for diagonal profiles. Two low-Z targets were investigated: a 2.35 MeV carbon target and the proposed 2.50 MeV commercial imaging target for the TrueBeam platform. A 2.35 MeV carbon target was also simulated in a 2100EX Clinac using BEAMnrc. Contrast simulations were made by scoring the dose in the phosphor layer of an IDU20 aSi detector after propagating through a 4 or 20 cm thick phantom composed of water and ICRP bone. Results: Measured and modeled depth dose curves for 6 MV flattened and FFF beams agree within 1% for 98.3% of points at depths greater than 0.85 cm. Ninety three percent or greater of points analyzed for the diagonal profiles had a gamma value less than one for the criteria of 1.5 mm and 1.5%. The two low-Z target photon spectra produced in TrueBeam are harder than that from the carbon target in the Clinac. Percent dose at depth 10 cm is greater by 3.6% and 8.9%; the fraction of photons in the diagnostic energy range (25–150 keV) is lower by 10% and 28%; and contrasts are lower by factors of 1.1 and 1.4 (4 cm thick phantom) and 1.03 and 1.4 (20 cm thick phantom), for the TrueBeam 2.35 MV/carbon and commercial imaging beams, respectively. Conclusions: VirtuaLinac is a promising new tool for Monte Carlo modeling of novel
DEFF Research Database (Denmark)
Åström, Helena Lisa Alexandra; Sunyer Pinya, Maria Antonia; Madsen, H.
2016-01-01
The aim of this study is to enhance the understanding of the occurrence of flood generating events in urban areas by analyzing the relationship between large-scale atmospheric circulation and extreme precipitation events, extreme sea water level events and their simultaneous occurrence......, respectively. To describe the atmospheric circulation we used the Lamb circulation type (LCT) classification and re-grouped it into Lamb circulation classes (LCC). The daily LCCs/LCTs were connected with rare precipitation and water level events in Aarhus, a Danish coastal city. Westerly and cyclonic LCCs (W......, C, SW, and NW) showed a significantly high occurrence of extreme precipitation. Similarly, for extreme water level events westerly LCCs (W and SW) showed a significantly high occurrence. Significantly low occurrence of extreme precipitation and water level events was obtained in easterly LCCs (NE, E...
Energy Technology Data Exchange (ETDEWEB)
Velo, A.F.; Alvarez, A.G.; Carvalho, D.V.S.; Fernandez, V.; Somessari, S.; Sprenger, F.F.; Hamada, M.M.; Mesquita, C.H., E-mail: chmesqui@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
This paper describes the Monte Carlo simulation, using MCNP4C, of a multichannel third generation tomography system containing a two radioactive sources, {sup 192}Ir (316.5 - 468 KeV) and {sup 137}Cs (662 KeV), and a set of fifteen NaI(Tl) detectors, with dimensions of 1 inch diameter and 2 inches thick, in fan beam geometry, positioned diametrically opposite. Each detector moves 10 steps of 0,24 deg , totalizing 150 virtual detectors per projection, and then the system rotate 2 degrees. The Monte Carlo simulation was performed to evaluate the viability of this configuration. For this, a multiphase phantom containing polymethyl methacrylate (PMMA ((ρ ≅ 1.19 g/cm{sup 3})), iron (ρ ≅ 7.874 g/cm{sup 3}), aluminum (ρ ≅ 2.6989 g/cm{sup 3}) and air (ρ ≅ 1.20479E-03 g/cm{sup 3}) was simulated. The simulated number of histories was 1.1E+09 per projection and the tally used were the F8, which gives the pulse height of each detector. The data obtained by the simulation was used to reconstruct the simulated phantom using the statistical iterative Maximum Likelihood Estimation Method Technique (ML-EM) algorithm. Each detector provides a gamma spectrum of the sources, and a pulse height analyzer (PHA) of 10% on the 316.5 KeV and 662 KeV photopeaks was performed. This technique provides two reconstructed images of the simulated phantom. The reconstructed images provided high spatial resolution, and it is supposed that the temporal resolution (spending time for one complete revolution) is about 2.5 hours. (author)
International Nuclear Information System (INIS)
Velo, A.F.; Alvarez, A.G.; Carvalho, D.V.S.; Fernandez, V.; Somessari, S.; Sprenger, F.F.; Hamada, M.M.; Mesquita, C.H.
2017-01-01
This paper describes the Monte Carlo simulation, using MCNP4C, of a multichannel third generation tomography system containing a two radioactive sources, 192 Ir (316.5 - 468 KeV) and 137 Cs (662 KeV), and a set of fifteen NaI(Tl) detectors, with dimensions of 1 inch diameter and 2 inches thick, in fan beam geometry, positioned diametrically opposite. Each detector moves 10 steps of 0,24 deg , totalizing 150 virtual detectors per projection, and then the system rotate 2 degrees. The Monte Carlo simulation was performed to evaluate the viability of this configuration. For this, a multiphase phantom containing polymethyl methacrylate (PMMA ((ρ ≅ 1.19 g/cm 3 )), iron (ρ ≅ 7.874 g/cm 3 ), aluminum (ρ ≅ 2.6989 g/cm 3 ) and air (ρ ≅ 1.20479E-03 g/cm 3 ) was simulated. The simulated number of histories was 1.1E+09 per projection and the tally used were the F8, which gives the pulse height of each detector. The data obtained by the simulation was used to reconstruct the simulated phantom using the statistical iterative Maximum Likelihood Estimation Method Technique (ML-EM) algorithm. Each detector provides a gamma spectrum of the sources, and a pulse height analyzer (PHA) of 10% on the 316.5 KeV and 662 KeV photopeaks was performed. This technique provides two reconstructed images of the simulated phantom. The reconstructed images provided high spatial resolution, and it is supposed that the temporal resolution (spending time for one complete revolution) is about 2.5 hours. (author)
International Nuclear Information System (INIS)
Tashima, Hideaki; Yamaya, Taiga; Hirano, Yoshiyuki; Yoshida, Eiji; Kinouch, Shoko; Watanabe, Mitsuo; Tanaka, Eiichi
2013-01-01
At the National Institute of Radiological Sciences, we are developing OpenPET, an open-type positron emission tomography (PET) geometry with a physically open space, which allows easy access to the patient during PET studies. Our first-generation OpenPET system, dual-ring OpenPET, which consisted of two detector rings, could provide an extended axial field of view (FOV) including the open space. However, for applications such as in-beam PET to monitor the dose distribution in situ during particle therapy, higher sensitivity concentrated on the irradiation field is required rather than a wide FOV. In this report, we propose a second-generation OpenPET geometry, single-ring OpenPET, which can efficiently improve sensitivity while providing the required open space. When the proposed geometry was realized with block detectors, position-dependent degradation of the spatial resolution was expected because it was necessary to arrange the detector blocks in ellipsoidal rings stacked and shifted relative to one another. However, we found by Monte Carlo simulation that the use of depth-of-interaction (DOI) detectors made it feasible to achieve uniform spatial resolution in the FOV. (author)
International Nuclear Information System (INIS)
Kojima, Shigeo; Onoue, Akira; Kawai, Katsunori
1998-01-01
This study intends to develop a more sophisticated tool that will advance the current event tree method used in all PSA, and to focus on non-catastrophic events, specifically a non-core melt sequence scenario not included in an ordinary PSA. In the non-catastrophic event PSA, it is necessary to consider various end states and failure combinations for the purpose of multiple scenario construction. Therefore it is anticipated that an analysis work should be reduced and automated method and tool is required. A scenario generator that can automatically handle scenario construction logic and generate the enormous size of sequences logically identified by state-of-the-art methodology was developed. To fulfill the scenario generation as a technical tool, a simulation model associated with AI technique and graphical interface, was introduced. The AI simulation model in this study was verified for the feasibility of its capability to evaluate actual systems. In this feasibility study, a spurious SI signal was selected to test the model's applicability. As a result, the basic capability of the scenario generator could be demonstrated and important scenarios were generated. The human interface with a system and its operation, as well as time dependent factors and their quantification in scenario modeling, was added utilizing human scenario generator concept. Then the feasibility of an improved scenario generator was tested for actual use. Automatic scenario generation with a certain level of credibility, was achieved by this study. (author)
Stochastic generation of multi-site daily precipitation focusing on extreme events
Directory of Open Access Journals (Sweden)
G. Evin
2018-01-01
Full Text Available Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally focus on the reproduction of low to high precipitation amounts at the stations concerned. This paper proposes significant extensions to the multi-site daily precipitation model introduced by Wilks, with the aim of reproducing the statistical features of extremely rare events (in terms of frequency and magnitude at different temporal and spatial scales. In particular, the first extended version integrates heavy-tailed distributions, spatial tail dependence, and temporal dependence in order to obtain a robust and appropriate representation of the most extreme precipitation fields. A second version enhances the first version using a disaggregation method. The performance of these models is compared at different temporal and spatial scales on a large region covering approximately half of Switzerland. While daily extremes are adequately reproduced at the stations by all models, including the benchmark Wilks version, extreme precipitation amounts at larger temporal scales (e.g., 3-day amounts are clearly underestimated when temporal dependence is ignored.
Amir, Sahar Z.
2013-05-01
We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L
Multi-target Wastage Phenomena on Steam Generator Tubes During an SWR Event
International Nuclear Information System (INIS)
Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Eoh, Jae Hyuk; Choi, Jong Hyeun; Lee, Yong Bum
2011-01-01
The Korean sodium cooled fast reactor, KALIMER- 600 (Korea Advanced LIquid MEtal Reactor) of which the electric output is 600MWe, was developed. The steam generator (SG) of this system is a shell-and-tube type counter-current flow heat exchanger, which is vertically oriented with fixed tube-sheets. A direct heat exchange occurs between the shell-side sodium and the tube-side water at the SG unit. Feed-water enters the inlet nozzle at the lower part of the unit and it flows upward along the helically coiled heat transfer tubes. The inflow sodium is cooled down at the bundle region and then flows out through the sodium outlet nozzle at the bottom of the unit. The typical configuration of the KALIMER-600 SG is shown in Figure 1. In a steam generator, sodium and water are separated by the heat transfer tube wall and it makes a strong pressure boundary between the shell-side sodium and the tube-side water/steam. For this reason, if there is a small hole or crack, even with a pin hole, on heat transfer tubes, a large amount of water/steam would leak into the liquid sodium due to the high pressure difference more than 150 bars, and an exothermic sodium-water chemical reaction takes place as a result. This type of sodium-water reaction (SWR) has been considered as one of the most important safety issues to be resolved. From previous studies, it was obviously figured out that the number of ruptured tubes during an SWR event is one of the most significant factors to determine the temperature and pressure transient. Any subsequent tube rupture behavior in the vicinity of the initially postulated single ruptured tube should be evaluated by considering the single- and multi-target wastage phenomena. Wastage is defined as damage to the structural material (e.g. heat transfer tubes) due to an impingement of the highly corrosive reaction product. Since the impingement may cause wastage of the neighboring heat transfer tubes, a subsequent tube failure can occur in a very short time
International Nuclear Information System (INIS)
Hoogenboom, J. Eduard
2003-01-01
Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-01-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration
International Nuclear Information System (INIS)
Muchiu, Chang; Lewins, J.D.
1998-01-01
In this paper we address the importance of including the consideration of revenue loss into the safety analysis as well as system optimisation and modify the traditional Life Cycle Cost (LCC) into Life Cycle Revenue Loss (LCRL) as the criterion of optimisation and a quantitative assessment of the consequence of un-wished ebents, such as system unavailability. Through the Monte Carlo simulation technique and a simple scenario of decision making in a bidding process, we demonstrate the feasibility of our new LCRL model
Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP
International Nuclear Information System (INIS)
Kim, C.W.; Park, S.J.; Choi, C.J.; Seo, J.T.
2004-01-01
For an optimum recovery from a steam generator tube rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube as early as possible to minimize the radioactive material release. However, the reactor coolant system (RCS) cooldown and depressurization to the shutdown cooling system (SCS) operation conditions using the intact SG only are hard to achieve unless the ruptured SG is properly cooled since the ruptured SG, which is isolated by operator, remains at high temperature even though the RCS has been cooled down. The effects of intentional back flow from the SG secondary side to the RCS through the ruptured U-tube on the the ruptured SG cooldown were evaluated for the pressurized light water reactor, especially for the Korean standard nuclear power plant (KSNP). In order to evaluate the back flow effect, a series of analyses was conducted using the RELAP5/MOD3 computer code. For the first stage of the analysis, the cooldown process by natural circulation in the SG secondary side was simulated for the initial conditions of the ruptured SG cooldown. In the next analysis stage, two methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated. One utilizes the steam condensation on the uncovered U-tube surface, and the other is a SG drain and fill. In the former method, SG tubes are exposed to the steam space by draining SG secondary water into the RCS in order to condense the steam directly onto the uncovered tubes. This method showed that the steam condensation decreased SG secondary pressure and temperature rapidly, demonstrating its effectiveness for cooling. However, this process has a limited applicability if the rupture is located at the lower region. The latter method, draining by back flow and filling using the feedwater system was also found to be effective in ruptured SG cooldown and depressurization even if the rupture occurred at the top of the U-tube. It is concluded that the
International Nuclear Information System (INIS)
Yang Jinan; Mihara, Takatsugu
1998-12-01
This report presents a variance reduction technique to estimate the reliability and availability of highly complex systems during phased mission time using the Monte Carlo simulation. In this study, we introduced the variance reduction technique with a concept of distance between the present system state and the cut set configurations. Using this technique, it becomes possible to bias the transition from the operating states to the failed states of components towards the closest cut set. Therefore a component failure can drive the system towards a cut set configuration more effectively. JNC developed the PHAMMON (Phased Mission Analysis Program with Monte Carlo Method) code which involved the two kinds of variance reduction techniques: (1) forced transition, and (2) failure biasing. However, these techniques did not guarantee an effective reduction in variance. For further improvement, a variance reduction technique incorporating the distance concept was introduced to the PHAMMON code and the numerical calculation was carried out for the different design cases of decay heat removal system in a large fast breeder reactor. Our results indicate that the technique addition of this incorporating distance concept is an effective means of further reducing the variance. (author)
Energy Technology Data Exchange (ETDEWEB)
Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)
2006-12-15
In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.
Xu, Z.; Mace, G. G.; Posselt, D. J.
2017-12-01
As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Sang-Jun; Lee, Kwi Lim; Ha, Kwi-Seok; Lee, Seung Won; Jeong, Taekyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
In this paper, the integrity of the IHTS and SG by the SWR event are evaluated using the SWAAMII code. A sodium has a chemical characteristics to rigorously react the water or steam and produce the high pressure waves and high temperature reaction heat. It has an excellent characteristics as a reactor coolant. But, there is an event to be considered in the sodium cooled fast reactor design. The Sodium-Water Reaction (SWR) event can be occurred by the water or steam leaks due to the break of the steam generator tubes. The propagated high pressure waves threathen the structural integrity of the affected Intermediate Heat Transport System (IHTS) and steam generator. If the IHTS pipes are failed, the sodium of the IHTS can be released to the containment building. To the peak pressure point of view, it is performed to evaluate the integrity of the major components due to the SWR event in the SG. The generated peak pressures due to the five SG tubes simultaneous break event are within the range of the design pressure for the SG, IHX and IHTS including the related pipes.
Monte-Carlo simulation of heavy-ion collisions
International Nuclear Information System (INIS)
Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2011-01-01
We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.
Drawing a Crowd: Graphic Novel Events Are Great Ways to Generate Excitement
MacDonald, Heidi
2004-01-01
As graphic novels grow in popularity, with teen readers, libraries are finding the world of comics, manga, and anime a fertile field for inspiring events, as well as a great way to promote libraries to teens in general. These events can range from simple--a reading/signing--to elaborate--workshops, or even a mini convention. All provide a unique…
International Nuclear Information System (INIS)
Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim
2014-01-01
Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.
Directory of Open Access Journals (Sweden)
2008-05-01
Full Text Available Entrevista (en español Presentación Carlos Romero, politólogo, es profesor-investigador en el Instituto de Estudios Políticos de la Facultad de Ciencias Jurídicas y Políticas de la Universidad Central de Venezuela, en donde se ha desempeñado como coordinador del Doctorado, subdirector y director del Centro de Estudios de Postgrado. Cuenta con ocho libros publicados sobre temas de análisis político y relaciones internacionales, siendo uno de los últimos Jugando con el globo. La política exter...
TMD PDFs. A Monte Carlo implementation for the sea quark distribution
International Nuclear Information System (INIS)
Hautmann, F.
2012-05-01
This article gives an introduction to transverse momentum dependent (TMD) parton distribution functions and their use in shower Monte Carlo event generators for high-energy hadron collisions, and describes recent progress in the treatment of sea quark effects within a TMD parton-shower framework.
MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation
Meyer, Arnd
2009-01-01
A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.
MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation
International Nuclear Information System (INIS)
Meyer, Arnd
2010-01-01
A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Energy Technology Data Exchange (ETDEWEB)
Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-08-15
The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.
Directory of Open Access Journals (Sweden)
Sang June Ahn
2016-08-01
Full Text Available The prototype generation IV sodium-cooled fast reactor (PGSFR has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS and the safety of the primary heat-transfer system (PHTS. In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.
Nutton, Jennifer; Fast, Elizabeth
2015-01-01
Indigenous peoples the world over have and continue to experience the devastating effects of colonialism including loss of life, land, language, culture, and identity. Indigenous peoples suffer disproportionately across many health risk factors including an increased risk of substance use. We use the term "Big Event" to describe the historical trauma attributed to colonial policies as a potential pathway to explain the disparity in rates of substance use among many Indigenous populations. We present "Big Solutions" that have the potential to buffer the negative effects of the Big Event, including: (1) decolonizing strategies, (2) identity development, and (3) culturally adapted interventions. Study limitations are noted and future needed research is suggested.
Continuous energy Monte Carlo method based lattice homogeinzation
International Nuclear Information System (INIS)
Li Mancang; Yao Dong; Wang Kan
2014-01-01
Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)
Gros, P.; Bernard, D.
2017-02-01
We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
International Nuclear Information System (INIS)
Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram
2008-01-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.
Distributed Data Collection For Next Generation ATLAS EventIndex Project
Fernandez Casani, Alvaro; The ATLAS collaboration
2018-01-01
The ATLAS EventIndex currently runs in production in order to build a complete catalogue of events for experiments with large amounts of data. The current approach is to index all final produced data files at CERN Tier0, and at hundreds of grid sites, with a distributed data collection architecture using Object Stores to temporary maintain the conveyed information, with references to them sent with a Messaging System. The final backend of all the indexed data is a central Hadoop infrastructure at CERN; an Oracle relational database is used for faster access to a subset of this information. In the future of ATLAS, instead of files, the event should be the atomic information unit for metadata. This motivation arises in order to accommodate future data processing and storage technologies. Files will no longer be static quantities, possibly dynamically aggregating data, and also allowing event-level granularity processing in heavily parallel computing environments. It also simplifies the handling of loss and or e...
Incorporating planned activities and events in a dynamic multi-day activity agenda generator
Nijland, L.; Arentze, T.; Timmermans, H.J.P.
2012-01-01
Daily agenda formation is influenced by formal commitments, satisfaction of needs surpassing some threshold and the desire to conduct particular activities in anticipation of socially and religiously driven events such as birthdays, Christmas, etc. As part of a research program to develop a dynamic
International Nuclear Information System (INIS)
Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako
1991-01-01
A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)
A first comparison of SLOPE and other LIGO burst event trigger generators
International Nuclear Information System (INIS)
Stuver, Amber L; Finn, Lee Samuel
2006-01-01
A number of different methods have been proposed to identify unanticipated burst sources of gravitational waves in data arising from LIGO and other gravitational wave detectors. When confronted with such a wide variety of methods one is moved to ask if they are all necessary, i.e. given detector data that is assumed to have no gravitational wave signals present, do they generally identify the same events with the same efficiency, or do they each 'see' different things in the detector? Here we consider three different methods, which have been used within the LIGO Scientific Collaboration as part of its search for unanticipated gravitational wave bursts. We find that each of these three different methods developed for identifying candidate gravitational wave burst sources are, in fact, attuned to significantly different features in detector data, suggesting that they may provide largely independent lists of candidate gravitational wave burst events
Mutational jackpot events generate effective frequency-dependent selection in adapting populations
Hallatschek, Oskar
The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.
International Nuclear Information System (INIS)
Klein, F.; Karwan, A.; Wintersberger, U.
1990-01-01
Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies the authors could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events were mathematically transformed into mean probabilities of lethal fixations at taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits, only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen, but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random. For comparison analyses of cells treated with methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and nitrous acid are also reported
Prevention and mitigation of steam-generator water-hammer events in PWR plants
International Nuclear Information System (INIS)
Han, J.T.; Anderson, N.
1982-11-01
Water hammer in nuclear power plants is an unresolved safety issue under study at the NRC (USI A-1). One of the identified safety concerns is steam generator water hammer (SGWH) in pressurized-water reactor (PWR) plants. This report presents a summary of: (1) the causes of SGWH; (2) various fixes employed to prevent or mitigate SGWH; and (3) the nature and status of modifications that have been made at each operating PWR plant. The NRC staff considers that the issue of SGWH in top feedring designs has been technically resolved. This report does not address technical findings relevant to water hammer in preheat type steam generators. 10 figures, 2 tables
Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi
1994-01-01
The Table of Contents for the book is as follows: * Preface * Heavy Fragment Production for Hadronic Cascade Codes * Monte Carlo Simulations of Space Radiation Environments * Merging Parton Showers with Higher Order QCD Monte Carlos * An Order-αs Two-Photon Background Study for the Intermediate Mass Higgs Boson * GEANT Simulation of Hall C Detector at CEBAF * Monte Carlo Simulations in Radioecology: Chernobyl Experience * UNIMOD2: Monte Carlo Code for Simulation of High Energy Physics Experiments; Some Special Features * Geometrical Efficiency Analysis for the Gamma-Neutron and Gamma-Proton Reactions * GISMO: An Object-Oriented Approach to Particle Transport and Detector Modeling * Role of MPP Granularity in Optimizing Monte Carlo Programming * Status and Future Trends of the GEANT System * The Binary Sectioning Geometry for Monte Carlo Detector Simulation * A Combined HETC-FLUKA Intranuclear Cascade Event Generator * The HARP Nucleon Polarimeter * Simulation and Data Analysis Software for CLAS * TRAP -- An Optical Ray Tracing Program * Solutions of Inverse and Optimization Problems in High Energy and Nuclear Physics Using Inverse Monte Carlo * FLUKA: Hadronic Benchmarks and Applications * Electron-Photon Transport: Always so Good as We Think? Experience with FLUKA * Simulation of Nuclear Effects in High Energy Hadron-Nucleus Collisions * Monte Carlo Simulations of Medium Energy Detectors at COSY Jülich * Complex-Valued Monte Carlo Method and Path Integrals in the Quantum Theory of Localization in Disordered Systems of Scatterers * Radiation Levels at the SSCL Experimental Halls as Obtained Using the CLOR89 Code System * Overview of Matrix Element Methods in Event Generation * Fast Electromagnetic Showers * GEANT Simulation of the RMC Detector at TRIUMF and Neutrino Beams for KAON * Event Display for the CLAS Detector * Monte Carlo Simulation of High Energy Electrons in Toroidal Geometry * GEANT 3.14 vs. EGS4: A Comparison Using the DØ Uranium/Liquid Argon
International Nuclear Information System (INIS)
Sasaki, N.; Miyamura, O.; Nonaka, C.; Muroya, S.
2000-01-01
We evaluate thermodynamical quantities and transport coefficient of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter. (author)
International Nuclear Information System (INIS)
Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E.
2011-01-01
Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)
Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR
Energy Technology Data Exchange (ETDEWEB)
Kim, Ji Hwan; Kim, Yong Soo [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items.
Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Yong Soo
2016-01-01
The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items
Directory of Open Access Journals (Sweden)
Charlie Samuya Veric
2001-12-01
Full Text Available The importance of Carlos Bulosan in Filipino and Filipino-American radical history and literature is indisputable. His eminence spans the pacific, and he is known, diversely, as a radical poet, fictionist, novelist, and labor organizer. Author of the canonical America Iis the Hearts, Bulosan is celebrated for chronicling the conditions in America in his time, such as racism and unemployment. In the history of criticism on Bulosan's life and work, however, there is an undeclared general consensus that views Bulosan and his work as coherent permanent texts of radicalism and anti-imperialism. Central to the existence of such a tradition of critical reception are the generations of critics who, in more ways than one, control the discourse on and of Carlos Bulosan. This essay inquires into the sphere of the critical reception that orders, for our time and for the time ahead, the reading and interpretation of Bulosan. What eye and seeing, the essay asks, determine the perception of Bulosan as the angel of radicalism? What is obscured in constructing Bulosan as an immutable figure of the political? What light does the reader conceive when the personal is brought into the open and situated against the political? the essay explores the answers to these questions in Bulosan's loving letters to various friends, strangers, and white American women. The presence of these interrogations, the essay believes, will secure ultimately the continuing importance of Carlos Bulosan to radical literature and history.
Search for supersymmetry in events involving third generation squarks and sleptons with ATLAS
CERN. Geneva
2012-01-01
Supersymmetry with large mixing between left and right scalar fermions predicts that the lightest partners of the SM fermions belong to the third generation. Moreover, naturalness arguments favour stop masses not too far from that of the top quark. The seminar presents results from searches for gluino mediated sbottom and stop production, direct sbottom production, and gluino and squark mediated stau production using 2 fb-1 of data recorded with the ATLAS detector.
Lessons learned from hydrogen generation and burning during the TMI-2 event
International Nuclear Information System (INIS)
Henrie, J.O.; Postma, A.K.
1987-05-01
This document summarizes what has been learned from generation of hydrogen in the reactor core and the hydrogen burn that occurred in the containment building of the Three Mile Island Unit No. 2 (TMI-2) nuclear power plant on March 28, 1979. During the TMI-2 loss-of-coolant accident (LOCA), a large quantity of hydrogen was generated by a zirconium-water reaction. The hydrogen burn that occurred 9 h and 50 min after the initiation of the TMI-2 accident went essentially unnoticed for the first few days. Even through the burn increased the containment gas temperature and pressure to 1200 0 F (650 0 C) and 29 lb/in 2 (200 kPa) gage, there was no serious threat to the containment building. The processes, rates, and quantities of hydrogen gas generated and removed during and following the LOCA are described in this report. In addition, the methods which were used to define the conditions that existed in the containment building before, during, and after the hydrogen burn are described. The results of data evaluations and engineering calculations are presented to show the pressure and temperature histories of the atmosphere in various containment segments during and after the burn. Material and equipment in reactor containment buildings can be protected from burn damage by the use of relatively simple enclosures or insulation
Global modeling of flux transfer events: generation mechanism and spacecraft signatures
Raeder, J.
2003-04-01
Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.
Miller, Danny E; Cook, Kevin R; Yeganeh Kazemi, Nazanin; Smith, Clarissa B; Cockrell, Alexandria J; Hawley, R Scott; Bergman, Casey M
2016-03-08
Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.
International Nuclear Information System (INIS)
Lambert, D.
2006-07-01
Electronic systems in space and terrestrial environments are subjected to a flow of particles of natural origin, which can induce dysfunctions. These particles can cause Single Event Upsets (SEU) in SRAM memories. Although non-destructive, the SEU can have consequences on the equipment functioning in applications requiring a great reliability (airplane, satellite, launcher, medical, etc). Thus, an evaluation of the sensitivity of the component technology is necessary to predict the reliability of a system. In atmospheric environment, the SEU sensitivity is mainly caused by the secondary ions resulting from the nuclear reactions between the neutrons and the atoms of the component. In space environment, the protons with strong energies induce the same effects as the atmospheric neutrons. In our work, a new code of prediction of the rate of SEU has been developed (MC-DASIE) in order to quantify the sensitivity for a given environment and to explore the mechanisms of failures according to technology. This code makes it possible to study various technologies of memories SRAM (Bulk and SOI) in neutron and proton environment between 1 MeV and 1 GeV. Thus, MC-DASIE was used with experiment data to study the effect of integration on the sensitivity of the memories in terrestrial environment, a comparison between the neutron and proton irradiations and the influence of the modeling of the target component on the calculation of the rate of SEU. (author)
Automatically Augmenting Lifelog Events Using Pervasively Generated Content from Millions of People
Directory of Open Access Journals (Sweden)
Alan F. Smeaton
2010-02-01
Full Text Available In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor’s output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one’s life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with “Web 2.0” content collected by millions of other individuals.
Automatically augmenting lifelog events using pervasively generated content from millions of people.
Doherty, Aiden R; Smeaton, Alan F
2010-01-01
In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor's output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one's life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with "Web 2.0" content collected by millions of other individuals.
DEFF Research Database (Denmark)
Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.
2017-01-01
This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...
Smith, Megan L; Noonan, Brice P; Colston, Timothy J
2017-08-01
Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic-and thus habitat-complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.
Next-generation Event Horizon Telescope developments: new stations for enhanced imaging
Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine
2018-01-01
The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.
International Nuclear Information System (INIS)
Huget, R.G.; Lau, D.K.; Luxat, J.C.
2001-01-01
Ontario Power Generation (OPG) is currently developing a new safety analysis methodology based on best estimate and uncertainty (BEAU) analysis. The framework and elements of the new safety analysis methodology are defined. The evolution of safety analysis technology at OPG has been thoroughly documented. Over the years, the use of conservative limiting assumptions in OPG safety analyses has led to gradual erosion of predicted safety margins. The main purpose of the new methodology is to provide a more realistic quantification of safety margins within a probabilistic framework, using best estimate results, with an integrated accounting of the underlying uncertainties. Another objective of the new methodology is to provide a cost-effective means for on-going safety analysis support of OPG's nuclear generating stations. Discovery issues and plant aging effects require that the safety analyses be periodically revised and, in the past, the cost of reanalysis at OPG has been significant. As OPG enters the new competitive marketplace for electricity, there is a strong need to conduct safety analysis in a less cumbersome manner. This paper presents the results of the first licensing application of the new methodology in support of planned design modifications to the shutdown systems (SDSs) at Darlington Nuclear Generating Station (NGS). The design modifications restore dual trip parameter coverage over the full range of reactor power for certain postulated loss-of-flow (LOF) events. The application of BEAU analysis to the single heat transport pump trip event provides a realistic estimation of the safety margins for the primary and backup trip parameters. These margins are significantly larger than those predicted by conventional limit of the operating envelope (LOE) analysis techniques. (author)
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
MUSiC - A general search for deviations from Monte Carlo predictions in CMS
Energy Technology Data Exchange (ETDEWEB)
Biallass, Philipp A, E-mail: biallass@cern.c [Physics Institute IIIA, RWTH Aachen, Physikzentrum, 52056 Aachen (Germany)
2009-06-01
A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.
MUSIC -- An Automated Scan for Deviations between Data and Monte Carlo Simulation
CMS Collaboration
2008-01-01
We present a model independent analysis approach, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Due to the minimal theoretical bias this approach is sensitive to a variety of models, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. We outline the importance of systematic uncertainties, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving supersymmetry and new heavy gauge bosons have been used as an input to the search algorithm. %Several models involving supersymmetry, new heavy gauge bosons and leptoquarks, as well as possible detector ef...
MUSiC A General Search for Deviations from Monte Carlo Predictions in CMS
Biallass, Philipp
2009-01-01
A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.
MUSiC - A general search for deviations from Monte Carlo predictions in CMS
International Nuclear Information System (INIS)
Biallass, Philipp A
2009-01-01
A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.
International Nuclear Information System (INIS)
Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.
2010-01-01
Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their
Carrascosa, J M; Del-Alcazar, E
2018-04-01
Biologic drugs have revolutionized the treatment of moderate to severe psoriasis in recent years because of their high efficacy and low risk of toxicity. However, even within the group of biologic therapies, there are differences related to the different mechanisms of action. Areas covered: We review the main adverse events associated with the biologic agents currently available for the treatment of psoriasis and the new inhibitors targeting the p19 subunit of interleukin (IL) 23 and the IL-17A receptor. This review covers injection site reactions, infections, cardiovascular events, demyelinating disorders, tumours, class effects secondary adverse events, immunogenicity, safety in pregnancy and vaccines efficacy. Expert commentary: More than a decade after the first approval of biologic drugs for use in psoriasis, the good safety profile of these drugs is one of the main justifications and incentives for their long-term use. The emergence of new pharmacological groups has made it possible to avoid some of the class effects of first-generation biologic agents and the new therapies appear to pose less risk of reactivation of latent infections, such as hepatitis B virus and tuberculosis. However, they are associated with new adverse effects related to their mechanism of action, including candidiasis and the risk of exacerbation or onset of inflammatory bowel disease.
Directory of Open Access Journals (Sweden)
Alejandro Macchia
Full Text Available The systematic use of aspirin and statins in patients with diabetes and no previous cardiovascular events is controversial. We sought to assess the effects of aspirin and statins on the thrombotic risk assessed by thrombin generation (TG among patients with type II diabetes mellitus and no previous cardiovascular events.Prospective, randomized, open, blinded to events evaluation, controlled, 2×2 factorial clinical trial including 30 patients randomly allocated to aspirin 100 mg/d, atorvastatin 40 mg/d, both or none. Outcome measurements included changes in TG levels after treatment (8 to 10 weeks, assessed by a calibrated automated thrombogram. At baseline all groups had similar clinical and biochemical profiles, including TG levels. There was no interaction between aspirin and atorvastatin. Atorvastatin significantly reduced TG measured as peak TG with saline (85.09±55.34 nmol vs 153.26±75.55 nmol for atorvastatin and control groups, respectively; p = 0.018. On the other hand, aspirin had no effect on TG (121.51±81.83 nmol vs 116.85±67.66 nmol, for aspirin and control groups, respectively; p = 0.716. The effects of treatments on measurements of TG using other agonists were consistent.While waiting for data from ongoing large clinical randomized trials to definitively outline the role of aspirin in primary prevention, our study shows that among diabetic patients without previous vascular events, statins but not aspirin reduce thrombotic risk assessed by TG.ClinicalTrials.gov NCT00793754.
Luo, Liancong; Hamilton, David; Lan, Jia; McBride, Chris; Trolle, Dennis
2018-03-01
Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook autocalibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimizing the root-mean-square error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10 000 simulation iterations. The "optimal" temperature calibration produced a RMSE of 0.54 °C, Nr value of 0.99, and r value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 and 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr value was 0.75, and the r value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events from 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr value 0.62, and r value of 0.81, based on the available data set of 738 days. The autocalibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimization than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.
International Nuclear Information System (INIS)
Duwel, D; Lamba, M; Elson, H; Kumar, N
2015-01-01
Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations. Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens
International Nuclear Information System (INIS)
Kodeli, I.; Aldama, D. L.; De Leege, P. F. A.; Legrady, D.; Hoogenboom, J. E.; Cowan, P.
2004-01-01
As part of the IRTMBA (Improved Radiation Transport Modelling for Borehole Applications) project of the EU community's 5. framework program a special purpose multigroup cross-section library was prepared for use in deterministic and Monte Carlo oil well logging particle transport calculations. This library is expected to improve the prediction of the neutron and gamma spectra at the detector positions of the logging tool, and their use for the interpretation of the neutron logging measurements was studied. Preparation and testing of this library is described. (authors)
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.
1999-10-01
The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.
Applications of Monte Carlo method in Medical Physics
International Nuclear Information System (INIS)
Diez Rios, A.; Labajos, M.
1989-01-01
The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)
Directory of Open Access Journals (Sweden)
L. Luo
2018-03-01
Full Text Available Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook autocalibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand. The calibration procedure involved independently minimizing the root-mean-square error (RMSE, maximizing the Pearson correlation coefficient (r and Nash–Sutcliffe efficient coefficient (Nr for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10 000 simulation iterations. The "optimal" temperature calibration produced a RMSE of 0.54 °C, Nr value of 0.99, and r value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 and 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L−1, the Nr value was 0.75, and the r value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events from 15 January 2009 to 8 June 2011 (875 days. This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L−1 during summer of 2009–2011. The RMSE was 2.07 mg L−1, Nr value 0.62, and r value of 0.81, based on the available data set of 738 days. The autocalibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimization than traditional manual calibration which has been the standard tool practiced for similar
LPM-Effect in Monte Carlo Models of Radiative Energy Loss
Zapp, Korinna C; Wiedemann, Urs Achim
2009-01-01
Extending the use of Monte Carlo (MC) event generators to jets in nuclear collisions requires a probabilistic implementation of the non-abelian LPM effect. We demonstrate that a local, probabilistic MC implementation based on the concept of formation times can account fully for the LPM-effect. The main features of the analytically known eikonal and collinear approximation can be reproduced, but we show how going beyond this approximation can lead to qualitatively different results.
Continuous energy Monte Carlo method based homogenization multi-group constants calculation
International Nuclear Information System (INIS)
Li Mancang; Wang Kan; Yao Dong
2012-01-01
The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P 1 cross sections were used to calculate the diffusion coefficients for diffusion reactor simulator codes. B N theory is applied to take the leakage effect into account when the infinite lattice of identical symmetric motives is assumed. The MCMC code was developed and the code was applied in four assembly configurations to assess the accuracy and the applicability. At core-level, A PWR prototype core is examined. The results show that the Monte Carlo based multi-group constants behave well in average. The method could be applied to complicated configuration nuclear reactor core to gain higher accuracy. (authors)
International Nuclear Information System (INIS)
Chadwick, Chris; Jahouel, Xavier; Swain, Adam
2014-01-01
accommodation/removal, maximum temperature limitations in terms of metallurgy and the melting point of deposited materials (for instance, the melting of CsOH at 273 Celsius) as well the consequences of water condensation on pressure loss, solids removal efficiency and the blinding of the medium, and the structural design of the equipment to make it capable of withstanding the worst case pressure loss (a fully blocked system with full containment pressure across it). Extensive work done in the author's company shows clearly that no two event models coincide, to the extent that the company is concerned that there is an assumption in the NPP industry that a 'product' exists which will simply meet any need, taking account of solids load, temperature limits, pressure profiles, decay heat deposition and the gross condensation of water vapour. It is clear, and will be demonstrated, that no single catch-all solution will meet the myriad of needs examined by the company, and the company finds itself in a position where it feels it is compelled to at least present the argument to the industry, so that the industry can then at least have its deliberations informed by supported and fundamental fact. The purpose of the paper is to (hopefully) generate debate to ensure that solutions being provided to meet this most challenging and important of applications, meet the real need, and that the real need is properly modelled. The company has worked on several CV applications in the past years and can say with certainty that no two have been at all similar, suggesting that either the event modelling is wrong, or 'One Size Fits All' is definitely not the case where Containment Venting is concerned. (authors)
Peñalva, Daniel A; Antollini, Silvia S; Ambroggio, Ernesto E; Aveldaño, Marta I; Fanani, María L
2018-04-10
In rat sperm heads, sphingomyelin (SM) species that contain very long-chain polyunsaturated fatty acid (V-SM) become ceramides (V-Cer) after inducing in vitro the acrosomal reaction. The reason for such a specific location of this conversion, catalyzed by a sphingomyelinase (SMase), has received little investigation so far. Here, the effects of SMase were compared in unilamellar vesicles (large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs)) containing phosphatidylcholine, and either V-SM or a palmitate-rich SM (P-SM). In uniformly sized LUVs at 37 °C, more V-Cer was generated and more rapidly than P-Cer. Nephelometry and dynamic light scattering showed that LUVs tended to form large lipid particles more intensely, and Förster resonance energy transfer (FRET) increases suggested that lateral lipid mixing was more marked when V-Cer rather than P-Cer was produced. As reported by 6-dodecanoyl-2-dimethyl-aminopnaphthalene (Laurdan) and 1,6-diphenyl-1,3,5,-hexatriene (DPH), the production of V-Cer resulted in higher and faster restriction in lipid mobility than that of P-Cer, implying a stronger increase in membrane dehydration and microviscosity. Moreover, DPH anisotropy suggested a higher solubility of V-Cer than that of P-Cer in the liquid-disordered phase. At room temperature, liquid-condensed lateral domains appeared in P-SM- but not in V-SM-containing GUVs. The former maintained their size while losing their contents gradually during SMase action, whereas the latter became permeable earlier and reduced their size in few minutes until suddenly collapsing. The fast and potent generation of V-Cer may contribute to the membrane restructuring events that occur on the acrosome-reacted sperm head.
Energy Technology Data Exchange (ETDEWEB)
Morozov, Andrey [Institute for Physics and Power Engineering by A.I. Leypunsky, 1 Bondarenko sq. Obninsk, 249033 (Russian Federation)
2008-07-01
For new Russian nuclear power plants with VVER-1200 reactor in the event of a beyond design basis accident, provision is made for the use of passive safety systems for necessary core cooling. These safety systems include the passive heat removal system (PHRS). In the case of leakage in the primary circuit this system assures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam. As a result, the condensate from SG arrives at the core providing its additional cooling. To investigate the condensation mode of VVER SG operation, a large scale HA2M-SG test facility was constructed. The rig incorporates: buffer tank, SG model with scale is 1:46, PHRS heat exchanger. Experiments at the test facility have been performed to investigate condensation mode of operation of SG model at the pressure 0.4 MPa, correspond to VVER reactor pressure at the last stage of the beyond design basis accident. The report presents the test procedure and the basic obtained test results. (authors)
Elements of Monte Carlo techniques
International Nuclear Information System (INIS)
Nagarajan, P.S.
2000-01-01
The Monte Carlo method is essentially mimicking the real world physical processes at the microscopic level. With the incredible increase in computing speeds and ever decreasing computing costs, there is widespread use of the method for practical problems. The method is used in calculating algorithm-generated sequences known as pseudo random sequence (prs)., probability density function (pdf), test for randomness, extension to multidimensional integration etc
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Cevallos R, L. E.; Guzman G, K. A.; Gallego, E.; Garcia F, G. [Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Industriales, Departamento de Ingenieria Energetica, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R., E-mail: lenin_cevallos@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)
2017-10-15
The detection of hidden explosive material is very important for national security. Using Monte Carlo methods, with the code MCNP6, several proposed configurations of a detection system with a Deuterium-Deuterium (D-D) generator, in conjunction with NaI (Tl) scintillation detectors, have been evaluated to intercept hidden explosives. The response of the system to various explosive samples such as Rdx and ammonium nitrate are analyzed as the main components of home-military explosives. The D-D generator produces fast neutrons of 2.5 MeV in a maximum field of 10{sup 10} n/s (Dd-110) which is surrounded with high density polyethylene in order to thermalized the fast neutrons making them interact with the sample inspected, giving rise to the emission of gamma rays that generates a characteristic spectrum of the elements that constitute it, being able in this way to determine its chemical composition and identify the type of substance. The necessary shielding is evaluated to estimate the admissible operation dose, with thicknesses of lead and borated polyethylene, in order to place it at some point of the Laboratory of Neutron Measurements of the Polytechnic University of Madrid where the shielding is optimal. The results show that its functionality is promising in the field of national security for the explosives inspection. (Author)
Energy Technology Data Exchange (ETDEWEB)
Oliveira, F.G.; Andrade, A.F.G. de; Vieira, J.W., E-mail: baby.oliveira@hotmail.com.br, E-mail: arthurfelandrade@gmail.com, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil); Oliveira, A.C.H. de, E-mail: oliveira_ach@yahoo.com [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil); Lima, F.R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife-PE (Brazil)
2017-07-01
One of the greatest challenges of numerical dosimetry is to estimate the dose of ionizing radiation absorbed by the soft tissues that are located in bone trabecular. Due to the difficulty in obtaining micro-CT images of real bone samples (OR), the need for the generation of synthetic bone trabecular appeared. In this work, virtual synthetic trabecular samples (BU), generated by Monte Carlo methods parameterized by the Burr XII probability density function (FDP), and their OR equivalents were submitted to dosimetric evaluations in the adult male Computational Exposure Model (MCE) in orthostatic position (MSTA) coupled to the EGSnrc software with idealized photon-emitting sources and targeting the two most radiosensitive bone tissues: red bone marrow and the foramen-bone surface of trabecular bones, sternum, spine, femur, pelvis and skull regions. When comparing the dosimetric results of the two sample sets, it was found that the overall relative error presented was 4.34%. It is concluded that the synthetic trabecular generated by FDPs with the same characteristics as the Burr XII FDP can successfully replace the OR bones in similar bone dosimetry tests.
Is Monte Carlo embarrassingly parallel?
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Zettergren, M. D.; Snively, J. B.; Inchin, P.; Komjathy, A.; Verkhoglyadova, O. P.
2017-12-01
Ocean and solid earth responses during earthquakes are a significant source of large amplitude acoustic and gravity waves (AGWs) that perturb the overlying ionosphere-thermosphere (IT) system. IT disturbances are routinely detected following large earthquakes (M > 7.0) via GPS total electron content (TEC) observations, which often show acoustic wave ( 3-4 min periods) and gravity wave ( 10-15 min) signatures with amplitudes of 0.05-2 TECU. In cases of very large earthquakes (M > 8.0) the persisting acoustic waves are estimated to have 100-200 m/s compressional velocities in the conducting ionospheric E and F-regions and should generate significant dynamo currents and magnetic field signatures. Indeed, some recent reports (e.g. Hao et al, 2013, JGR, 118, 6) show evidence for magnetic fluctuations, which appear to be related to AGWs, following recent large earthquakes. However, very little quantitative information is available on: (1) the detailed spatial and temporal dependence of these magnetic fluctuations, which are usually observed at a small number of irregularly arranged stations, and (2) the relation of these signatures to TEC perturbations in terms of relative amplitudes, frequency, and timing for different events. This work investigates space- and time-dependent behavior of both TEC and magnetic fluctuations following recent large earthquakes, with the aim to improve physical understanding of these perturbations via detailed, high-resolution, two- and three-dimensional modeling case studies with a coupled neutral atmospheric and ionospheric model, MAGIC-GEMINI (Zettergren and Snively, 2015, JGR, 120, 9). We focus on cases inspired by the large Chilean earthquakes from the past decade (viz., the M > 8.0 earthquakes from 2010 and 2015) to constrain the sources for the model, i.e. size, frequency, amplitude, and timing, based on available information from ocean buoy and seismometer data. TEC data are used to validate source amplitudes and to constrain
Event Index - a LHCb Event Search System
INSPIRE-00392208; Kazeev, Nikita; Redkin, Artem
2015-12-23
LHC experiments generate up to $10^{12}$ events per year. This paper describes Event Index - an event search system. Event Index's primary function is quickly selecting subsets of events from a combination of conditions, such as the estimated decay channel or stripping lines output. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
Energy Technology Data Exchange (ETDEWEB)
Barrera, C A; Moran, M J
2007-08-21
The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS
Monte Carlo - Advances and Challenges
International Nuclear Information System (INIS)
Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.
2008-01-01
Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature
International Nuclear Information System (INIS)
Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.
1988-01-01
We have developed and successfully tested a TPC Magnetic Spectrometer to search for QGP signals produced by ion beams at AGS. We also developed a cascade and plasma event generator the predictions of which are used to illustrate how our technique can detect possible plasma signals. 4 refs., 6 figs., 1 tab
Underlying Event Studies and Forward Physics at CMS
International Nuclear Information System (INIS)
Krammer, Manfred; Bartalini, Paolo
2010-01-01
Studies of the underlying event and forward processes are important tests of the standard model and inputs for Monte Carlo tuning. By selecting regions transverse and parallel to the hard parton-parton scatter, different aspects of non-perturbative QCD are enhanced and allow fine tuning of different Monte Carlo models. The underlying event in pp interactions, recorded by the CMS detector, is studied measuring the charged multiplicity density and the charged energy density in a region perpendicular to the plane of the hard 2-to-2 scattering. Two different methodologies are adopted to identify the direction and the energy scale of the hard scattering in Minimum Bias events that rely on the leading charged track and on the leading charged jet. The study allows to discriminate between various QCD Monte Carlo models with different multiple parton interaction schemes. In addition, we present the measurement of the underlying event using the jet area/ median approach. We demonstrate its sensitivity to different underlying event scenarios and tunes on generator level after applying detector specific cuts and thresholds. In the forward direction, the first measurement of forward energy flow in 3 35 GeV and compare to model with different multi-parton interaction schemes. In addition, the absence of energy deposition in the forward region is used to observe diffractive events. We compare our results with predictions from Monte Carlo event generators including a simulation of multi-parton scattering. All four measurements can be used to determine the parameters of multi-parton interaction models in a extended region of phase space. (author)
FTREE. Single-history Monte Carlo analysis for radiation detection and measurement
International Nuclear Information System (INIS)
Chin, M.P.W.
2015-01-01
This work introduces FTREE, which describes radiation cascades following impingement of a source particle on matter. The ensuing radiation field is characterised interaction by interaction, accounting for each generation of secondaries recursively. Each progeny is uniquely differentiated and catalogued into a family tree; the kinship is identified without ambiguity. This mode of observation, analysis and presentation goes beyond present-day detector technologies, beyond conventional Monte Carlo simulations and beyond standard pedagogy. It is able to observe rare events far out in the Gaussian tail which would have been lost in averaging-events less probable, but no less correct in physics. (author)
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Cevallos Robalino, Lenin E; García Fernández, Gonzalo Felipe; Gallego, Eduardo; Guzmán-García, Karen A; Vega-Carrillo, Hector Rene
2018-02-17
Detection of hidden explosives is of utmost importance for homeland security. Several configurations of an Explosives Detection System (EDS) to intercept hidden threats, made up with a Deuterium-Deuterium (D-D) compact neutron generator and NaI (Tl) scintillation detectors, have been evaluated using MCNP6 code. The system's response to various samples of explosives, such as RDX and Ammonium Nitrate, is analysed. The D-D generator is able to produce fast neutrons with 2.5 MeV energy in a maximum yield of 10 10 n/s. It is surrounded by high-density polyethylene to thermalize the fast neutrons and to optimize interactions with the sample inspected, whose emission of gamma rays gives a characteristic spectrum of the elements that constitute it. This procedure allows to determine its chemical composition and to identify the type of substance. The necessary shielding is evaluated to estimate its thicknesses depending on the admissible dose of operation, using lead and polyethylene. The results show that its functionality is promising in the field of national security for explosives inspection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monte Carlo studies of ZEPLIN III
Dawson, J; Davidge, D C R; Gillespie, J R; Howard, A S; Jones, W G; Joshi, M; Lebedenko, V N; Sumner, T J; Quenby, J J
2002-01-01
A Monte Carlo simulation of a two-phase xenon dark matter detector, ZEPLIN III, has been achieved. Results from the analysis of a simulated data set are presented, showing primary and secondary signal distributions from low energy gamma ray events.
Monte Carlo shielding analyses using an automated biasing procedure
International Nuclear Information System (INIS)
Tang, J.S.; Hoffman, T.J.
1988-01-01
A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost
Monte Carlo simulations for plasma physics
International Nuclear Information System (INIS)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
HEPWEB - WEB-portal for Monte Carlo simulations in high-energy physics
International Nuclear Information System (INIS)
Aleksandrov, E.I.; Kotov, V.M.; Uzhinsky, V.V.; Zrelov, P.V.
2011-01-01
A WEB-portal HepWeb allows users to perform the most popular calculations in high-energy physics - calculations of hadron-hadron, hadron-nucleus, and nucleus-nucleus interaction cross sections as well as calculations of secondary-particle characteristics in the interactions using Monte Carlo event generators. The list of the generators includes Dubna version of the intranuclear cascade model (CASCADE), FRITIOF model, ultrarelativistic quantum molecular dynamics model (UrQMD), HIJING model, and AMPT model. Setting up the colliding particles/nucleus properties (collision energy, mass numbers and charges of nuclei, impact parameters of interactions, and number of generated events) is realized by a WEB-interface. A query is processed by a server, and results are presented to the user as a WEB-page. Short descriptions of the installed generators, the WEB-interface implementation and the server operation are given
HEPWEB - WEB-portal for Monte Carlo simulations in high-energy physics
Energy Technology Data Exchange (ETDEWEB)
Aleksandrov, E I; Kotov, V M; Uzhinsky, V V; Zrelov, P V
2011-07-01
A WEB-portal HepWeb allows users to perform the most popular calculations in high-energy physics - calculations of hadron-hadron, hadron-nucleus, and nucleus-nucleus interaction cross sections as well as calculations of secondary-particle characteristics in the interactions using Monte Carlo event generators. The list of the generators includes Dubna version of the intranuclear cascade model (CASCADE), FRITIOF model, ultrarelativistic quantum molecular dynamics model (UrQMD), HIJING model, and AMPT model. Setting up the colliding particles/nucleus properties (collision energy, mass numbers and charges of nuclei, impact parameters of interactions, and number of generated events) is realized by a WEB-interface. A query is processed by a server, and results are presented to the user as a WEB-page. Short descriptions of the installed generators, the WEB-interface implementation and the server operation are given.
PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers
Energy Technology Data Exchange (ETDEWEB)
Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.
1996-10-01
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.
PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers
Energy Technology Data Exchange (ETDEWEB)
Salvat, F; Fernandez-Varea, J M; Baro, J; Sempau, J
1996-07-01
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.
Directory of Open Access Journals (Sweden)
K. V. Dobrego
2017-01-01
Full Text Available Nowadays we observe rather rapid growth of energy accumulators market. There are prerequisites to their extensive application in Belarus. In spite of technology development problems pertaining to optimization of electric power and their operation under conditions of specific systems “generator – accumulator – consumer” (GAC have not obtained proper consideration. At the same time tuning and optimization of the GAC system may provide competitive advantages to various accumulating systems because application of accumulator batteries in non-optimal charge – discharge conditions reduces its operating resource. Optimization of the GAC system may include utilization of hybrid accumulator systems together with heterogeneous chemical and mechanical accumulators, tuning of system controller parameters etc. Research papers present a great number of empirical and analytical methods for calculation of electric loads. These methods use the following parameters as initial data: time-averaged values of actual electric power consumption, averaged apartment electric loads, empirical and statistical form coefficients, coefficients of maximum electric load for a group of uniform consumers. However such models do not meet the requirements of detailed simulation of relatively small system operation when the simulation must correspond to non-stationary, non-averaged, stochastic load nature. The paper provides a simple approach to the detailed simulation of electric loads in regard to small projects such as multi-unit apartment building or small agricultural farm. The model is formulated both in physical and algorithmic terms that make it possible to be easily realized in any programming environment. The paper presents convergence of integral electric power consumption, which is set by the model, to statistically averaged parameters. Autocorrelation function has been calculated in the paper that shows two scales for autocorrelation of simulated load diagrams
Event-by-Event Simulation of Induced Fission
Energy Technology Data Exchange (ETDEWEB)
Vogt, R; Randrup, J
2007-12-13
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.
Event-by-Event Simulation of Induced Fission
Vogt, Ramona; Randrup, Jørgen
2008-04-01
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.
Event-by-Event Simulation of Induced Fission
International Nuclear Information System (INIS)
Vogt, Ramona; Randrup, Joergen
2008-01-01
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented
Event-by-Event Simulation of Induced Fission
International Nuclear Information System (INIS)
Vogt, R; Randrup, J
2007-01-01
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented
Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav
2015-01-01
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626
Directory of Open Access Journals (Sweden)
Christine eMohr
2015-01-01
Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
International Nuclear Information System (INIS)
Dinca, Elena
2004-01-01
This work aims at achieving an analysis regarding the thermal-hydraulic behaviour of a CANDU-6 type NPP in the event of the blockage on open-setting of an MSSV (Main Steam Safety Valve) for steam relief from steam generators. The systems studied are main steam and feedwater mixture in the secondary circuit, particularly being analyzed the behaviour of the steam generators as well as the primary heat transfer and the control system of heavy water pressure and inventory in the primary system. One supposes that the MSSV blockage occurs directly after its opening in the event of an accident that led to the a steam pressure rise in the steam generators up to the threshold value of MSSV o penning. The analysis was applied to two events of initiation which lead to MSSV o penning, namely a Class IV loss of electric supply and loss of vacuum in turbine condenser. In the simulation of the events selected for analysis a long elapse of time is supposed (3600 seconds) and no operator intervention while the NPP is operating at rating power and equilibrium fuel regime. Each of the two events were analyzed for two distinct sets of conditions of event initiation and evolution. The study was focussed on the behaviour of NPP, particularly of the steam generators, and on the estimation of the amount of water in the secondary circuit released into the atmosphere during the event. The analysis is of deterministic type and supplies information required by the Probabilistic Safety Assessment (PSA) applied to nuclear facilities in establishing the operation procedures and documentation. The analysis was based on design data for a CANDU-6 NPP and the HYDN3 code for thermal-hydraulic computation in CANDU type NPPs. In the paper there are presented the analysis, methodology, models, hypotheses and the input data as well as the analyzed cases. Within the computing code some models were developed to allow simulating the event sequences chosen for analyses. The results are plotted and
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Chalise, Darshan
2017-01-01
The interaction between Dark Matter particles and Standard Model particles is possible through a force mediated by a Dark Matter(DM) - Standard Model(SM) mediator. If that mediator decays through a dijet event, the reconstructed invariant mass of the jets will peak at a speciﬁc value, in contrast to the smooth QCD background. This analysis is a preliminary work towards the understanding of how changes in detector conditions at the Future Circular Collider aﬀect the sensitivity of the mediator signal. MadGraph 5 was used to produce events with 30 TeV DM mediator and Heppy was used to produce ﬂat n-tuples for ROOT analysis. MadAnalysis 5 was then used to produce histograms of MadGraph events and PyRoot was used to analyze Heppy output. Histograms of invariant mass of the jets after event production through MadGraph as well as after Heppy analysis showed a peak at 30 TeV. This veriﬁed the production of a 30 TeV mediator during event production.
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
2003-07-01
As the 31st domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as 'Damage events and integrity evaluations of nuclear power facilities'. Six speakers gave lectures titled as 'Damages of structural materials in the LWR plants and their measures', 'Inspection and integrity evaluation method of SCC in the BWR plants', 'Measures with chloride SCC of piping', 'High cycle fatigue damage events of small diameter pipes and their measures', 'Management of SCC in in-core instrumentation thimbles' and 'Japanese lost ten years and American and other leaps'. (T. Tanaka)
Sampling from a polytope and hard-disk Monte Carlo
International Nuclear Information System (INIS)
Kapfer, Sebastian C; Krauth, Werner
2013-01-01
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...
International Nuclear Information System (INIS)
Wichner, R.P.
1977-01-01
To perform the assessment, a series of eight tube-rupture events of varying severity and probability were postulated. Case 1 pertains to the situation where the moisture detection, loop isolation, and dump procedures function as planned; the remaining seven cases suppose various defects in the moisture detection system, the core auxiliary coolant system, and the integrity of the prestressed concrete reactor vessel. Core post burnoffs beneath three typical fuel zones were estimated for each postulated event from the determined impurity compositions and core post temperature history. Two separate corrosion rate expressions were assumed, as deemed most appropriate of those published for the high-oxidant level typical in tube rupture events. It was found that the nominal core post beneath the highest power factor fuel zone would lose from 0.02 to 2.5 percent of their strength, depending on an assumed corrosion rate equation and the severity of the event. The effect of hot streaking during cooldown was determined by using preliminary estimates of its magnitude. It was found that localized strength loss beneath the highest power factor zone ranges from 0.23 to 12 percent, assuming reasonably probable hot-streaking circumstances. The combined worst case, hot streaking typical for a load-following transient and most severe accident sequence, yields an estimated strength loss of from 25 to 33 percent for localized regions beneath the highest power factor zones
Kuzma, H. A.; Arehart, E.; Louie, J. N.; Witzleben, J. L.
2012-04-01
Listening to the waveforms generated by earthquakes is not new. The recordings of seismometers have been sped up and played to generations of introductory seismology students, published on educational websites and even included in the occasional symphony. The modern twist on earthquakes as music is an interest in using state-of-the-art computer algorithms for seismic data processing and evaluation. Algorithms such as such as Hidden Markov Models, Bayesian Network models and Support Vector Machines have been highly developed for applications in speech recognition, and might also be adapted for automatic seismic data analysis. Over the last three years, the International Data Centre (IDC) of the Comprehensive Test Ban Treaty Organization (CTBTO) has supported an effort to apply computer learning and data mining algorithms to IDC data processing, particularly to the problem of weeding through automatically generated event bulletins to find events which are non-physical and would otherwise have to be eliminated by the hand of highly trained human analysts. Analysts are able to evaluate events, distinguish between phases, pick new phases and build new events by looking at waveforms displayed on a computer screen. Human ears, however, are much better suited to waveform processing than are the eyes. Our hypothesis is that combining an auditory representation of seismic events with visual waveforms would reduce the time it takes to train an analyst and the time they need to evaluate an event. Since it takes almost two years for a person of extraordinary diligence to become a professional analyst and IDC contracts are limited to seven years by Treaty, faster training would significantly improve IDC operations. Furthermore, once a person learns to distinguish between true and false events by ear, various forms of audio compression can be applied to the data. The compression scheme which yields the smallest data set in which relevant signals can still be heard is likely an
International Nuclear Information System (INIS)
Batyunya, B.V.
1988-01-01
The inclusive characteristics of the e + e - -annihilation process at LEP energy, generated in the Monte-Carlo LUND model, have been obtained. The question on the choice of the model parameters, determining the rates of 2-,3- and 4-jet events, is discussed. The comparison of the generated event characteristics with the experimental ones obtained at lower energy points to the necessity of a more exact choice of the model parameters determining relative probability of different type hadron production. At the same time the properties of the momentum variable distributions of the generated particles reflect a general experimental picture at lower energy
De Batist, M. A.; Van Daele, M. E.; Cnudde, V.; Duyck, P.; Tjallingii, R. H.; Pino, M.; Urrutia, R.
2012-12-01
In 2007, a seismic swarm with more than 7000 recorded earthquakes affected the region around Aysén fjord, Chile (45°25'S). The series of seismic events reached a maximum on 21 April 2007, with an Mw 6.2 earthquake. Intensities as high as VIII to IX on the Modified Mercalli scale were reported around the epicenter. Multiple debris flows, rock slides and rock avalanches were triggered along the fjord's coastline, and several of these caused impact waves or tsunamis with wave heights of up to 6 m, which inundated the fjord shorelines and caused heavy damage and 10 casualties. In order to characterize in detail the imprint left by this series of catastrophic events in the sedimentary record of the fjord, we conducted a multi-disciplinary survey of the inner fjord region in December 2009. Multibeam bathymetry and high-resolution reflection seismic data reveal that large parts of the fjord basin floor, mostly at the foot of the fjord's steep underwater slopes, are covered by recent mass-wasting deposits or consist of mass-wasting-induced deformed basin-plain sediments. A series of short sediment cores collected throughout the inner fjord contain also the more distal deposits of this significant basin-wide mass-wasting event. By combining classical sedimentological techniques (i.e. grain-size analysis, LOI and magnetic susceptibility measurements, all at high resolution) with X-ray CT scanning and XRF scanning we were able to demonstrate that the event deposits encountered in the cores have a very complex signature and actually consist of a succession of several sub-deposits, comprising distal mass-flow deposits from different source areas (as evidenced by XRF-derived geochemical provenance indications) and with a different flow direction (as evidenced by CT-derived 3D flow-direction indications, such as imbricated rip-up mud clasts, cross and convolute laminations) and tsunami- or seiche-generated deposits. This allowed us to reconstruct the succession of sedimentary
International Nuclear Information System (INIS)
Krause, Claudius
2010-09-01
High energy proton-proton collisions lead to a large amount of secondary particles to be measured in a detector. A final state containing top quarks is of particular interest. But top quarks are only produced in a small fraction of the collisions. Hence, criteria must be defined to separate events containing top quarks from the background. From detectors, we record signals, for example hits in the tracker system or deposits in the calorimeters. In order to obtain the momentum of the particles, we apply algorithms to reconstruct tracks in space. More sophisticated algorithms are needed to identify the flavour of quarks, such as b-tagging. Several steps are needed to test these algorithms. Collision products of proton-proton events are generated using Monte Carlo techniques and their passage through the detector is simulated. After that, the algorithms are applied and the signal efficiency and the mistagging rate can be obtained. There are, however, many different approaches and algorithms realized in programs, so the question arises if the choice of the Monte Carlo generator influences the measured quantities. In this thesis, two commonly used Monte Carlo generators, SHERPA and MadGraph/MadEvent, are compared and the differences in the selection efficiency of semimuonic tt events are estimated. In addition, the distributions of kinematic variables are shown. A special chapter about the matching of matrix elements with parton showers is included. The main algorithms, CKKW for SHERPA and MLM for MadGraph/MadEvent, are introduced.
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius
2012-04-15
High energy proton-proton collisions lead to a large amount of secondary particles to be measured in a detector. A final state containing top quarks is of particular interest. But top quarks are only produced in a small fraction of the collisions. Hence, criteria must be defined to separate events containing top quarks from the background. From detectors, we record signals, for example hits in the tracker system or deposits in the calorimeters. In order to obtain the momentum of the particles, we apply algorithms to reconstruct tracks in space. More sophisticated algorithms are needed to identify the flavour of quarks, such as b-tagging. Several steps are needed to test these algorithms. Collision products of proton-proton events are generated using Monte Carlo techniques and their passage through the detector is simulated. After that, the algorithms are applied and the signal efficiency and the mistagging rate can be obtained. There are, however, many different approaches and algorithms realized in programs, so the question arises if the choice of the Monte Carlo generator influences the measured quantities. In this thesis, two commonly used Monte Carlo generators, SHERPA and MadGraph/MadEvent, are compared and the differences in the selection efficiency of semimuonic tt events are estimated. In addition, the distributions of kinematic variables are shown. A special chapter about the matching of matrix elements with parton showers is included. The main algorithms, CKKW for SHERPA and MLM for MadGraph/MadEvent, are introduced.
Wyard, Coraline; Fettweis, Xavier
2016-04-01
As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the
MORSE/STORM: A generalized albedo option for Monte Carlo calculations
International Nuclear Information System (INIS)
Gomes, I.C.; Stevens, P.N.
1991-09-01
The advisability of using the albedo procedure for the Monte Carlo solution of deep penetration shielding problems that have ducts and other penetrations has been investigated. The use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations. However, the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study was done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. Major modifications to MORSE/BREESE include an option to save for further use information that would be lost at the albedo event, an option to displace the point of emergence during an albedo event, and an option to use spatially dependent albedo data for both forward and adjoint calculations, which includes the point of emergence as a new random variable to be selected during an albedo event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton albedos was derived. The MORSE/STORM package was developed to perform both forward and adjoint modes of analysis using spatially dependent albedo data. Results obtained with MORSE/STORM for both forward and adjoint modes were compared with benchmark solutions. Excellent agreement and improved computational efficiency were achieved, demonstrating the full utilization of the albedo option in the MORSE code. 7 refs., 17 figs., 15 tabs
Monte Carlo techniques for analyzing deep-penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1986-01-01
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Monte Carlo codes and Monte Carlo simulator program
International Nuclear Information System (INIS)
Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.
1990-03-01
Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)
2009-01-01
Carlo Rubbia turned 75 on March 31, and CERN held a symposium to mark his birthday and pay tribute to his impressive contribution to both CERN and science. Carlo Rubbia, 4th from right, together with the speakers at the symposium.On 7 April CERN hosted a celebration marking Carlo Rubbia’s 75th birthday and 25 years since he was awarded the Nobel Prize for Physics. "Today we will celebrate 100 years of Carlo Rubbia" joked CERN’s Director-General, Rolf Heuer in his opening speech, "75 years of his age and 25 years of the Nobel Prize." Rubbia received the Nobel Prize along with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. During the symposium, which was held in the Main Auditorium, several eminent speakers gave lectures on areas of science to which Carlo Rubbia made decisive contributions. Among those who spoke were Michel Spiro, Director of the French National Insti...
Determining the helicity structure of third generation resonances
International Nuclear Information System (INIS)
Papaefstathiou, Andreas
2011-11-01
We examine methods that have been proposed for determining the helicity structure of decays of new resonances to third generation quarks and/or leptons. We present analytical and semi-analytical predictions and assess the applicability of the relevant variables in realistic reconstruction scenarios using Monte Carlo-generated events, including the effects of QCD radiation and multiple parton interactions, combinatoric ambiguities and fast detector simulation. (orig.)
Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.
2006-01-01
Single-event upset effects from heavy ions are measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes. The results are compared with previous results for SOI microprocessors with feature sizes of 130 and 180 nm. The cross section of the 90 nm SOI processors is smaller than results for 130 and 180 nm counterparts, but the threshold is about the same. The scaling of the cross section with reduction of feature size and core voltage for SOI microprocessors is discussed.
Study of hadronic event-shape variables in multijet final states in pp collisions at TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Gosselink, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Biasotto, M.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Hopkins, W.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Berry, E.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krute-lyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.
2014-10-01
Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at TeV. Events are selected with at least one jet with transverse momentum p T > 110 GeV and pseudorapidity | η| < 2.4, in a data sample corresponding to integrated luminosities of up to 5 fb-1. The distributions of five event-shape variables in various leading jet p T ranges are compared to predictions from different QCD Monte Carlo event generators. [Figure not available: see fulltext.
Kovshoff, Hanna; Banaschewski, Tobias; Buitelaar, Jan K.; Carucci, Sara; Coghill, David; Danckaerts, Marina; Dittmann, Ralf W.; Falissard, Bruno; Grimshaw, Dina Gojkovic; Hollis, Chris; Inglis, Sarah; Konrad, Kerstin; Liddle, Elizabeth; McCarthy, Suzanne; Nagy, Peter; Thompson, Margaret; Wong, Ian C.K.; Zuddas, Alessandro
2016-01-01
Abstract Objective: There is no questionnaire to specifically monitor perceived adverse events of methylphenidate (MPH) on cognition, motivation, and mood. The current study therefore had two goals. First, to harvest accounts of such putative events from transcripts of interviews in samples enriched for such potential experiences. Second, to use the derived data to generate items for a new questionnaire that can be used for monitoring such events in medication trials or routine clinical care. Methods: Following a literature search aimed at identifying associations between MPH and cognition and/or motivation, a qualitative semistructured interview was designed to focus specifically on the domains of cognition (i.e., reasoning, depth/breadth of thinking, intellectual capacity, and creativity) and motivation (i.e., drive, effort, and attitudes toward rewards/incentives). Interviews were conducted with 45 participants drawn from the following four groups: (a) clinicians, child and adolescent psychiatrists, and pediatricians specializing in attention-deficit/hyperactivity disorder (ADHD) (n = 15); (2) teachers, with experience of teaching at least 10 medicated children with ADHD (n = 10); (3) parents of children with ADHD (n = 8) treated with MPH; and (4) adolescents/adults with ADHD (n = 12). Purposeful sampling was used to selectively recruit ADHD participants whose histories suggested a degree of vulnerability to MPH adverse events. Data were analyzed using a deductive approach to content analysis. Results: While we probed purposefully for cognitive and motivational adverse events, a third domain, related to mood, emerged from the reports. Therefore, three domains, each with a number of subdomains, were identified from the interview accounts: (i) Cognition (six subdomains; attention/concentration, changes in thinking, reduced creativity, sensory overload, memory, slower processing speed); (ii) motivation (four subdomains; loss of intrinsic motivation
Kovshoff, Hanna; Banaschewski, Tobias; Buitelaar, Jan K; Carucci, Sara; Coghill, David; Danckaerts, Marina; Dittmann, Ralf W; Falissard, Bruno; Grimshaw, Dina Gojkovic; Hollis, Chris; Inglis, Sarah; Konrad, Kerstin; Liddle, Elizabeth; McCarthy, Suzanne; Nagy, Peter; Thompson, Margaret; Wong, Ian C K; Zuddas, Alessandro; Sonuga-Barke, Edmund J S
2016-08-01
There is no questionnaire to specifically monitor perceived adverse events of methylphenidate (MPH) on cognition, motivation, and mood. The current study therefore had two goals. First, to harvest accounts of such putative events from transcripts of interviews in samples enriched for such potential experiences. Second, to use the derived data to generate items for a new questionnaire that can be used for monitoring such events in medication trials or routine clinical care. Following a literature search aimed at identifying associations between MPH and cognition and/or motivation, a qualitative semistructured interview was designed to focus specifically on the domains of cognition (i.e., reasoning, depth/breadth of thinking, intellectual capacity, and creativity) and motivation (i.e., drive, effort, and attitudes toward rewards/incentives). Interviews were conducted with 45 participants drawn from the following four groups: (a) clinicians, child and adolescent psychiatrists, and pediatricians specializing in attention-deficit/hyperactivity disorder (ADHD) (n = 15); (2) teachers, with experience of teaching at least 10 medicated children with ADHD (n = 10); (3) parents of children with ADHD (n = 8) treated with MPH; and (4) adolescents/adults with ADHD (n = 12). Purposeful sampling was used to selectively recruit ADHD participants whose histories suggested a degree of vulnerability to MPH adverse events. Data were analyzed using a deductive approach to content analysis. While we probed purposefully for cognitive and motivational adverse events, a third domain, related to mood, emerged from the reports. Therefore, three domains, each with a number of subdomains, were identified from the interview accounts: (i) Cognition (six subdomains; attention/concentration, changes in thinking, reduced creativity, sensory overload, memory, slower processing speed); (ii) motivation (four subdomains; loss of intrinsic motivation for goal-directed activities, external
Comparison of Bootstrap Confidence Intervals Using Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
Roberto S. Flowers-Cano
2018-02-01
Full Text Available Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP, bias-corrected bootstrap (BC, accelerated bias-corrected bootstrap (BCA and a modified version of the standard bootstrap (MSB. Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.
Monte Carlo electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
International Nuclear Information System (INIS)
Lugovoj, V.V.
1998-01-01
At proton-(anti) proton scattering in the frame of two-string Dual Parton Model the semihard parton-parton interactions can lead to the valence (anti) (di) quark excitations which lead to the production of up to four fast hadron leaders, and the process of soft colour interaction between constituents leads to formation of two primary strings, which decay into secondary hadrons according to a new cascade model of string breaking, which corresponds to the fundamental interaction of the theory of the open string. Therefore the recent results of the theory of QCD open string (about the small deviations of the string stretch direction near the longitudinal direction) are used in the algorithm of string breaking. For the fitted values of the free parameters in the process of decay of mother string into two daughter strings the energy (momentum) distributions for the first and second daughter strings are similar to momentum distributions for valence quark and antiquark in meson. This Monte Carlo model with 9 free parameters agrees well with the multiplicity, pseudorapidity, transverse momentum (up to p T =4GeV) distributions and correlations between the average transverse momentum and multiplicity of secondary particles produced by ISR, SS, Tevatron experiments (√s=27 to 1800 GeV). There is quantitative (and qualitative) explanation for correlations between the average transverse momentum and multiplicity for different types of secondary particles (antiprotons, kaons, pions) at √s =1800 GeV. A cascade model of string breaking is a new Monte Carlo model for hadronization which agrees well with the experimental multiplicity, rapidity, transverse momentum distributions of secondary particles produced by e + e - annihilation at E c.m. =3GeV. (author)
Directory of Open Access Journals (Sweden)
Massimiliano Aragona
2013-06-01
Full Text Available OBJECTIVES: To study potentially traumatic events (PTE, post-traumatic stress disorder (PTSD, anxiety, depression, somatization and post-migration living difficulties (PMLD in primary care immigrants. DESIGN: Patients self-rated transculturally validated questionnaires. Those with and without PTSD were compared on all variables. The influence of the number of PTE and of PMLD on PTSD was measured. RESULTS: 391 patients completed the questionnaires. Prevalence of PTSD was 10.2%. PTE and PMLD were frequent in the whole sample but more common in PTSD subjects. Either the number of PTE and of PMLD significantly increased the likelihood to have a PTSD. CONCLUSIONS: PTE, PMLD, PTSD and related conditions (anxiety, depression and somatization are frequent among immigrants in primary care, and either PTE and PMLD significantly influence resulting psychopathology. The implications in clinical practice are discussed.
McLaskey, Gregory C.; Lockner, David A.
2016-01-01
Acoustic emission (AE) analyses have been used for decades for rock mechanics testing, but because AE systems are not typically calibrated, the absolute sizes of dynamic microcrack growth and other physical processes responsible for the generation of AEs are poorly constrained. We describe a calibration technique for the AE recording system as a whole (transducers + amplifiers + digitizers + sample + loading frame) that uses the impact of a 4.76-mm free-falling steel ball bearing as a reference source. We demonstrate the technique on a 76-mm diameter cylinder of westerly granite loaded in a triaxial deformation apparatus at 40 MPa confining pressure. The ball bearing is dropped inside a cavity within the sample while inside the pressure vessel. We compare this reference source to conventional AEs generated during loading of a saw-cut fault in a second granite sample. All located AEs occur on the saw-cut surface and have moment magnitudes ranging from M −5.7 down to at least M −8. Dynamic events rupturing the entire simulated fault surface (stick–slip events) have measurable stress drop and macroscopic slip and radiate seismic waves similar to those from a M −3.5 earthquake. The largest AE events that do not rupture the entire fault are M −5.7. For these events, we also estimate the corner frequency (200–300 kHz), and we assume the Brune model to estimate source dimensions of 4–6 mm. These AE sources are larger than the 0.2 mm grain size and smaller than the 76 × 152 mm fault surface.
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
GE781: a Monte Carlo package for fixed target experiments
Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.
The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.
Leonardo Rossi
Carlo Caso (1940 - 2007) Our friend and colleague Carlo Caso passed away on July 7th, after several months of courageous fight against cancer. Carlo spent most of his scientific career at CERN, taking an active part in the experimental programme of the laboratory. His long and fruitful involvement in particle physics started in the sixties, in the Genoa group led by G. Tomasini. He then made several experiments using the CERN liquid hydrogen bubble chambers -first the 2000HBC and later BEBC- to study various facets of the production and decay of meson and baryon resonances. He later made his own group and joined the NA27 Collaboration to exploit the EHS Spectrometer with a rapid cycling bubble chamber as vertex detector. Amongst their many achievements, they were the first to measure, with excellent precision, the lifetime of the charmed D mesons. At the start of the LEP era, Carlo and his group moved to the DELPHI experiment, participating in the construction and running of the HPC electromagnetic c...
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
ias
on the development of nuclear weapons in Los Alamos ..... cantly improved the paper. ... Carlo simulations of solids, Reviews of Modern Physics, Vol.73, pp.33– ... The computer algorithms are usually based on a random seed that starts the ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.
International Nuclear Information System (INIS)
1983-03-01
An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions
Current and future applications of Monte Carlo
International Nuclear Information System (INIS)
Zaidi, H.
2003-01-01
Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic
Monte Carlo method for array criticality calculations
International Nuclear Information System (INIS)
Dickinson, D.; Whitesides, G.E.
1976-01-01
The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced
International Nuclear Information System (INIS)
Sakai, Yasuhiro
2012-01-01
This paper deals with a risk-economic approach to nuclear power generation, a very timely yet rather neglected area in the economics profession. The economic and psychological consequences of Japan's recent catastrophe have been so grave and wide-spread, thus calling for careful reexamination of the economics of risk and uncertainty. It is Daniel Bernoulli, a mathematical genius of the 18 th century, who first introduced the expected utility theory into decision making under risk. Although a great deal of applications has been done in many areas since then, it appears that the most recent nuclear meltdown of Japan is casting serious doubt upon the general validity of existing risk theories. It is high time for us to establish a new comprehensive approach by taking account of psychological, sociological, cultural, and historical factors. (author)
International Nuclear Information System (INIS)
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
International Nuclear Information System (INIS)
Dubi, A.; Gerstl, S.A.W.
1979-05-01
The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables
Directory of Open Access Journals (Sweden)
Pedro Medina Avendaño
1981-01-01
Full Text Available Carlos Vega Duarte tenía la sencillez de los seres elementales y puros. Su corazón era limpio como oro de aluvión. Su trato directo y coloquial ponía de relieve a un santandereano sin contaminaciones que amaba el fulgor de las armas y se encandilaba con el destello de las frases perfectas
International Nuclear Information System (INIS)
Wollaber, Allan Benton
2016-01-01
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
International Nuclear Information System (INIS)
Creutz, M.
1986-01-01
The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Nemoto, Y.; Yoshida, S.
2009-12-01
) round crest shape, the antidunes dominated by downstream accretion are characterized by (i) steep accretion surface that commonly exceed the angle of repose and (ii) angular to cuspate crest shape. The mechanism in charge of generating the compound antidunes is unclear; however, observations of standing waves in the modern siliciclastic depositional environments (e.g., shallow running water on the beach) suggest that compound antidunes are produced by a gravitational collapse of the crest of large and exceedingly steepened standing waves. When the crest collapes, it commonly breaks into two smaller standing waves that are positioned on the flanks of the large (but now slightly deflated) standing wave, and stay there until the angle of the flanks increases again to form a new large standing wave. The collapse-rebuilding cycle persists as long as the flow condition is sustained.
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency, will speak about his work with Carlo Rubbia. Finally, Hans Joachim Schellnhuber of the Potsdam Institute for Climate Research and Sven Kul...
Energy Technology Data Exchange (ETDEWEB)
Brockway, D.; Soran, P.; Whalen, P.
1985-01-01
A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.
Energy Technology Data Exchange (ETDEWEB)
Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348 (Belgium); Sterpin, Edmond [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Department of Oncology, Katholieke Universiteit Leuven, O& N I Herestraat 49, 3000 Leuven (Belgium)
2016-04-15
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
International Nuclear Information System (INIS)
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-01-01
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10"7 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-04-01
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Estimating rare events in biochemical systems using conditional sampling
Sundar, V. S.
2017-01-01
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Klein, Benjamin; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Branca, Antonio; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Dordevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Hopkins, Walter; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel
2014-10-14
Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at $\\sqrt{s}$ = 7 TeV. Events are selected with at least one jet with transverse momentum $p_{\\rm T} > 110$ GeV and pseudorapidity |$\\eta$| $<2.4$, in a data sample corresponding to integrated luminosities of up to 5 fb$^{-1}$. The distributions of five event-shape variables in various leading jet $p_{\\rm T}$ ranges are compared to predictions from different QCD Monte Carlo event generators.
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Hesse, R.
2009-05-01
Small subpolar ocean basins such as the Labrador Sea received a major portion (25%) of their sediment fill during the Pleistocene glaciations (less than 5% of the basin's lifetime), but the detailed timing of sediment supply to the basin remained essentially unknown until recently. The main sediment input into the basin was probably not coupled to major glacial cycles and associated sea-level changes but was related to Heinrich events. Discovery of the depositional facies of fine-grained lofted sediment provides a tool which suggests that the parent-currents from which lofting took place may have been sandy-gravelly turbidity currents that built a huge braided abyssal plain in the Labrador Sea (700 by 120 km underlain by 150 m on average of coarse- grained sediment) which is one of the largest sand accumulations (104 km3) on Earth. The facies of lofted sediment consists of stacked layers of graded muds that contain ice-rafted debris (IRD) which impart a bimodal grain-size distribution to the graded muds. The texturally incompatible grain populations of the muds (median size between 4 and 8 micrometers) and the randomly distributed coarse silt and sand-sized IRD require the combination of two transport processes that delivered the populations independently and allowed mixing at the depositional site: (i) sediment rafting by icebergs (dropstones) and (ii) the rise of turbid freshwater plumes out of fresh-water generated turbidity currents. Sediment lofting from turbidity currents is a process that occurs in density currents generated from sediment-laden fresh-water discharges into the sea that can produce reversed buoyancy, as is well known from experiments. When the flows have traveled long enough, their tops will have lost enough sediment by settling so that they become hypopycnal (their density decreasing below that of the ambient seawater) causing the current tops to lift up. The turbid fresh-water clouds buoyantly rise out of the turbidity current to a level of
Acharya, N.; Frei, A.; Owens, E. M.; Chen, J.
2015-12-01
Watersheds located in the Catskill Mountains area, part of the eastern plateau climate region of New York, contributes about 90% of New York City's municipal water supply, serving 9 million New Yorkers with about 1.2 billion gallons of clean drinking water each day. The New York City Department of Environmental Protection has an ongoing series of studies to assess the potential impacts of climate change on the availability of high quality water in this water supply system. Recent studies identify increasing trends in total precipitation and in the frequency of extreme precipitation events in this region. The objectives of the present study are: to analyze the probabilistic structure of extreme precipitation based on historical observations: and to evaluate the abilities of stochastic weather generators (WG), statistical models that produce synthetic weather time series based on observed statistical properties at a particular location, to simulate the statistical properties of extreme precipitation events over this region. The generalized extreme value distribution (GEV) has been applied to the annual block maxima of precipitation for 60 years (1950 to 2009) observed data in order to estimate the events with return periods of 50, 75, and 100 years. These results were then used to evaluate a total of 13 WGs were : 12 parametric WGs including all combinations of three different orders of Markov chain (MC) models (1st , 2nd and 3rd) and four different probability distributions (exponential, gamma, skewed normal and mixed exponential); and one semi parametric WG based on k-nearest neighbor bootstrapping. Preliminary results suggest that three-parameter (skewed normal and mixed exponential distribution) and semi-parametric (k-nearest neighbor bootstrapping) WGs are more consistent with observations. It is also found that first order MC models perform as well as second or third order MC models.
Computer system for Monte Carlo experimentation
International Nuclear Information System (INIS)
Grier, D.A.
1986-01-01
A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language
Development and application of the automated Monte Carlo biasing procedure in SAS4
International Nuclear Information System (INIS)
Tang, J.S.; Broadhead, B.L.
1995-01-01
An automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete-ordinates calculation are used to generate biasing parameters for a three-dimensional Monte Carlo calculation. The automated procedure consisting of cross-section processing, adjoint flux determination, biasing parameter generation, and the initiation of a MORSE-SGC/S Monte Carlo calculation has been implemented in the SAS4 module of the SCALE computer code system. (author)
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.
Neutrino energy reconstruction from one-muon and one-proton events
Energy Technology Data Exchange (ETDEWEB)
Furmanski, Andrew P.; Sobczyk, Jan T.
2017-06-01
We propose a method of selecting a high-purity sample of charged current quasielastic neutrino interactions to obtain a precise reconstruction of the neutrino energy. The performance of the method was verified with several tests using genie, neut, and nuwro Monte Carlo event generators with both carbon and argon targets. The method can be useful in neutrino oscillation studies with beams of a few GeV.
Studies of Monte Carlo Modelling of Jets at ATLAS
Kar, Deepak; The ATLAS collaboration
2017-01-01
The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets. Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.
International Nuclear Information System (INIS)
Winans, J.
1994-01-01
The support for the global event system has been designed to allow an application developer to control the APS event generator and receiver boards. This is done by the use of four new record types. These records are customized and are only supported by the device support modules for the APS event generator and receiver boards. The use of the global event system and its associated records should not be confused with the vanilla EPICS events and the associated event records. They are very different
A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction
International Nuclear Information System (INIS)
Nason, Paolo; Ridolfi, Giovanni
2006-01-01
We present a first application of a previously published method for the computation of QCD processes that is accurate at next-to-leading order, and that can be interfaced consistently to standard shower Monte Carlo programs. We have considered Z pair production in hadron-hadron collisions, a process whose complexity is sufficient to test the general applicability of the method. We have interfaced our result to the HERWIG and PYTHIA shower Monte Carlo programs. Previous work on next-to-leading order corrections in a shower Monte Carlo (the MC-NLO program) may involve the generation of events with negative weights, that are avoided with the present method. We have compared our results with those obtained with MC-NLO, and found remarkable consistency. Our method can also be used as a standalone, alternative implementation of QCD corrections, with the advantage of positivity, improved convergence, and next-to-leading logarithmic accuracy in the region of small transverse momentum of the radiated parton
International Nuclear Information System (INIS)
Kim, Ok Joo
2007-02-01
Wavelet theory was applied to detect the singularity in reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, by wavelet transform after de-noising, singular points can be found easily. To demonstrate this, we generated reactor power signals using a HANARO (a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations and Gaussian noise. We applied wavelet transform decomposition and de-noising procedures to these signals. It was effective to detect the singular events such as sudden reactivity change and abrupt intrinsic property changes. Thus this method could be profitably utilized in a real-time system for automatic event recognition (e.g., reactor condition monitoring). In addition, using the wavelet de-noising concept, variance reduction of Monte Carlo result was tried. To get correct solution in Monte Carlo calculation, small uncertainty is required and it is quite time-consuming on a computer. Instead of long-time calculation in the Monte Carlo code (MCNP), wavelet de-noising can be performed to get small uncertainties. We applied this idea to MCNP results of k eff and fission source. Variance was reduced somewhat while the average value is kept constant. In MCNP criticality calculation, initial guess for the fission distribution is used and it could give contamination to solution. To avoid this situation, sufficient number of initial generations should be discarded, and they are called inactive cycles. Convergence check can give guildeline to determine when we should start the active cycles. Various entropy functions are tried to check the convergence of fission distribution. Some entropy functions reflect the convergence behavior of fission distribution well. Entropy could be a powerful method to determine inactive/active cycles in MCNP calculation
Academic Training Lecture Regular Programme: Predictive Monte Carlo tools for LHC physics (1/3)
2012-01-01
Predictive Monte Carlo tools for LHC physics (1/3), by Fabio Maltoni (Université Catholique de Louvain (BE)). Wednesday, May 2, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 503-1-001 - Council Chamber ) Simulations of events taking place at the LHC play key role in all experimental analyses. Starting from the basics concepts of QCD, we first review how accurate predictions can be obtained via fixed-order calculations at higher orders. Parton showers and event generation are then introduced as a means to achieve fully exclusive predictions. Finally the recent merging and matching techniques between fixed-order and fully exclusive simulations are presented, as well as their implementations via the MLM/CKKW and MC@NLO/POWHEG methods. Organised by Mario Campanelli. More information here.
Directory of Open Access Journals (Sweden)
M. Lockwood
2005-12-01
Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.
Monte Carlo simulation models of breeding-population advancement.
J.N. King; G.R. Johnson
1993-01-01
Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...
No-compromise reptation quantum Monte Carlo
International Nuclear Information System (INIS)
Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M
2007-01-01
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Biased Monte Carlo optimization: the basic approach
International Nuclear Information System (INIS)
Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo
2005-01-01
It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly
International Nuclear Information System (INIS)
Silva, Hugo R.; Silva, Ademir X.; Rebello, Wilson F.; Silva, Maria G.
2011-01-01
This paper aims to present the results obtained by Monte Carlo simulation of the effect of shielding against neutrons, called External Shielding, to be placed on the heads of linear accelerators used in radiotherapy. For this, it was used the radiation transport code Monte Carlo N-Particle - MCNPX, in which were developed computational model of the head of the linear accelerator Varian 2300 C/D. The equipment was simulated within a bunker, operating at energies of 10, 15 and 18 MV, considering the rotation of the gantry at eight different angles ( 0 deg, 45 deg, 90 deg, 135 deg, 180 deg, 225 deg, 270 deg and 315 deg), in all cases, the equipment was modeled without and with the shielding positioned attached to the head of the accelerator on its bottom. In each of these settings, it was calculated the Ambient Dose Equivalent due to neutron H * (10)n on points situated in the region of the patient (region of interest for evaluation of undesirable neutron doses on the patient) and in the maze of radiotherapy room (region of interest for shielding the access door to the bunker). It was observed for all energies of equipment operation as well as for all angles of inclination of the gantry, a significant reduction in the values of H * (10) n when the equipment operated with the external shielding, both in the region of the patient as in the region of the maze. (author)
International Nuclear Information System (INIS)
Noack, K.
1981-01-01
The perturbation source method is used in the Monte Carlo method in calculating small effects in a particle field. It offers primising possibilities for introducing positive correlation between subtracting estimates even in the cases where other methods fail, in the case of geometrical variations of a given arrangement. The perturbation source method is formulated on the basis of integral equations for the particle fields. The formulae for the second moment of the difference of events are derived. Explicity a certain class of transport games and different procedures for generating the so-called perturbation particles are considered [ru
Hall, Stephen P; Traub, Roger D; Adams, Natalie E; Cunningham, Mark O; Schofield, Ian; Jenkins, Alistair J; Whittington, Miles A
2018-01-01
Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs
Exploring cluster Monte Carlo updates with Boltzmann machines
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
Exploring cluster Monte Carlo updates with Boltzmann machines.
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
Monte Carlo modeling of fiber-scintillator flow-cell radiation detector geometry
International Nuclear Information System (INIS)
Rucker, T.L.; Ross, H.H.; Tennessee Univ., Knoxville; Schweitzer, G.K.
1988-01-01
A Monte Carlo computer calculation is described which models the geometric efficiency of a fiber-scintillator flow-cell radiation detector designed to detect radiolabeled compounds in liquid chromatography eluates. By using special mathematical techniques, an efficiency prediction with a precision of 1% is obtained after generating only 1000 random events. Good agreement is seen between predicted and experimental efficiency except for very low energy beta emission where the geometric limitation on efficiency is overcome by pulse height limitations which the model does not consider. The modeling results show that in the test system, the detection efficiency for low energy beta emitters is limited primarily by light generation and collection rather than geometry. (orig.)
[Carlos Parsloe (1919-2009) - in memory].
Reis Júnior, Almiro Dos
2009-01-01
Dr. Carlos Pereira Parsloe was the most important and well known Brazilian anesthesiologist, and the one who achieved greater world repercussion. He played a fundamental role as President of the Scientific Commission of the III World congress of Anesthesiology (Brazil). He was President of SAESP and President of WFSA. His autobiography was published by the Wood Library-Museum of Anesthesiology (Illinois, USA). With his passing in January of 2009, Brazilian Anesthesiology lost one of its most valuable members. The life of Dr. Parsloe, emphasizing his character, competence, and achievements, is described. Events from his childhood to the medical course in Rio de Janeiro and his first years as a physician in Rio de Janeiro and Chicago (USA) are described. This paper describes events during his two-year residency in Madison (Wisconsin) under the guidance of Ralph Waters, of which he was proud. It reports his temporary return to Brazil, his second period in Madison, and his definitive return to our country and his life, and the importance of the Medical Anesthetic Service (SMA, from the Portuguese) of São Paulo. And it covers some of the countless tributes he received, both in Brazil and abroad. This tribute, based on his meaning to Brazilian and International Anesthesia, which defined who he was and what he did for our subspecialty, WFSA, SBA, SAESP, several other national and international societies, and for many anesthesiologists in our country, comes after de death of Dr. Carlos Pereira Parsloe in 2009.
PENENTUAN HARGA OPSI BELI TIPE ASIA DENGAN METODE MONTE CARLO-CONTROL VARIATE
Directory of Open Access Journals (Sweden)
NI NYOMAN AYU ARTANADI
2017-01-01
Full Text Available Option is a contract between the writer and the holder which entitles the holder to buy or sell an underlying asset at the maturity date for a specified price known as an exercise price. Asian option is a type of financial derivatives which the payoff taking the average value over the time series of the asset price. The aim of the study is to present the Monte Carlo-Control Variate as an extension of Standard Monte Carlo applied on the calculation of the Asian option price. Standard Monte Carlo simulations 10.000.000 generate standard error 0.06 and the option price convergent at Rp.160.00 while Monte Carlo-Control Variate simulations 100.000 generate standard error 0.01 and the option price convergent at Rp.152.00. This shows the Monte Carlo-Control Variate achieve faster option price toward convergent of the Monte Carlo Standar.
Higher Moments of Underlying Event Distributions
Xu, Zhen
2017-01-01
We perform an Underlying Event analysis for real data sets from pp collisions at center of mass energy $ \\sqrt{s}=5 $ and 13 TeV and pPb collisions at $ \\sqrt{s}=7 $ TeV at the LHC, together with the Monte Carlo data sets generated with Pythia8 and EPOS in the same conditions. The analysis is focused on the transverse region which is more sensitive to the Underlying Event, and performed as a function of the leading track transverse - momentum $p_t$ in each event. In our work, not only the average underlying event activity but also its fluctuation, namely its root mean square (RMS), Skewness and Kurtosis, are analyzed. We find that the particle density, energy density and their fluctuation magnitude (RMS) are suppressed at leading $p_t\\approx$ 5 GeV/c for all these cases, with EPOS having evident deviation of 10\\%-25\\%. The higher moments skewness and kurtosis decrease rapidly in low leading $p_t$ region, and follow an interesting Gaussian-like peak centered at leading $p_t\\approx$ 15 GeV/c.
International Nuclear Information System (INIS)
Xu, Y; Meng, Y X; Xu, W W
2008-01-01
A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks (BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8 He/ 9 Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
TARC: Carlo Rubbia's Energy Amplifier
Laurent Guiraud
1997-01-01
Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.
Monte Carlo simulation for IRRMA
International Nuclear Information System (INIS)
Gardner, R.P.; Liu Lianyan
2000-01-01
Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors
Higgs production enhancement in P-P collisions using Monte Carlo techniques at √s = 13 TeV
Directory of Open Access Journals (Sweden)
Soleiman M.H.M.
2017-01-01
Full Text Available A precise estimation of the amount of enhancement in Higgs boson production through pp collisions at ultra-relativistic energies throughout promotion of the gluon distribution function inside the protons before the collision is presented here. The study is based mainly on the available Monte Carlo event generators (PYTHIA 8.2.9, SHERPA 2.1.0 running on PCs and CERNX-Machine, respectively, and using the extended invariant mass technique. Generated samples of 1000 events from PYTHIA 8.2.9 and SHERPA,2.1.0 at √s = 13 TeV are used in the investigation of the effect of replacing the parton distribution function (PDF on the Higgs production enhancement. The CTEQ66 and MSRTW2004nlo parton distribution functions are used alternatively on PYTHIA 8.2.9 and SHERPA 2.1.0 event generators in companion with the effects of allowing initial state and final state radiations (ISR and FSR to obtain evidence on the enhancement of the SM-Higgs production depending on the field theoretical model of SM. It is found that, the replacement of PDFs will lead to a significant change in the SM-Higgs production, and the effect of allowing or denying any of ISR or FSR is sound for the two event generators but may be unrealistic in PHYTIA 8.2.9.