International Nuclear Information System (INIS)
Kaul, D.C.
1982-01-01
Throughout the last two decades many efforts have been made to estimate the effect of body self-shielding on organ doses from externally incident neutrons and gamma rays. These began with the use of simple geometry phantoms and have culminated in the use of detailed anthropomorphic phantoms. In a recent effort, adjoint Monte Carlo analysis techniques have been used to determine dose and dose equivalent to the active marrow as a function of energy and angle of neutron fluence externally incident on an anthropomorphic phantom. When combined with fluences from actual nuclear devices, these dose-to-fluence factors result in marrow dose values that demonstrate great sensitivity to variations in device type, range, and body orientation. Under a state-of-the-art radiation transport analysis demonstration program for the Japanese cities, sponsored by the Defense Nuclear Agency at the request of the National Council on Radiation Protection and Measurements, the marrow dose study referred to above is being repeated to obtain spectral distributions within the marrow for externally incident neutrons and gamma rays of arbitrary energy and angle. This is intended to allow radiobiologists and epidemiologists to select and to modify numbers of merit for correlation with health effects and to permit a greater understanding of the relationship between human and laboratory subject dosimetry
International Nuclear Information System (INIS)
Tzika, F.; Stamatelatos, I.E.
2004-01-01
Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample
A new formulation for resonance self-shielding factors
Energy Technology Data Exchange (ETDEWEB)
Palma, Daniel A.P.; Martinez, Aquilino S.; Silva, Fernando C. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br
2007-07-01
The activation technique allows either absolute or relative very precise neutron intensity measurements. This technique requires the knowledge of the Doppler broadening function to determine resonance self-shielding factors. In the present work a new formulation is proposed for the self-shielding factors where the Doppler broadening function is calculated using the Frobenius's method and compared to the values obtained from the four-pole Pade method. This calculation method is shown to be effective from the point of view of accuracy. (author)
A new formulation for resonance self-shielding factors
International Nuclear Information System (INIS)
Palma, Daniel A.P.; Martinez, Aquilino S.; Silva, Fernando C. da
2007-01-01
The activation technique allows either absolute or relative very precise neutron intensity measurements. This technique requires the knowledge of the Doppler broadening function to determine resonance self-shielding factors. In the present work a new formulation is proposed for the self-shielding factors where the Doppler broadening function is calculated using the Frobenius's method and compared to the values obtained from the four-pole Pade method. This calculation method is shown to be effective from the point of view of accuracy. (author)
International Nuclear Information System (INIS)
Sakama, Minoru; Tanii, Takashi; Maezawa, Hiroshi; Saze, Takuya; Maeda, Kouji; Sato, Kazuo; Honda, Eiichi; Nishitani, Hiromu
2008-01-01
Up till now, from a radiation safety management point of view, it has been discussed to construct guidelines on estimation of neutron fluxes produced via operating various medical small accelerators and to establish uniformly the clearance system related to having neutron activation effects into each accelerator facility. That is, it was the aim of this investigation to accumulate the data on estimation basis of neutron flux measurements at those medical small accelerators by an activation foil method. In this work, the neutron fluxes at the self-shielded PET cyclotron and the electron liniac apparatus of Tokushima University Hospital have been measured as the medical small accelerator. As a result, for the self-shielded PET cyclotron, it was found that the thermal neutron flux is (1.04±0.05) x10 7 cm -2 s -1 and the fast neutron fluxes are distributed over the range 1x10 4 (the neutron energy E n =9 MeV) to 1x10 7 (E n =1.5 MeV) cm -2 s -1 into the radiation shelter, and while the thermal neutron fluxes would be distributed over the range 5.0x10 1 to 9.9x10 1 cm -2 s -1 and then the fast neutron dose leakages were not detected outside there. For the 6/10 MV electron liniac apparatus, it was also found that nearly the same thermal neutron fluxes would be distributed all around the liniac room and those measured values are over the range (1.01±0.18)x10 3 to (1.32±0.10)x10 3 cm -2 s -1 . (author)
Uranium self-shielding in fast reactor blankets
Energy Technology Data Exchange (ETDEWEB)
Kadiroglu, O.K.; Driscoll, M.J.
1976-03-01
The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.
Self-shielding models of MICROX-2 code: Review and updates
International Nuclear Information System (INIS)
Hou, J.; Choi, H.; Ivanov, K.N.
2014-01-01
Highlights: • The MICROX-2 code has been improved to expand its application to advanced reactors. • New fine-group cross section libraries based on ENDF/B-VII have been generated. • Resonance self-shielding and spatial self-shielding models have been improved. • The improvements were assessed by a series of benchmark calculations against MCNPX. - Abstract: The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. The MICROX-2 code has been updated to expand its application to advanced reactor concepts and fuel cycle simulations, including generation of new fine-group cross section libraries based on ENDF/B-VII. In continuation of previous work, the MICROX-2 methods are reviewed and updated in this study, focusing on its resonance self-shielding and spatial self-shielding models for neutron spectrum calculations. The improvement of self-shielding method was assessed by a series of benchmark calculations against the Monte Carlo code, using homogeneous and heterogeneous pin cell models. The results have shown that the implementation of the updated self-shielding models is correct and the accuracy of physics calculation is improved. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by ∼0.1% and ∼0.2% for the homogeneous and heterogeneous pin cell models, respectively, considered in this study
Validation of calculated self-shielding factors for Rh foils
Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.
2010-10-01
Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.
MPACT Subgroup Self-Shielding Efficiency Improvements
International Nuclear Information System (INIS)
Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.
2016-01-01
Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as ''Lumped Parameter MOC''. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.
Monte Carlo determination of heteroepitaxial misfit structures
DEFF Research Database (Denmark)
Baker, J.; Lindgård, Per-Anker
1996-01-01
We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...
Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code
Directory of Open Access Journals (Sweden)
Ahmed Amin El Said Abd El Hameed
2015-08-01
Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code. We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon
Energy Technology Data Exchange (ETDEWEB)
Furci, H., E-mail: hernan.furci@cea.fr [UAIN, GAEN, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Bustillo 9500, 8400 Bariloche (Argentina); Instituto Balseiro, CNEA and Universidad Nacional de Cuyo, Bustillo 9500, 8400 Bariloche (Argentina); Arribére, M., E-mail: arribere@cab.cnea.gov.ar [UAIN, GAEN, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Bustillo 9500, 8400 Bariloche (Argentina); Instituto Balseiro, CNEA and Universidad Nacional de Cuyo, Bustillo 9500, 8400 Bariloche (Argentina); Ribeiro Guevara, S., E-mail: ribeiro@cab.cnea.gov.ar [UAIN, GAEN, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Bustillo 9500, 8400 Bariloche (Argentina)
2013-03-21
Self-shielding in spatially distributed samples can be very significant when detecting photons below 100 keV. A correction method has been developed for cylindrical samples, typically used in measurements of natural radioactivity with well-type detectors, as is the example of sediment dating. The method calculates the probability of photons to escape the sample, using Monte Carlo techniques with a program written in C. The effects of self-shielding on the angular distribution of photons have been indirectly analyzed as a function of sample geometry, given a fixed detector geometry. The results given by the program have also been used to provide a straightforward way of calculating the self-shielding factors, with uncertainties. Required inputs are the attenuation coefficient of the sample, its radius, and its height. A procedure has also been specified in order to make good use of all the information. To check on the method, measurements of reference material of known activity have been compared with calculated values, obtaining very satisfactory results.
Self-Shielding Of Transmission Lines
Energy Technology Data Exchange (ETDEWEB)
Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)
2017-03-01
The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.
Directory of Open Access Journals (Sweden)
Shane Stimpson
2017-09-01
Full Text Available An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1 a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications Progression Problem 2a and (2 a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.
International Nuclear Information System (INIS)
Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.
2017-01-01
An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.
REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING
International Nuclear Information System (INIS)
Owen, J.
1999-01-01
The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes
Self shielding in cylindrical fissile sources in the APNea system
International Nuclear Information System (INIS)
Hensley, D.
1997-01-01
In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results
Neutron self-shielding with k0-NAA irradiations
International Nuclear Information System (INIS)
Chilian, C.; Chambon, R.; Kennedy, G.
2010-01-01
A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.
International Nuclear Information System (INIS)
Sudarshan, K.; Tripathi, R.; Nair, A.G.C.; Acharya, R.; Reddy, A.V.R.; Goswami, A.
2005-01-01
A simple method using an internal standard is proposed to correct for the self-shielding effect of B, Cd and Gd in a matrix. This would increase the linear dynamic range of PGNAA in analyzing samples containing these elements. The method is validated by analyzing synthetic samples containing large amounts of B, Cd, Hg and Gd, the elements having high neutron absorption cross-section, in aqueous solutions and solid forms. A simple Monte-Carlo simulation to find the extent of self-shielding in the matrix is presented. The method is applied to the analysis of titanium boride alloy containing large amount of boron. The satisfactory results obtained showed the efficacy of the method of correcting for the self-shielding effects in the sample
Radiation monitoring in a self-shielded cyclotron installation
International Nuclear Information System (INIS)
Capaccioli, L.; Gori, C.; Mazzocchi, S.; Spano, G.
2002-01-01
As nuclear medicine is approaching a new era with the spectacular growth of PET diagnosis, the number of medical cyclotrons installed within the major hospitals is increasing accordingly. Therefore modern medical cyclotron are highly engineered and highly reliable apparatus, characterised with reduced accelerating energies (as the major goal is the production of fluorine 18) and often self-shielded. However specific dedicated monitors are still necessary in order to assure the proper radioprotection. At the Careggi University Hospital in Florence a Mini trace 10 MeV self-shielded cyclotron produced by General Electric has been installed in 2000. In a contiguous radiochemistry laboratory, the preparation and quality control of 1 8F DG and other radiopharmaceuticals takes place. Aim of this work is the characterisation and the proper calibration of the above mentioned monitors and control devices
Unresolved resonance self shielding calculation: causes and importance of discrepancies
International Nuclear Information System (INIS)
Ribon, P.; Tellier, H.
1986-09-01
To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs
Self Shielding in Nuclear Fissile Assay Using LSDS
International Nuclear Information System (INIS)
Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Song, Kee Chan
2012-01-01
The new technology for isotopic fissile material contents assay is under development at KAERI using lead slowing down spectrometer(LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. The accumulation of spent fuel is current big issue. The amount of spent fuels will reach the maximum storage capacity of the pools soon. Therefore, an interim storage must be searched and it should be optimized in design by applying accurate fissile content. When the storage has taken effect, all the nuclear materials must be also specified and verified for safety, economics and management. Generally, the spent fuel from PWR has unburned ∼1 % U235, produced ∼0.5 % plutonium from decay chain, ∼3 % fission products, ∼ 0.1 % minor actinides (MA) and uranium remainder. About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through pyro process. Fissile material contents in resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. In assay of fissile content of spent fuel and recycled fuel, intense radiation background gives limitation on the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in fissile assay. Based on the decided geometry setup, self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of the slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as that how much of absorption is created inside the fuel area when it is in the lead. Self shielding effect provides a non-linear property in the isotopic
Calculation of resonance self-shielding for 235U from 0 to 2250 eV
International Nuclear Information System (INIS)
Leal, L.C.; Larson, N.M.; Derrien, H.; Santos, G.R.
1998-01-01
Over the years, the evaluated 235 U cross sections in the resolved energy range have been extensively revised. A major accomplishment was the first evaluation released to the ENDF/B-VI library. In that evaluation, the low energy range bound was lowered to 10 -5 eV, and the upper limit raised to 2,250 eV. Several high-resolution measurements in conjunction with the Bayesian computer code SAMMY were used to perform the analysis of the 235 U resonance parameters. SAMMY uses the Reich-Moore formalism, which is adequate for representing neutron cross sections of fissile isotopes, and a generalized least-squares (Bayes) technique for determining the energy-dependence of the neutron cross sections. Recently a re-evaluation of the 235 U cross section in the resolved resonance region was completed. This evaluation has undergone integral tests in various laboratories throughout the USA and abroad. The evaluation has been accepted for inclusion in ENDF/B-VI release 5. The intent of this work is to present results of calculations of self-shielded fission rates carried out with these resonance parameters and to compare those fission rates with experimental data. Results of this comparison study provide an assessment of the resonance parameters with respect to the calculation of self-shielded group cross sections
International Nuclear Information System (INIS)
Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.
2007-01-01
In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required
Direct determination of liquid phase coexistence by Monte Carlo simulations
Zweistra, H.J.A.; Besseling, N.A.M.
2006-01-01
A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase.
URR-PACK: Calculating Self-Shielding in the Unresolved Resonance Energy Range
International Nuclear Information System (INIS)
Cullen, Dermott E.; Trkov, Andrej
2016-07-01
This report describes HOW to calculate self-shielding in the unresolved resonance region (URR), in terms of the computer codes we provide to allow a user to do these calculations himself. Here we only describe HOW to calculate; a longer companion report describes in detail WHY it is necessary to include URR self-shielding.
International Nuclear Information System (INIS)
Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson
1996-01-01
A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)
Pure commercial gold foils as neutron flux monitor: Neutron self-shielding assessment
International Nuclear Information System (INIS)
Haddad, Kh.; Haj-Hassan, H.; Helal, W.
2007-01-01
An assessment of pure commercial (99.9%) gold foils as neutron flux monitor was performed. A thin foils of pure commercial gold were prepared as an in-house reference material for neutron flux measurement. The assessed foils are available commercially and its cost is much less than the certified ones. Determination of the neutron self-shielding factors in these foils for both thermal and epithermal neutrons have been done experimentally. These foils show good results repeatability and good agreement with certified activation monitors. According to the well-known physical constants of the nuclide and its low cost comparing with certified foils, it can be used as an in-house reference monitor
New Improvements in Mixture Self-Shielding Treatment with APOLLO2 Code
International Nuclear Information System (INIS)
Coste-Delclaux, M.
2006-01-01
Full text of the presentation follows: APOLLO2 is a modular multigroup transport code developed at the CEA in Saclay (France). Previously, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Recently, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The goal of this paper is to describe the improvements on the self-shielding treatment of a resonant mixture and to present, as an application, the calculation of the ATRIUM-10 BWR benchmark. We will conclude by some prospects on remaining work in the self-shielding domain. (author)
International Nuclear Information System (INIS)
Palma, Daniel A.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C.
2008-01-01
The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function ψ(x,ξ) to determine the resonance self-shielding factors in the epithermal range G epi (τ,ξ). Two new analytical approximations for the Doppler broadening function ψ(x,ξ) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the ψ(x,ξ) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G epi (τ,ξ). The results obtained provided satisfactory accuracy. (authors)
Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)
1999-01-01
cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.
Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes
International Nuclear Information System (INIS)
Hebert, Alain; Coste, Mireille
2002-01-01
As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented
SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-06-06
The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shielding method is the subgroup method.
A Monte Carlo simulation technique to determine the optimal portfolio
Directory of Open Access Journals (Sweden)
Hassan Ghodrati
2014-03-01
Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.
International Nuclear Information System (INIS)
Cullen, D.E.
1978-01-01
Bonderenko self-shielded cross sections and multiband parameters from the Lawrence Livermore Laboratory Evaluated-Nuclear-Data Library (ENDL) as of July 4, 1978 are presented. These data include total, elastic, capture, and fission cross sections in the TART 175 group structure. Multiband parameters are listed. Bonderenko self-shielded cross section and the multiband parameters are presented on microfiche
Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY
International Nuclear Information System (INIS)
Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio
2012-01-01
A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
T. Downar
2009-03-31
The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.
Energy Technology Data Exchange (ETDEWEB)
Palma, Daniel A. [CEFET QUIMICA de Nilopolis/RJ, Rio de Janeiro (Brazil); Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)
2008-07-01
The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function psi(x,xi) to determine the resonance self-shielding factors in the epithermal range G{sub epi} (tau,xi). Two new analytical approximations for the Doppler broadening function psi(x,xi) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the psi(x,xi) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G{sub epi} (tau,xi). The results obtained provided satisfactory accuracy. (authors)
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Ishiguro, Yukio; Tokuno, Yukio.
1978-01-01
The self-shielding factors for elastic removal cross sections of light and medium weight nuclides were calculated for the parameter, σ 0 within the conventional concept of the group constant sets. The numerical study were performed for obtaining a simple and accurate method. The present results were compared with the exact values and the conventional ones, and shown to be remarkably improved. It became apparent that the anisotropy of the elastic scattering did not affect to the self-shielding factors though it did to the infinite dilution cross sections. With use of the present revised set, the neutron flux were calculated in an iron medium and in a prototype FBR and compared with those by the fine spectrum calculations and the conventional set. The present set showed the considerable improvement in the vicinity of the large resonance regions of sodium, iron and oxygen. (auth.)
Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices
International Nuclear Information System (INIS)
Pelloni, S.; Cheng, E.T.; Embrechts, M.J.
1987-11-01
The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs
International Nuclear Information System (INIS)
Tellier, Henry; Van Der Gucht, Catherine; Mengelle, Stephane; Coste, Mireille; Andrieux, Chantal
1995-03-01
With the new self-shielding formalism which is implemented in the transport code APOLLO2, it is possible to compute the heavy nuclei absorption in a fuel element as a function of space and energy, for both epithermal and thermal ranges. The purpose of this study is the self-shielding qualification for the thermal range resonances of importance in reactor physics. For this, we made, in a source calculation, a comparison between the APOLLO2 results and the ones of a continuous energy calculation and of a very fine mesh multigroup computation. In the case of plutonium 240, plutonium 242 and indium 115, the agreements between the three calculations are very satisfactory for a homogeneous medium as well as for the heterogeneous geometry of a pressurized water reactor cell. In any case the difference between the self-shielding computation and the reference ones is lower than one per cent. Transposed to a reactor core, this discrepancy leads to a negligible reactivity effect. (author) [fr
AUTOSECOL: an automatic calculation of the self-shielding of heavy isotope resonances
International Nuclear Information System (INIS)
Grandotto-Biettoli, Marc.
The formalism is based on separating both types of resonance effects: local energy effects creating a fine structure in the flux, and bulk effects resulting in a slow variation in the flux. Effective reaction rates are defined that, used as tables in a multigroup calculation of cells with a large pitch in regard to resonance widths, allow an exact account of the dependence of the effective integral upon fast variations in the flux. These tables are used to introduce this phenomenon of resonance self-shielding in the multigroup Apollo program for solving the neutron transport equation, they are derived from nuclear data with using some parameters relating to the physical state of the resonant isotope inside the fuel medium. The AUTOSECOL system provides a library of effective reaction rates for taking account of the resonance self-shielding effect on the neutron flux in nuclear reactor cells. Its versatility in regard to the methods previously used for solving the same problem allows a rapid testing of the consequences of considering the self-shielding effect of new isotope resonances, a following up of the evolution in nuclear data evaluation, and rapidly studying the interest lying in new data. Results obtained with AUTOSECOL are compared with those obtained when using the SECOL code for computing the effective reaction rates of 235 U, 239 Pu, 107 Ag, 109 Ag, and 241 Pu [fr
International Nuclear Information System (INIS)
Zou Jun; He Zhaozhong; Zeng Qin; Qiu Yuefeng; Wang Minghuang
2010-01-01
A multigroup library HENDL2.1/SS (Hybrid Evaluated Nuclear Data Library/Self-Shielding) based on ENDF/B-VII.0 evaluate data has been generated using Bondarenko and flux calculator method for the correction of self-shielding effect of neutronics analyses. To validate the reliability of the multigroup library HENDL2.1/SS, transport calculations for fusion-fission hybrid system FDS-I were performed in this paper. It was verified that the calculations with the HENDL2.1/SS gave almost the same results with MCNP calculations and were better than calculations with the HENDL2.0/MG which is another multigroup library without self-shielding correction. The test results also showed that neglecting resonance self-shielding caused underestimation of the K eff , neutron fluxes and waste transmutation ratios in the multigroup calculations of FDS-I.
Resolution and intensity in neutron spectrometry determined by Monte Carlo simulation
DEFF Research Database (Denmark)
Dietrich, O.W.
1968-01-01
The Monte Carlo simulation technique was applied to the propagation of Bragg-reflected neutrons in mosaic single crystals. The method proved to be very useful for the determination of resolution and intensity in neutron spectrometers.......The Monte Carlo simulation technique was applied to the propagation of Bragg-reflected neutrons in mosaic single crystals. The method proved to be very useful for the determination of resolution and intensity in neutron spectrometers....
Self-shielding in O2 - A possible explanation for oxygen isotopic anomalies in meteorites?
Navon, O.; Wasserburg, G. J.
1985-01-01
The production of isotopic effects in oxygen due to self-shielding of photolysing radiation by the Schumann-Runge bands of (O-16)2 is investigated. The model studied is the simple case of incoming radiation falling on a gaseous medium of uniform composition. The enhancement of O-17 and O-18 production upon photodissociation of O2 is calculated for various column densities, and its dependence on temperature and the presence of other molecules is examined. The issue of whether the products of photolysis can be trapped and thus preserve a peculiar isotopic composition is discussed.
Radiologic assessment of a self-shield with boron-containing water for a compact medical cyclotron.
Horitsugi, Genki; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Eto, Akihisa; Iwamoto, Yasuo; Hashimoto, Hiromi; Hamada, Seiki; Obara, Satoshi; Watanabe, Hiroshi; Hatazawa, Jun
2012-07-01
The cyclotron at our hospital has a self-shield of boron-containing water. The amount of induced radioactivity in the boron-containing water shield of a compact medical cyclotron has not yet been reported. In this study, we measured the photon and neutron dose rates outside the self-shield during cyclotron operation. We estimated the induced radioactivities of the boron-containing water used for the self-shield and then measured them. We estimated the activation of concrete outside the self-shield in the cyclotron laboratory. The thermal neutron flux during cyclotron operation was estimated to be 4.72 × 10(2) cm(-2) s(-1), and the activation of concrete in a cyclotron laboratory was about three orders of magnitude lower than the clearance level of RS-G-1.7 (IAEA). The activity concentration of the boron-containing water did not exceed the concentration limit for radioactive isotopes in drainage in Japan and the exemption level for Basic Safety Standards. Consequently, the boron-containing water is treatable as non-radioactive waste. Neutrons were effectively shielded by the self-shield during cyclotron operation.
International Nuclear Information System (INIS)
Hebert, A.
1997-01-01
The subgroup method is used to compute self-shielded cross sections defined over coarse energy groups in the resolved energy domain. The validity of the subgroup approach was extended beyond the unresolved energy domain by partially taking into account correlation effects between the slowing-down source with the collision probability terms of the transport equation. This approach enables one to obtain a pure subgroup solution of the self-shielding problem without relying on any form of equivalence in dilution. Specific improvements are presented on existing subgroup methods: an N-term rational approximation for the fuel-to-fuel collision probability, a new Pade deflation technique for computing probability tables, and the introduction of a superhomogenization correction. The absorption rates obtained after self-shielding are compared with exact values obtained using an elastic slowing-down calculation where each resonance is modeled individually in the resolved energy domain
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
Filippi, Claudia; Assaraf, R.; Moroni, S.
2016-01-01
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the
Monte Carlo simulation: tool for the calibration in analytical determination of radionuclides
International Nuclear Information System (INIS)
Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez
2013-01-01
This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program
Meric, N; Bor, D
1999-01-01
Scatter fractions have been determined experimentally for lucite, polyethylene, polypropylene, aluminium and copper of varying thicknesses using a polyenergetic broad X-ray beam of 67 kVp. Simulation of the experiment has been carried out by the Monte Carlo technique under the same input conditions. Comparison of the measured and predicted data with each other and with the previously reported values has been given. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer.
Directory of Open Access Journals (Sweden)
GO CHIBA
2014-06-01
Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.
Design of a control system for self-shielded irradiators with remote access capability
International Nuclear Information System (INIS)
Iyengar, R.D.; Verma, P.B.; Prasad, V.V.S.S.; George, Jain R.; Das, Tripti; Deshmukh, D.K.
2001-01-01
With self-shielded irradiators like Gamma chambers, and Blood irradiators are being sold by BRIT to customers both within and outside the country, it has become necessary to improve the quality of service without increasing the overheads. The recent advances in the field of communications and information technology can be exploited for improving the quality of service to the customers. A state of the art control system with remote accessibility has been designed for these irradiators enhancing their performance. This will provide an easy access to these units wherever they might be located, through the Internet. With this technology it will now be possible to attend to the needs of the customers, as regards fault rectification, error debugging, system software update, performance testing, data acquisition etc. This will not only reduce the downtime of these irradiators but also reduce the overheads. (author)
Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA
International Nuclear Information System (INIS)
Roubicek, P.
1982-01-01
Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)
International Nuclear Information System (INIS)
David, Mariano Gazineu; Salata, Camila; Almeida, Carlos Eduardo
2014-01-01
The Laboratorio de Ciencias Radiologicas develops a methodology for the determination of the absorbed dose to water by Fricke chemical dosimetry method for brachytherapy sources of 192 Ir high dose rate and have compared their results with the laboratory of the National Research Council Canada. This paper describes the determination of the correction factors by Monte Carlo method, with the Penelope code. Values for all factors are presented, with a maximum difference of 0.22% for their determination by an alternative way. (author)
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez, E-mail: cphr@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)
2013-07-01
This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program.
Kuu, Wei Y; Chilamkurti, Rao
2003-01-01
The purpose of this study is to utilize Monte Carlo Simulation methodology to determine the in-process limits for the parenteral solution manufacturing process. The Monte Carlo Simulation predicts the distribution of a dependable variable (such as drug concentration) in a naturally occurring process through random value generation considering the variability associated with the depended variable. The propagation of variation in drug concentration from batch to batch is cascading in nature during the following four formulation steps: 1) determination of drug raw material potency (or purity), 2) weighing of drug raw material, 3) measurement of batch volume, and 4) determination of drug concentration in the mix tank. The coefficients of variation for these four steps are denoted as CV1, CV2, CV3, and CV4, respectively. The Monte Carlo Simulation was performed for each of the above four cascading steps. The results of the simulation demonstrate that the in-process limits of the drug can be successfully determined using the Monte Carlo Simulation. Once the specification limits are determined, the Monte Carlo Simulation can be used to study the effect of each variability on the percent out of specification limits (OOL) for the in-process testing. Demonstrations were performed using the acceptance criterion of less than 5% of OOL batches, and the typical values of CV2 and CV3 being equal to 0.03% and 0.5%, respectively. The results show that for the in-process limits of +/- 1%, the values of CV1 and CV4 should not be greater than 0.1%. These assay requirements appear to be difficult to achieve for a given chemical analytical method. By comparison, for the In-process limits of +/- 4%, the requirements are much easier to achieve. The values of CV1 and CV4 should not be greater than 1.38%. In addition, the relationship between the percent OOL versus CV1 or CV4 is nonlinear per se. The number of OOL batches increases rapidly with increasing variability of CV1 or CV4.
SOLVATION STRUCTURE DETERMINATION OF Ni2+ ION IN WATER BY MEANS OF MONTE CARLO METHOD
Directory of Open Access Journals (Sweden)
Tutik Arindah
2010-06-01
Full Text Available Determination of solvation structure of Ni2+ ion in water has been achieved using Monte Carlo method using canonic assemble (NVT constant. Simulation of a Ni2+ ion in 215 H2O molecules has been done under NVT condition (298.15 K. The results showed that number of H2O molecules surround Ni2+ ion were 8 molecules in first shell and 17 molecules in second shell, interaction energy of Ni2+-H2O in first shell was -68.7 kcal/mol and in second shell was -9.8 kcal/mol, and there were two angles of O-Ni2+-O, i.e. 74o and 142o. According to those results, the solvation structure of Ni2+ ion in water was cubic antisymetric. Keywords: Water simulation, Monte Carlo simulation
The determination of beam quality correction factors: Monte Carlo simulations and measurements.
González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R
2009-08-07
Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.
International Nuclear Information System (INIS)
Voter, A.F.
1985-01-01
We present a new Monte Carlo procedure for determining the Helmholtz free-energy difference between two systems that are separated in configuration space. Unlike most standard approaches, no integration over intermediate potentials is required. A Metropolis walk is performed for each system, and the average Metropolis acceptance probability for a hypothetical step along a probe vector into the other system is accumulated. Either classical or quantum free energies may be computed, and the procedure is also ideally suited for evaluating generalized transition state theory rate constants. As an application we determine the relative free energies of three configurations of a tungsten dimer on the W(110) surface
Energy-based truncation of multi-determinant wavefunctions in quantum Monte Carlo.
Per, Manolo C; Cleland, Deidre M
2017-04-28
We present a method for truncating large multi-determinant expansions for use in diffusion Monte Carlo calculations. Current approaches use wavefunction-based criteria to perform the truncation. Our method is more intuitively based on the contribution each determinant makes to the total energy. We show that this approach gives consistent behaviour across systems with varying correlation character, which leads to effective error cancellation in energy differences. This is demonstrated through accurate calculations of the electron affinity of oxygen and the atomisation energy of the carbon dimer. The approach is simple and easy to implement, requiring only quantities already accessible in standard configuration interaction calculations.
Structure and Properties of Coatings Made with Self Shielded Cored Wire
Directory of Open Access Journals (Sweden)
Gucwa M.
2016-09-01
Full Text Available The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self shielded flux cored arc welding (FCAW-S. Chemical composition obtained in flux cored wire is much more rich in comparison to this obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical microscopy and X-ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of investigated coatings.
International Nuclear Information System (INIS)
Fitzpatrick, J.; Verrall, S.M.
1985-01-01
A comparative study has been carried out on the two philosophies for providing the radiological protection necessary for the transport and handling of packaged intermediate level wastes from their sites of origin to disposal. The two philosophies are self shielding and returnable shielding. The approach taken was to assess the cost and radiological impact differentials of two respective representative waste management procedures. The comparison indicated the merits of each procedure. As a consequence, a hybrid procedure was identified which combines the advantages of each philosophy. This hybrid procedure was used for further comparison. The results of the study indicate that the use of self shielded packages throughout will incur considerable extra expense and give only a small saving in radiological impact. (author)
SCALE Continuous-Energy Monte Carlo Depletion with Parallel KENO in TRITON
International Nuclear Information System (INIS)
Goluoglu, Sedat; Bekar, Kursat B.; Wiarda, Dorothea
2012-01-01
The TRITON sequence of the SCALE code system is a powerful and robust tool for performing multigroup (MG) reactor physics analysis using either the 2-D deterministic solver NEWT or the 3-D Monte Carlo transport code KENO. However, as with all MG codes, the accuracy of the results depends on the accuracy of the MG cross sections that are generated and/or used. While SCALE resonance self-shielding modules provide rigorous resonance self-shielding, they are based on 1-D models and therefore 2-D or 3-D effects such as heterogeneity of the lattice structures may render final MG cross sections inaccurate. Another potential drawback to MG Monte Carlo depletion is the need to perform resonance self-shielding calculations at each depletion step for each fuel segment that is being depleted. The CPU time and memory required for self-shielding calculations can often eclipse the resources needed for the Monte Carlo transport. This summary presents the results of the new continuous-energy (CE) calculation mode in TRITON. With the new capability, accurate reactor physics analyses can be performed for all types of systems using the SCALE Monte Carlo code KENO as the CE transport solver. In addition, transport calculations can be performed in parallel mode on multiple processors.
The new solid target system at UNAM in a self-shielded 11 MeV cyclotron
International Nuclear Information System (INIS)
Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.; Flores-Moreno, A.; Trejo-Ballado, F.; Avila-Rodriguez, Miguel A.
2012-01-01
A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL’s was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.
CO Self-Shielding as a Mechanism to Make 16O-Enriched Solids in the Solar Nebula
Directory of Open Access Journals (Sweden)
Joseph A. Nuth, III
2014-05-01
Full Text Available Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, 16O-depleted solar system. This is distinct from the relatively 16O-enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in 16O-depleted solids, we argue that complementary enhancements of 16O-enriched solids can also be produced via C16O-based, Fischer-Tropsch type (FTT catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed 16O enrichment in calcium-aluminum-rich inclusions (CAIs, such as those from the meteorite, Isheyevo (CH/CHb, as well as in chondrules from the meteorite, Acfer 214 (CH3. CO self-shielding results in an overall increase in the 17O and 18O content of nebular solids only to the extent that there is a net loss of C16O from the solar nebula. In contrast, if C16O reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.
International Nuclear Information System (INIS)
Abbate, Maximo J.; Sbaffoni, Maria M.
2003-01-01
Continuing with the domestic 'Burnable Absorbers Research Plan' studies were done to estimate self-shielding effects during Gd 2 O 3 burnup as burnable absorber included in fuel pins of a CAREM geometry. In this way, its burnup was calculated without and with self-shielding. For the second case, were obtained values depending on internal pin radius and the effective one for the homogenized pin. For Gd 157, the burnup corresponding to the first case resulted 52.6 % and of 1.23 % for the effective one. That shows the magnitude of the effects under study. Considering that is necessary to perform one experimental verification, also are presented calculational results for the case to irradiate a pellet containing UO 2 (natural) and 8 wt % of Gd 2 O 3 , as a function of cooling time, that include: measurable isotopes concentrations, expected activities, and photon spectra for conditions able to be compared with bidimensional calculations with self-shielding. The irradiation time was supposed 30 dpp using RA-3 reactor at 10 MW. (author)
Determination of partial structure factors by reverse Monte Carlo modelling—a test of the method
Gruner, S.; Akinlade, O.; Hoyer, W.
2006-05-01
The reverse Monte Carlo modelling technique is commonly applied for the analysis of the atomic structure of liquid and amorphous substances. In particular, partial structure factors of multi-component alloys can be determined using this method. In the present study we use the example of the liquid Ni33Ge67 alloy to investigate the impact of different input data on the result of RMC modelling. It was found that even two experimental structure factors might be sufficient to obtain reliable partial structure factors if the contrast between them is high enough.
Monte Carlo simulation in quantitative determination of 137Cs in sand and water samples
International Nuclear Information System (INIS)
Ahuja, B.L.; Sharma, M.; Joshi, K.B.
2002-01-01
To understand the distribution of radionuclides in the high background area, one mainly needs to analyse sand, soil, water and other food stuff samples by gamma-spectroscopy. Due to interaction of photons emitted by these radionuclides within the sample, the underestimation of quantity of radionuclides in the sample cannot be ruled out. To overcome this situation, the Monte Carlo method to determine the effect of multiple scattering in Compton profiles has been extended to take better account of interaction of radiation with environmental samples. In this paper, we present the feasibility of Monte Carlo simulation in determining the absorption and multiple scattering of gamma-rays from 137 Cs radionuclides in the sand and water samples. It is seen that only 67 % and 90 % photons escaped from the sand and water respectively, can be detected by nuclear spectroscopy techniques. The high percentage of photoelectric absorption and Compton scattering of photons in these samples warrant the underestimation of quantitative determination of 137 Cs in these samples. (author)
A method based on Monte Carlo simulation for the determination of the G(E) function.
Chen, Wei; Feng, Tiancheng; Liu, Jun; Su, Chuanying; Tian, Yanjie
2015-02-01
The G(E) function method is a spectrometric method for the exposure dose estimation; this paper describes a method based on Monte Carlo method to determine the G(E) function of a 4″ × 4″ × 16″ NaI(Tl) detector. Simulated spectrums of various monoenergetic gamma rays in the region of 40 -3200 keV and the corresponding deposited energy in an air ball in the energy region of full-energy peak were obtained using Monte Carlo N-particle Transport Code. Absorbed dose rate in air was obtained according to the deposited energy and divided by counts of corresponding full-energy peak to get the G(E) function value at energy E in spectra. Curve-fitting software 1st0pt was used to determine coefficients of the G(E) function. Experimental results show that the calculated dose rates using the G(E) function determined by the authors' method are accordant well with those values obtained by ionisation chamber, with a maximum deviation of 6.31 %. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Determination of the spatial response of neutron based analysers using a Monte Carlo based method
Tickner
2000-10-01
One of the principal advantages of using thermal neutron capture (TNC, also called prompt gamma neutron activation analysis or PGNAA) or neutron inelastic scattering (NIS) techniques for measuring elemental composition is the high penetrating power of both the incident neutrons and the resultant gamma-rays, which means that large sample volumes can be interrogated. Gauges based on these techniques are widely used in the mineral industry for on-line determination of the composition of bulk samples. However, attenuation of both neutrons and gamma-rays in the sample and geometric (source/detector distance) effects typically result in certain parts of the sample contributing more to the measured composition than others. In turn, this introduces errors in the determination of the composition of inhomogeneous samples. This paper discusses a combined Monte Carlo/analytical method for estimating the spatial response of a neutron gauge. Neutron propagation is handled using a Monte Carlo technique which allows an arbitrarily complex neutron source and gauge geometry to be specified. Gamma-ray production and detection is calculated analytically which leads to a dramatic increase in the efficiency of the method. As an example, the method is used to study ways of reducing the spatial sensitivity of on-belt composition measurements of cement raw meal.
International Nuclear Information System (INIS)
Nordenfors, C.
1999-02-01
To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks
Use of Monte Carlo Methods for determination of isodose curves in brachytherapy
International Nuclear Information System (INIS)
Vieira, Jose Wilson
2001-08-01
Brachytherapy is a special form of cancer treatment in which the radioactive source is very close to or inside the tumor with the objective of causing the necrosis of the cancerous tissue. The intensity of cell response to the radiation varies according to the tissue type and degree of differentiation. Since the malign cells are less differentiated than the normal ones, they are more sensitive to the radiation. This is the basis for radiotherapy techniques. Institutes that work with the application of high dose rates use sophisticated computer programs to calculate the necessary dose to achieve the necrosis of the tumor and the same time, minimizing the irradiation of tissues and organs of the neighborhood. With knowledge the characteristics of the source and the tumor, it is possible to trace isodose curves with the necessary information for planning the brachytherapy in patients. The objective of this work is, using Monte Carlo techniques, to develop a computer program - the ISODOSE - which allows to determine isodose curves in turn of linear radioactive sources used in brachytherapy. The development of ISODOSE is important because the available commercial programs, in general, are very expensive and practically inaccessible to small clinics. The use of Monte Carlo techniques is viable because they avoid problems inherent to analytic solutions as, for instance , the integration of functions with singularities in its domain. The results of ISODOSE were compared with similar data found in the literature and also with those obtained at the institutes of radiotherapy of the 'Hospital do Cancer do Recife' and of the 'Hospital Portugues do Recife'. ISODOSE presented good performance, mainly, due to the Monte Carlo techniques, that allowed a quite detailed drawing of the isodose curves in turn of linear sources. (author)
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137-4, place Jussieu F-75252 Paris Cedex 05 (France); Moroni, Saverio, E-mail: moroni@democritos.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.
Filippi, Claudia; Assaraf, Roland; Moroni, Saverio
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.
CO Self-Shielding as a Mechanism to Make O-16 Enriched Solids in the Solar Nebula
Nuth, Joseph A. III; Johnson, Natasha M.; Hill, Hugh G. M.
2014-01-01
Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, O-16 depleted solar system. This is distinct from the relatively O-16 enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in O-16 depleted solids, we argue that complementary enhancements of O-16 enriched solids can also be produced via CO-16 based, Fischer-Tropsch type (FTT) catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed O-16 enrichment in calcium-aluminum-rich inclusions (CAIs), such as those from the meteorite, Isheyevo (CH/CHb), as well as in chondrules from the meteorite, Acfer 214 (CH3). CO selfshielding results in an overall increase in the O-17 and O-18 content of nebular solids only to the extent that there is a net loss of CO-16 from the solar nebula. In contrast, if CO-16 reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.
BEVE, Isotope Buildup in LWR Fuel Pin with Self-Shielding in Pellet
International Nuclear Information System (INIS)
Pistella, F.
1987-01-01
1 - Description of problem or function: The BEVE code calculates the isotopic evolution of a LWR fuel pin taking into account inter- related space and energy self-shielding effects within the pellet. The code is in particular devoted to calculate Gadolinium depletion in burnable poison cells. BEVE is part of the BURNY-BEVE code system for fuel/poison depletion. 2 - Method of solution: Multigroup integral transport theory has been chosen as the best tool to handle the evaluation of Gd behaviour in LWRs. Use is made of a modified version of the THERMOS code to obtain all the necessary spectral and geometrical detail, taking into account also the radial dependence of the poison concentration due to the radial dependence of spectrum and flux level within the pin (a different spectrum is evaluated in each mesh point). At each ir- radiation step, the space and energy neutron distribution is calculated, the burnup of the isotopes in the fuel is consequently calculated and the procedure is automatically repeated for the following time step and so on. The computer time is reduced since at each irradiation step the neutron distribution of the previous step is used as a guess for the convergence procedure. In the transport calculations at each irradiation step the convergence is checked with respect to the mesh where the absorption rate as evaluated at the previous irradiation step is maximum; while at beginning of life this mesh is obviously the outermost one; as irradiation proceeds this most significant mesh moves toward the center. The main output of the BEVE routine consists of the thermal macro- scopic cross sections of the poisoned cell versus burnup to be used for the computation of the fuel element in x,y geometry. One BEVE run must be performed for each type of poisoned cell in the element. Each BEVE run supplies for each irradiation step the following information: - The value of the fluence in the coupling region. - The equivalent natural Gd concentration. - The
Energy Technology Data Exchange (ETDEWEB)
Vieira, Jose Wilson
2001-08-01
Brachytherapy is a special form of cancer treatment in which the radioactive source is very close to or inside the tumor with the objective of causing the necrosis of the cancerous tissue. The intensity of cell response to the radiation varies according to the tissue type and degree of differentiation. Since the malign cells are less differentiated than the normal ones, they are more sensitive to the radiation. This is the basis for radiotherapy techniques. Institutes that work with the application of high dose rates use sophisticated computer programs to calculate the necessary dose to achieve the necrosis of the tumor and the same time, minimizing the irradiation of tissues and organs of the neighborhood. With knowledge the characteristics of the source and the tumor, it is possible to trace isodose curves with the necessary information for planning the brachytherapy in patients. The objective of this work is, using Monte Carlo techniques, to develop a computer program - the ISODOSE - which allows to determine isodose curves in turn of linear radioactive sources used in brachytherapy. The development of ISODOSE is important because the available commercial programs, in general, are very expensive and practically inaccessible to small clinics. The use of Monte Carlo techniques is viable because they avoid problems inherent to analytic solutions as, for instance , the integration of functions with singularities in its domain. The results of ISODOSE were compared with similar data found in the literature and also with those obtained at the institutes of radiotherapy of the 'Hospital do Cancer do Recife' and of the 'Hospital Portugues do Recife'. ISODOSE presented good performance, mainly, due to the Monte Carlo techniques, that allowed a quite detailed drawing of the isodose curves in turn of linear sources. (author)
International Nuclear Information System (INIS)
Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja
2015-01-01
Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T c = 1.3128 ± 0.0016, ρ c = 0.316 ± 0.004, and p c = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ t ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r cut = 3.5σ yield T c and p c that are higher by 0.2% and 1.4% than simulations with r cut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r cut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various
Unfolding an under-determined neutron spectrum using genetic algorithm based Monte Carlo
International Nuclear Information System (INIS)
Suman, V.; Sarkar, P.K.
2011-01-01
Spallation in addition to the other photon-neutron reactions in target materials and different components in accelerators may result in production of huge amount of energetic protons which further leads to the production of neutron and contributes to the main component of the total dose. For dosimetric purposes in accelerator facilities the detector measurements doesn't provide directly the actual neutron flux values but a cumulative picture. To obtain Neutron spectrum from the measured data, response functions of the measuring instrument together with the measurements are used into many unfolding techniques which are frequently used for unfolding the hidden spectral information. Here we discuss a genetic algorithm based unfolding technique which is in the process of development. Genetic Algorithm is a stochastic method based on natural selection, which mimics Darwinian theory of survival of the best. The above said method has been tested to unfold the neutron spectra obtained from a reaction carried out at an accelerator facility, with energetic carbon ions on thick silver target along with its respective neutron response of BC501A liquid scintillation detector. The problem dealt here is under-determined where the number of measurements is less than the required energy bin information. The results so obtained were compared with those obtained using the established unfolding code FERDOR, which unfolds data for completely determined problems. It is seen that the genetic algorithm based solution has a reasonable match with the results of FERDOR, when smoothening carried out by Monte Carlo is taken into consideration. This method appears to be a promising candidate for unfolding neutron spectrum in cases of under-determined and over-determined, where measurements are more. The method also has advantages of flexibility, computational simplicity and works well without need of any initial guess spectrum. (author)
Malasics, Attila; Boda, Dezso
2010-06-28
Two iterative procedures have been proposed recently to calculate the chemical potentials corresponding to prescribed concentrations from grand canonical Monte Carlo (GCMC) simulations. Both are based on repeated GCMC simulations with updated excess chemical potentials until the desired concentrations are established. In this paper, we propose combining our robust and fast converging iteration algorithm [Malasics, Gillespie, and Boda, J. Chem. Phys. 128, 124102 (2008)] with the suggestion of Lamperski [Mol. Simul. 33, 1193 (2007)] to average the chemical potentials in the iterations (instead of just using the chemical potentials obtained in the last iteration). We apply the unified method for various electrolyte solutions and show that our algorithm is more efficient if we use the averaging procedure. We discuss the convergence problems arising from violation of charge neutrality when inserting/deleting individual ions instead of neutral groups of ions (salts). We suggest a correction term to the iteration procedure that makes the algorithm efficient to determine the chemical potentials of individual ions too.
Monte-Carlo modelling to determine optimum filter choices for sub-microsecond optical pyrometry
Ota, Thomas A.; Chapman, David J.; Eakins, Daniel E.
2017-04-01
When designing a spectral-band pyrometer for use at high time resolutions (sub-μs), there is ambiguity regarding the optimum characteristics for a spectral filter(s). In particular, while prior work has discussed uncertainties in spectral-band pyrometry, there has been little discussion of the effects of noise which is an important consideration in time-resolved, high speed experiments. Using a Monte-Carlo process to simulate the effects of noise, a model of collection from a black body has been developed to give insights into the optimum choices for centre wavelength and passband width. The model was validated and then used to explore the effects of centre wavelength and passband width on measurement uncertainty. This reveals a transition centre wavelength below which uncertainties in calculated temperature are high. To further investigate system performance, simultaneous variation of the centre wavelength and bandpass width of a filter is investigated. Using data reduction, the effects of temperature and noise levels are illustrated and an empirical approximation is determined. The results presented show that filter choice can significantly affect instrument performance and, while best practice requires detailed modelling to achieve optimal performance, the expression presented can be used to aid filter selection.
Nishimura, N.; Rauscher, T.; Hirschi, R.; Murphy, A. St J.; Cescutti, G.; Travaglio, C.
2018-03-01
Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of p nuclides. Such nuclei are produced during the explosion, in layers enriched with seed nuclei coming from prior strong s processing. These seeds are transformed into proton-richer isotopes mainly by photodisintegration reactions. Several thousand trajectories from a 2D explosion model were used in a Monte Carlo approach. Temperature-dependent uncertainties were assigned individually to thousands of rates varied simultaneously in post-processing in an extended nuclear reaction network. The uncertainties in the final nuclear abundances originating from uncertainties in the astrophysical reaction rates were determined. In addition to the 35 classical p nuclides, abundance uncertainties were also determined for the radioactive nuclides 92Nb, 97, 98Tc, 146Sm, and for the abundance ratios Y(92Mo)/Y(94Mo), Y(92Nb)/Y(92Mo), Y(97Tc)/Y(98Ru), Y(98Tc)/Y(98Ru), and Y(146Sm)/Y(144Sm), important for Galactic Chemical Evolution studies. Uncertainties found were generally lower than a factor of 2, although most nucleosynthesis flows mainly involve predicted rates with larger uncertainties. The main contribution to the total uncertainties comes from a group of trajectories with high peak density originating from the interior of the exploding white dwarf. The distinction between low-density and high-density trajectories allows more general conclusions to be drawn, also applicable to other simulations of white dwarf explosions.
Fujibuchi, Toshioh; Horitsugi, Genki; Yamaguchi, Ichiro; Eto, Akihisa; Iwamoto, Yasuo; Obara, Satoshi; Iimori, Takashi; Masuda, Yoshitada; Watanabe, Hiroshi; Hatazawa, Jun
2012-07-01
Some medical compact cyclotrons have self-shielding to reduce neutron fluxes. Thermal neutron fluxes in an 18-MeV unshielded cyclotron room and in a 16.5-MeV self-shielded cyclotron room were evaluated. In addition, the radioactivities in concrete and metals due to thermal neutrons in the cyclotron rooms for 30 years were calculated of operation such that the sum of the ratio of the nuclide concentration to the nuclide clearance level was equal to 1. The thermal neutron flux from the unshielded cyclotron was approximately 10(2) cm(-2) s(-1), whereas that from the self-shielded cyclotron was approximately 10(2) cm(-2) s(-1). The thermal neutron fluxes for concrete, stainless steel, vessel steel, and aluminum that reached their clearance levels were 9.80 × 10(4), 2.17 × 10(3), 1.87 × 10(4), and 2.41 × 10(5) cm(-2) s(-1), respectively. The specific activities in the cyclotron room were found to be sufficiently below the clearance level when the self-shield was employed.
Palmer, Grant; Prabhu, Dinesh; Cruden, Brett A.
2013-01-01
The 2013-2022 Decaedal survey for planetary exploration has identified probe missions to Uranus and Saturn as high priorities. This work endeavors to examine the uncertainty for determining aeroheating in such entry environments. Representative entry trajectories are constructed using the TRAJ software. Flowfields at selected points on the trajectories are then computed using the Data Parallel Line Relaxation (DPLR) Computational Fluid Dynamics Code. A Monte Carlo study is performed on the DPLR input parameters to determine the uncertainty in the predicted aeroheating, and correlation coefficients are examined to identify which input parameters show the most influence on the uncertainty. A review of the present best practices for input parameters (e.g. transport coefficient and vibrational relaxation time) is also conducted. It is found that the 2(sigma) - uncertainty for heating on Uranus entry is no more than 2.1%, assuming an equilibrium catalytic wall, with the uncertainty being determined primarily by diffusion and H(sub 2) recombination rate within the boundary layer. However, if the wall is assumed to be partially or non-catalytic, this uncertainty may increase to as large as 18%. The catalytic wall model can contribute over 3x change in heat flux and a 20% variation in film coefficient. Therefore, coupled material response/fluid dynamic models are recommended for this problem. It was also found that much of this variability is artificially suppressed when a constant Schmidt number approach is implemented. Because the boundary layer is reacting, it is necessary to employ self-consistent effective binary diffusion to obtain a correct thermal transport solution. For Saturn entries, the 2(sigma) - uncertainty for convective heating was less than 3.7%. The major uncertainty driver was dependent on shock temperature/velocity, changing from boundary layer thermal conductivity to diffusivity and then to shock layer ionization rate as velocity increases. While
Makai, Mihály; Szatmáry, Zoltán
2013-01-01
In the Monte Carlo (MC) method statistical noise is usually present. Statistical noise may become dominant in the calculation of a distribution, usually by iteration, but is less Important in calculating integrals. The subject of the present work is the role of statistical noise in iterations involving stochastic simulation (MC method). Convergence is checked by comparing two consecutive solutions in the iteration. The statistical noise may randomize or pervert the convergence. We study the p...
Directory of Open Access Journals (Sweden)
Rehman Shakeel U.
2009-01-01
Full Text Available A primary-interaction based Monte Carlo algorithm has been developed for determination of the total efficiency of cylindrical scintillation g-ray detectors. This methodology has been implemented in a Matlab based computer program BPIMC. For point isotropic sources at axial locations with respect to the detector axis, excellent agreement has been found between the predictions of the BPIMC code with the corresponding results obtained by using hybrid Monte Carlo as well as by experimental measurements over a wide range of g-ray energy values. For off-axis located point sources, the comparison of the BPIMC predictions with the corresponding results obtained by direct calculations as well as by conventional Monte Carlo schemes shows good agreement validating the proposed algorithm. Using the BPIMC program, the energy dependent detector efficiency has been found to approach an asymptotic profile by increasing either thickness or diameter of scintillator while keeping the other fixed. The variation of energy dependent total efficiency of a 3'x3' NaI(Tl scintillator with axial distance has been studied using the BPIMC code. About two orders of magnitude change in detector efficiency has been observed for zero to 50 cm variation in the axial distance. For small values of axial separation, a similar large variation has also been observed in total efficiency for 137Cs as well as for 60Co sources by increasing the axial-offset from zero to 50 cm.
Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety
Pant, G. S.; Senthamizhchelvan, S.
2007-01-01
A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531
Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety
International Nuclear Information System (INIS)
Pant, G.S.; Senthamizhchelvan, S.
2007-01-01
A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18 F, 15 O, 13 N and 11 C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18 F for 18 F-FDG imaging. The operational parameters which influence the yield of 18 F-production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18 O water, is bombarded with proton beam from the cyclotron to produce 18 F ion that is used for the synthesis of 18 F-FDG. The operational parameters which influence the yield of 18 F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18 F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18 F activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. (author)
International Nuclear Information System (INIS)
Zhang, Tianli; Li, Zhuoxin; Kou, Sindo; Jing, Hongyang; Li, Guodong; Li, Hong; Jin Kim, Hee
2015-01-01
The effect of inclusions on the microstructure and toughness of the deposited metals of self-shielded flux cored wires was investigated by optical microscopy, electron microscopy and mechanical testing. The deposited metals of three different wires showed different levels of low temperature impact toughness at −40 °C mainly because of differences in the properties of inclusions. The inclusions formed in the deposited metals as a result of deoxidation caused by the addition of extra Al–Mg alloy and ferromanganese to the flux. The inclusions, spherical in shape, were mixtures of Al 2 O 3 and MgO. Inclusions predominantly Al 2 O 3 and 0.3–0.8 μm in diameter were effective for nucleation of acicular ferrite. However, inclusions predominantly MgO were promoted by increasing Mg in the flux and were more effective than Al 2 O 3 inclusions of the same size. These findings suggest that the control of inclusions can be an effective way to improve the impact toughness of the deposited metal
Energy Technology Data Exchange (ETDEWEB)
Coste-Delclaux, M
2006-03-15
This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)
International Nuclear Information System (INIS)
Haghighattalab, A.; Zolfaghari, A. R.; Minouchehr, A. H.; Kiya, H. A.
2012-01-01
Occurrence of hazardous accident in nuclear power plants and industrial units usually lead to release of radioactive materials and pollutants in environment. These materials and pollutants can be transported to a far downstream by the wind flow. In this paper, we implemented an atmospheric dispersion code to solve the inverse problem. Having received and detected the pollutants in one region, we may estimate the rate and location of the unknown source. For the modeling, one needs a model with ability of atmospheric dispersion calculation. Furthermore, it is required to implement a mathematical approach to infer the source location and the related rates. In this paper the AERMOD software and Bayesian inference along the Markov Chain Monte Carlo have been applied. Implementing, Bayesian approach and Markov Chain Monte Carlo for the aforementioned subject is not a new approach, but the AERMOD model coupled with the said methods is a new and well known regulatory software, and enhances the reliability of outcomes. To evaluate the method, an example is considered by defining pollutants concentration in a specific region and then obtaining the source location and intensity by a direct calculation. The result of the calculation estimates the average source location at a distance of 7km with an accuracy of 5m which is good enough to support the ability of the proposed algorithm.
Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests
Directory of Open Access Journals (Sweden)
Crâştiu Ion
2017-01-01
Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.
Howitz, S; Schwedas, M; Wiezorek, T; Zink, K
2017-10-12
Reference dosimetry by means of clinical linear accelerators in high-energy photon fields requires the determination of the beam quality specifier TPR 20,10 , which characterizes the relative particle flux density of the photon beam. The measurement of TPR 20,10 has to be performed in homogenous photon beams of size 10×10cm 2 with a focus-detector distance of 100cm. These requirements cannot be fulfilled by TomoTherapy treatment units from Accuray. The TomoTherapy unit provides a flattening-filter-free photon fan beam with a maximum field width of 40cm and field lengths of 1.0cm, 2.5cm and 5.0cm at a focus-isocenter distance of 85cm. For the determination of the beam quality specifier from measurements under nonstandard reference conditions Sauer and Palmans proposed experiment-based fit functions. Moreover, Sauer recommends considering the impact of the flattening-filter-free beam on the measured data. To verify these fit functions, in the present study a Monte Carlo based model of the treatment head of a TomoTherapyHD unit was designed and commissioned with existing beam data of our clinical TomoTherapy machine. Depth dose curves and dose profiles were in agreement within 1.5% between experimental and Monte Carlo-based data. Based on the fit functions from Sauer and Palmans the beam quality specifier TPR 20,10 was determined from field sizes 5×5cm 2 , 10×5cm 2 , 20×5cm 2 and 40×5cm 2 based on dosimetric measurements and Monte Carlo simulations. The mean value from all experimental values of TPR 20,10 resulted in TPR 20,10 ¯=0.635±0.4%. The impact of the non-homogenous field due to the flattening-filter-free beam was negligible for field sizes below 20×5cm 2 . The beam quality specifier calculated by Monte Carlo simulations was TPR 20,10 =0.628 and TPR 20,10 =0.631 for two different calculation methods. The stopping power ratio water-to-air s w,a Δ directly depends on the beam quality specifier. The value determined from all experimental TPR 20,10 data
A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations
Energy Technology Data Exchange (ETDEWEB)
Haeck, Wim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saller, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-12
Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in the details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.
Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.
Reddon, John R.; And Others
1985-01-01
Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)
International Nuclear Information System (INIS)
Mao, Li
2011-01-01
The multigroup equivalence problem in the fine-structure self-shielding method is usually treated by nonlinear fixed point iterations (FPI) which needs to be accelerated. In this paper, we investigate the application of the Jacobian-Free Newton-Krylov (JFNK) family methods to this nonlinear procedure. Two implementations of the JFNK methods are presented. The numerical results are given for the JFNK methods and the FPI methods. These results show that the JFNK methods provide stable solver to the multigroup equivalence problem. (author)
Energy Technology Data Exchange (ETDEWEB)
David, Mariano Gazineu; Salata, Camila; Almeida, Carlos Eduardo, E-mail: marianogd08@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro (Brazil). Lab. de Ciencias Radiologicas
2014-07-01
The Laboratorio de Ciencias Radiologicas develops a methodology for the determination of the absorbed dose to water by Fricke chemical dosimetry method for brachytherapy sources of {sup 192}Ir high dose rate and have compared their results with the laboratory of the National Research Council Canada. This paper describes the determination of the correction factors by Monte Carlo method, with the Penelope code. Values for all factors are presented, with a maximum difference of 0.22% for their determination by an alternative way. (author)
International Nuclear Information System (INIS)
Moreau, J.; Parisot, B.
1969-01-01
The determination of neutron multiplication coefficients by the Monte Carlo method can be carried out in different ways; the are first examined particularly complex geometries; it makes use of multi-group isotropic cross sections. The performances of this code are illustrated by some examples. (author) [fr
International Nuclear Information System (INIS)
Faro, A.C. Jr.; Kemball, C.
1984-01-01
Monte Carlo methods have been used to calculate the initial distributions of products from the exchange of cyclopentane with deuterium based on different mechanisms for the reaction. Comparisons of the distributions, so obtained, were made with the experimental results on a series of metal catalysts in order to determine which mechanisms appeared to be operating on each metal. (author)
Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes
International Nuclear Information System (INIS)
Harrisson, G.; Marleau, G.
2012-01-01
The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)
Energy Technology Data Exchange (ETDEWEB)
Videira, Heber S.; Burkhardt, Guilherme M.; Santos, Ronielly S., E-mail: heber@cyclopet.com.br [Cyclopet Radiofarmacos Ltda., Curitiba, PR (Brazil); Passaro, Bruno M.; Gonzalez, Julia A.; Santos, Josefina; Guimaraes, Maria I.C.C. [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Lenzi, Marcelo K. [Universidade Federal do Parana (UFPR), Curitina (Brazil). Programa de Pos-Graduacao em Engenharia Quimica
2013-04-15
The technological advances in positron emission tomography (PET) in conventional clinic imaging have led to a steady increase in the number of cyclotrons worldwide. Most of these cyclotrons are being used to produce {sup 18}F-FDG, either for themselves as for the distribution to other centers that have PET. For there to be safety in radiological facilities, the cyclotron intended for medical purposes can be classified in category I and category II, ie, self-shielded or non-shielded (bunker). Therefore, the aim of this work is to verify the effectiveness of borated water shield built for a cyclotron accelerator-type Self-shielded PETtrace 860. Mixtures of water borated occurred in accordance with the manufacturer’s specifications, as well as the results of the radiometric survey in the vicinity of the self-shielding of the cyclotron in the conditions established by the manufacturer showed that radiation levels were below the limits. (author)
Directory of Open Access Journals (Sweden)
Khrystyna Moskalova
2017-01-01
Full Text Available Considering that modern building materials impose increasing performance requirements, it is necessary to expand the range of building materials and improve their multicomponent composition. The effects of polymer and porous components (expanded perlite sand and carbonate filler – limestone-shell rock in cement-lime light plaster on the physico-mechanical properties of the mixtures under equal workability conditions of mixtures are analyzed based on experimental-statistical modeling. The results of the physico-mechanical and operational experiments confirm the rationality of using porous fillers and additives to improve certain specific properties of the final product. The so-called Monte-Carlo method is implemented for determining an optimal composition of multicomponent cement-lime light plaster, based on multivariate statistical modeling and iterative random scanning of property fields. According to the results of the computational experiment, a composition that reduces the number of expensive mixture components and improves the physical and mechanical characteristics of the resulting composition is selected.
International Nuclear Information System (INIS)
Yamamoto, Y.; Wakaiki, M.; Ikeda, A.; Kido, Y.
1999-01-01
The lattice location of Tm implanted into Si(1 0 0) and Ge(1 1 1) with energy of 180 keV was determined precisely by ion channeling followed by Monte Carlo simulations of ion trajectories. The implantations were performed at 550 deg. C with a dose of 5 x 10 14 ions/cm 2 . In the case of Tm in Si, 25 at.% and 50 at.% of Tm are located in the tetrahedral interstitial site and in the random site, respectively and the rest takes the substitutional position. The assumption of the Gaussian distribution centered at the exact tetrahedral site with a standard deviation of 0.2 Angstroms reproduced the azimuth angular-scan spectrum around the [1 1 0] axis. However, the observed angular spectrum is significantly broader than the simulated one. This is probably due to the fact that there exist slightly different Tm lattice sites from the exact tetrahedral position. For Ge(1 1 1) substrates, 25 at.% of Tm occupied the tetrahedral interstitial site and the rest was located randomly
International Nuclear Information System (INIS)
Sdouz, G.
1980-09-01
The computer program STOSS determines the path of a particle in a heterogenous medium in three dimensions. The program can be used as a module in Monte-Carlo-calculations. The collision can be transferred from the centre-of-mass system into a fixed cartesian coordinate-system by means of appropriate transformations. Then the path length is determined and the location of the next collision is calculated. The computational details are discussed at some length. (auth.)
Lewis, Susan J; Kays, Michael B; Mueller, Bruce A
2016-10-01
Pharmacokinetic/pharmacodynamic analyses with Monte Carlo simulations (MCSs) can be used to integrate prior information on model parameters into a new renal replacement therapy (RRT) to develop optimal drug dosing when pharmacokinetic trials are not feasible. This study used MCSs to determine initial doripenem, imipenem, meropenem, and ertapenem dosing regimens for critically ill patients receiving prolonged intermittent RRT (PIRRT). Published body weights and pharmacokinetic parameter estimates (nonrenal clearance, free fraction, volume of distribution, extraction coefficients) with variability were used to develop a pharmacokinetic model. MCS of 5000 patients evaluated multiple regimens in 4 different PIRRT effluent/duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis or hemofiltration) occurring at the beginning or 14-16 hours after drug infusion. The probability of target attainment (PTA) was calculated using ≥40% free serum concentrations above 4 times the minimum inhibitory concentration (MIC) for the first 48 hours. Optimal doses were defined as the smallest daily dose achieving ≥90% PTA in all PIRRT combinations. At the MIC of 2 mg/L for Pseudomonas aeruginosa, optimal doses were doripenem 750 mg every 8 hours, imipenem 1 g every 8 hours or 750 mg every 6 hours, and meropenem 1 g every 12 hours or 1 g pre- and post-PIRRT. Ertapenem 500 mg followed by 500 mg post-PIRRT was optimal at the MIC of 1 mg/L for Streptococcus pneumoniae. Incorporating data from critically ill patients receiving RRT into MCS resulted in markedly different carbapenem dosing regimens in PIRRT from those recommended for conventional RRTs because of the unique drug clearance characteristics of PIRRT. These results warrant clinical validation. © 2016, The American College of Clinical Pharmacology.
International Nuclear Information System (INIS)
Vaque, J. Puxeu
2016-01-01
dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research
Coudin, D; Marinello, G
1998-03-01
Recently, new backscatter factors for low-energy x rays derived from Monte Carlo calculations have been recommended in the UK code of practice for kilovoltage dosimetry published by (IPEMB). As these data, presented as a function of half-value layer, do not take account of the variation of the x-ray spectra for a given HVL, we have undertaken an experimental study in order to determine BSG for the beam qualities provided by a Darpac 2000 therapy unit. A RTL detector such as Li2B4O7:Cu and parallel-plate ion chambers specially designed for low-energy x-ray dosimetry have been used. The results obtained show very good agreement between the TLD and the Monte Carlo calculations, confirming values obtained by other authors with lithium borate TLD. On the contrary, the results obtained with plane-parallel ion chambers show discrepancies up to 9% that are discussed.
International Nuclear Information System (INIS)
Bacchetta, Alessandro; Jung, Hannes; Kutak, Krzysztof
2010-02-01
A method for tuning parameters in Monte Carlo generators is described and applied to a specific case. The method works in the following way: each observable is generated several times using different values of the parameters to be tuned. The output is then approximated by some analytic form to describe the dependence of the observables on the parameters. This approximation is used to find the values of the parameter that give the best description of the experimental data. This results in significantly faster fitting compared to an approach in which the generator is called iteratively. As an application, we employ this method to fit the parameters of the unintegrated gluon density used in the Cascade Monte Carlo generator, using inclusive deep inelastic data measured by the H1 Collaboration. We discuss the results of the fit, its limitations, and its strong points. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bishop, R.F. (Manchester Univ. (United Kingdom). Inst. of Science and Technology); Buendia, E. (Granada Univ. (Spain). Dept. de Fisica Moderna); Flynn, M.F. (Kent State Univ., OH (United States). Dept. of Physics); Guardiola, R. (Valencia Univ. (Spain). Dept. de Fisica Atomica y Nuclear)
1992-02-01
The diffusion Monte Carlo method is used to integrate the four-body Schroedinger equation corresponding to the {sup 4}He nucleus for several model potentials of Wigner type. Good importance sampling trial functions are used, and the sampling is large enough to obtain the ground-state energy with an error of only 0.01 to 0.02 MeV. (author).
Endo, Y.; Ogawa, M.; Danielache, S. O.; Ueno, Y.
2017-12-01
Archean sulfur mass-independent fractionation (S-MIF) is a unique proxy within the geological and geochemical records for studying the composition of the Archean atmosphere. S-MIF signatures are defined as Δ33S = δ33S - 0.515×δ34S and Δ36S = δ36S - 1.90×δ34S. Archean S-MIF is characterized as Δ36S/Δ33S = -1. Recent SO2 photochemical experiments under specific reducing conditions reproduced the Archean trend for the first time [1]. Self-shielding of SO2 photolysis and intersystem crossing in excited SO2 are probably key mechanisms for explaining Archean S-MIF. Self-shielding is originated from UV spectra changed by upper SO2 own absorption. Because 32S accounts for about 95% of all sulfur isotopes, the photolysis rate constant of only 32SO2 is lower than other isotopologue. Thus, SO2 photolysis in the bottom of the atmosphere undergoes mass-independent fractionation. Fractionation factors by SO2 photolysis reaction can be calculated by absorption cross-sections of 32SO2, 33SO2, 34SO2 and 36SO2 and respective quantum yields. Quantitative estimations self-shielding fractionation factors requires high-spectral resolution cross-sections, but they have not been reported yet. Here we report measurements of high-resolution cross-sections (1cm-1) and fractionation factors by SO2 photolysis including self-shielding. Moreover, because the absorption wavelength varies with each isotopologue, photolysis rate constants of all isotopologues (32S16O2, 32S16O18O, etc) should be different. Then self-shielding may affect the ratio of isotopologues such as clumped-isotopes. We calculated preliminary calculation clumped isotope enrichment in residual species by self-shielding. Reference: [1] Endo, Y., Ueno, Y., Aoyama, S., & Danielache, S. O. (2016). Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere. EPSL, 453, 9-22.
International Nuclear Information System (INIS)
Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshiou; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi
2016-01-01
The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the Nal scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed. (author)
1 1/2 years of experience with a 10 MeV self-shielded on-line e-beam sterilization system
International Nuclear Information System (INIS)
Lambert, Byron; Tang, Fuh-Wei; Riggs, Brian; Allen, Thomas; Williams, C.B.
2000-01-01
The Vascular Intervening Group of the Guidant Corporation (Guidant IV) has been operating a self-shielded, 10 MeV 4 kW, electron beam sterilization system since July of 1988. The system was designed, built and installed in a 70 square meter area in an existing Guidant manufacturing facility by Titan Scan Corporation and performance of the system was validated in conformance with 1S0-11137 standards. The goal of this on-site e-beam system was 'just in time' JIT, sterilization, i.e. the ability to manufacture, sterilize and ship, high intrinsic value medical devices in less than 24 hours. The benefits of moving from a long gas sterilization cycle of greater than one week to a JIT process were envisioned to be a) speed to market with innovated new products b) rapid response to customer requirements c) reduced inventory carrying costs and finally manufacturing and quality system efficiency. The ability of Guidant to realize these benefits depended upon the ability of the Guidant VI business units to adapt to the new sterilization modality and functionality and on the overall system reliability. This paper reviews the operating experience to date and the overall system reliability. (author)
International Nuclear Information System (INIS)
Gonzalez, Dania Soguero; Ardanza, Armando Chavez
2013-01-01
This paper describes the process of installation of a self-shielded irradiator category I, model ISOGAMMA LL.Co of 60 Co, with a nominal 25 kCi activity, rate of absorbed dose 8 kG/h and 5 L workload. The stages are describe step by step: import, the customs procedure which included the interview with the master of the vessel transporter, the monitoring of the entire process by the head of radiological protection of the importing Center, control of the levels of surface contamination of the shipping container of the sources before the removal of the ship, the supervision of the national regulatory authority and the transportation to the final destination. Details of assembling of the installation and the opening of the container for transportation of supplies is outlined. The action plan previously developed for the case of occurrence of radiological successful events is presented, detailing the phase of the load of radioactive sources by the specialists of the company selling the facility (IZOTOP). Finally describes the setting and implementation of the installation and the procedure of licensing for exploitation
Energy Technology Data Exchange (ETDEWEB)
A. T. Till; M. Hanuš; J. Lou; J. E. Morel; M. L. Adams
2016-05-01
The standard multigroup (MG) method for energy discretization of the transport equation can be sensitive to approximations in the weighting spectrum chosen for cross-section averaging. As a result, MG often inaccurately treats important phenomena such as self-shielding variations across a material. From a finite-element viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within each group, with no mechanism to adapt to local solution behavior. In this work, we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, whose only approximation with respect to energy is that the angular flux is a linear combination of unknowns multiplied by basis functions. A basis function is non-zero only in the discontiguous set of energy intervals associated with its energy element. Discontiguous energy elements are generalizations of bands and are determined by minimizing a norm of the difference between snapshot spectra and their averages over the energy elements. We begin by presenting the theory of the FEDS method. We then compare to continuous-energy Monte Carlo for one-dimensional slab and two-dimensional pin-cell problem. We find FEDS to be accurate and efficient at producing quantities of interest such as reaction rates and eigenvalues. Results show that FEDS converges at a rate that is approximately first-order in the number of energy elements and that FEDS is less sensitive to weighting spectrum than standard MG.
International Nuclear Information System (INIS)
Cechak, T.
1982-01-01
Applying Gardner's method of double evaluation one detector should be positioned such that its response should be independent of the material density and the second detector should be positioned so as to maximize changes in response due to density changes. The experimental scanning for optimal energy is extremely time demanding. A program was written based on the Monte Carlo method which solves the problem of error magnitude in case the computation of gamma radiation backscattering neglects multiply scattered photons, the problem of how this error depends on the atomic number of the scattering material as well as the problem of whether the representation of individual scatterings in the spectrum of backscattered photons depends on the positioning of the detector. 42 detectors, 8 types of material and 10 different density values were considered. The computed dependences are given graphically. (M.D.)
Del Lama, L. S.; Godeli, J.; Poletti, M. E.
2017-08-01
The majority of breast carcinomas can be associated to the presence of calcifications before the development of a mass. However, the overlapping tissues can obscure the visualization of microcalcification clusters due to the reduced contrast-noise ratio (CNR). In order to overcome this complication, one potential solution is the use of the dual-energy (DE) technique, in which two different images are acquired at low (LE) and high (HE) energies or kVp to highlight specific lesions or cancel out tissue background. In this work, the DE features were computationally studied considering simulated acquisitions from a modified PENELOPE Monte Carlo code. The employed irradiation geometry considered typical distances used in digital mammography, a CsI detection system and an updated breast model composed of skin, microcalcifications and glandular and adipose tissues. The breast thickness ranged from 2 to 6 cm with glandularities of 25%, 50% and 75%, where microcalcifications with dimensions from 100 up to 600 μm were positioned. In general, results pointed an efficiency index better than 87% for the microcalcification thicknesses and better than 95% for the glandular ratio. The simulations evaluated in this work can be used to optimize the elements from the DE imaging chain, in order to become a complementary tool for the conventional single-exposure images, especially for the visualization and estimation of calcification thicknesses and glandular ratios.
Energy Technology Data Exchange (ETDEWEB)
Lopez Ponte, M. A.; Navarro Amaro, J. F.; Perez Lopez, B.; Navarro Bravo, T.; Nogueira, P.; Vrba, T.
2013-07-01
From the Group of WG7 internal dosimetry of the EURADOS Organization (European Radiation Dosimetry group, e.V.) which It coordinates CIEMAT, international action for the vivo measurement of americium has been conducted in three mannequins type skull with detectors of Germanium by gamma spectrometry and simulation by Monte Carlo methods. Such action has been raised as two separate exercises, with the participation of institutions in Europe, America and Asia. Other actions similar precede this vivo intercomparison of measurement and modeling Monte Carlo1. The preliminary results and associated findings are presented in this work. The laboratory of the body radioactivity (CRC) of service counter of dosimetry staff internal (DPI) of the CIEMAT, it has been one of the participants in vivo measures exercise. On the other hand part, the Group of numerical dosimetry of CIEMAT is participant of the Monte Carlo2 simulation exercise. (Author)
Rico-Contreras, José Octavio; Aguilar-Lasserre, Alberto Alfonso; Méndez-Contreras, Juan Manuel; López-Andrés, Jhony Josué; Cid-Chama, Gabriela
2017-11-01
The objective of this study is to determine the economic return of poultry litter combustion in boilers to produce bioenergy (thermal and electrical), as this biomass has a high-energy potential due to its component elements, using fuzzy logic to predict moisture and identify the high-impact variables. This is carried out using a proposed 7-stage methodology, which includes a statistical analysis of agricultural systems and practices to identify activities contributing to moisture in poultry litter (for example, broiler chicken management, number of air extractors, and avian population density), and thereby reduce moisture to increase the yield of the combustion process. Estimates of poultry litter production and heating value are made based on 4 different moisture content percentages (scenarios of 25%, 30%, 35%, and 40%), and then a risk analysis is proposed using the Monte Carlo simulation to select the best investment alternative and to estimate the environmental impact for greenhouse gas mitigation. The results show that dry poultry litter (25%) is slightly better for combustion, generating 3.20% more energy. Reducing moisture from 40% to 25% involves considerable economic investment due to the purchase of equipment to reduce moisture; thus, when calculating financial indicators, the 40% scenario is the most attractive, as it is the current scenario. Thus, this methodology proposes a technology approach based on the use of advanced tools to predict moisture and representation of the system (Monte Carlo simulation), where the variability and uncertainty of the system are accurately represented. Therefore, this methodology is considered generic for any bioenergy generation system and not just for the poultry sector, whether it uses combustion or another type of technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Noh, Yeelyong; Chang, Kwangpil; Seo, Yutaek; Chang, Daejun
2014-01-01
This study proposes a new methodology that combines dynamic process simulation (DPS) and Monte Carlo simulation (MCS) to determine the design pressure of fuel storage tanks on LNG-fueled ships. Because the pressure of such tanks varies with time, DPS is employed to predict the pressure profile. Though equipment failure and subsequent repair affect transient pressure development, it is difficult to implement these features directly in the process simulation due to the randomness of the failure. To predict the pressure behavior realistically, MCS is combined with DPS. In MCS, discrete events are generated to create a lifetime scenario for a system. The combination of MCS with long-term DPS reveals the frequency of the exceedance pressure. The exceedance curve of the pressure provides risk-based information for determining the design pressure based on risk acceptance criteria, which may vary with different points of view. - Highlights: • The realistic operation scenario of the LNG FGS system is estimated by MCS. • In repeated MCS trials, the availability of the FGS system is evaluated. • The realistic pressure profile is obtained by the proposed methodology. • The exceedance curve provides risk-based information for determining design pressure
Gasperich, Kevin; Deible, Michael; Jordan, Kenneth D
2017-08-21
A model H 4 system is used to investigate the accuracy of diffusion Monte Carlo (DMC) calculations employing a single Slater determinant to fix the nodal surface. The lowest energy singlet state of square H 4 is a diradical which is poorly described by DMC calculations using a single determinant (SD) trial function. Here we consider distortions to rectangular structures, which decrease the amount of diradical character. The falloff of the error in the SD-DMC energy with increasing separation between the two H 2 molecules is found to be much more rapid for small distortions away from square than for large distortions. This behavior is shown to be correlated with the extent of mixing between the two configurations needed to properly describe the diradical character. The error in the SD-DMC energy is found to be sizeable (∼0.1 eV) even for separations at which the coefficient of the dominant configuration in a four-electron, four-orbital complete active space self-consistent-field wave function is as large as 0.9.
Monte Carlo-based development of a shield and total background estimation for the COBRA experiment
International Nuclear Information System (INIS)
Heidrich, Nadine
2014-11-01
The COBRA experiment aims for the measurement of the neutrinoless double beta decay and thus for the determination the effective Majorana mass of the neutrino. To be competitive with other next-generation experiments the background rate has to be in the order of 10 -3 counts/kg/keV/yr, which is a challenging criterion. This thesis deals with the development of a shield design and the calculation of the expected total background rate for the large scale COBRA experiment containing 13824 6 cm 3 CdZnTe detectors. For the development of a shield single-layer and multi-layer shields were investigated and a shield design was optimized concerning high-energy muon-induced neutrons. As the best design the combination of 10 cm boron doped polyethylene as outermost layer, 20 cm lead and 10 cm copper as innermost layer were determined. It showed the best performance regarding neutron attenuation as well as (n, γ) self-shielding effects leading to a negligible background rate of less than 2.10 -6 counts/kg/keV/yr. Additionally. the shield with a thickness of 40 cm is compact and costeffective. In the next step the expected total background rate was computed taking into account individual setup parts and various background sources including natural and man-made radioactivity, cosmic ray-induced background and thermal neutrons. Furthermore, a comparison of measured data from the COBRA demonstrator setup with Monte Carlo data was used to calculate reliable contamination levels of the single setup parts. The calculation was performed conservatively to prevent an underestimation. In addition, the contribution to the total background rate regarding the individual detector parts and background sources was investigated. The main portion arise from the Delrin support structure, the Glyptal lacquer followed by the circuit board of the high voltage supply. Most background events originate from particles with a quantity of 99 % in total. Regarding surface events a contribution of 26
Directory of Open Access Journals (Sweden)
Charlie Samuya Veric
2001-12-01
Full Text Available The importance of Carlos Bulosan in Filipino and Filipino-American radical history and literature is indisputable. His eminence spans the pacific, and he is known, diversely, as a radical poet, fictionist, novelist, and labor organizer. Author of the canonical America Iis the Hearts, Bulosan is celebrated for chronicling the conditions in America in his time, such as racism and unemployment. In the history of criticism on Bulosan's life and work, however, there is an undeclared general consensus that views Bulosan and his work as coherent permanent texts of radicalism and anti-imperialism. Central to the existence of such a tradition of critical reception are the generations of critics who, in more ways than one, control the discourse on and of Carlos Bulosan. This essay inquires into the sphere of the critical reception that orders, for our time and for the time ahead, the reading and interpretation of Bulosan. What eye and seeing, the essay asks, determine the perception of Bulosan as the angel of radicalism? What is obscured in constructing Bulosan as an immutable figure of the political? What light does the reader conceive when the personal is brought into the open and situated against the political? the essay explores the answers to these questions in Bulosan's loving letters to various friends, strangers, and white American women. The presence of these interrogations, the essay believes, will secure ultimately the continuing importance of Carlos Bulosan to radical literature and history.
Energy Technology Data Exchange (ETDEWEB)
Isambert, A.; Lefkopoulos, D. [Institut Gustave-Roussy, Medical Physics Dept., 94 - Villejuif (France); Brualla, L. [NCTeam, Strahlenklinik, Universitatsklinikum Essen (Germany); Benkebil, M. [DOSIsoft, 94 - Cachan (France)
2010-04-15
Purpose of study Monte Carlo based treatment planning system are known to be more accurate than analytical methods for performing absorbed dose estimation, particularly in and near heterogeneities. However, the required computation time can still be an issue. The present study focused on the determination of the optimum statistical uncertainty in order to minimise computation time while keeping the reliability of the absorbed dose estimation in treatments planned with electron-beams. Materials and methods Three radiotherapy plans (medulloblastoma, breast and gynaecological) were used to investigate the influence of the statistical uncertainty of the absorbed dose on the target volume dose-volume histograms (spinal cord, intra-mammary nodes and pelvic lymph nodes, respectively). Results The study of the dose-volume histograms showed that for statistical uncertainty levels (1 S.D.) above 2 to 3%, the standard deviation of the mean dose in the target volume calculated from the dose-volume histograms increases by at least 6%, reflecting the gradual flattening of the dose-volume histograms. Conclusions This work suggests that, in clinical context, Monte Carlo based absorbed dose estimations should be performed with a maximum statistical uncertainty of 2 to 3%. (authors)
Rey, Julien F; Laffont, Céline M; Croubels, Siska; De Backer, Patrick; Zemirline, Claudine; Bousquet, Eric; Guyonnet, Jérôme; Ferran, Aude A; Bousquet-Melou, Alain; Toutain, Pierre-Louis
2014-02-01
To determine pharmacodynamic cutoffs with pharmacokinetic-pharmacodynamic principles and Monte Carlo simulation (MCS) for use of amoxicillin in pigs to set interpretive criteria for antimicrobial susceptibility testing. 191 plasma disposition curves of amoxicillin obtained from 21 IV, 104 IM, and 66 PO administrations corresponding to 2,098 plasma concentrations. A population model of amoxicillin disposition in pigs was developed for PO and IM administration. The MCS method was then used to determine, for various dosage regimens, the proportion of pigs achieving plasma amoxicillin concentrations greater than a selection of possible minimal inhibitory concentrations (MICs) ranging from 0.0625 to 4 mg/L for at least 40% of a 24-hour period. A target attainment rate (TAR) of 90% was never achieved with the breakpoint recommended by the Clinical and Laboratory Standards Institute (0.5 mg/L) when the usual recommended dosage (20 mg/kg/d) was used. Only by dividing the orally administered daily dose into 12-hour administration intervals was a TAR > 90% achieved when the total dose was at least 40 mg/kg for a pathogen having an MIC ≤ 0.0625 mg/L. For the IM route, the TAR of 90% could only be achieved for MICs of 0.0625 and 0.125 mg/L with the use of 15 and 30 mg/kg doses, respectively. Population kinetics and MCS are required to determine robust species-specific interpretive criteria (susceptible, intermediate, and resistant classifications) for antimicrobial susceptibility testing breakpoints (taking into account interanimal variability).
International Nuclear Information System (INIS)
Kolbun, N.; Leveque, Ph.; Abboud, F.; Bol, A.; Vynckier, S.; Gallez, B.
2010-01-01
Purpose: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate 192 Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. Methods: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. Results: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate (∼0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. Conclusions: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a 192 Ir wire source.
International Nuclear Information System (INIS)
Randriantsizafy, R.D.
2014-01-01
Brachytherapy is a means of precise and effective cancer treatment. This is due to the nearby sources of ionizing radiation. The precision and efficiency requires a good dosimetry and a good knowledge of the dose distribution in the patient. The aim is to give the right dose of ionizing radiation to destroy the tumor while reducing the dose to sensitive organs such as the bladder , liver, .... The Monte Carlo is a recognized model method for the distribution of radiation in the material. It is used in this work to determine the doses to organs during treatment planning for Cesium -137 brachytherapy. The programming language used is Python . Library outcome of this work is used in a web application BrachyPy, we designed to replace the manual processing in the Cs-137 brachytherapy planning. Model validation is done by comparing the isodose curves of the model with the isodose curves abacus NUCLETRON and the last report of the American Association of Medical Physics (AAPM) on the amendment to the algorithm TG43. [fr
Berkemeier, Thomas; Ammann, Markus; Krieger, Ulrich K.; Peter, Thomas; Spichtinger, Peter; Pöschl, Ulrich; Shiraiwa, Manabu; Huisman, Andrew J.
2017-06-01
We present a Monte Carlo genetic algorithm (MCGA) for efficient, automated, and unbiased global optimization of model input parameters by simultaneous fitting to multiple experimental data sets. The algorithm was developed to address the inverse modelling problems associated with fitting large sets of model input parameters encountered in state-of-the-art kinetic models for heterogeneous and multiphase atmospheric chemistry. The MCGA approach utilizes a sequence of optimization methods to find and characterize the solution of an optimization problem. It addresses an issue inherent to complex models whose extensive input parameter sets may not be uniquely determined from limited input data. Such ambiguity in the derived parameter values can be reliably detected using this new set of tools, allowing users to design experiments that should be particularly useful for constraining model parameters. We show that the MCGA has been used successfully to constrain parameters such as chemical reaction rate coefficients, diffusion coefficients, and Henry's law solubility coefficients in kinetic models of gas uptake and chemical transformation of aerosol particles as well as multiphase chemistry at the atmosphere-biosphere interface. While this study focuses on the processes outlined above, the MCGA approach should be portable to any numerical process model with similar computational expense and extent of the fitting parameter space.
Directory of Open Access Journals (Sweden)
T. Berkemeier
2017-06-01
Full Text Available We present a Monte Carlo genetic algorithm (MCGA for efficient, automated, and unbiased global optimization of model input parameters by simultaneous fitting to multiple experimental data sets. The algorithm was developed to address the inverse modelling problems associated with fitting large sets of model input parameters encountered in state-of-the-art kinetic models for heterogeneous and multiphase atmospheric chemistry. The MCGA approach utilizes a sequence of optimization methods to find and characterize the solution of an optimization problem. It addresses an issue inherent to complex models whose extensive input parameter sets may not be uniquely determined from limited input data. Such ambiguity in the derived parameter values can be reliably detected using this new set of tools, allowing users to design experiments that should be particularly useful for constraining model parameters. We show that the MCGA has been used successfully to constrain parameters such as chemical reaction rate coefficients, diffusion coefficients, and Henry's law solubility coefficients in kinetic models of gas uptake and chemical transformation of aerosol particles as well as multiphase chemistry at the atmosphere–biosphere interface. While this study focuses on the processes outlined above, the MCGA approach should be portable to any numerical process model with similar computational expense and extent of the fitting parameter space.
Thorn, Graeme J; King, John R
2016-01-01
The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
ias
RESONANCE ⎜ August 2014. GENERAL ⎜ ARTICLE. Variational Monte Carlo Technique. Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. Keywords. Variational methods, Monte. Carlo techniques, harmonic os- cillators, quantum mechanical systems. Sukanta Deb is an. Assistant Professor in the.
Indian Academy of Sciences (India)
. Keywords. Gibbs sampling, Markov Chain. Monte Carlo, Bayesian inference, stationary distribution, conver- gence, image restoration. Arnab Chakraborty. We describe the mathematics behind the Markov. Chain Monte Carlo method of ...
International Nuclear Information System (INIS)
Fernandes Neto, J.M.; Mesquita, C.H. de; Deus, S.F.
1986-01-01
It was developed a program in Basic language applied to Sinclair type personal computer. The code is able to calculate the Whole counting efficiency when applying a cillindrical type detector. The scope of the code made use of the Monte Carlo Method. (Author) [pt
International Nuclear Information System (INIS)
Krongkietlearts, K; Tangboonduangjit, P; Paisangittisakul, N
2016-01-01
In order to improve the life's quality for a cancer patient, the radiation techniques are constantly evolving. Especially, the two modern techniques which are intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are quite promising. They comprise of many small beam sizes (beamlets) with various intensities to achieve the intended radiation dose to the tumor and minimal dose to the nearby normal tissue. The study investigates whether the microDiamond detector (PTW manufacturer), a synthetic single crystal diamond detector, is suitable for small field output factor measurement. The results were compared with those measured by the stereotactic field detector (SFD) and the Monte Carlo simulation (EGSnrc/BEAMnrc/DOSXYZ). The calibration of Monte Carlo simulation was done using the percentage depth dose and dose profile measured by the photon field detector (PFD) of the 10×10 cm 2 field size with 100 cm SSD. Comparison of the values obtained from the calculations and measurements are consistent, no more than 1% difference. The output factors obtained from the microDiamond detector have been compared with those of SFD and Monte Carlo simulation, the results demonstrate the percentage difference of less than 2%. (paper)
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
DEFF Research Database (Denmark)
Aznar, M.C.; Nathan, R.; Murray, A.S.
2003-01-01
most of the beta radiation to reach the chip); the other in a beta-thick package (which would absorb most beta radiation, hence leaving the chip to record only gamma radiation). The design of the encapsulation is developed using Monte Carlo simulations, and this approach is also used to investigate......, especially when heterogeneity is on a scale comparable to the range of beta particles (a few mm). In the retrospective dosimetry of heterogeneous sites, in situ measurement at a point may be the only practical method of measuring the appropriate dose rate. Only if the beta and gamma contributions...
Monte Carlo - Advances and Challenges
International Nuclear Information System (INIS)
Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.
2008-01-01
Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature
Tribet, M.; Mougnaud, S.; Jégou, C.
2017-05-01
This work aims to better understand the nature and evolution of energy deposits at the UO2/water reactional interface subjected to alpha irradiation, through an original approach based on Monte-Carlo-type simulations, using the MCNPX code. Such an approach has the advantage of describing the energy deposit profiles on both sides of the interface (UO2 and water). The calculations have been performed on simple geometries, with data from an irradiated UOX fuel (burnup of 47 GWd.tHM-1 and 15 years of alpha decay). The influence of geometric parameters such as the diameter and the calculation steps at the reactional interface are discussed, and the exponential laws to be used in practice are suggested. The case of cracks with various different apertures (from 5 to 35 μm) has also been examined and these calculations have also enabled new information on the mean range of radiolytic species in cracks, and thus on the local chemistry.
Monte-Carlo simulations on the radiological characteristics of a small medical cyclotron
International Nuclear Information System (INIS)
Asova, Galina; Artinyan, Ari; Goutev, Nikolay; Mineva, Milena N.; Tonev, Dimitar; Ivanova, Severina; Zheleva, Nonka
2018-01-01
The Department of Nuclear Medicine, St. Marina University Hospital in Varna, is equipped with a self-shielded BG-75 cyclotron and synthesis unit for production of single doses of 18F-FDG. The cyclotron is capable to deliver 7.5 MeV proton beam with maximal current of 5 μA. During irradiation, a small target volume of 18 O-enriched water is bombarded with protons and the resulting neutron and gamma fields induce nuclear reactions within the target bulk, machine components and shielding, the walls of the cyclotron vault. The aim of the present work is to define the radiological characteristics of the activation products generated during the operation of the cyclotron that need to be considered for daily maintenance and for decommissioning of the facility in future. For that purpose Monte-Carlo calculations with detailed models of the vault and the machinery are used. Key words: cyclotron, target, vault, activation, radioactive waste, Monte-Carlo simulations
Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe
Martin, Nicolas
This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic
Energy Technology Data Exchange (ETDEWEB)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...
Monte Carlo codes and Monte Carlo simulator program
International Nuclear Information System (INIS)
Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.
1990-03-01
Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)
International Nuclear Information System (INIS)
Palau, J.M.
2005-01-01
This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)
2009-01-01
Carlo Rubbia turned 75 on March 31, and CERN held a symposium to mark his birthday and pay tribute to his impressive contribution to both CERN and science. Carlo Rubbia, 4th from right, together with the speakers at the symposium.On 7 April CERN hosted a celebration marking Carlo Rubbia’s 75th birthday and 25 years since he was awarded the Nobel Prize for Physics. "Today we will celebrate 100 years of Carlo Rubbia" joked CERN’s Director-General, Rolf Heuer in his opening speech, "75 years of his age and 25 years of the Nobel Prize." Rubbia received the Nobel Prize along with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. During the symposium, which was held in the Main Auditorium, several eminent speakers gave lectures on areas of science to which Carlo Rubbia made decisive contributions. Among those who spoke were Michel Spiro, Director of the French National Insti...
Ficaro, Edward Patrick
The ^{252}Cf -source-driven noise analysis (CSDNA) requires the measurement of the cross power spectral density (CPSD) G_ {23}(omega), between a pair of neutron detectors (subscripts 2 and 3) located in or near the fissile assembly, and the CPSDs, G_{12}( omega) and G_{13}( omega), between the neutron detectors and an ionization chamber 1 containing ^{252}Cf also located in or near the fissile assembly. The key advantage of this method is that the subcriticality of the assembly can be obtained from the ratio of spectral densities,{G _sp{12}{*}(omega)G_ {13}(omega)over G_{11 }(omega)G_{23}(omega) },using a point kinetic model formulation which is independent of the detector's properties and a reference measurement. The multigroup, Monte Carlo code, KENO-NR, was developed to eliminate the dependence of the measurement on the point kinetic formulation. This code utilizes time dependent, analog neutron tracking to simulate the experimental method, in addition to the underlying nuclear physics, as closely as possible. From a direct comparison of simulated and measured data, the calculational model and cross sections are validated for the calculation, and KENO-NR can then be rerun to provide a distributed source k_ {eff} calculation. Depending on the fissile assembly, a few hours to a couple of days of computation time are needed for a typical simulation executed on a desktop workstation. In this work, KENO-NR demonstrated the ability to accurately estimate the measured ratio of spectral densities from experiments using capture detectors performed on uranium metal cylinders, a cylindrical tank filled with aqueous uranyl nitrate, and arrays of safe storage bottles filled with uranyl nitrate. Good agreement was also seen between simulated and measured values of the prompt neutron decay constant from the fitted CPSDs. Poor agreement was seen between simulated and measured results using composite ^6Li-glass-plastic scintillators at large subcriticalities for the tank of
Monte Carlo criticality analysis for dissolvers with neutron poison
International Nuclear Information System (INIS)
Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.
1987-01-01
Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)
Hrivnacova, I; Berejnov, V V; Brun, R; Carminati, F; Fassò, A; Futo, E; Gheata, A; Caballero, I G; Morsch, Andreas
2003-01-01
The concept of Virtual Monte Carlo (VMC) has been developed by the ALICE Software Project to allow different Monte Carlo simulation programs to run without changing the user code, such as the geometry definition, the detector response simulation or input and output formats. Recently, the VMC classes have been integrated into the ROOT framework, and the other relevant packages have been separated from the AliRoot framework and can be used individually by any other HEP project. The general concept of the VMC and its set of base classes provided in ROOT will be presented. Existing implementations for Geant3, Geant4 and FLUKA and simple examples of usage will be described.
Carlos Chagas: biographical sketch.
Moncayo, Alvaro
2010-01-01
recognition and a deserved high place in medical history. After the publication of his classic article the world paid homage to Chagas who was elected member of the National Academy of Medicine of Brazil on 26 October 1910, and at the age of 31, of other National Academies of the continent. The Committee of Hygiene of the Society of Nations, precursor of the World Health Organization, was created in 1929. Chagas was elected member of this Committee from its inception until 1933. The example of Chagas' life can be summarized in his interest that medical research should be translated into concrete benefits for human beings because he was convinced that disease had not only biological but social determinants as well. Carlos Chagas was a laboratory researcher, a clinician and a health administrator. For all these accomplishments he deserves our respect and admiration. 2009 Elsevier B.V. All rights reserved.
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
ias
nonprobabilistic) problem [5]. ... In quantum mechanics, the MC methods are used to simulate many-particle systems us- ing random ...... D Ceperley, G V Chester and M H Kalos, Monte Carlo simulation of a many-fermion study, Physical Review Vol.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.
Leonardo Rossi
Carlo Caso (1940 - 2007) Our friend and colleague Carlo Caso passed away on July 7th, after several months of courageous fight against cancer. Carlo spent most of his scientific career at CERN, taking an active part in the experimental programme of the laboratory. His long and fruitful involvement in particle physics started in the sixties, in the Genoa group led by G. Tomasini. He then made several experiments using the CERN liquid hydrogen bubble chambers -first the 2000HBC and later BEBC- to study various facets of the production and decay of meson and baryon resonances. He later made his own group and joined the NA27 Collaboration to exploit the EHS Spectrometer with a rapid cycling bubble chamber as vertex detector. Amongst their many achievements, they were the first to measure, with excellent precision, the lifetime of the charmed D mesons. At the start of the LEP era, Carlo and his group moved to the DELPHI experiment, participating in the construction and running of the HPC electromagnetic c...
Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Brown, F.
2007-01-01
Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)
Bayesian statistics and Monte Carlo methods
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
Kalos, Melvin H
2008-01-01
This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research.The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined
Directory of Open Access Journals (Sweden)
Pedro Medina Avendaño
1981-01-01
Full Text Available Carlos Vega Duarte tenía la sencillez de los seres elementales y puros. Su corazón era limpio como oro de aluvión. Su trato directo y coloquial ponía de relieve a un santandereano sin contaminaciones que amaba el fulgor de las armas y se encandilaba con el destello de las frases perfectas
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Wormhole Hamiltonian Monte Carlo
Lan, S; Streets, J; Shahbaba, B
2014-01-01
Copyright © 2014, Association for the Advancement of Artificial Intelligence. In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, espe...
International Nuclear Information System (INIS)
Creutz, M.
1986-01-01
The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena
Energy Technology Data Exchange (ETDEWEB)
Brockway, D.; Soran, P.; Whalen, P.
1985-01-01
A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency, will speak about his work with Carlo Rubbia. Finally, Hans Joachim Schellnhuber of the Potsdam Institute for Climate Research and Sven Kul...
International Nuclear Information System (INIS)
Talley, T.L.; Evans, F.
1988-01-01
Prior work demonstrated the importance of nuclear scattering to fusion product energy deposition in hot plasmas. This suggests careful examination of nuclear physics details in burning plasma simulations. An existing Monte Carlo fast ion transport code is being expanded to be a test bed for this examination. An initial extension, the energy deposition of fast alpha particles in a hot deuterium plasma, is reported. The deposition times and deposition ranges are modified by allowing nuclear scattering. Up to 10% of the initial alpha particle energy is carried to greater ranges and times by the more mobile recoil deuterons. 4 refs., 5 figs., 2 tabs
Monte Carlo applications to radiation shielding problems
International Nuclear Information System (INIS)
Subbaiah, K.V.
2009-01-01
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-12-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ``fixed-source`` case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (``replicated``) over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-01-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated ( replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
Metropolis Methods for Quantum Monte Carlo Simulations
Ceperley, D. M.
2003-01-01
Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, ...
Directory of Open Access Journals (Sweden)
Hammam Oktajianto
2014-12-01
Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality
Parallelizing Monte Carlo with PMC
International Nuclear Information System (INIS)
Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.
1994-11-01
PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Wormhole Hamiltonian Monte Carlo
Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak
2015-01-01
In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551
Wormhole Hamiltonian Monte Carlo.
Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak
2014-07-31
In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function.
Multilevel sequential Monte-Carlo samplers
Jasra, Ajay
2016-01-05
Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Handbook of Monte Carlo methods
National Research Council Canada - National Science Library
Kroese, Dirk P; Taimre, Thomas; Botev, Zdravko I
2011-01-01
... in rapid succession, the staggering number of related techniques, ideas, concepts and algorithms makes it difficult to maintain an overall picture of the Monte Carlo approach. This book attempts to encapsulate the emerging dynamics of this field of study"--
TARC: Carlo Rubbia's Energy Amplifier
Laurent Guiraud
1997-01-01
Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.
Monte Carlo simulation for IRRMA
International Nuclear Information System (INIS)
Gardner, R.P.; Liu Lianyan
2000-01-01
Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors
Adjoint electron Monte Carlo calculations
International Nuclear Information System (INIS)
Jordan, T.M.
1986-01-01
Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros
2016-08-29
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
Automated Monte Carlo biasing for photon-generated electrons near surfaces.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick
2009-09-01
This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.
Markov Chain Monte Carlo Methods-Simple Monte Carlo
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 4. Markov Chain Monte Carlo ... New York 14853, USA. Indian Statistical Institute 8th Mile, Mysore Road Bangalore 560 059, India. Systat Software Asia-Pacific (PI Ltd., Floor 5, 'C' Tower Golden Enclave, Airport Road Bangalore 560017, India.
Exact Monte Carlo for molecules
Energy Technology Data Exchange (ETDEWEB)
Lester, W.A. Jr.; Reynolds, P.J.
1985-03-01
A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H2, and the singlet-triplet splitting in methylene are presented and discussed. 17 refs.
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
time Technical Consultant to. Systat Software Asia-Pacific. (P) Ltd., in Bangalore, where the technical work for the development of the statistical software Systat takes place. His research interests have been in statistical pattern recognition and biostatistics. Keywords. Markov chain, Monte Carlo sampling, Markov chain Monte.
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
Markov Chain Monte Carlo Methods. 2. The Markov Chain Case. K B Athreya, Mohan Delampady and T Krishnan. K B Athreya is a Professor at. Cornell University. His research interests include mathematical analysis, probability theory and its application and statistics. He enjoys writing for Resonance. His spare time is ...
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
GENERAL ! ARTICLE. Markov Chain Monte Carlo Methods. 3. Statistical Concepts. K B Athreya, Mohan Delampady and T Krishnan. K B Athreya is a Professor at. Cornell University. His research interests include mathematical analysis, probability theory and its application and statistics. He enjoys writing for Resonance.
Monte Carlo calculations of nuclei
Energy Technology Data Exchange (ETDEWEB)
Pieper, S.C. [Argonne National Lab., IL (United States). Physics Div.
1997-10-01
Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
ter of the 20th century, due to rapid developments in computing technology ... early part of this development saw a host of Monte ... These iterative. Monte Carlo procedures typically generate a random se- quence with the Markov property such that the Markov chain is ergodic with a limiting distribution coinciding with the ...
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Nilseia A.; Rosa, Luiz A. Ribeiro da, E-mail: nilseia@ird.gov.br, E-mail: lrosa@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Braz, Delson, E-mail: delson@nuclear.ufrj.br [Coordenacao dos programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2014-07-01
The COC ophthalmic applicators using beta radiation source of {sup 106}Ru/{sup 106}Rh are used in the treatment of intraocular tumors near the optic nerve. In this type of treatment is very important to know the dose distribution in order to provide the best possible delivery of prescribed dose to the tumor, preserves the optic nerve region extremely critical, that if damaged, can compromise the patient's visual acuity, and cause brain sequelae. These dose distributions are complex and doctors, who will have the responsibility on the therapy, only have the source calibration certificate provided by the manufacturer Eckert and Ziegler BEBIG GmbH. These certificates provide 10 absorbed dose values at water depth along the central axis applicator with the uncertainties of the order of 20% isodose and in a plane located 1 mm from the applicator surface. Thus, it is important to know with more detail and precision the dose distributions in water generated by such applicators. To this end, the Monte Carlo simulation was used using MCNPX code. Initially, was validated the simulation by comparing the obtained results to the central axis of the applicator with those provided by the certificate. The different percentages were lower than 5%, validating the used method. Lateral dose profile was calculated for 6 different depths in intervals of 1 mm and the dose rates in mGy.min{sup -1} for the same depths.
Quantum Monte Carlo for atoms and molecules
International Nuclear Information System (INIS)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions
(U) Introduction to Monte Carlo Methods
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Dania Soguero; Ardanza, Armando Chavez, E-mail: sdania@ceaden.edu.cu [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), La Habana (Cuba)
2013-07-01
This paper describes the process of installation of a self-shielded irradiator category I, model ISOGAMMA LL.Co of {sup 60}Co, with a nominal 25 kCi activity, rate of absorbed dose 8 kG/h and 5 L workload. The stages are describe step by step: import, the customs procedure which included the interview with the master of the vessel transporter, the monitoring of the entire process by the head of radiological protection of the importing Center, control of the levels of surface contamination of the shipping container of the sources before the removal of the ship, the supervision of the national regulatory authority and the transportation to the final destination. Details of assembling of the installation and the opening of the container for transportation of supplies is outlined. The action plan previously developed for the case of occurrence of radiological successful events is presented, detailing the phase of the load of radioactive sources by the specialists of the company selling the facility (IZOTOP). Finally describes the setting and implementation of the installation and the procedure of licensing for exploitation.
Monte Carlo simulation of virtual compton scattering at MAMI
International Nuclear Information System (INIS)
D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.
1996-01-01
The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)
Application of Monte Carlo Method to Steady State Heat Conduction ...
African Journals Online (AJOL)
The Monte Carlo method was used in modelling steady state heat conduction problems. The method uses the fixed and the floating random walks to determine temperature in the domain of the definition of the heat conduction equation, at a single point directly. A heat conduction problem with an irregular shaped geometry ...
Monte Carlo simulation of the seed germination process
International Nuclear Information System (INIS)
Gladyszewska, B.; Koper, R.
2000-01-01
Paper presented a mathematical model of seed germination process based on the Monte Carlo method and theoretical premises resulted from the physiology of seed germination suggesting three consecutive stages: physical, biochemical and physiological. The model was experimentally verified by determination of germination characteristics for seeds of ground tomatoes, Promyk cultivar, within broad range of temperatures (from 15 to 30 deg C)
Osmotic pressure of ring polymer solutions : A Monte Carlo study
Flikkema, Edwin; Brinke, Gerrit ten
2000-01-01
Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the
closed-shell variational quantum monte carlo simulation for the ...
African Journals Online (AJOL)
Vincent
presented. The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock. (RHF) scheme. The components dependence of the electric dipole moment from the QMC technique is studied with a single determinant Slater-Jastrow trial wave-function obtained from the ...
Monte Carlo simulation of the ARGO
International Nuclear Information System (INIS)
Depaola, G.O.
1997-01-01
We use GEANT Monte Carlo code to design an outline of the geometry and simulate the performance of the Argentine gamma-ray observer (ARGO), a telescope based on silicon strip detector technlogy. The γ-ray direction is determined by geometrical means and the angular resolution is calculated for small variations of the basic design. The results show that the angular resolutions vary from a few degrees at low energies (∝50 MeV) to 0.2 , approximately, at high energies (>500 MeV). We also made simulations using as incoming γ-ray the energy spectrum of PKS0208-512 and PKS0528+134 quasars. Moreover, a method based on multiple scattering theory is also used to determine the incoming energy. We show that this method is applicable to energy spectrum. (orig.)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
Monte Carlo simulated dynamical magnetization of single-chain magnets
Energy Technology Data Exchange (ETDEWEB)
Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn
2015-03-15
Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
Parallel Monte Carlo reactor neutronics
International Nuclear Information System (INIS)
Blomquist, R.N.; Brown, F.B.
1994-01-01
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
Monte Carlo calculation with unquenched Wilson-Fermions
International Nuclear Information System (INIS)
Montvay, I.
1984-01-01
A Monte Carlo updating procedure taking into account the virtual quark loops is described. It is based on high order hopping parameter expansion of the quark determinant for Wilson-fermions. In a first test run Wilson-loop expectation values are measured on 6 4 lattice at β=5.70 using 16sup(th) order hopping parameter expansion for the quark determinant. (orig.)
Variational Monte Carlo study of pentaquark states
Energy Technology Data Exchange (ETDEWEB)
Mark W. Paris
2005-07-01
Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results. The short-range structure of the state is analyzed via its diquark content.
Geometric Monte Carlo and black Janus geometries
Energy Technology Data Exchange (ETDEWEB)
Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)
2017-04-10
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Morse Monte Carlo Radiation Transport Code System
Energy Technology Data Exchange (ETDEWEB)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Monte Carlo modeling and meteor showers
International Nuclear Information System (INIS)
Kulikova, N.V.
1987-01-01
Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented
Cuartel San Carlos. Yacimiento veterano
Directory of Open Access Journals (Sweden)
Mariana Flores
2007-01-01
Full Text Available El Cuartel San Carlos es un monumento histórico nacional (1986 de finales del siglo XVIII (1785-1790, caracterizado por sufrir diversas adversidades en su construcción y soportar los terremotos de 1812 y 1900. En el año 2006, el organismo encargado de su custodia, el Instituto de Patrimonio Cultural del Ministerio de Cultura, ejecutó tres etapas de exploración arqueológica, que abarcaron las áreas Traspatio, Patio Central y las Naves Este y Oeste de la edificación. Este trabajo reseña el análisis de la documentación arqueológica obtenida en el sitio, a partir de la realización de dicho proyecto, denominado EACUSAC (Estudio Arqueológico del Cuartel San Carlos, que representa además, la tercera campaña realizada en el sitio. La importancia de este yacimiento histórico, radica en su participación en los acontecimientos que propiciaron conflictos de poder durante el surgimiento de la República y en los sucesos políticos del siglo XX. De igual manera, se encontró en el sitio una amplia muestra de materiales arqueológicos que reseñan un estilo de vida cotidiana militar, así como las dinámicas sociales internas ocurridas en el San Carlos, como lugar estratégico para la defensa de los diferentes regímenes que atravesó el país, desde la época del imperialismo español hasta nuestros días.
Carlos Battilana: Profesor, Gestor, Amigo
Directory of Open Access Journals (Sweden)
José Pacheco
2009-12-01
Full Text Available El Comité Editorial de Anales ha perdido a uno de sus miembros más connotados. Brillante docente de nuestra Facultad, Carlos Alberto Battilana Guanilo (1945-2009 supo transmitir los conocimientos y atraer la atención de sus auditorios, de jóvenes estudiantes o de contemporáneos ya no tan jóvenes. Interesó a sus alumnos en la senda de la capacitación permanente y en la investigación. Por otro lado, comprometió a médicos distinguidos a conformar y liderar grupos con interés en la ciencia-amistad. Su vocación docente lo vinculó a facultades de medicina y academias y sociedades científicas, en donde coordinó cursos y congresos de grato recuerdo. Su producción científica la dedicó a la nefrología, inmunología, cáncer, costos en el tratamiento médico. Su capacidad gestora y de liderazgo presente desde su época de estudiante, le permitió llegar a ser director regional de un laboratorio farmacéutico de mucho prestigio, organizar una facultad de medicina y luego tener el cargo de decano de la facultad de ciencias de la salud de dicha universidad privada. Carlos fue elemento importante para que Anales alcanzara un sitial de privilegio entre las revistas biomédicas peruanas. En la semblanza que publicamos tratamos de resumir apretadamente la trayectoria de Carlos Battilana, semanas después de su partida sin retorno.
Directory of Open Access Journals (Sweden)
Rafael Maya
1979-04-01
Full Text Available Entre los poetasa del Centenario tuvo Luis Carlos López mucha popularidad en el extranjero, desde la publicación de su primer libro. Creo que su obra llamó la atención de filósofos como Unamuno y, si no estoy equivocado, Darío se refirió a ella en términos elogiosos. En Colombia ha sido encomiada hiperbólicamente por algunos, a tiemp que otros no le conceden mayor mérito.
Antitwilight II: Monte Carlo simulations.
Richtsmeier, Steven C; Lynch, David K; Dearborn, David S P
2017-07-01
For this paper, we employ the Monte Carlo scene (MCScene) radiative transfer code to elucidate the underlying physics giving rise to the structure and colors of the antitwilight, i.e., twilight opposite the Sun. MCScene calculations successfully reproduce colors and spatial features observed in videos and still photos of the antitwilight taken under clear, aerosol-free sky conditions. Through simulations, we examine the effects of solar elevation angle, Rayleigh scattering, molecular absorption, aerosol scattering, multiple scattering, and surface reflectance on the appearance of the antitwilight. We also compare MCScene calculations with predictions made by the MODTRAN radiative transfer code for a solar elevation angle of +1°.
Carlos Restrepo. Un verdadero Maestro
Pelayo Correa
2009-01-01
Carlos Restrepo fue el primer profesor de Patología y un miembro ilustre del grupo de pioneros que fundaron la Facultad de Medicina de la Universidad del Valle. Estos pioneros convergieron en Cali en la década de 1950, en posesión de un espíritu renovador y creativo que emprendió con mucho éxito la labor de cambiar la cultura académica del Valle del Cauca. Ellos encontraron una sociedad apacible, que disfrutaba de la generosidad de su entorno, sin deseos de romper las tradiciones centenarias...
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Monte Carlo techniques in diagnostic and therapeutic nuclear medicine
International Nuclear Information System (INIS)
Zaidi, H.
2002-01-01
Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Monte Carlo simulations of neutron scattering instruments
International Nuclear Information System (INIS)
Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.
2001-01-01
A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)
Status of Monte Carlo dose planning
International Nuclear Information System (INIS)
Mackie, T.R.
1995-01-01
Monte Carlo simulation will become increasing important for treatment planning for radiotherapy. The EGS4 Monte Carlo system, a general particle transport system, has been used most often for simulation tasks in radiotherapy although ETRAN/ITS and MCNP have also been used. Monte Carlo treatment planning requires that the beam characteristics such as the energy spectrum and angular distribution of particles emerging from clinical accelerators be accurately represented. An EGS4 Monte Carlo code, called BEAM, was developed by the OMEGA Project (a collaboration between the University of Wisconsin and the National Research Council of Canada) to transport particles through linear accelerator heads. This information was used as input to simulate the passage of particles through CT-based representations of phantoms or patients using both an EGS4 code (DOSXYZ) and the macro Monte Carlo (MMC) method. Monte Carlo computed 3-D electron beam dose distributions compare well to measurements obtained in simple and complex heterogeneous phantoms. The present drawback with most Monte Carlo codes is that simulation times are slower than most non-stochastic dose computation algorithms. This is especially true for photon dose planning. In the future dedicated Monte Carlo treatment planning systems like Peregrine (from Lawrence Livermore National Laboratory), which will be capable of computing the dose from all beam types, or the Macro Monte Carlo (MMC) system, which is an order of magnitude faster than other algorithms, may dominate the field
Novel Quantum Monte Carlo Approaches for Quantum Liquids
Rubenstein, Brenda M.
Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum many-body problem. By using random numbers to stochastically sample quantum properties, QMC methods are capable of studying low-temperature quantum systems well beyond the reach of conventional deterministic techniques. QMC techniques have likewise been indispensible tools for augmenting our current knowledge of superfluidity and superconductivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previously developed Path Integral Monte Carlo methods to explore two new phases of quantum hard spheres and hydrogen. I lay the foundation for a subsequent description of my research by first reviewing the physics of quantum liquids in Chapter One and the mathematics behind Quantum Monte Carlo algorithms in Chapter Two. I then discuss the Monte Carlo Power Method, a stochastic way of computing the first several extremal eigenvalues of a matrix too memory-intensive to be stored and therefore diagonalized. As an illustration of the technique, I demonstrate how it can be used to determine the second eigenvalues of the transition matrices of several popular Monte Carlo algorithms. This information may be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm represents the first exact technique capable of studying Bose-Fermi mixtures of any size in any dimension. In Chapter Six, I describe a new Constant Stress Path Integral Monte Carlo algorithm for the study of quantum mechanical systems under high pressures. While
Directory of Open Access Journals (Sweden)
Fernando Garavito
1981-06-01
Full Text Available La crítica literaria de los últimos años se ha acostumbrado a ver en Guillermo Valencia la cifra de una época, a la que es necesario referirse, para bien o para mal, cuando se trata de fijar límites a la actividad poética de cualquiera otro de sus contemporáneos. Y aunque el aserto no es valedero en un todo respecto de quienes se consideran sus discípulos, porque en este caso la augusta soberbia del maestro de Popayán los coloca al margen, sí lo es, y en alto grado, cuando se trata de Luis Carlos López, quien por su tono, sus temas y su "aliento" ha pasado a ser manoseable.
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.; Simonini, R.
1980-01-01
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
Directory of Open Access Journals (Sweden)
Bárbara Bustamante
2005-01-01
Full Text Available El talento de Carlos Alonso (Argentina, 1929 ha logrado conquistar un lenguaje con estilo propio. La creación de dibujos, pinturas, pasteles y tintas, collages y grabados fijaron en el campo visual la proyección de su subjetividad. Tanto la imagen como la palabra explicitan una visión crítica de la realidad, que tensiona al espectador obligándolo a una condición reflexiva y comprometida con el mensaje; este es el aspecto más destacado por los historiadores del arte. Sin embargo, la presente investigación pretende focalizar aspectos icónicos y plásticos de su hacer.
Directory of Open Access Journals (Sweden)
Bárbara Bustamante
2005-10-01
Full Text Available El talento de Carlos Alonso (Argentina, 1929 ha logrado conquistar un lenguaje con estilo propio. La creación de dibujos, pinturas, pasteles y tintas, collages y grabados fijaron en el campo visual la proyección de su subjetividad. Tanto la imagen como la palabra explicitan una visión crítica de la realidad, que tensiona al espectador obligándolo a una condición reflexiva y comprometida con el mensaje; este es el aspecto más destacado por los historiadores del arte. Sin embargo, la presente investigación pretende focalizar aspectos icónicos y plásticos de su hacer.
Monte Carlo simulation of experiments
International Nuclear Information System (INIS)
Opat, G.I.
1977-07-01
An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)
Monte Carlo Simulation of Phase Transitions
村井, 信行; N., MURAI; 中京大学教養部
1983-01-01
In the Monte Carlo simulation of phase transition, a simple heat bath method is applied to the classical Heisenberg model in two dimensions. It reproduces the correlation length predicted by the Monte Carlo renor-malization group and also computed in the non-linear σ model
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
The MC21 Monte Carlo Transport Code
International Nuclear Information System (INIS)
Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H
2007-01-01
MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities
Monte Carlo simulation in nuclear medicine
International Nuclear Information System (INIS)
Morel, Ch.
2007-01-01
The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)
Directory of Open Access Journals (Sweden)
A.C.P. de A. Primavesi
1994-04-01
Full Text Available Em experimento conduzido em Latossolo Vermelho-Amarelo distrófico, em área da EMBRAPA - CPPSE em São Carlos, situada a 22°01'S e 47°53'W, com altitude de 856 m e média de precipitação anual de 1502 mm, procedeu-se a determinação da composição bromatológicade folhas, hastes com diâmetro menor que 6 mm e vagens, de genótipos de leucena. Os genótipos avaliados, foram: L.leucocephala cv. Texas 1074 (TI, L.leucocephala 29 A9 (T2, L.leucocephala 11 x L.dlversifolia 25 (T3, L.leucocephala 11 x L.diversifolia 26 (T4, L.leucocephala 24-19/2-39 x L.diverstfolia 26 (T5 e L.leucocephala c v. Cunningham (testemunha. Verificou-se que: os genótipos avahados não apresentaram diferenças nas determinações bromatológicas, realizadas nas folhas e talos finos; o genótipo T3 registrou o maior teor de proteína bruta (28,06%, de fósforo (0,29% e a maior relação PB/FDN e o menor teor de FDN para vagens; os genótipos apresentaram os seguintes teores médios, em porcentagem, para a composição bromatológicadas folhas, vagens e talos finos, respectivamente: Proteína bruta (18,57; 21,68; 6,41; Fibra detergente neutro (29,09; 41,58; 71,01; Fósforo (0,12; 0,22; 0,06; Cálcio (1,39; 0,36; 0,49; Magnesio (0,51; 0,28; 0,24; Tanino (1,32; 1,15; 0,28 e Digestibilidade "in vitro" (58,39; 61,22; 33,61; os teores de proteína e fósforo apresentaram a seguinte ordem decrescente nas partes das plantas: vagens > folhas > talos finos; os teores de cálcio: folhas > talos finos > vagens e de magnésio: folhas > vagens > talos finos.In a trial conducted on a distrofic Red-Yellow Latossol, at EMBRAPA-CPPSE, São Carlos, located at 22°01'S and 47'53'W, altitude of 856 m and with a mean annual rainfall of 1502 mm, the bromatological composition of leaves, stems smaller than 6 mm diameter and pods of leucena genotypes was determined. The genotypes evaluated were: L.leucocephala cv. Texas 1074 (T1, L.leucocephala 29 A9 (T2, L.leucocephala 11 x L.dlversifolia 25
Directory of Open Access Journals (Sweden)
Fabiana Vieira Soares
2012-01-01
Full Text Available O objetivo desse estudo foi identificar as correlações existentes entre o número de óbitos de indivíduos idosos e as alterações climáticas no município de São Carlos (SP em um período de 10 anos (1997-2006. Foram colhidas informações do registro de óbitos por meio do DATASUS, de pessoas com 60 anos ou mais, falecidas entre 1997 e 2006 no município. Os dados mensais da média das Temperaturas Máxima, Média e Mínima e da Umidade Relativa do Ar no município de São Carlos foram fornecidos pelo Instituto Nacional de Meteorologia. Calcularam-se os coeficientes de mortalidade do município, por sexo e faixa etária e os dados foram analisados com teste t, ANOVA de fator único, teste de Bonferroni e teste de Pearson. Ocorreram 8.304 óbitos, com predominância de indivíduos na faixa dos 80 anos ou mais, do sexo masculino. As doenças do aparelho circulatório foram as principais causas de óbito. Houve correlação positiva entre mortalidade por doenças infecciosas e Umidade Mínima e correlação negativa entre mortalidade por doenças infecciosas e Temperatura Mínima Mínima, entre mortalidade por doenças respiratórias e Umidade Mínima, entre mortalidade por doenças endócrinas e Temperatura Mínima Mínima e Temperatura Máxima Máxima. Dessa forma, foi possível concluir que houve relação entre o clima e a mortalidade de idosos em São Carlos.The aim of this study was to identify the correlation between the number of deaths of elderly people and climate change in the district of São Carlos (SP over a period of 10 years (1997-2006. Records of deaths were obtained from DATASUS for people aged over 60 who died between 1997 and 2006 in São Carlos. The average monthly maximum and minimum temperature data and relative air humidity in São Carlos were provided by the National Institute of Meteorology. The mortality coefficient of the district was calculated by gender and age and the resulting data were analyzed using t test
Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code
International Nuclear Information System (INIS)
Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.
2017-01-01
The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients
Bécares, V.; Pérez Martín, S.; Vázquez Antolín, Miriam; Villamarín, D.; Martín Fuertes, Francisco; González Romero, E.M.; Merino Rodríguez, Iván
2014-01-01
The calculation of the effective delayed neutron fraction, beff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for beff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we...
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte Carlo approaches to light nuclei
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs
Monte Carlo approaches to light nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.
Importance iteration in MORSE Monte Carlo calculations
International Nuclear Information System (INIS)
Kloosterman, J.L.; Hoogenboom, J.E.
1994-02-01
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)
Adaptive Markov Chain Monte Carlo
Jadoon, Khan
2016-08-08
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.
Advanced computers and Monte Carlo
International Nuclear Information System (INIS)
Jordan, T.L.
1979-01-01
High-performance parallelism that is currently available is synchronous in nature. It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal processing. This form of parallelism has apparently not been of significant value to many important Monte Carlo calculations. Nevertheless, there is much asynchronous parallelism in many of these calculations. A model of a production code that requires up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous architectures that are on the drawing board. The code is described and some of its properties and resource requirements ae identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resources of some asynchronous multiprocessor architectures. Arguments are made for programer aids and special syntax to identify and support important asynchronous parallelism. 2 figures, 5 tables
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo simulations for plasma physics
International Nuclear Information System (INIS)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
"Shaakal" Carlos kaebas arreteerija kohtusse / Margo Pajuste
Pajuste, Margo
2006-01-01
Ilmunud ka: Postimees : na russkom jazõke 3. juuli lk. 11. Vangistatud kurikuulus terrorist "Shaakal" Carlos alustas kohtuasja oma kunagise vahistaja vastu. Ta süüdistab Prantsusmaa luureteenistuse endist juhti inimröövis
Monte Carlo methods for particle transport
Haghighat, Alireza
2015-01-01
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...
Monte Carlo code development in Los Alamos
International Nuclear Information System (INIS)
Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.
1974-01-01
The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Energy Technology Data Exchange (ETDEWEB)
Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)
1990-01-01
The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S_{N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S_{N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S_{N} is well suited for by themselves. The fully coupled Monte Carlo/S_{N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S_{N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S_{N} region. The Monte Carlo and S_{N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S_{N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S_{N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S_{N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.
Monte Carlo Algorithms for Linear Problems
Dimov, Ivan
2000-01-01
MSC Subject Classification: 65C05, 65U05. Monte Carlo methods are a powerful tool in many fields of mathematics, physics and engineering. It is known, that these methods give statistical estimates for the functional of the solution by performing random sampling of a certain chance variable whose mathematical expectation is the desired functional. Monte Carlo methods are methods for solving problems using random variables. In the book [16] edited by Yu. A. Shreider one can find the followin...
Multilevel Monte Carlo in Approximate Bayesian Computation
Jasra, Ajay
2017-02-13
In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.
Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization
Shao, Jing
2015-10-27
Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.
Automatic fission source convergence criteria for Monte Carlo criticality calculations
International Nuclear Information System (INIS)
Shim, Hyung Jin; Kim, Chang Hyo
2005-01-01
The Monte Carlo criticality calculations for the multiplication factor and the power distribution in a nuclear system require knowledge of stationary or fundamental-mode fission source distribution (FSD) in the system. Because it is a priori unknown, so-called inactive cycle Monte Carlo (MC) runs are performed to determine it. The inactive cycle MC runs should be continued until the FSD converges to the stationary FSD. Obviously, if one stops them prematurely, the MC calculation results may have biases because the followup active cycles may be run with the non-stationary FSD. Conversely, if one performs the inactive cycle MC runs more than necessary, one is apt to waste computing time because inactive cycle MC runs are used to elicit the fundamental-mode FSD only. In the absence of suitable criteria for terminating the inactive cycle MC runs, one cannot but rely on empiricism in deciding how many inactive cycles one should conduct for a given problem. Depending on the problem, this may introduce biases into Monte Carlo estimates of the parameters one tries to calculate. The purpose of this paper is to present new fission source convergence criteria designed for the automatic termination of inactive cycle MC runs
Stock Price Simulation Using Bootstrap and Monte Carlo
Directory of Open Access Journals (Sweden)
Pažický Martin
2017-06-01
Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.
Monte carlo sampling of fission multiplicity.
Energy Technology Data Exchange (ETDEWEB)
Hendricks, J. S. (John S.)
2004-01-01
Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.
Successful vectorization - reactor physics Monte Carlo code
International Nuclear Information System (INIS)
Martin, W.R.
1989-01-01
Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)
Advances in Monte Carlo electron transport
International Nuclear Information System (INIS)
Bielajew, Alex F.
1995-01-01
Notwithstanding the success of Monte Carlo (MC) calculations for determining ion chamber correction factors for air-kerma standards and radiotherapy applications, a great challenge remains. MC is unable to calculate ion chamber response to better than 1% for low-Z and 3% for high-Z wall materials. Moreover, the two major MC code systems employed in radiation dosimetry, the EGS and ITS codes, differ in opposite directions from ion chamber experiments. The discrepancy with experiment is due to inadequacies in the underlying e - condensed-history algorithms. As modeled by MC calculations, the e - step-lengths in the chamber walls and the ionisation cavity differ in terms of material traversed by about three orders of magnitude. This demands that the underlying e - transport algorithms be very stable over a great dynamic range. Otherwise a spurious e - disequilibrium may be generated. The multiple-scattering (MS) algorithms, Moliere in the case of EGS and Goudsmit-Saunderson (GS) in the case of ITS, are either mathematically or numerically unstable in the plural-scattering environment of the ionisation cavity. Recently, a new MS theory has been developed that is an exact solution of the Wentzel small-angle formalism using a screened Rutherford cross section. This new MS theory is mathematically, physically and numerically stable from the no-scattering to the MS regimes. This theory is the small-angle equivalent of the GS equation for a Rutherford cross section. Large-angle corrections connecting this theory to GS theory have been derived by Bethe. The Moliere theory is the large-pathlength limit of this theory. The strategy for employing this new theory for ion chamber and radiotherapy calculations is described
Monte Carlo simulation of Markov unreliability models
International Nuclear Information System (INIS)
Lewis, E.E.; Boehm, F.
1984-01-01
A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)
Adiabatic optimization versus diffusion Monte Carlo methods
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Shell model the Monte Carlo way
International Nuclear Information System (INIS)
Ormand, W.E.
1995-01-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined
Shell model the Monte Carlo way
Energy Technology Data Exchange (ETDEWEB)
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Off-diagonal expansion quantum Monte Carlo
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
Monte Carlo strategies in scientific computing
Liu, Jun S
2008-01-01
This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...
Alexander, Andrew William
Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and
Direct Monte Carlo estimates of shielded resonance integrals
International Nuclear Information System (INIS)
Schmidt, E.
1983-01-01
The purpose of this study was to determine benchmark values of resonance integrals for isolated rods of uranium 238 and thorium 232 immersed in an infinite water moderator. Both metal and oxide rods were included covering a wide range of S/M values of interest for thermal reactor design. A direct forward mode Monte Carlo calculation was employed, and detailed cross section profiles were derived from the ENDF/B-V files. Resonance integrals calculated in this manner should accurately represent good ENDF/B-V benchmark values. Comparisons with experiment have been made
Optical Monte Carlo modeling of a true portwine stain anatomy
Barton, Jennifer K.; Pfefer, T. Joshua; Welch, Ashley J.; Smithies, Derek J.; Nelson, Jerry; van Gemert, Martin J.
1998-04-01
A unique Monte Carlo program capable of accommodating an arbitrarily complex geometry was used to determine the energy deposition in a true port wine stain anatomy. Serial histologic sections taken from a biopsy of a dark red, laser therapy resistant stain were digitized and used to create the program input for simulation at wavelengths of 532 and 585 nm. At both wavelengths, the greatest energy deposition occurred in the superficial blood vessels, and subsequently decreased with depth as the laser beam was attenuated. However, more energy was deposited in the epidermis and superficial blood vessels at 532 nm than at 585 nm.
International Nuclear Information System (INIS)
Ljubenov, V.; Milosevic, M.
2003-01-01
A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)
Simulation of transport equations with Monte Carlo
International Nuclear Information System (INIS)
Matthes, W.
1975-09-01
The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game
Self-learning Monte Carlo (dynamical biasing)
International Nuclear Information System (INIS)
Matthes, W.
1981-01-01
In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)
Monte Carlo electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Monte Carlo Treatment Planning for Advanced Radiotherapy
DEFF Research Database (Denmark)
Cronholm, Rickard
This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...
Monte Carlo dose distributions for radiosurgery
International Nuclear Information System (INIS)
Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.
2001-01-01
The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Use of Monte Carlo Methods in brachytherapy; Uso del metodo de Monte Carlo en braquiterapia
Energy Technology Data Exchange (ETDEWEB)
Granero Cabanero, D.
2015-07-01
The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)
Specialized Monte Carlo codes versus general-purpose Monte Carlo codes
International Nuclear Information System (INIS)
Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi
2002-01-01
The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Monte Carlo method in neutron activation analysis
International Nuclear Information System (INIS)
Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.
2009-01-01
Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA
Monte Carlo method for random surfaces
International Nuclear Information System (INIS)
Berg, B.
1985-01-01
Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)
Computer system for Monte Carlo experimentation
International Nuclear Information System (INIS)
Grier, D.A.
1986-01-01
A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language
Monte Carlo simulation of the microcanonical ensemble
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references
Workshop: Monte Carlo computational performance benchmark - Contributions
International Nuclear Information System (INIS)
Hoogenboom, J.E.; Petrovic, B.; Martin, W.R.; Sutton, T.; Leppaenen, J.; Forget, B.; Romano, P.; Siegel, A.; Hoogenboom, E.; Wang, K.; Li, Z.; She, D.; Liang, J.; Xu, Q.; Qiu, Y.; Yu, J.; Sun, J.; Fan, X.; Yu, G.; Bernard, F.; Cochet, B.; Jinaphanh, A.; Jacquet, O.; Van der Marck, S.; Tramm, J.; Felker, K.; Smith, K.; Horelik, N.; Capellan, N.; Herman, B.
2013-01-01
This series of slides is divided into 3 parts. The first part is dedicated to the presentation of the Monte-Carlo computational performance benchmark (aims, specifications and results). This benchmark aims at performing a full-size Monte Carlo simulation of a PWR core with axial and pin-power distribution. Many different Monte Carlo codes have been used and their results have been compared in terms of computed values and processing speeds. It appears that local power values mostly agree quite well. The first part also includes the presentations of about 10 participants in which they detail their calculations. In the second part, an extension of the benchmark is proposed in order to simulate a more realistic reactor core (for instance non-uniform temperature) and to assess feedback coefficients due to change of some parameters. The third part deals with another benchmark, the BEAVRS benchmark (Benchmark for Evaluation And Validation of Reactor Simulations). BEAVRS is also a full-core PWR benchmark for Monte Carlo simulations
Dynamic bounds coupled with Monte Carlo simulations
Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.
2011-01-01
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....
Design and analysis of Monte Carlo experiments
Kleijnen, Jack P.C.; Gentle, J.E.; Haerdle, W.; Mori, Y.
2012-01-01
By definition, computer simulation or Monte Carlo models are not solved by mathematical analysis (such as differential calculus), but are used for numerical experimentation. The goal of these experiments is to answer questions about the real world; i.e., the experimenters may use their models to
Juan Carlos D'Olivo: A portrait
Aguilar-Arévalo, Alexis A.
2013-06-01
This report attempts to give a brief bibliographical sketch of the academic life of Juan Carlos D'Olivo, researcher and teacher at the Instituto de Ciencias Nucleares of UNAM, devoted to advancing the fields of High Energy Physics and Astroparticle Physics in Mexico and Latin America.
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
An analysis of Monte Carlo tree search
CSIR Research Space (South Africa)
James, S
2017-02-01
Full Text Available Monte Carlo Tree Search (MCTS) is a family of directed search algorithms that has gained widespread attention in recent years. Despite the vast amount of research into MCTS, the effect of modifications on the algorithm, as well as the manner...
Parallel processing Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
McKinney, G.W.
1994-01-01
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
Monte Carlo studies of uranium calorimetry
International Nuclear Information System (INIS)
Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.
1985-01-01
Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references
Coded aperture optimization using Monte Carlo simulations
International Nuclear Information System (INIS)
Martineau, A.; Rocchisani, J.M.; Moretti, J.L.
2010-01-01
Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.
Uncertainty analysis in Monte Carlo criticality computations
International Nuclear Information System (INIS)
Qi Ao
2011-01-01
Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.
Efficiency Studies with Gamma Ray Portion of Specialized Reactor-Shield Monte Carlo Program 18-0
Energy Technology Data Exchange (ETDEWEB)
Capo, M. A.
1961-08-01
Application studies were made with Specialized Reactor-Shield Monte Carlo Program 18-0 to determine the efficiency and feasibility of calculating energy deposition due to primary core gamma rays throughout the XNJ140E-1 reactor-shield assembly. Monte Carlo results are presented in tabular form for all geometrical regions used to describe the shield. Described here is a means of obtaining adequate and valid heating rates in about 47 hours on the IBM-704 digital computer. Comparison of Monte Carlo and point kernel data are included.
Spatial distribution of reflected gamma rays by Monte Carlo simulation
International Nuclear Information System (INIS)
Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.
2007-01-01
In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
minimum thresholds of monte carlo cycles for nigerian empirical
African Journals Online (AJOL)
2012-11-03
Nov 3, 2012 ... Abstract. Monte Carlo simulation has proven to be an effective means of incorporating reliability analysis into the ... Monte Carlo simulation cycle of 2, 500 thresholds were enough to be used to provide sufficient repeatability for ... rameters using Monte Carlo method with the aid of. MATrixLABoratory.
'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods
International Nuclear Information System (INIS)
Menezes, C.J.M.; Lima, R. de A.; Peixoto, J.E.; Vieira, J.W.
2008-01-01
The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)
Nonlinear Spatial Inversion Without Monte Carlo Sampling
Curtis, A.; Nawaz, A.
2017-12-01
High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable
Monte Carlo calculation of received dose from ingestion and inhalation of natural uranium
International Nuclear Information System (INIS)
Trobok, M.; Zupunski, Lj.; Spasic-Jokic, V.; Gordanic, V.; Sovilj, P.
2009-01-01
For the purpose of this study eighty samples are taken from the area Bela Crkva and Vrsac. The activity of radionuclide in the soil is determined by gamma- ray spectrometry. Monte Carlo method is used to calculate effective dose received by population resulting from the inhalation and ingestion of natural uranium. The estimated doses were compared with the legally prescribed levels. (author) [sr
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan
2017-11-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.
International Nuclear Information System (INIS)
Maconald, J.L.; Cashwell, E.D.
1978-09-01
The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems
Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented
A new method to assess the statistical convergence of monte carlo solutions
International Nuclear Information System (INIS)
Forster, R.A.
1991-01-01
Accurate Monte Carlo confidence intervals (CIs), which are formed with an estimated mean and an estimated standard deviation, can only be created when the number of particle histories N becomes large enough so that the central limit theorem can be applied. The Monte Carlo user has a limited number of marginal methods to assess the fulfillment of this condition, such as statistical error reduction proportional to 1/√N with error magnitude guidelines and third and fourth moment estimators. A new method is presented here to assess the statistical convergence of Monte Carlo solutions by analyzing the shape of the empirical probability density function (PDF) of history scores. Related work in this area includes the derivation of analytic score distributions for a two-state Monte Carlo problem. Score distribution histograms have been generated to determine when a small number of histories accounts for a large fraction of the result. This summary describes initial studies of empirical Monte Carlo history score PDFs created from score histograms of particle transport simulations. 7 refs., 1 fig
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.
1980-01-01
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time
Monte Carlo simulation of gas Cerenkov detectors
International Nuclear Information System (INIS)
Mack, J.M.; Jain, M.; Jordan, T.M.
1984-01-01
Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier
No-compromise reptation quantum Monte Carlo
International Nuclear Information System (INIS)
Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M
2007-01-01
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
EU Commissioner Carlos Moedas visits SESAME
CERN Bulletin
2015-01-01
The European Commissioner for research, science and innovation, Carlos Moedas, visited the SESAME laboratory in Jordan on Monday 13 April. When it begins operation in 2016, SESAME, a synchrotron light source, will be the Middle East’s first major international science centre, carrying out experiments ranging from the physical sciences to environmental science and archaeology. CERN Director-General Rolf Heuer (left) and European Commissioner Carlos Moedas with the model SESAME magnet. © European Union, 2015. Commissioner Moedas was accompanied by a European Commission delegation led by Robert-Jan Smits, Director-General of DG Research and Innovation, as well as Rolf Heuer, CERN Director-General, Jean-Pierre Koutchouk, coordinator of the CERN-EC Support for SESAME Magnets (CESSAMag) project and Princess Sumaya bint El Hassan of Jordan, a leading advocate of science in the region. They toured the SESAME facility together with SESAME Director, Khaled Tou...
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.
1980-05-01
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner
Monte Carlo Particle Transport: Algorithm and Performance Overview
International Nuclear Information System (INIS)
Gentile, N.; Procassini, R.; Scott, H.
2005-01-01
Monte Carlo methods are frequently used for neutron and radiation transport. These methods have several advantages, such as relative ease of programming and dealing with complex meshes. Disadvantages include long run times and statistical noise. Monte Carlo photon transport calculations also often suffer from inaccuracies in matter temperature due to the lack of implicitness. In this paper we discuss the Monte Carlo algorithm as it is applied to neutron and photon transport, detail the differences between neutron and photon Monte Carlo, and give an overview of the ways the numerical method has been modified to deal with issues that arise in photon Monte Carlo simulations
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Monte Carlo modeling of eye iris color
Koblova, Ekaterina V.; Bashkatov, Alexey N.; Dolotov, Leonid E.; Sinichkin, Yuri P.; Kamenskikh, Tatyana G.; Genina, Elina A.; Tuchin, Valery V.
2007-05-01
Based on the presented two-layer eye iris model, the iris diffuse reflectance has been calculated by Monte Carlo technique in the spectral range 400-800 nm. The diffuse reflectance spectra have been recalculated in L*a*b* color coordinate system. Obtained results demonstrated that the iris color coordinates (hue and chroma) can be used for estimation of melanin content in the range of small melanin concentrations, i.e. for estimation of melanin content in blue and green eyes.
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
Monte Carlo methods for shield design calculations
International Nuclear Information System (INIS)
Grimstone, M.J.
1974-01-01
A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)
Replica Exchange for Reactive Monte Carlo Simulations
Czech Academy of Sciences Publication Activity Database
Turner, C.H.; Brennan, J.K.; Lísal, Martin
2007-01-01
Roč. 111, č. 43 (2007), s. 15706-15715 ISSN 1932-7447 R&D Projects: GA ČR GA203/05/0725; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507 Institutional research plan: CEZ:AV0Z40720504 Keywords : monte carlo * simulation * reactive system Subject RIV: CF - Physical ; Theoretical Chemistry
Applications of Maxent to quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. (Los Alamos National Lab., NM (USA)); Jarrell, M. (Ohio State Univ., Columbus, OH (USA). Dept. of Physics)
1990-01-01
We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.
Monte Carlo methods for preference learning
DEFF Research Database (Denmark)
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
General purpose code for Monte Carlo simulations
International Nuclear Information System (INIS)
Wilcke, W.W.
1983-01-01
A general-purpose computer called MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the computer is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations
The lund Monte Carlo for jet fragmentation
International Nuclear Information System (INIS)
Sjoestrand, T.
1982-03-01
We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)
Carlo Rosselli e il socialismo delle autonomie
Calabrò, Carmelo
2008-01-01
L’impegno teorico di Carlo Rosselli è riconducibile alle molteplici esperienze minoritarie (almeno a livello continentale) che, negli anni ’20, mirano al superamento dell’impianto dottrinario del socialismo marxista. Tanto nella variante riformista, quanto in quella massimalista, classismo, olismo e collettivismo sono principi tendenzialmente comuni alla cultura del marxismo; principi dicotomici rispetto al liberalismo e problematici nei confronti della democrazia. Rosselli, contro questa tra...
Autocorrelations in hybrid Monte Carlo simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Virotta, Francesco
2010-11-01
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Topological zero modes in Monte Carlo simulations
International Nuclear Information System (INIS)
Dilger, H.
1994-08-01
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
Monte Carlo simulation of Touschek effect
Directory of Open Access Journals (Sweden)
Aimin Xiao
2010-07-01
Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.
Biased Monte Carlo optimization: the basic approach
International Nuclear Information System (INIS)
Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo
2005-01-01
It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.
2010-06-01
The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.
Condensed history Monte Carlo methods for photon transport problems
International Nuclear Information System (INIS)
Bhan, Katherine; Spanier, Jerome
2007-01-01
We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions
International Nuclear Information System (INIS)
Balos, Y.; Timurtuerkan, E. B.; Yorulmaz, N.; Bozkurt, A.
2009-01-01
In determining the radiation background of a region, it is important to carry out environmental radioactivity measurements in soil, water and air, to determine their contribution to the dose rate in air. This study aims to determine the dose conversion coefficients (in {nGy/h}/{Bq/kg}) that are used to convert radionuclide activity concentration in soil (in Bq/kg) to dose rate in air (in nGy/h) using the Monte Carlo method. An isotropic source which emits monoenergetic photons is assumed to be uniformly distributed in soil. The doses released by photons in organs and tissues of a mathematical phantom are determined by the Monte Carlo package MCNP. The organ doses are then used, together with radiation weighting factors and organ weighting factors, to obtain effective doses for the energy range of 100 keV-3 MeV, which in turn are used to determine the dose rates in air per unit of specific activity.
Generalized hybrid Monte Carlo - CMFD methods for fission source convergence
International Nuclear Information System (INIS)
Wolters, Emily R.; Larsen, Edward W.; Martin, William R.
2011-01-01
In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)
Monte carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
Monte Carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Energy Technology Data Exchange (ETDEWEB)
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
Monte Carlo simulations of radioactive waste embedded into polymer
International Nuclear Information System (INIS)
Ozdemir, Tonguc; Usanmaz, Ali
2009-01-01
Radioactive waste is generated from the nuclear applications and it should properly be managed according to the regulations set by the regulatory authority. Poly(carbonate urethane) and poly(bisphenol a-co-epichlorohydrin) are radiation-resistant polymers and they are possible candidate materials that can be used in the radioactive waste management. In this study, maximum allowable waste activity that can be embedded into these polymers and dose rate distribution of the waste drum (containing waste and the polymer matrix) were found via Monte Carlo simulations. The change of mechanical properties of above-mentioned polymers was simulated and their variations within the waste drum were determined for 15, 30 and 300 years after embedding.
Calibration of the top-quark Monte-Carlo mass
International Nuclear Information System (INIS)
Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf
2015-11-01
We present a method to establish experimentally the relation between the top-quark mass m MC t as implemented in Monte-Carlo generators and the Lagrangian mass parameter m t in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m MC t and an observable sensitive to m t , which does not rely on any prior assumptions about the relation between m t and m MC t . The measured observable is independent of m MC t and can be used subsequently for a determination of m t . The analysis strategy is illustrated with examples for the extraction of m t from inclusive and differential cross sections for hadro-production of top-quarks.
Monte Carlo Modeling of Crystal Channeling at High Energies
Schoofs, Philippe; Cerutti, Francesco
Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal is bent beforehand. Crystal channeling is becoming a reliable and efficient technique for collimating beams and removing halo particles. At CERN, the installation of silicon crystals in the LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the collimation system upgrade. This thesis describes a new Monte Carlo model of planar channeling which has been developed from scratch in order to be implemented in the FLUKA code simulating particle transport and interactions. Crystal channels are described through the concept of continuous potential taking into account thermal motion of the lattice atoms and using Moliere screening function. The energy of the particle transverse motion determines whether or n...
Monte Carlo simulation of electron swarms in H2
International Nuclear Information System (INIS)
Hunter, S.R.
1977-01-01
A Monte Carlo simulation of the motion of an electron swarm in molecular hydrogen has been studied in the range E/N 1.4-170 Td. The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high E/N. Results were obtained for the longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy and ionization and excitation production coefficients, and these were compared with experimental data where available. It is found that the results differ significantly from the experimental values and this is attributed to the isotropic scattering model used in this work. However, the results lend support to the experimental technique used recently by Blevin et al. to determine these transport parameters, and in particular confirm their results that Dsub(L) > D at high values of E/N. (Author)
Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.
Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao
2013-03-01
In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.
Investigating the impossible: Monte Carlo simulations
International Nuclear Information System (INIS)
Kramer, Gary H.; Crowley, Paul; Burns, Linda C.
2000-01-01
Designing and testing new equipment can be an expensive and time consuming process or the desired performance characteristics may preclude its construction due to technological shortcomings. Cost may also prevent equipment being purchased for other scenarios to be tested. An alternative is to use Monte Carlo simulations to make the investigations. This presentation exemplifies how Monte Carlo code calculations can be used to fill the gap. An example is given for the investigation of two sizes of germanium detector (70 mm and 80 mm diameter) at four different crystal thicknesses (15, 20, 25, and 30 mm) and makes predictions on how the size affects the counting efficiency and the Minimum Detectable Activity (MDA). The Monte Carlo simulations have shown that detector efficiencies can be adequately modelled using photon transport if the data is used to investigate trends. The investigation of the effect of detector thickness on the counting efficiency has shown that thickness for a fixed diameter detector of either 70 mm or 80 mm is unimportant up to 60 keV. At higher photon energies, the counting efficiency begins to decrease as the thickness decreases as expected. The simulations predict that the MDA of either the 70 mm or 80 mm diameter detectors does not differ by more than a factor of 1.15 at 17 keV or 1.2 at 60 keV when comparing detectors of equivalent thicknesses. The MDA is slightly increased at 17 keV, and rises by about 52% at 660 keV, when the thickness is decreased from 30 mm to 15 mm. One could conclude from this information that the extra cost associated with the larger area Ge detectors may not be justified for the slight improvement predicted in the MDA. (author)
Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams
Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.
2017-11-01
The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.
Monte Carlo eigenfunction strategies and uncertainties
International Nuclear Information System (INIS)
Gast, R.C.; Candelore, N.R.
1974-01-01
Comparisons of convergence rates for several possible eigenfunction source strategies led to the selection of the ''straight'' analog of the analytic power method as the source strategy for Monte Carlo eigenfunction calculations. To insure a fair game strategy, the number of histories per iteration increases with increasing iteration number. The estimate of eigenfunction uncertainty is obtained from a modification of a proposal by D. B. MacMillan and involves only estimates of the usual purely statistical component of uncertainty and a serial correlation coefficient of lag one. 14 references. (U.S.)
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
MBR Monte Carlo Simulation in PYTHIA8
Ciesielski, R.
We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.
Markov chains analytic and Monte Carlo computations
Graham, Carl
2014-01-01
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec
Score Bounded Monte-Carlo Tree Search
Cazenave, Tristan; Saffidine, Abdallah
Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explore. We apply our algorithm to solving Seki in the game of Go and to Connect Four.
IN MEMORIAM CARLOS RESTREPO. UN VERDADERO MAESTRO
Pelayo Correa
2009-01-01
Carlos Restrepo fue el primer profesor de Patología y un miembro ilustre del grupo de pioneros que fundaron la Facultad de Medicina de la Universidad del Valle. Estos pioneros convergieron en Cali en la década de 1950, en posesión de un espíritu renovador y creativo que emprendió con mucho éxito la labor de cambiar la cultura académica del Valle del Cauca. Ellos encontraron una sociedad apacible, que disfrutaba de la generosidad de su entorno, sin deseos de romper las tradiciones centenarias ...
Monte Carlo study of the multiquark systems
International Nuclear Information System (INIS)
Kerbikov, B.O.; Polikarpov, M.I.; Zamolodchikov, A.B.
1986-01-01
Random walks have been used to calculate the energies of the ground states in systems of N=3, 6, 9, 12 quarks. Multiquark states with N>3 are unstable with respect to the spontaneous dissociation into color singlet hadrons. The modified Green's function Monte Carlo algorithm which proved to be more simple and much accurate than the conventional few body methods have been employed. In contrast to other techniques, the same equations are used for any number of particles, while the computer time increases only linearly V, S the number of particles
by means of FLUKA Monte Carlo method
Directory of Open Access Journals (Sweden)
Ermis Elif Ebru
2015-01-01
Full Text Available Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals were carried out by means of FLUKA Monte Carlo (MC method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded from the study that FLUKA MC method can be an alternative way to calculate the gamma-ray mass attenuation coefficients of the detector materials.
Pseudo-extended Markov chain Monte Carlo
Nemeth, Christopher; Lindsten, Fredrik; Filippone, Maurizio; Hensman, James
2017-01-01
Sampling from the posterior distribution using Markov chain Monte Carlo (MCMC) methods can require an exhaustive number of iterations to fully explore the correct posterior. This is often the case when the posterior of interest is multi-modal, as the MCMC sampler can become trapped in a local mode for a large number of iterations. In this paper, we introduce the pseudo-extended MCMC method as an approach for improving the mixing of the MCMC sampler in complex posterior distributions. The pseu...
Diffusion quantum Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.
1986-07-01
A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs
Evaluation of Uncertainties in the Determination of Phosphorus by RNAA
International Nuclear Information System (INIS)
Rick L. Paul
2000-01-01
A radiochemical neutron activation analysis (RNAA) procedure for the determination of phosphorus in metals and other materials has been developed and critically evaluated. Uncertainties evaluated as type A include those arising from measurement replication, yield determination, neutron self-shielding, irradiation geometry, measurement of the quantity for concentration normalization (sample mass, area, etc.), and analysis of standards. Uncertainties evaluated as type B include those arising from beta contamination corrections, beta decay curve fitting, and beta self-absorption corrections. The evaluation of uncertainties in the determination of phosphorus is illustrated for three different materials in Table I. The metal standard reference materials (SRMs) 2175 and 861 were analyzed for value assignment of phosphorus; implanted silicon was analyzed to evaluate the technique for certification of phosphorus. The most significant difference in the error evaluation of the three materials lies in the type B uncertainties. The relatively uncomplicated matrix of the high-purity silicon allows virtually complete purification of phosphorus from other beta emitters; hence, minimal contamination correction is needed. Furthermore, because the chemistry is less rigorous, the carrier yield is more reproducible, and self-absorption corrections are less significant. Improvements in the chemical purification procedures for phosphorus in complex matrices will decrease the type B uncertainties for all samples. Uncertainties in the determination of carrier yield, the most significant type A error in the analysis of the silicon, also need to be evaluated more rigorously and minimized in the future
Directory of Open Access Journals (Sweden)
Krishna Kusumahadi
2016-03-01
Full Text Available Abstract - This study was conducted to determine the accuracy of the Black-Scholes method compared with the Monte Carlo simulation method to predict the price of a call option on KOMPAS 100 Index at maturity in 1 month, 2 months, and 3 months. The method used in this research is descriptive analysis by using historical data and perform price comparisons with absolute error value to determine whether the Black-Scholes method is more accurate than the method of Monte Carlo simulation in maturities. Result from this research; found that the price value at maturity absolute error for 1 month is 3.76 and the Black-Scholes method for Monte Carlo simulation method is 0:03. Value price absolute error at maturity for 2 months is 3.76 and the Black-Scholes method for Monte Carlo simulation method is 0.03. Value price absolute error on the maturity using Black-Scholes method for 3 months is 3.48 and 2.99 for the Monte Carlo method. Judging from the data obtained that the Monte Carlo method is more accurate than the Black-Scholes method to predict the price of the call option KOMPAS 100 Stock Index in the period of 1 month, 2 months, and 3 months. Implications for investors and capital market participants is when investors want to invest in stocks included in the KOMPAS 100 Index, Monte Carlo simulation method could be use to predict the price of the call option. It is also advisable to compare with other methods such as GARCH, Neural Network, etc. Keywords: Black-Scholes, Monte Carlo, Garch, and Artificial Neural Networks. Abstrak - Penelitian ini dilakukan untuk mengetahui keakuratan Metode Black Scholes dibandingkan dengan Metode Simulasi Monte Carlo dalam memprediksi harga call option Indeks KOMPAS 100 pada saat jatuh tempo 1 bulan, 2 bulan, dan 3 bulan. Metode penelitian yang digunakan dalam penelitian ini adalah deskriptif analitis dengan menggunakan data-data historis, dan melakukan perbandingan nilai price absolute error untuk mengetahui
Energy Technology Data Exchange (ETDEWEB)
Ricard, M.; Coulot, J. [Institut Gustave-Roussy, Service de Physique, 94 - Villejuif (France)
2003-07-01
Internal dosimetry concerns the radiation sources inside human body. It contributes to determine the energy depositions in a living organism following the accidental or medical irradiation. In the case of an accidental irradiation, the aim is to evaluate the risk estimation; in the case of a medical use the dosimetry data are used in a radiation protection purpose. In any case, it is necessary to have references methods in order to know the dose absorbed bound to the radioactive product incorporation. Three levels have to be considered: the organ level in radiation protection, the cellular and tissue levels for application in radiotherapy. The analytical methods become rapidly difficult to use so the Monte Carlo methods give now a correct statistical precision. The advantages of this way of doing are developed in this article. (N.C.)
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Monte Carlo Based Framework to Support HAZOP Study
DEFF Research Database (Denmark)
Danko, Matej; Frutiger, Jerome; Jelemenský, Ľudovít
2017-01-01
This study combines Monte Carlo based process simulation features with classical hazard identification techniques for consequences of deviations from normal operating conditions investigation and process safety examination. A Monte Carlo based method has been used to sample and evaluate different...... deviations in process parameters simultaneously, thereby bringing an improvement to the Hazard and Operability study (HAZOP), which normally considers only one at a time deviation in process parameters. Furthermore, Monte Carlo filtering was then used to identify operability and hazard issues including...
Monte Carlo simulations for instrumentation at SINQ
International Nuclear Information System (INIS)
Filges, U.; Ronnow, H.M.; Zsigmond, G.
2006-01-01
The Paul Scherrer Institut (PSI) operates a spallation source SINQ equipped with 11 different neutron scattering instruments. Beside the optimization of the existing instruments, the extension with new instruments and devices are continuously done at PSI. For design and performance studies different Monte Carlo packages are used. Presently two major projects are in an advanced stage of planning. These are the new thermal neutron triple-axis spectrometer Enhanced Intensity and Greater Energy Range (EIGER) and the ultra-cold neutron source (UCN-PSI). The EIGER instrument design is focused on an optimal signal-to-background ratio. A very important design part was to realize a monochromator shielding which covers best shielding characteristic, low background production and high instrument functionality. The Monte Carlo package MCNPX was used to find the best choice. Due to the sharp energy distribution of ultra-cold neutrons (UCN) which can be Doppler-shifted towards cold neutron energies, a UCN phase space transformation (PST) device could produce highly monochromatic cold and very cold neutrons (VCN). The UCN-PST instrumentation project running at PSI is very timely since a new-generation superthermal spallation source of UCN is under construction at PSI with a UCN density of 3000-4000 n cm -3 . Detailed numerical simulations have been carried out to optimize the UCN density and flux. Recent results on numerical simulations of an UCN-PST-based source of highly monochromatic cold neutrons and VCN are presented
Monte Carlo simulation for radiographic applications
International Nuclear Information System (INIS)
Tillack, G.R.; Bellon, C.
2003-01-01
Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de
Multilevel Monte Carlo simulation of Coulomb collisions
Energy Technology Data Exchange (ETDEWEB)
Rosin, M.S., E-mail: msr35@math.ucla.edu [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States); Ricketson, L.F. [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Dimits, A.M. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, CA 94511-0808 (United States); Caflisch, R.E. [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Institute for Pure and Applied Mathematics, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Cohen, B.I. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, CA 94511-0808 (United States)
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Parallel Monte Carlo Search for Hough Transform
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.
2017-10-01
We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2016-01-06
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2015-01-07
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.
International Nuclear Information System (INIS)
Ohta, Shigemi
1996-01-01
The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)
Algorithms for Monte Carlo calculations with fermions
International Nuclear Information System (INIS)
Weingarten, D.
1985-01-01
We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)
Odd-flavor Simulations by the Hybrid Monte Carlo
Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe
2001-01-01
The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.
Quantum Monte Carlo Endstation for Petascale Computing
Energy Technology Data Exchange (ETDEWEB)
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
Monte Carlo model of diagnostic X-ray dosimetry
International Nuclear Information System (INIS)
Khrutchinsky, Arkady; Kutsen, Semion; Gatskevich, George
2008-01-01
Full text: A Monte Carlo simulation of absorbed dose distribution in patient's tissues is often used in a dosimetry assessment of X-ray examinations. The results of such simulations in Belarus are presented in the report based on an anthropomorphic tissue-equivalent Rando-like physical phantom. The phantom corresponds to an adult 173 cm high and of 73 kg and consists of a torso and a head made of tissue-equivalent plastics which model soft (muscular), bone, and lung tissues. It consists of 39 layers (each 25 mm thick), including 10 head and neck ones, 16 chest and 13 pelvis ones. A tomographic model of the phantom has been developed from its CT-scan images with a voxel size of 0.88 x 0.88 x 4 mm 3 . A necessary pixelization in Mathematics-based in-house program was carried out for the phantom to be used in the radiation transport code MCNP-4b. The final voxel size of 14.2 x 14.2 x 8 mm 3 was used for the reasonable computer consuming calculations of absorbed dose in tissues and organs in various diagnostic X-ray examinations. MCNP point detectors allocated through body slices obtained as a result of the pixelization were used to calculate the absorbed dose. X-ray spectra generated by the empirical TASMIP model were verified on the X-ray units MEVASIM and SIREGRAPH CF. Absorbed dose distributions in the phantom volume were determined by the corresponding Monte Carlo simulations with a set of point detectors. Doses in organs of the adult phantom computed from the absorbed dose distributions by another Mathematics-based in-house program were estimated for 22 standard organs for various standard X-ray examinations. The results of Monte Carlo simulations were compared with the results of direct measurements of the absorbed dose in the phantom on the X-ray unit SIREGRAPH CF with the calibrated thermo-luminescent dosimeter DTU-01. The measurements were carried out in specified locations of different layers in heart, lungs, liver, pancreas, and stomach at high voltage of
Quantum Monte Carlo for electronic structure: Recent developments and applications
International Nuclear Information System (INIS)
Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included
Multi-pass Monte Carlo simulation method in nuclear transmutations.
Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M
2016-12-01
Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10 25 or 10 26 members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10 25 . Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10 28 steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Stern, R.E.; Song, J.; Work, D.B.
2017-01-01
The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.
Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution
Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline
2006-09-01
Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.
San Carlos Apache Tribe - Energy Organizational Analysis
Energy Technology Data Exchange (ETDEWEB)
Rapp, James; Albert, Steve
2012-04-01
The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. An intern program. Staff training. Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.
CARLOS MARTÍ ARÍS: CABOS SUELTOS
Directory of Open Access Journals (Sweden)
Ángel Martínez García-Posada
2012-11-01
Full Text Available Al viento de su mismo título, ondea este libro otoñal su carácter diverso y su direccionalidad múltiple: con la apariencia de una clásica recopilación de presentaciones, conferencias o artículos, alentados estos últimos años a propósito de causas ajenas y afinidades electivas, esta edición agavilla comentarios, prefacios y notas en páginas dispersas, del profesor Carlos Martí, y compone un orden silencioso, secreto autorretrato, velado tras la trama de una tupida cartografía de lazos suaves pero seguros.
Methods for Monte Carlo simulations of biomacromolecules.
Vitalis, Andreas; Pappu, Rohit V
2009-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.
Monte Carlo simulation of a CZT detector
International Nuclear Information System (INIS)
Chun, Sung Dae; Park, Se Hwan; Ha, Jang Ho; Kim, Han Soo; Cho, Yoon Ho; Kang, Sang Mook; Kim, Yong Kyun; Hong, Duk Geun
2008-01-01
CZT detector is one of the most promising radiation detectors for hard X-ray and γ-ray measurement. The energy spectrum of CZT detector has to be simulated to optimize the detector design. A CZT detector was fabricated with dimensions of 5x5x2 mm 3 . A Peltier cooler with a size of 40x40 mm 2 was installed below the fabricated CZT detector to reduce the operation temperature of the detector. Energy spectra of were measured with 59.5 keV γ-ray from 241 Am. A Monte Carlo code was developed to simulate the CZT energy spectrum, which was measured with a planar-type CZT detector, and the result was compared with the measured one. The simulation was extended to the CZT detector with strip electrodes. (author)
Linear stories in Carlo Scarpa's architectural drawings
DEFF Research Database (Denmark)
Dayer, Carolina
2017-01-01
, an architect guides the viewer’s imagination into another not-yet-real world that is projected much like divinatory practices of reading palms or tarot cards. The magic-real field of facts and fictions coexisting in one realm can be understood as a confabulation. A confabulation brings together both fact...... and fiction through fārī, a Fable, meaning 'to speak'. In the field of neurology, a mental patient’s confabulation may be when convinces himself that he is in Venice, although he also admits that the town he is seeing through the window is Alexandria. He knows both places, he feels both places and, despite...... the contradiction, both places constitute his reality. Venetian architect and storyteller par excellence, Carlo Scarpa, exercised the power of confabulations throughout his practice of drawing and building. While architectural historians have attempted to explain Scarpa’s work as layers coming together, very little...
Monte Carlo and detector simulation in OOP
International Nuclear Information System (INIS)
Atwood, W.B.; Blankenbecler, R.; Kunz, P.; Burnett, T.; Storr, K.M.
1990-01-01
Object-Oriented Programming techniques are explored with an eye towards applications in High Energy Physics codes. Two prototype examples are given: MCOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package). The OOP programmer does no explicit or detailed memory management nor other bookkeeping chores; hence, the writing, modification, and extension of the code is considerably simplified. Inheritance can be used to simplify the class definitions as well as the instance variables and action methods of each class; thus the work required to add new classes, parameters, or new methods is minimal. The software industry is moving rapidly to OOP since it has been proven to improve programmer productivity, and promises even more for the future by providing truly reusable software. The High Energy Physics community clearly needs to follow this trend
Monte Carlo simulations of medical imaging modalities
Energy Technology Data Exchange (ETDEWEB)
Estes, G.P. [Los Alamos National Lab., NM (United States)
1998-09-01
Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.
[Chagas Carlos Justiniano Ribeiro (1879-1934)].
Pays, J F
2009-12-01
The story of the life of Carlos Chagas is closely associated with the discovery of American Human Trypanosomiasis, caused by Trypanosoma cruzi. Indeed, he worked on this for almost all of his life. Nowadays he is considered as a national hero, but, when he was alive, he was criticised more severely in his own country than elsewhere, often unjustly and motivated by jealousy, but sometimes with good reason. Cases of Chagas disease in non-endemic countries became such a concern that public health measures have had to be taken. In this article we give a short account of the scientific journey of this man, who can be said to occupy his very own place in the history of Tropical Medicine.
Angular biasing in implicit Monte-Carlo
International Nuclear Information System (INIS)
Zimmerman, G.B.
1994-01-01
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise
Monte Carlo simulations on SIMD computer architectures
International Nuclear Information System (INIS)
Burmester, C.P.; Gronsky, R.; Wille, L.T.
1992-01-01
In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures
Monte Carlo modelling of TRIGA research reactor
International Nuclear Information System (INIS)
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-01-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Monte carlo analysis of multicolour LED light engine
DEFF Research Database (Denmark)
Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen
2015-01-01
A new Monte Carlo simulation as a tool for analysing colour feedback systems is presented here to analyse the colour uncertainties and achievable stability in a multicolour dynamic LED system. The Monte Carlo analysis presented here is based on an experimental investigation of a multicolour LED...
Projector Quantum Monte Carlo without minus-sign problem
Frick, M.; Raedt, H. De
Quantum Monte Carlo techniques often suffer from the so-called minus-sign problem. This paper explores a possibility to circumvent this fundamental problem by combining the Projector Quantum Monte Carlo method with the variational principle. Results are presented for the two-dimensional Hubbard
Multiple histogram method and static Monte Carlo sampling
Inda, M.A.; Frenkel, D.
2004-01-01
We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From
Monte Carlo methods for pricing ﬁnancial options
Indian Academy of Sciences (India)
Monte Carlo methods have increasingly become a popular computational tool to price complex ﬁnancial options, especially when the underlying space of assets has a large dimensionality, as the performance of other numerical methods typically suffer from the 'curse of dimensionality'. However, even Monte-Carlo ...
A MONTE CARLO COMPARISON OF PAAAM_ETRIC AND ...
African Journals Online (AJOL)
kernel nonparametric method is proposed and developed for estimating low flow quantiles. Ba&ed on annual minimum low flow data and Monte Carlo. Si•ulation Experiments, the proposed model is eotnpand with ... Carlo simulation technique using the criteria of the descriptive ability and predictive ability of a model.
New Approaches and Applications for Monte Carlo Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
Forecasting with nonlinear time series model: A Monte-Carlo ...
African Journals Online (AJOL)
In this paper, we propose a new method of forecasting with nonlinear time series model using Monte-Carlo Bootstrap method. This new method gives better result in terms of forecast root mean squared error (RMSE) when compared with the traditional Bootstrap method and Monte-Carlo method of forecasting using a ...
Exponential convergence on a continuous Monte Carlo transport problem
International Nuclear Information System (INIS)
Booth, T.E.
1997-01-01
For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described
A Monte Carlo approach to combating delayed completion of ...
African Journals Online (AJOL)
The objective of this paper is to unveil the relevance of Monte Carlo critical path analysis in resolving problem of delays in scheduled completion of development projects. Commencing with deterministic network scheduling, Monte Carlo critical path analysis was advanced by assigning probability distributions to task times.
Debating the Social Thinking of Carlos Nelson Coutinho
Directory of Open Access Journals (Sweden)
Bruno Bruziguessi
2017-10-01
Full Text Available BRAZ, Marcelo; RODRIGUES, Mavi (Org.. Cultura, democracia e socialismo: as idéias de Carlos Nelson Coutinho em debate. [Culture, democracy and socialism: The ideas of Carlos Nelson Coutinho in debate]. Rio de Janeiro: Mórula, 2016. 248 p.
Quantum Monte Carlo method for attractive Coulomb potentials
Kole, J.S.; Raedt, H. De
2001-01-01
Starting from an exact lower bound on the imaginary-time propagator, we present a path-integral quantum Monte Carlo method that can handle singular attractive potentials. We illustrate the basic ideas of this quantum Monte Carlo algorithm by simulating the ground state of hydrogen and helium.
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
Crop canopy BRDF simulation and analysis using Monte Carlo method
Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.
2006-01-01
This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and
Efficiency and accuracy of Monte Carlo (importance) sampling
Waarts, P.H.
2003-01-01
Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed
Nuclear data treatment for SAM-CE Monte Carlo calculations
International Nuclear Information System (INIS)
Lichtenstein, H.; Troubetzkoy, E.S.; Beer, M.
1980-01-01
The treatment of nuclear data by the SAM-CE Monte Carlo code system is presented. The retrieval of neutron, gamma production, and photon data from the ENDF/B fils is described. Integral cross sections as well as differential data are utilized in the Monte Carlo calculations, and the processing procedures for the requisite data are summarized
Approximating Sievert Integrals to Monte Carlo Methods to calculate ...
African Journals Online (AJOL)
Radiation dose rates along the transverse axis of a miniature P192PIr source were calculated using Sievert Integral (considered simple and inaccurate), and by the sophisticated and accurate Monte Carlo method. Using data obt-ained by the Monte Carlo method as benchmark and applying least squares regression curve ...
On the Markov Chain Monte Carlo (MCMC) method
Indian Academy of Sciences (India)
In this article, we give an introduction to Monte Carlo techniques with special emphasis on. Markov Chain Monte Carlo (MCMC). Since the latter needs Markov chains with state space that is R or Rd and most text books on Markov chains do not discuss such chains, we have included a short appendix that gives basic ...
Neutron point-flux calculation by Monte Carlo
International Nuclear Information System (INIS)
Eichhorn, M.
1986-04-01
A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)
Using Monte Carlo Methods for the Valuation of Intangible Assets in Sports Economics
Directory of Open Access Journals (Sweden)
Majewski Sebastian
2017-12-01
Full Text Available This paper indicates the possibilities of using Monte Carlo simulations methods in players’ performance rights value monitoring. The authors have formulated a hypothesis that connects Monte Carlo methods (MC and econometric models of the player’s life cycle that could give club managers another source of information for the decision process. The MC method in finance is usually used to value the option price on the basis of assumed distribution of price changes. In this approach, the method was used to determine future the hypothetical value of footballers’ performance rights. Using econometric models of the player’s life cycle we could observe and analyse the phase in the life cycle of a football player and determine volatility.
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Research on perturbation based Monte Carlo reactor criticality search
International Nuclear Information System (INIS)
Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang
2013-01-01
Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k eff and differential coefficients of concerned parameter, the polynomial estimator of k eff changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)
Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi
1994-01-01
Calorimeter Geometry * Simulations with EGS4/PRESTA for Thin Si Sampling Calorimeter * SIBERIA -- Monte Carlo Code for Simulation of Hadron-Nuclei Interactions * CALOR89 Predictions for the Hanging File Test Configurations * Estimation of the Multiple Coulomb Scattering Error for Various Numbers of Radiation Lengths * Monte Carlo Generator for Nuclear Fragmentation Induced by Pion Capture * Calculation and Randomization of Hadron-Nucleus Reaction Cross Section * Developments in GEANT Physics * Status of the MC++ Event Generator Toolkit * Theoretical Overview of QCD Event Generators * Random Numbers? * Simulation of the GEM LKr Barrel Calorimeter Using CALOR89 * Recent Improvement of the EGS4 Code, Implementation of Linearly Polarized Photon Scattering * Interior-Flux Simulation in Enclosures with Electron-Emitting Walls * Some Recent Developments in Global Determinations of Parton Distributions * Summary of the Workshop on Simulating Accelerator Radiation Environments * Simulating the SDC Radiation Background and Activation * Applications of Cluster Monte Carlo Method to Lattice Spin Models * PDFLIB: A Library of All Available Parton Density Functions of the Nucleon, the Pion and the Photon and the Corresponding αs Calculations * DTUJET92: Sampling Hadron Production at Supercolliders * A New Model for Hadronic Interactions at Intermediate Energies for the FLUKA Code * Matrix Generator of Pseudo-Random Numbers * The OPAL Monte Carlo Production System * Monte Carlo Simulation of the Microstrip Gas Counter * Inner Detector Simulations in ATLAS * Simulation and Reconstruction in H1 Liquid Argon Calorimetry * Polarization Decomposition of Fluxes and Kinematics in ep Reactions * Towards Object-Oriented GEANT -- ProdiG Project * Parallel Processing of AMY Detector Simulation on Fujitsu AP1000 * Enigma: An Event Generator for Electron-Photon- or Pion-Induced Events in the ~1 GeV Region * SSCSIM: Development and Use by the Fermilab SDC Group * The GEANT-CALOR Interface
Monte Carlo Computational Modeling of Atomic Oxygen Interactions
Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.
2017-01-01
Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model
Carlos Gardel, el patrimonio que sonrie
Directory of Open Access Journals (Sweden)
María Julia Carozzi
2003-10-01
Full Text Available Analizando los modos en que los porteños recordaron a Carlos Gardel en el mes del 68 aniversario de su muerte, el artículo intenta dar cuenta de una de las formas en que los habitantes de la ciudad de Buenos Aires conciben aquello que es memorable, identifican aquello en que se reconocen como porteños y singularizan aquello frente a lo cual experimentan sentimientos de pertenencia colectiva. El trabajo señala la centralidad que el milagro, la mimesis y el contacto directo con su cuerpo desempeñan en la preservación de la memoria de Gardel, quien encarna tanto al tango como a su éxito en el mundo. El caso de Gardel se presenta como un ejemplo de la organización de la memoria y la identidad de los porteños en particular y los argentinos en general en torno a personas reales a quienes se les asigna un valor extraordinario. Al sostener su profundo enraizamiento en cuerpos humanos concretos, tornan problemática la adopción local de los conceptos globalmente aceptados de patrimonio histórico y cultural.The article analyses one of the ways in which the inhabitants of Buenos Aires conceive that which is memorable, source of positive identification and origin of feelings of communitas by examining their commemoration of the 68th anniversary of the death of Carlos Gardel. It underscores the central role that miracles, mimesis and direct bodily contact play in the preservation of the memory of the star, who incarnates both the tango and its world-wide success. The case of Gardel is presented as an example of the centrality that real persons of extraordinary value have in the organization of local memory and collective identity. Since they are embedded in concrete human bodies, they reveal problems in the local adoption of globally accepted concepts of historical and cultural heritage.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Present status and future prospects of neutronics Monte Carlo
International Nuclear Information System (INIS)
Gelbard, E.M.
1990-01-01
It is fair to say that the Monte Carlo method, over the last decade, has grown steadily more important as a neutronics computational tool. Apparently this has happened for assorted reasons. Thus, for example, as the power of computers has increased, the cost of the method has dropped, steadily becoming less and less of an obstacle to its use. In addition, more and more sophisticated input processors have now made it feasible to model extremely complicated systems routinely with really remarkable fidelity. Finally, as we demand greater and greater precision in reactor calculations, Monte Carlo is often found to be the only method accurate enough for use in benchmarking. Cross section uncertainties are now almost the only inherent limitations in our Monte Carlo capabilities. For this reason Monte Carlo has come to occupy a special position, interposed between experiment and other computational techniques. More and more often deterministic methods are tested by comparison with Monte Carlo, and cross sections are tested by comparing Monte Carlo with experiment. In this way one can distinguish very clearly between errors due to flaws in our numerical methods, and those due to deficiencies in cross section files. The special role of Monte Carlo as a benchmarking tool, often the only available benchmarking tool, makes it crucially important that this method should be polished to perfection. Problems relating to Eigenvalue calculations, variance reduction and the use of advanced computers are reviewed in this paper. (author)
Simulation and the Monte Carlo Method, Student Solutions Manual
Rubinstein, Reuven Y
2012-01-01
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, suc
Multiple Monte Carlo Testing with Applications in Spatial Point Processes
DEFF Research Database (Denmark)
Mrkvička, Tomáš; Myllymäki, Mari; Hahn, Ute
The rank envelope test (Myllym\\"aki et al., Global envelope tests for spatial processes, arXiv:1307.0239 [stat.ME]) is proposed as a solution to multiple testing problem for Monte Carlo tests. Three different situations are recognized: 1) a few univariate Monte Carlo tests, 2) a Monte Carlo test ...... for one group of point patterns, comparison of several groups of point patterns, test of dependence of components in a multi-type point pattern, and test of Boolean assumption for random closed sets....
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
[Carlos Chagas Filho's choice of biological physics: reason and motivations].
de Almeida, Darcy Fontoura
2008-01-01
This study investigates the reasons and motivations behind Carlos Chagas Filho's choice to abandon the line of study developed by his father, Carlos Chagas, and brother, Evandro Chagas, both of whom had very successful careers researching tropical diseases. Though Carlos Chagas Filho first worked on anatomical pathology, he suddenly shifted his attentions of the physicochemical aspects of vital processes. Extant sources show that a number of unforeseen circumstances took place from early on in Chagas Filho's education. There was a chance he could carry out work of a similar import in a different area and he set his sights, with uncommon luck, on the introduction of scientific research at university.
Quantum Monte Carlo on graphical processing units
Anderson, Amos G.; Goddard, William A.; Schröder, Peter
2007-08-01
Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time independent Schrödinger equation. Unfortunately, the method is very expensive and requires a vast array of computing resources in order to obtain results of a reasonable convergence level. On the other hand, the method is not only easily parallelizable across CPU clusters, but as we report here, it also has a high degree of data parallelism. This facilitates the use of recent technological advances in Graphical Processing Units (GPUs), a powerful type of processor well known to computer gamers. In this paper we report on an end-to-end QMC application with core elements of the algorithm running on a GPU. With individual kernels achieving as much as 30× speed up, the overall application performs at up to 6× faster relative to an optimized CPU implementation, yet requires only a modest increase in hardware cost. This demonstrates the speedup improvements possible for QMC in running on advanced hardware, thus exploring a path toward providing QMC level accuracy as a more standard tool. The major current challenge in running codes of this type on the GPU arises from the lack of fully compliant IEEE floating point implementations. To achieve better accuracy we propose the use of the Kahan summation formula in matrix multiplications. While this drops overall performance, we demonstrate that the proposed new algorithm can match CPU single precision.
Monte Carlo simulations for heavy ion dosimetry
Energy Technology Data Exchange (ETDEWEB)
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
The GENIE neutrino Monte Carlo generator
International Nuclear Information System (INIS)
Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; Meregaglia, A.; Naples, D.; Pearce, G.; Rubbia, A.; Whalley, M.; Yang, T.
2010-01-01
GENIE is a new neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of ∼120000 lines of C++ code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4.
Pseudopotentials for quantum-Monte-Carlo-calculations
International Nuclear Information System (INIS)
Burkatzki, Mark Thomas
2008-01-01
The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)
Monte Carlo simulations for heavy ion dosimetry
International Nuclear Information System (INIS)
Geithner, O.
2006-01-01
Water-to-air stopping power ratio (s w,air ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s w,air , the influence of fragments and I-values on s w,air for carbon ion beams was investigated. The value of s w,air deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Parallel Monte Carlo Simulation of Aerosol Dynamics
Directory of Open Access Journals (Sweden)
Kun Zhou
2014-02-01
Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Atomistic Monte Carlo Simulation of Lipid Membranes
Directory of Open Access Journals (Sweden)
Daniel Wüstner
2014-01-01
Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan
2014-09-05
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.
Minimizing the cost of splitting in Monte Carlo radiation transport simulation
Energy Technology Data Exchange (ETDEWEB)
Juzaitis, R.J.
1980-10-01
A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma/sup 2//sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed (e.g., deep penetration calculations).
International Nuclear Information System (INIS)
Devine, R.T.; Hsu, Hsiao-Hua
1994-01-01
The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included
Minimizing the cost of splitting in Monte Carlo radiation transport simulation
International Nuclear Information System (INIS)
Juzaitis, R.J.
1980-10-01
A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma 2 /sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed
Critical phenomena in Ising-type thin films by Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-04-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
Sink strength simulations using the Monte Carlo method: Applied to spherical traps
Ahlgren, T.; Bukonte, L.
2017-12-01
The sink strength is an important parameter for the mean-field rate equations to simulate temporal changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for these differences. We present the equations to estimate the statistical error for sink strength calculations and show the way to determine the sink strengths for multiple traps. We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in addition to the well-known sink strength dependence of the trap concentration, trap radius and the total sink strength, the sink strength also depends on the defect diffusion jump length and the total trap volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression for the sink strength of spherical traps.
Bourva, L C A
1999-01-01
The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...
Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.
2001-01-01
The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)
Critical phenomena in Ising-type thin films by Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
Directory of Open Access Journals (Sweden)
N Heidarloo
2017-08-01
Full Text Available Intraoperative electron radiotherapy is one of the radiotherapy methods that delivers a high single fraction of radiation dose to the patient in one session during the surgery. Beam shaper applicator is one of the applicators that is recently employed with this radiotherapy method. This applicator has a considerable application in treatment of large tumors. In this study, the dosimetric characteristics of the electron beam produced by LIAC intraoperative radiotherapy accelerator in conjunction with this applicator have been evaluated through Monte Carlo simulation by MCNP code. The results showed that the electron beam produced by the beam shaper applicator would have the desirable dosimetric characteristics, so that the mentioned applicator can be considered for clinical purposes. Furthermore, the good agreement between the results of simulation and practical dosimetry, confirms the applicability of Monte Carlo method in determining the dosimetric parameters of electron beam intraoperative radiotherapy
Monte Carlo simulation applied in total reflection x-ray fluorescence: Preliminary results
Energy Technology Data Exchange (ETDEWEB)
Meira, Luiza L. C.; Inocente, Guilherme F.; Vieira, Leticia D.; Mesa, Joel [Departamento de Fisica e Biofisica - Instituto de Biociencias de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho (Brazil)
2013-05-06
The X-ray Fluorescence (XRF) analysis is a technique for the qualitative and quantitative determination of chemical constituents in a sample. This method is based on detection of the characteristic radiation intensities emitted by the elements of the sample, when properly excited. A variant of this technique is the Total Reflection X-ray Fluorescence (TXRF) that utilizes electromagnetic radiation as excitation source. In total reflection of X-ray, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample support interface. Thus, there is a minimum angle of incidence at which no refracted beam exists and all incident radiation undergoes total reflection. In this study, we evaluated the influence of the energy variation of the beam of incident x-rays, using the MCNPX code (Monte Carlo NParticle) based on Monte Carlo method.
Monte Carlo simulation applied in total reflection x-ray fluorescence: Preliminary results
Meira, Luiza L. C.; Inocente, Guilherme F.; Vieira, Letícia D.; Mesa, Joel
2013-05-01
The X-ray Fluorescence (XRF) analysis is a technique for the qualitative and quantitative determination of chemical constituents in a sample. This method is based on detection of the characteristic radiation intensities emitted by the elements of the sample, when properly excited. A variant of this technique is the Total Reflection X-ray Fluorescence (TXRF) that utilizes electromagnetic radiation as excitation source. In total reflection of X-ray, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample support interface. Thus, there is a minimum angle of incidence at which no refracted beam exists and all incident radiation undergoes total reflection. In this study, we evaluated the influence of the energy variation of the beam of incident x-rays, using the MCNPX code (Monte Carlo NParticle) based on Monte Carlo method.
Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission
Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
Directory of Open Access Journals (Sweden)
Lucas Paixão
2015-12-01
Full Text Available Abstract Objective: Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods: Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results: Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion: The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
Sadi, M; Dabir, B
2003-01-01
Monte Carlo Method is one of the most powerful techniques to model different processes, such as polymerization reactions. By this method, without any need to solve moment equations, a very detailed information on the structure and properties of polymers are obtained. The number of algorithm repetitions (selected volumes of reactor for modelling which represent the number of initial molecules) is very important in this method. In Monte Carlo method calculations are based on the random number of generations and reaction probability determinations. so the number of algorithm repetition is very important. In this paper, the initiation reaction was considered alone and the importance of number of initiator molecules on the result were studied. It can be concluded that Monte Carlo method will not give accurate results if the number of molecules is not satisfied to be big enough, because in that case , selected volume would not be representative of the whole system.
International Nuclear Information System (INIS)
Boronat, J.; Cazorla, C.; Colognesi, D.; Zoppi, M.
2004-01-01
Hydrogen single-particle dynamics in solid LiH at T=20 K has been studied through the incoherent inelastic neutron-scattering technique. A careful analysis of the scattering data has allowed for the determination of a reliable hydrogen-projected density of phonon states and, from this, of three relevant physical quantities: mean-squared displacement, mean kinetic energy, and Einstein frequency. In order to interpret these experimental findings, a fully quantum microscopic calculation has been carried out using the variational Monte Carlo method. The agreement achieved between neutron-scattering data and Monte Carlo estimates is good. In addition, a purely harmonic calculation has been also performed via the same Monte Carlo code, but anharmonic effects in H dynamics were not found relevant. The possible limitations of the present semiempirical potentials are finally discussed
Directory of Open Access Journals (Sweden)
Marcos Roberto Gois de Oliveira
2013-01-01
Carlo ao modelo de avaliação determinístico convencional,desenvolvendo-se assim um modelo estocástico que, como tal, permite uma análise estatística do risco. Oobjetivo deste trabalho foi avaliar a pertinência da utilização da técnica de Simulação de Monte Carlo na mensuração das incertezas inerentes à metodologia de avaliação de empresas pelo fluxo de caixa descontado,identificando-se se essa metodologia de simulação incrementa a acurácia da avaliação de empresas pelofluxo de caixa descontado. Os resultados deste estudo comprovam a eficácia operacional da utilização daSimulação de Monte Carlo na avaliação de empresas pelo fluxo de caixa descontado, confirmando que aqualidade dos resultados obtidos por meio da adoção dessa metodologia de simulação apresentou uma relevante melhoria em relação aos resultados obtidos por meio da utilização do modelo determinístico deavaliação.
Los motivos del lobo. Entrevista con Carlos Alazraki
Guzmán, Héctor; Alazraki, Carlos
1995-01-01
Entrevista al publicista mexicano Carlos Alazraki en la que se tocan los temas del humor y la cultura mexicana en los anuncios publicitarios. Incluye obra visual del pintor Davis Birks, reproducida en blanco y negro.
On the Markov Chain Monte Carlo (MCMC) method
Indian Academy of Sciences (India)
Abstract. Markov Chain Monte Carlo (MCMC) is a popular method used to generate samples from arbitrary distributions, which may be speciﬁed indirectly. In this article, we give an introduction to this method along with some examples.
Usefulness of the Monte Carlo method in reliability calculations
International Nuclear Information System (INIS)
Lanore, J.M.; Kalli, H.
1977-01-01
Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels
3D SURVEY OF THE SAN CARLO THEATRE IN NAPLES
Directory of Open Access Journals (Sweden)
V. Cappellini
2012-09-01
Full Text Available The article reports the approach developed for the 3D modeling of an important monument in Naples: San Carlo Theatre, the oldest Opera House in Europe recognized as a UNESCO World Heritage site.
Carlo Ginzburg: anomaalia viitab normile / intervjueerinud Marek Tamm
Ginzburg, Carlo, 1939-
2014-01-01
Intervjuu itaalia ajaloolase Carlo Ginzburgiga tema raamatu "Ükski saar pole saar : neli pilguheitu inglise kirjandusele globaalsest vaatenurgast" eesti keeles ilmumise puhul. Teos ilmus Tallinna Ülikooli Kirjastuses
The Monte Carlo simulation of the Ladon photon beam facility
International Nuclear Information System (INIS)
Strangio, C.
1976-01-01
The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation
Monte Carlo methods for the self-avoiding walk
International Nuclear Information System (INIS)
Janse van Rensburg, E J
2009-01-01
The numerical simulation of self-avoiding walks remains a significant component in the study of random objects in lattices. In this review, I give a comprehensive overview of the current state of Monte Carlo simulations of models of self-avoiding walks. The self-avoiding walk model is revisited, and the motivations for Monte Carlo simulations of this model are discussed. Efficient sampling of self-avoiding walks remains an elusive objective, but significant progress has been made over the last three decades. The model still poses challenging numerical questions however, and I review specific Monte Carlo methods for improved sampling including general Monte Carlo techniques such as Metropolis sampling, umbrella sampling and multiple Markov Chain sampling. In addition, specific static and dynamic algorithms for walks are presented, and I give an overview of recent innovations in this field, including algorithms such as flatPERM, flatGARM and flatGAS. (topical review)
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs
Time step length versus efficiency of Monte Carlo burnup calculations
International Nuclear Information System (INIS)
Dufek, Jan; Valtavirta, Ville
2014-01-01
Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy
Radiation response of inorganic scintillators: Insights from Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Prange, Micah P.; Wu, Dangxin; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.
2014-07-24
The spatial and temporal scales of hot particle thermalization in inorganic scintillators are critical factors determining the extent of second- and third-order nonlinear quenching in regions with high densities of electron-hole pairs, which, in turn, leads to the light yield nonproportionality observed, to some degree, for all inorganic scintillators. Therefore, kinetic Monte Carlo simulations were performed to calculate the distances traveled by hot electrons and holes as well as the time required for the particles to reach thermal energy following γ-ray irradiation. CsI, a common scintillator from the alkali halide class of materials, was used as a model system. Two models of quasi-particle dispersion were evaluated, namely, the effective mass approximation model and a model that relied on the group velocities of electrons and holes determined from band structure calculations. Both models predicted rapid electron-hole pair recombination over short distances (a few nanometers) as well as a significant extent of charge separation between electrons and holes that did not recombine and reached thermal energy. However, the effective mass approximation model predicted much longer electron thermalization distances and times than the group velocity model. Comparison with limited experimental data suggested that the group velocity model provided more accurate predictions. Nonetheless, both models indicated that hole thermalization is faster than electron thermalization and thus is likely to be an important factor determining the extent of third-order nonlinear quenching in high-density regions. The merits of different models of quasi-particle dispersion are also discussed.
KENO V: the newest KENO Monte Carlo criticality program
International Nuclear Information System (INIS)
Landers, N.F.; Petrie, L.M.
1980-01-01
KENO V is a new multigroup Monte Carlo criticality program developed in the tradition of KENO and KENO IV for use in the SCALE system. The primary purpose of KENO V is to determine k-effective. Other calculated quantities include lifetime and generation time, energy-dependent leakages, energy- and region-dependent absorptions, fissions, fluxes, and fission densities. KENO V combines many of the efficient performance capabilities of KENO IV with improvements such as flexible data input, the ability to specify origins for cylindrical and spherical geometry regions, the capability of super grouping energy-dependent data, a P/sub n/ scattering model in the cross sections, a procedure for matching lethargy boundaries between albedos and cross sections to extend the usefulness of the albedo feature, and improved restart capabilities. This advanced user-oriented program combines simplified data input and efficient computer storage allocation to readily solve large problems whose computer storage requirements precluded solution when using KENO IV. 2 figures, 1 table
Monte carlo simulation of carboxylic acid phase equilibria.
Clifford, Scott; Bolton, Kim; Ramjugernath, Deresh
2006-11-02
Configurational-bias Monte Carlo simulations were carried out in the Gibbs ensemble to generate phase equilibrium data for several carboxylic acids. Pure component coexistence densities and saturated vapor pressures were determined for acetic acid, propanoic acid, 2-methylpropanoic acid, and pentanoic acid, and binary vapor-liquid equilibrium (VLE) data for the propanoic acid + pentanoic acid and 2-methylpropanoic acid + pentanoic acid systems. The TraPPE-UA force field was used, as it has recently been extended to include parameters for carboxylic acids. To simulate the branched compound 2-methylpropanoic acid, certain minor assumptions were necessary regarding angle and torsion terms involving the -CH- pseudo-atom, since parameters for these terms do not exist in the TraPPE-UA force field. The pure component data showed good agreement with the available experimental data, particularly with regard to the saturated liquid densities (mean absolute errors were less than 1.1%). On average, the predicted critical temperature and density were within 1% of the experimental values. All of the binary simulations showed good agreement with the experimental x-y data. However, the TraPPE-UA force field predicts saturated vapor pressures of pure components that are larger than the experimental values, and consequently the P-x-y and T-x-y data of the binary systems also deviate from the measured data.
Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
Okumura, Hisashi
2008-09-28
Partial multicanonical algorithm is proposed for molecular dynamics and Monte Carlo simulations. The partial multicanonical simulation samples a wide range of a part of the potential-energy terms, which is necessary to sample the conformational space widely, whereas a wide range of total potential energy is sampled in the multicanonical algorithm. Thus, one can concentrate the effort to determine the weight factor only on the important energy terms in the partial multicanonical simulation. The partial multicanonical, multicanonical, and canonical molecular dynamics algorithms were applied to an alanine dipeptide in explicit water solvent. The canonical simulation sampled the states of P(II), C(5), alpha(R), and alpha(P). The multicanonical simulation covered the alpha(L) state as well as these states. The partial multicanonical simulation also sampled the C(7) (ax) state in addition to the states that were sampled by the multicanonical simulation. In the partial multicanonical simulation, furthermore, backbone dihedral angles phi and psi rotated more frequently than those in the multicanonical and canonical simulations. These results mean that the partial multicanonical algorithm has a higher sampling efficiency than the multicanonical and canonical algorithms.
Monte Carlo validation in the diagnostic radiology range
International Nuclear Information System (INIS)
Nikolopoulos, Dimitrios; Linardatos, Dionysios; Valais, Ioannis; Michail, Christos; David, Stratos; Gonias, Panagiotis; Bertsekas, Nikolaos; Cavouras, Dionysios; Louizi, Anna; Kandarakis, Ioannis
2007-01-01
The present paper aimed to the validation of Monte Carlo simulation codes already developed by the reporting team, for the study of photon transport and absorption in scintillator materials. Comparisons are reported between the developed codes, MCNP developed codes and other published data. First, the mean number of interactions for each incident photon was determined and compared to the published data. Agreement to within ±1.5% was achieved. Second, the depth of energy deposition in water was assessed for three monoenergetic X-ray beams (15, 20, 30 keV). The energy deposited in slabs of water phantoms of varying depths was tallied. Excellent agreement within ±2% was achieved, except that for 15 keV were a more rapid drop with increasing depth was found. Second, spatial distribution of the energy absorption due to scatter radiation was assessed. Good agreement (below ±5%) with published data was achieved. Third, a water slab with thickness 5, 10, 15, 20 cm was modeled, irradiated by a monoenergetic narrow beam of photons of various energies. Last, the lateral spread of energy deposition was assessed in a 1 cm thick slab in the center of an 8 cm thick water phantom, irradiated by a 50 keV narrow beam. Again, good agreement (below ±2%) was achieved
Characterization of decommissioned reactor internals: Monte Carlo analysis technique
International Nuclear Information System (INIS)
Reid, B.D.; Love, E.F.; Luksic, A.T.
1993-03-01
This study discusses computer analysis techniques for determining activation levels of irradiated reactor component hardware to yield data for the Department of Energy's Greater-Than-Class C Low-Level Radioactive Waste Program. The study recommends the Monte Carlo Neutron/Photon (MCNP) computer code as the best analysis tool for this application and compares the technique to direct sampling methodology. To implement the MCNP analysis, a computer model would be developed to reflect the geometry, material composition, and power history of an existing shutdown reactor. MCNP analysis would then be performed using the computer model, and the results would be validated by comparison to laboratory analysis results from samples taken from the shutdown reactor. The report estimates uncertainties for each step of the computational and laboratory analyses; the overall uncertainty of the MCNP results is projected to be ±35%. The primary source of uncertainty is identified as the material composition of the components, and research is suggested to address that uncertainty
Multi-Index Monte Carlo (MIMC) When sparsity meets sampling
Tempone, Raul
2015-01-07
This talk focuses into our newest method: Multi Index Monte Carlo (MIMC). The MIMC method uses a stochastic combination technique to solve the given approximation problem, generalizing the notion of standard MLMC levels into a set of multi indices that should be properly chosen to exploit the available regularity. Indeed, instead of using first-order differences as in standard MLMC, MIMC uses high-order differences to reduce the variance of the hierarchical differences dramatically. This in turn gives a new improved complexity result that increases the domain of the problem parameters for which the method achieves the optimal convergence rate, O(TOL-2). Using optimal index sets that we determined, MIMC achieves a better rate for the computational complexity does not depend on the dimensionality of the underlying problem, up to logarithmic factors. We present numerical results related to a three dimensional PDE with random coefficients to substantiate some of the derived computational complexity rates. Finally, using the Lindeberg-Feller theorem, we also show the asymptotic normality of the statistical error in the MIMC estimator and justify in this way our error estimate that allows prescribing both the required accuracy and confidence in the final result
Monte Carlo simulation of light fluence calculation during pleural PDT
Meo, Julia L.; Zhu, Timothy
2013-03-01
A thorough understanding of light distribution in the desired tissue is necessary for accurate light dosimetry in PDT. Solving the problem of light dose depends, in part, on the geometry of the tissue to be treated. When considering PDT in the thoracic cavity for treatment of malignant, localized tumors such as those observed in malignant pleural mesothelioma (MPM), changes in light dose caused by the cavity geometry should be accounted for in order to improve treatment efficacy. Cavity-like geometries demonstrate what is known as the "integrating sphere effect" where multiple light scattering off the cavity walls induces an overall increase in light dose in the cavity. We present a Monte Carlo simulation of light fluence based on a spherical and an elliptical cavity geometry with various dimensions. The tissue optical properties as well as the non-scattering medium (air and water) varies. We have also introduced small absorption inside the cavity to simulate the effect of blood absorption. We expand the MC simulation to track photons both within the cavity and in the surrounding cavity walls. Simulations are run for a variety of cavity optical properties determined using spectroscopic methods. We concluded from the MC simulation that the light fluence inside the cavity is inversely proportional to the surface area.
Reduced Density Matrices in Full Configuration Interaction Quantum Monte Carlo
Overy, Catherine; Cleland, Deidre; Booth, George H.; Shepherd, James J.; Alavi, Ali
2013-03-01
Reduced density matrices are a powerful construct in quantum chemistry, providing a compact representation of highly multi-determinantal wavefunctions, from which the expectation values of important physical properties can be extracted, including multipole moments, polarizabilities and nuclear forces1,2. Full configuration interaction quantum Monte Carlo (FCIQMC)3 and its initiator extension (i-FCIQMC)4 perform a stochastic propagation of signed walkers within a space of Slater determinants to achieve FCI-quality energies without the need to store the complete wavefunction. We present here a method for a stochastic calculation of the 1- and 2-body reduced density matrices within the framework of (i)-FCIQMC, and apply this formulation to a range of archetypal molecular systems. Consideration is also given to the source and nature of systematic and stochastic error, and regimes to effectively alleviate these errors are discussed5. 1 P.-O. Löwdin, Phys. Rev. 97, 1474 (1955). 2 C. A. Coulson, Rev. Mod. Phys. 32, 170 (1960). 3 G. H. Booth, A. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009). 4 D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010). 5 D. Cleland, PhD thesis, University of Cambridge, 2012.
Quantum Monte Carlo for electronic structure: Recent developments and applications
Energy Technology Data Exchange (ETDEWEB)
Rodriquez, Maria Milagos Soto [Lawrence Berkeley Lab. and Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C_{2}H and C_{2}H_{2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is
GPU-Monte Carlo based fast IMRT plan optimization
Directory of Open Access Journals (Sweden)
Yongbao Li
2014-03-01
Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z
Herwig: The Evolution of a Monte Carlo Simulation
CERN. Geneva
2015-01-01
Monte Carlo event generation has seen significant developments in the last 10 years starting with preparation for the LHC and then during the first LHC run. I will discuss the basic ideas behind Monte Carlo event generators and then go on to discuss these developments, focussing on the developments in Herwig(++) event generator. I will conclude by presenting the current status of event generation together with some results of the forthcoming new version of Herwig, Herwig 7.
NUEN-618 Class Project: Actually Implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Vega, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-12-14
This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.
Studies of Monte Carlo Modelling of Jets at ATLAS
Kar, Deepak; The ATLAS collaboration
2017-01-01
The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets. Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Detmold, William; Orginos, Kostas; Pochinsky, Andrew V.
2015-12-01
We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
The sine Gordon model perturbation theory and cluster Monte Carlo
Hasenbusch, M; Pinn, K
1994-01-01
We study the expansion of the surface thickness in the 2-dimensional lattice Sine Gordon model in powers of the fugacity z. Using the expansion to order z**2, we derive lines of constant physics in the rough phase. We describe and test a VMR cluster algorithm for the Monte Carlo simulation of the model. The algorithm shows nearly no critical slowing down. We apply the algorithm in a comparison of our perturbative results with Monte Carlo data.
Monte Carlo methods and applications in nuclear physics
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs
Monte Carlo methods and applications in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Monte Carlos of the new generation: status and progress
International Nuclear Information System (INIS)
Frixione, Stefano
2005-01-01
Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron
The computation of Greeks with multilevel Monte Carlo
Sylvestre Burgos; M. B. Giles
2011-01-01
In mathematical finance, the sensitivities of option prices to various market parameters, also known as the “Greeks”, reflect the exposure to different sources of risk. Computing these is essential to predict the impact of market moves on portfolios and to hedge them adequately. This is commonly done using Monte Carlo simulations. However, obtaining accurate estimates of the Greeks can be computationally costly. Multilevel Monte Carlo offers complexity improvements over standard Monte Carl...
Modern analysis of ion channeling data by Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)
2005-10-15
Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.
Monte Carlo Volcano Seismic Moment Tensors
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Monte Carlo simulation based reliability evaluation in a multi-bilateral contracts market
International Nuclear Information System (INIS)
Goel, L.; Viswanath, P.A.; Wang, P.
2004-01-01
This paper presents a time sequential Monte Carlo simulation technique to evaluate customer load point reliability in multi-bilateral contracts market. The effects of bilateral transactions, reserve agreements, and the priority commitments of generating companies on customer load point reliability have been investigated. A generating company with bilateral contracts is modelled as an equivalent time varying multi-state generation (ETMG). A procedure to determine load point reliability based on ETMG has been developed. The developed procedure is applied to a reliability test system to illustrate the technique. Representing each bilateral contract by an ETMG provides flexibility in determining the reliability at various customer load points. (authors)
International Nuclear Information System (INIS)
Garnier, Robert; Chevalier, Marcel
2000-01-01
Studying large and complex industrial sites, requires more and more accuracy in modeling. In particular, when considering Spares, Maintenance and Repair / Replacement processes, determining optimal Integrated Logistic Support policies requires a high level modeling formalism, in order to make the model as close as possible to the real considered processes. Generally, numerical methods are used to process this kind of study. In this paper, we propose an alternate way to process optimal Integrated Logistic Support policy determination when dealing with large, complex and distributed multi-policies industrial sites. This method is based on the use of behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets. (author)
Mean field theory of the swap Monte Carlo algorithm.
Ikeda, Harukuni; Zamponi, Francesco; Ikeda, Atsushi
2017-12-21
The swap Monte Carlo algorithm combines the translational motion with the exchange of particle species and is unprecedentedly efficient for some models of glass former. In order to clarify the physics underlying this acceleration, we study the problem within the mean field replica liquid theory. We extend the Gaussian Ansatz so as to take into account the exchange of particles of different species, and we calculate analytically the dynamical glass transition points corresponding to the swap and standard Monte Carlo algorithms. We show that the system evolved with the standard Monte Carlo algorithm exhibits the dynamical transition before that of the swap Monte Carlo algorithm. We also test the result by performing computer simulations of a binary mixture of the Mari-Kurchan model, both with standard and swap Monte Carlo. This scenario provides a possible explanation for the efficiency of the swap Monte Carlo algorithm. Finally, we discuss how the thermodynamic theory of the glass transition should be modified based on our results.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-01-07
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments
International Nuclear Information System (INIS)
Pevey, Ronald E.
2005-01-01
Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL
Present status of transport code development based on Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki
1985-01-01
The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.
2016-11-29
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations
Monte Carlo systems used for treatment planning and dose verification
Energy Technology Data Exchange (ETDEWEB)
Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)
2017-04-15
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo
Energy Technology Data Exchange (ETDEWEB)
Hart, S. W. D. [University of Tennessee, Knoxville (UTK); Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK); Celik, Cihangir [ORNL; Leal, Luiz C [ORNL
2014-01-01
For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.
Lemak, Alexander; Steren, Carlos A; Arrowsmith, Cheryl H; Llinás, Miguel
2008-05-01
ABACUS [Grishaev et al. (2005) Proteins 61:36-43] is a novel protocol for automated protein structure determination via NMR. ABACUS starts from molecular fragments defined by unassigned J-coupled spin-systems and involves a Monte Carlo stochastic search in assignment space, probabilistic sequence selection, and assembly of fragments into structures that are used to guide the stochastic search. Here, we report further development of the two main algorithms that increase the flexibility and robustness of the method. Performance of the BACUS [Grishaev and Llinás (2004) J Biomol NMR 28:1-101] algorithm was significantly improved through use of sequential connectivities available from through-bond correlated 3D-NMR experiments, and a new set of likelihood probabilities derived from a database of 56 ultra high resolution X-ray structures. A Multicanonical Monte Carlo procedure, Fragment Monte Carlo (FMC), was developed for sequence-specific assignment of spin-systems. It relies on an enhanced assignment sampling and provides the uncertainty of assignments in a quantitative manner. The efficiency of the protocol was validated on data from four proteins of between 68-116 residues, yielding 100% accuracy in sequence specific assignment of backbone and side chain resonances.
Validation of variance reduction techniques in Mediso (SPIRIT DH-V) SPECT system by Monte Carlo
International Nuclear Information System (INIS)
Rodriguez Marrero, J. P.; Diaz Garcia, A.; Gomez Facenda, A.
2015-01-01
Monte Carlo simulation of nuclear medical imaging systems is a widely used method for reproducing their operation in a real clinical environment, There are several Single Photon Emission Tomography (SPECT) systems in Cuba. For this reason it is clearly necessary to introduce a reliable and fast simulation platform in order to obtain consistent image data. This data will reproduce the original measurements conditions. In order to fulfill these requirements Monte Carlo platform GAMOS (Geant4 Medicine Oriented Architecture for Applications) have been used. Due to the very size and complex configuration of parallel hole collimators in real clinical SPECT systems, Monte Carlo simulation usually consumes excessively high time and computing resources. main goal of the present work is to optimize the efficiency of calculation by means of new GAMOS functionality. There were developed and validated two GAMOS variance reduction techniques to speed up calculations. These procedures focus and limit transport of gamma quanta inside the collimator. The obtained results were asses experimentally in Mediso (SPIRIT DH-V) SPECT system. Main quality control parameters, such as sensitivity and spatial resolution were determined. Differences of 4.6% sensitivity and 8.7% spatial resolution were reported against manufacturer values. Simulation time was decreased up to 650 times. Using these techniques it was possible to perform several studies in almost 8 hours each. (Author)
A smart Monte Carlo procedure for production costing and uncertainty analysis
International Nuclear Information System (INIS)
Parker, C.; Stremel, J.
1996-01-01
Electric utilities using chronological production costing models to decide whether to buy or sell power over the next week or next few weeks need to determine potential profits or losses under a number of uncertainties. A large amount of money can be at stake--often $100,000 a day or more--and one party of the sale must always take on the risk. In the case of fixed price ($/MWh) contracts, the seller accepts the risk. In the case of cost plus contracts, the buyer must accept the risk. So, modeling uncertainty and understanding the risk accurately can improve the competitive edge of the user. This paper investigates an efficient procedure for representing risks and costs from capacity outages. Typically, production costing models use an algorithm based on some form of random number generator to select resources as available or on outage. These algorithms allow experiments to be repeated and gains and losses to be observed in a short time. The authors perform several experiments to examine the capability of three unit outage selection methods and measures their results. Specifically, a brute force Monte Carlo procedure, a Monte Carlo procedure with Latin Hypercube sampling, and a Smart Monte Carlo procedure with cost stratification and directed sampling are examined
Monte Carlo Molecular Simulation with Isobaric-Isothermal and Gibbs-NPT Ensembles
Du, Shouhong
2012-05-01
This thesis presents Monte Carlo methods for simulations of phase behaviors of Lennard-Jones fluids. The isobaric-isothermal (NPT) ensemble and Gibbs-NPT ensemble are introduced in detail. NPT ensemble is employed to determine the phase diagram of pure component. The reduced simulation results are verified by comparison with the equation of state by by Johnson et al. and results with L-J parameters of methane agree considerably with the experiment measurements. We adopt the blocking method for variance estimation and error analysis of the simulation results. The relationship between variance and number of Monte Carlo cycles, error propagation and Random Number Generator performance are also investigated. We review the Gibbs-NPT ensemble employed for phase equilibrium of binary mixture. The phase equilibrium is achieved by performing three types of trial move: particle displacement, volume rearrangement and particle transfer. The simulation models and the simulation details are introduced. The simulation results of phase coexistence for methane and ethane are reported with comparison of the experimental data. Good agreement is found for a wide range of pressures. The contribution of this thesis work lies in the study of the error analysis with respect to the Monte Carlo cycles and number of particles in some interesting aspects.
Djibrilla saley, Abdoulazizi; Jardani, Abderrahim; Soueid Ahmed, Abdellahi; Raphael, Antoine; Dupont, Jean Paul
2017-04-01
Estimating spatial distributions of the hydraulic conductivity in heterogeneous aquifers has always been an important and challenging task in hydrology. Generally, the hydraulic conductivity field is determined from hydraulic head or pressure measurements. In the present study, we propose to use temperature data as source of information for characterizing the spatial distributions of the hydraulic conductivity field. In this way, we performed a laboratory sandbox experiment with the aim of imaging the heterogeneities of the hydraulic conductivity field from thermal monitoring. During the laboratory experiment, we injected a hot water pulse, which induces a heat plume motion into the sandbox. The induced plume was followed by a set of thermocouples placed in the sandbox. After the temperature data acquisition, we performed a hydraulic tomography using the stochastic Hybrid Monte Carlo approach, also called the Hamiltonian Monte Carlo (HMC) algorithm to invert the temperature data. This algorithm is based on a combination of the Metropolis Monte Carlo method and the Hamiltonian dynamics approach. The parameterization of the inverse problem was done with the Karhunen-Loève (KL) expansion to reduce the dimensionality of the unknown parameters. Our approach has provided successful reconstruction of the hydraulic conductivity field with low computational effort.
Harkless, J. A. W.; Rodriguez, J. H.; Mitas, L.; Lester, W. A.
2003-03-01
Single point calculations of the ground state electronic structure of peroxynitrite anion have been performed at the optimized cis geometry using the restricted Hartree-Fock (RHF), Møller Plesset second order perturbation theory (MP2), generalized gradient approximation density functional theory (GGA DFT) in the B3LYP form and two quantum Monte Carlo (QMC) methods, variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). These calculations reveal differences in atomization energies estimated by B3LYP (287.03 kcal/mol), MP2 (290.84 kcal/mol), and DMC, 307.4(1.9) kcal/mol, as compared to experiment, 313(1) kcal/mol. The error associated with MP2 and B3LYP methods is attributed largely to differential recovery of correlation energies for neutral nitrogen and oxygen atoms relative to the oxygen and peroxynitrite anions. In addition, basis set studies were carried out to determine potential sources of error in MP2 and B3LYP valence energy values. Our studies indicate that MP2 and B3LYP valence energies are strongly dependent on the presence of diffuse functions for the negative ions O- and ONOO-.
The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy
International Nuclear Information System (INIS)
Alan, E.; Nahum, PhD.
2003-01-01
Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)
Risk assessment predictions of open dumping area after closure using Monte Carlo simulation
Pauzi, Nur Irfah Mohd; Radhi, Mohd Shahril Mat; Omar, Husaini
2017-10-01
Currently, there are many abandoned open dumping areas that were left without any proper mitigation measures. These open dumping areas could pose serious hazard to human and pollute the environment. The objective of this paper is to determine the risk assessment at the open dumping area after they has been closed using Monte Carlo Simulation method. The risk assessment exercise is conducted at the Kuala Lumpur dumping area. The rapid urbanisation of Kuala Lumpur coupled with increase in population lead to increase in waste generation. It leads to more dumping/landfill area in Kuala Lumpur. The first stage of this study involve the assessment of the dumping area and samples collections. It followed by measurement of settlement of dumping area using oedometer. The risk of the settlement is predicted using Monte Carlo simulation method. Monte Carlo simulation calculates the risk and the long-term settlement. The model simulation result shows that risk level of the Kuala Lumpur open dumping area ranges between Level III to Level IV i.e. between medium risk to high risk. These settlement (ΔH) is between 3 meters to 7 meters. Since the risk is between medium to high, it requires mitigation measures such as replacing the top waste soil with new sandy gravel soil. This will increase the strength of the soil and reduce the settlement.
Utility of Monte Carlo Modelling for Holdup Measurements.
Energy Technology Data Exchange (ETDEWEB)
Belian, Anthony P.; Russo, P. A. (Phyllis A.); Weier, Dennis R. (Dennis Ray),
2005-01-01
Non-destructive assay (NDA) measurements performed to locate and quantify holdup in the Oak Ridge K25 enrichment cascade used neutron totals counting and low-resolution gamma-ray spectroscopy. This facility housed the gaseous diffusion process for enrichment of uranium, in the form of UF{sub 6} gas, from {approx} 20% to 93%. Inventory of {sup 235}U inventory in K-25 is all holdup. These buildings have been slated for decontaminatino and decommissioning. The NDA measurements establish the inventory quantities and will be used to assure criticality safety and meet criteria for waste analysis and transportation. The tendency to err on the side of conservatism for the sake of criticality safety in specifying total NDA uncertainty argues, in the interests of safety and costs, for obtaining the best possible value of uncertainty at the conservative confidence level for each item of process equipment. Variable deposit distribution is a complex systematic effect (i.e., determined by multiple independent variables) on the portable NDA results for very large and bulk converters that contributes greatly to total uncertainty for holdup in converters measured by gamma or neutron NDA methods. Because the magnitudes of complex systematic effects are difficult to estimate, computational tools are important for evaluating those that are large. Motivated by very large discrepancies between gamma and neutron measurements of high-mass converters with gamma results tending to dominate, the Monte Carlo code MCNP has been used to determine the systematic effects of deposit distribution on gamma and neutron results for {sup 235}U holdup mass in converters. This paper details the numerical methodology used to evaluate large systematic effects unique to each measurement type, validates the methodology by comparison with measurements, and discusses how modeling tools can supplement the calibration of instruments used for holdup measurements by providing realistic values at well