WorldWideScience

Sample records for carlo code system

  1. Morse Monte Carlo Radiation Transport Code System

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)

  2. MORSE Monte Carlo radiation transport code system

    International Nuclear Information System (INIS)

    This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected

  3. MORSE Monte Carlo radiation transport code system

    International Nuclear Information System (INIS)

    For a number of years the MORSE user community has requested additional help in setting up problems using various options. The sample problems distributed with MORSE did not fully demonstrate the capability of the code. At Oak Ridge National Laboratory the code originators had a complete set of sample problems, but funds for documenting and distributing them were never available. Recently the number of requests for listings of input data and results for running some particular option the user was trying to implement has increased to the point where it is not feasible to handle them on an individual basis. Consequently it was decided to package a set of sample problems which illustrates more adequately how to run MORSE. This write-up may be added to Part III of the MORSE report. These sample problems include a combined neutron-gamma case, a neutron only case, a gamma only case, an adjoint case, a fission case, a time-dependent fission case, the collision density case, an XCHEKR run and a PICTUR run

  4. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  5. Monte Carlo Code System Development for Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Shim, Hyung Jin; Han, Beom Seok; Park, Ho Jin; Park, Dong Gyu [Seoul National University, Seoul (Korea, Republic of)

    2007-03-15

    We have implemented the composition cell class and the use cell to MCCARD for hierarchy input processing. For the inputs of KALlMER-600 core consisted of 336 assemblies, we require the geometric data of 91,056 pin cells. Using hierarchy input processing, it was observed that the system geometries are correctly handled with the geometric data of total 611 cells; 2 cells for fuel rods, 2 cells for guide holes, 271 translation cells for rods, and 336 translation cells for assemblies. We have developed monte carlo decay-chain models based on decay chain model of REBUS code for liquid metal reactor analysis. Using developed decay-chain models, the depletion analysis calculations have performed for the homogeneous and heterogeneous model of KALlMER-600. The k-effective for the depletion analysis agrees well with that of REBUS code. and the developed decay chain models shows more efficient performance for time and memories, as compared with the existing decay chain model The chi-square criterion has been developed to diagnose the temperature convergence for the MC TjH feedback calculations. From the application results to the KALlMER pin and fuel assembly problem, it is observed that the new criterion works well Wc have applied the high efficiency variance reduction technique by splitting Russian roulette to estimate the PPPF of the KALIMER core at BOC. The PPPF of KALlMER core at BOC is 1.235({+-}0.008). The developed technique shows four time faster calculation, as compared with the existin2 calculation Subject Keywords Monte Carlo

  6. Monte Carlo capabilities of the SCALE code system

    International Nuclear Information System (INIS)

    Highlights: • Foundational Monte Carlo capabilities of SCALE are described. • Improvements in continuous-energy treatments are detailed. • New methods for problem-dependent temperature corrections are described. • New methods for sensitivity analysis and depletion are described. • Nuclear data, users interfaces, and quality assurance activities are summarized. - Abstract: SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. An overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2

  7. Monte Carlo Capabilities of the SCALE Code System

    Science.gov (United States)

    Rearden, B. T.; Petrie, L. M.; Peplow, D. E.; Bekar, K. B.; Wiarda, D.; Celik, C.; Perfetti, C. M.; Ibrahim, A. M.; Hart, S. W. D.; Dunn, M. E.

    2014-06-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a "plug-and-play" framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE's graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2, to be released in 2014, will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. An overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.

  8. Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)

    International Nuclear Information System (INIS)

    The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided

  9. Comparative study among simulations of an internal monitoring system using different Monte Carlo codes

    International Nuclear Information System (INIS)

    Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)

  10. Penelope - A code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    The computer code system PENELOPE (version 2001) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte-Carlo algorithm. (authors)

  11. Monte Carlo burnup analysis code development and application to an incore thermionic space nuclear power system

    International Nuclear Information System (INIS)

    In the design of the incore thermionic reactor system developed under the Advanced Thermionic Initiative (ATI), the fuel is highly enriched uranium dioxide and the moderating medium is zirconium hydride. The traditional burnup and fuel depletion analysis codes have been found to be inadequate for these calculations, largely because of the material and geometry modeled and because the neutron spectra assumed for the codes such as LEOPARD and ORIGEN do not even closely fit that for a small, thermal reactor using ZrH as moderator. More sophisticated codes such as the transport lattice type code WIMS often lack some materials, such as ZrH. Thus a new method which could accurately calculate the neutron spectrum and the appropriate reaction rates within the fuel element is needed. The method developed utilizes and interconnects the accuracy of the Monte Carlo Neutron/Photon (MCNP) method to calculate reaction rates for the important isotopes, and a time dependent depletion routine to calculate the temporal effects on isotope concentrations. This effort required the modification of MCNP itself to perform the additional task of accomplishing burnup calculations. The modified version called, MCNPBURN, evolved to be a general dual purpose code which can be used for standard calculations as well as for burn-up

  12. Implementation of the probability table method in a continuous-energy Monte Carlo code system

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, T.M.; Brown, F.B. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-10-01

    RACER is a particle-transport Monte Carlo code that utilizes a continuous-energy treatment for neutrons and neutron cross section data. Until recently, neutron cross sections in the unresolved resonance range (URR) have been treated in RACER using smooth, dilute-average representations. This paper describes how RACER has been modified to use probability tables to treat cross sections in the URR, and the computer codes that have been developed to compute the tables from the unresolved resonance parameters contained in ENDF/B data files. A companion paper presents results of Monte Carlo calculations that demonstrate the effect of the use of probability tables versus the use of dilute-average cross sections for the URR. The next section provides a brief review of the probability table method as implemented in the RACER system. The production of the probability tables for use by RACER takes place in two steps. The first step is the generation of probability tables from the nuclear parameters contained in the ENDF/B data files. This step, and the code written to perform it, are described in Section 3. The tables produced are at energy points determined by the ENDF/B parameters and/or accuracy considerations. The tables actually used in the RACER calculations are obtained in the second step from those produced in the first. These tables are generated at energy points specific to the RACER calculation. Section 4 describes this step and the code written to implement it, as well as modifications made to RACER to enable it to use the tables. Finally, some results and conclusions are presented in Section 5.

  13. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) systems dedicated to animal imaging are now widely used for biological studies. The scanner performance strongly depends on the design and the characteristics of the system. Many parameters must be optimized like the dimensions and type of crystals, geometry and field-of-view (FOV), sampling, electronics, lightguide, shielding, etc. Monte Carlo modelling is a powerful tool to study the effect of each of these parameters on the basis of realistic simulated data. Performance assessment in terms of spatial resolution, count rates, scatter fraction and sensitivity is an important prerequisite before the model can be used instead of real data for a reliable description of the system response function or for optimization of reconstruction algorithms. The aim of this study is to model the performance of the Philips Mosaic(TM) animal PET system using a comprehensive PET simulation code in order to understand and describe the origin of important factors that influence image quality. We use GATE, a Monte Carlo simulation toolkit for a realistic description of the ring PET model, the detectors, shielding, cap, electronic processing and dead times. We incorporate new features to adjust signal processing to the Anger logic underlying the Mosaic(TM) system. Special attention was paid to dead time and energy spectra descriptions. Sorting of simulated events in a list mode format similar to the system outputs was developed to compare experimental and simulated sensitivity and scatter fractions for different energy thresholds using various models of phantoms describing rat and mouse geometries. Count rates were compared for both cylindrical homogeneous phantoms. Simulated spatial resolution was fitted to experimental data for 18F point sources at different locations within the FOV with an analytical blurring function for electronic processing effects. Simulated and measured sensitivities differed by less than 3%, while scatter fractions agreed

  14. Improvements in the Monte Carlo code for simulating 4πβ(PC)–γ coincidence system measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M.S., E-mail: msdias@ipen.br [Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Takeda, M.N. [Universidade Santo Amaro, UNISA Rua Prof. Enéas da Siqueira Neto 340, 04829-300 São Paulo, SP (Brazil); Toledo, F.; Brancaccio, F.; Tongu, M.L.O.; Koskinas, M.F. [Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2013-01-11

    A Monte Carlo simulation code known as ESQUEMA has been developed by the Nuclear Metrology Laboratory (Laboratório de Metrologia Nuclear—LMN) in the Nuclear and Energy Research Institute (Instituto de Pesquisas Energéticas e Nucleares—IPEN) to be used as a benchmark for radionuclide standardization. The early version of this code simulated only β−γ and ec−γ emitters with reasonably high electron and X-ray energies. To extend the code to include other radionuclides and enable the code to be applied to software coincidence counting systems, several improvements have been made and are presented in this work. -- Highlights: ► Improvements to the Monte Carlo code ESQUEMA are described. ► The experimental extrapolation curve was compared to Monte Carlo simulation. ► Eu-152 was standardized by 4π(PC)β-γ coincidence system and compared to Monte Carlo simulation. ► 4π proportional counter gamma-ray efficiency was calculated by MCNPX and compared with experiment. ► X-ray and positron decay emitters were included in the simulation.

  15. A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O. [ed.

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  16. A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O. (ed.)

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  17. COG10, Multiparticle Monte Carlo Code System for Shielding and Criticality Use

    International Nuclear Information System (INIS)

    1 - Description of program or function: COG is a modern, full-featured Monte Carlo radiation transport code which provides accurate answers to complex shielding, criticality, and activation problems. COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://www-phys.llnl.gov/N_Div/COG/. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, path-length stretching, point detectors, scattered direction biasing, and forced collisions. Criticality - For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation - COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems - COG can solve coupled problems involving neutrons, photons, and electrons. 2 - Methods:COG uses Monte Carlo methods to solve the Boltzmann transport equation for particles traveling through arbitrary 3-dimensional geometries. Neutrons, photons

  18. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  19. Installation of Monte Carlo neutron and photon transport code system MCNP4

    International Nuclear Information System (INIS)

    The continuous energy Monte Carlo code MCNP-4 including its graphic functions has been installed on the Sun-4 sparc-2 work station with minor corrections. In order to validate the installed MCNP-4 code, 25 sample problems have been executed on the work station and these results have been compared with the original ones. And, the most of the graphic functions have been demonstrated by using 3 sample problems. Further, additional 14 nuclides have been included to the continuous cross section library edited from JENDL-3. (author)

  20. EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers. Version 3

    International Nuclear Information System (INIS)

    A code to simulate almost any electron--photon transport problem conceivable is described. The report begins with a lengthy historical introduction and a description of the shower generation process. Then the detailed physics of the shower processes and the methods used to simulate them are presented. Ideas of sampling theory, transport techniques, particle interactions in general, and programing details are discussed. Next, EGS calculations and various experiments and other Monte Carlo results are compared. The remainder of the report consists of user manuals for EGS, PEGS, and TESTSR codes; options, input specifications, and typical output are included. 38 figures, 12 tables

  1. SPQR: a Monte Carlo reactor kinetics code

    International Nuclear Information System (INIS)

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  2. Quality control of the treatment planning systems dose calculations in external radiation therapy using the Penelope Monte Carlo code; Controle qualite des systemes de planification dosimetrique des traitements en radiotherapie externe au moyen du code Monte-Carlo Penelope

    Energy Technology Data Exchange (ETDEWEB)

    Blazy-Aubignac, L

    2007-09-15

    The treatment planning systems (T.P.S.) occupy a key position in the radiotherapy service: they realize the projected calculation of the dose distribution and the treatment duration. Traditionally, the quality control of the calculated distribution doses relies on their comparisons with dose distributions measured under the device of treatment. This thesis proposes to substitute these dosimetry measures to the profile of reference dosimetry calculations got by the Penelope Monte-Carlo code. The Monte-Carlo simulations give a broad choice of test configurations and allow to envisage a quality control of dosimetry aspects of T.P.S. without monopolizing the treatment devices. This quality control, based on the Monte-Carlo simulations has been tested on a clinical T.P.S. and has allowed to simplify the quality procedures of the T.P.S.. This quality control, in depth, more precise and simpler to implement could be generalized to every center of radiotherapy. (N.C.)

  3. New developments of the MCNP/CTF/NEM/NJOY code system – Monte Carlo based coupled code for high accuracy modeling

    International Nuclear Information System (INIS)

    Highlights: ► New coupled Monte Carlo code system for reference results at operating conditions. ► Automated methodology to create and use temperature-dependent cross section libraries. ► Multi-level coupling scheme between MCNP5 and COBRA-TF with different options. ► Acceleration strategy for coupled Monte Carlo calculations including hybrid approach. ► Sensitivity studies on thermal-scattering models and different sub-channel approaches. -- Abstract: High accuracy code systems are necessary to model core environments with considerable geometry complexity and great material heterogeneity. These features are typical of current and innovative nuclear reactor core designs. Advanced methodologies and state-of-the art coupled code systems must be put into practice in order to model with high accuracy these challenging core designs. The presented research comprises the development and implementation of the thermal–hydraulic feedback to the Monte Carlo method and of speed-up mechanisms to accelerate the Monte Carlo criticality calculation. Coupled Monte-Carlo calculations can serve as reference solutions for verifying high-fidelity coupled deterministic neutron transport methods with detailed and accurate thermal–hydraulic models. The development and verification of such reference high-fidelity coupled multi-physics scheme is performed at the Pennsylvania State University (PSU) in cooperation with AREVA, AREVA NP GmbH in Erlangen, Germany, on the basis of MCNP5, NEM, NJOY and COBRA-TF (CTF) computer codes. This paper presents the latest studies and ameliorations developed to this coupled hybrid system, which includes a new methodology for generation and interpolation of Temperature-Dependent Thermal Scattering Cross Section Libraries for MCNP5, a comparison between sub-channel approaches, and acceleration schemes.

  4. Calculation of extended shields in the Monte Carlo method using importance function (BRAND and DD code systems)

    International Nuclear Information System (INIS)

    Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P1-approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs

  5. Quality control of the treatment planning systems dose calculations in external radiation therapy using the Penelope Monte Carlo code

    International Nuclear Information System (INIS)

    The treatment planning systems (T.P.S.) occupy a key position in the radiotherapy service: they realize the projected calculation of the dose distribution and the treatment duration. Traditionally, the quality control of the calculated distribution doses relies on their comparisons with dose distributions measured under the device of treatment. This thesis proposes to substitute these dosimetry measures to the profile of reference dosimetry calculations got by the Penelope Monte-Carlo code. The Monte-Carlo simulations give a broad choice of test configurations and allow to envisage a quality control of dosimetry aspects of T.P.S. without monopolizing the treatment devices. This quality control, based on the Monte-Carlo simulations has been tested on a clinical T.P.S. and has allowed to simplify the quality procedures of the T.P.S.. This quality control, in depth, more precise and simpler to implement could be generalized to every center of radiotherapy. (N.C.)

  6. General Monte Carlo code MONK

    International Nuclear Information System (INIS)

    The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)

  7. New developments of the MCNP/CTF/NEM/NJOY code system - Monte Carlo based coupled code for high accuracy modeling - 277

    International Nuclear Information System (INIS)

    High accuracy code systems are necessary to model core environments with considerable geometry complexity and great material heterogeneity. These features are typical of current and innovative nuclear reactor core designs. Advanced methodologies and state-of-the art coupled code systems must be put into practice in order to model with high accuracy these challenging core designs. The presented research comprises the development and implementation of the thermal-hydraulic feedback to the Monte Carlo method and of speed-up mechanisms to accelerate the Monte Carlo criticality calculation. Coupled Monte-Carlo calculations can serve as reference solutions for verifying high-fidelity coupled deterministic neutron transport methods with detailed and accurate thermal-hydraulic models. The development and verification of such reference high-fidelity coupled multi-physics scheme is performed at the Pennsylvania State University (PSU) in cooperation with AREVA, AREVA NP GmbH in Erlangen, Germany, on the basis of MCNP5, NEM, NJOY and COBRA-TF (CTF) computer codes. This paper presents the latest studies and ameliorations developed to this coupled hybrid system, which includes a new methodology for generation and interpolation of Temperature-Dependent Thermal Scattering Cross Section Libraries for MCNP5, a comparison between sub-channel approaches, and acceleration schemes. (authors)

  8. Core calculation of 1MW PUSPATI TRIGA Reactor (RTP) using continuous energy method of Monte Carlo MVP code system

    International Nuclear Information System (INIS)

    The RTP is a light-water moderated and pool-type TRIGA MARK II reactor with power capacity of 1MWt. It was built in 1979 and attained the first criticality on 28 June 1982. The RTP was designed mainly for neutron activation analysis, small angle neutron scattering, neutron radiography, radioisotope production, education and training purposes. It uses standard TRIGA fuel developed by General Atomic in which the zirconium hydride moderator is homogeneously combined with enriched uranium. It has a cylindrical core with which possibility of locating 127 of fuel elements. Both of the coolant and moderator uses light water system and the reflector is made of high purity graphite. Because of its relatively small power, it uses natural convection for its cooling system. To ensure the integrity of the core, fuel shuffling have been carried out several times. Until now, there were 12 configurations of the core, the most recent change being in July 2006. This paper will describe the RTP core calculation using the Monte Carlo MVP code system. VP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation in order to have an accurate and fast Monte Carlo simulation of neutron and photon transport problems. The MVP Monte Carlo code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique. When compared to the conventional scalar method, this code could achieve higher computation speed by up to a factor of 10 on the vector super-computer. The RTP core has been modelled using cylinder geometry along the z-coordinate geometry with the MVP code system while its material cross section data is calculated beforehand. The JENDL3.3 data library was used in the whole calculation. The objectives of the calculation are to calculate the multiplication factor values (keff), fission density and flux distribution from the tally data. The calculation also

  9. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  10. Parallelization of MCNP 4, a Monte Carlo neutron and photon transport code system, in highly parallel distributed memory type computer

    International Nuclear Information System (INIS)

    In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)

  11. Geometry system used in the General Monte Carlo transport code SPARTAN

    International Nuclear Information System (INIS)

    The geometry routines used in the general-purpose, three-dimensional particle transport code SPARTAN are described. The code is designed to deal with the very complex geometries encountered in lattice cell and fuel handling calculations, health physics, and shielding problems. Regions of the system being studied may be represented by simple shapes (spheres, cylinders, and so on) or by multinomial surfaces of any order, and many simple shapes may be combined to make up a complex layout. The geometry routines are designed to allow the program to carry out a number of tasks (such as sampling for a random point or tracking a path through several regions) in any order, so that the use of the routines is not restricted to a particular tracking or scoring method. Routines for reading, checking, and printing the data are included. (U.S.)

  12. The geometry system of the three-dimensional Monte Carlo particle transport code SPARTAN

    International Nuclear Information System (INIS)

    The geometry routines used in the general-purpose three-dimensional particle transport code SPARTAN are described. The code is designed to deal with the very complex geometries encountered in lattice cell and fuel handling calculations, health physics and shielding problems. Regions of the system being studied may be represented by simple shapes (spheres, cylinders etc) or by multinomial surfaces of any order, and many simple shapes may be combined to make up a complex layout. The geometry routines are designed to allow the program to carry out a number of tasks (such as sampling for a random point or tracking a path through several regions) in any order, so that the use of the routines is not restricted to a particular tracking of scoring method. Routines for reading, checking and printing the data are included. Details of the computational package are also included to indicate the way in which the generalised geometry capability of SPARTAN could be incorporated into other codes. (author)

  13. Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo

    Directory of Open Access Journals (Sweden)

    Guo Dong

    2005-01-01

    Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.

  14. Incorporation of single elastic scattering in the EGS4 Monte Carlo code system: tests of Moliere theory

    International Nuclear Information System (INIS)

    To avoid prohibitively long computation times, conventional Monte Carlo e-transport algorithms (e.g. EGS4, ETRAN, ITS) employ multiple scattering theories and ''condensed history'' methods to model e- transport. Although highly successful for many calculations, these techniques do not model backscatter very well, particularly for high-Z materials. In an attempt to correct for this shortcoming, we have extended the EGS4 Monte Carlo code to allow for the simulation of single elastic scattering. The single scattering method also allows quantities to be scored in submicrometer dimension geometries where the Moliere multiple scattering theory fails and the Goudsmit-Saunderson multiple scattering equations converge very slowly. Two single scattering schemes have been implemented: (i) Screened Rutherford cross sections which form the basis of Moliere's multiple scattering theory, (ii) Single scattering cross sections based upon phase-shift data. In this work we describe the implementation of single elastic scattering in the EGS4 Monte Carlo code system and employ it to verify the Moliere multiple scattering theory in its range of validity. We demonstrate that the Moliere multiple scattering formalism provides a good description of multiple scattering despite its use of a relatively crude cross section and that it may be employed with semi-quantitative accuracy in the plural scattering regime, where electron step-lengths are so short that only as few as five atoms participate in the angular deflection. However, the remaining differences of the Moliere distributions with the phase-shift data motivate the use of more accurate fundamental data, in particular, for applications involving high-Z elements. (orig.)

  15. Criticality benchmarking of ANET Monte Carlo code

    International Nuclear Information System (INIS)

    In this work the new Monte Carlo code ANET is tested on criticality calculations. ANET is developed based on the high energy physics code GEANT of CERN and aims at progressively satisfying several requirements regarding both simulations of GEN II/III reactors, as well as of innovative nuclear reactor designs such as the Accelerator Driven Systems (ADSs). Here ANET is applied on three different nuclear configurations, including a subcritical assembly, a Material Testing Reactor and the conceptual configuration of an ADS. In the first case, calculation of the effective multiplication factor (keff) are performed for the Training Nuclear Reactor of the Aristotle University of Thessaloniki, while in the second case keff is computed for the fresh fueled core of the Portuguese research reactor (RPJ) just after its conversion to Low Enriched Uranium, considering the control rods at the position that renders the reactor critical. In both cases ANET computations are compared with corresponding results obtained by three different well established codes, including both deterministic (XSDRNPM/CITATION) and Monte Carlo (TRIPOLI, MCNP). In the RPI case, keff computations are also compared with observations during the reactor core commissioning since the control rods are considered at criticality position. The above verification studies show ANET to produce reasonable results since they are satisfactorily compared with other models as well as with observations. For the third case (ADS), preliminary ANET computations of keff for various intensities of the proton beam are presented, showing also a reasonable code performance concerning both the order of magnitude and the relative variation of the computed parameter. (author)

  16. Coupling an analytical description of anti-scatter grids with simulation software of radiographic systems using Monte Carlo code

    International Nuclear Information System (INIS)

    The use of focused anti-scatter grids on digital radiographic systems with two-dimensional detectors produces acquisitions with a decreased scatter to primary ratio and thus improved contrast and resolution. Simulation software is of great interest in optimizing grid configuration according to a specific application. Classical simulators are based on complete detailed geometric descriptions of the grid. They are accurate but very time consuming since they use Monte Carlo code to simulate scatter within the high-frequency grids. We propose a new practical method which couples an analytical simulation of the grid interaction with a radiographic system simulation program. First, a two dimensional matrix of probability depending on the grid is created offline, in which the first dimension represents the angle of impact with respect to the normal to the grid lines and the other the energy of the photon. This matrix of probability is then used by the Monte Carlo simulation software in order to provide the final scattered flux image. To evaluate the gain of CPU time, we define the increasing factor as the increase of CPU time of the simulation with as opposed to without the grid. Increasing factors were calculated with the new model and with classical methods representing the grid with its CAD model as part of the object. With the new method, increasing factors are shorter by one to two orders of magnitude compared with the second one. These results were obtained with a difference in calculated scatter of less than five percent between the new and the classical method. (authors)

  17. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  18. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  19. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  20. Comparative study among simulations of an internal monitoring system using different Monte Carlo codes; Estudo comparativo entre simulacoes de um sistema de monitoracao ocupacional interna utilizando diferentes codigos de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, T.C.F.; Bastos, F.M.; Figueiredo, M.T.T.; Souza, L.S.; Guimaraes, M.C.; Silva, C.R.E.; Mello, O.A.; Castelo e Silva, L.A.; Paixao, L., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Benavente, J.A.; Paiva, F.G. [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2015-07-01

    Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)

  1. Monte Carlo simulation code modernization

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...

  2. MORET: Version 4.B. A multigroup Monte Carlo criticality code

    International Nuclear Information System (INIS)

    MORET 4 is a three dimensional multigroup Monte Carlo code which calculates the effective multiplication factor (keff) of any configurations more or less complex as well as reaction rates in the different volumes of the geometry and the leakage out of the system. MORET 4 is the Monte Carlo code of the APOLLO2-MORET 4 standard route of CRISTAL, the French criticality package. It is the most commonly used Monte Carlo code for French criticality calculations. During the last four years, the MORET 4 team has developed or improved the following major points: modernization of the geometry, implementation of perturbation algorithms, source distribution convergence, statistical detection of stationarity, unbiased variance estimation and creation of pre-processing and post-processing tools. The purpose of this paper is not only to present the new features of MORET but also to detail clearly the physical models and the mathematical methods used in the code. (author)

  3. MCOR - Monte Carlo depletion code for reference LWR calculations

    International Nuclear Information System (INIS)

    Research highlights: → Introduction of a reference Monte Carlo based depletion code with extended capabilities. → Verification and validation results for MCOR. → Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations

  4. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  5. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors

    International Nuclear Information System (INIS)

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  6. Development of a New Monte Carlo reactor physics code

    OpenAIRE

    Leppänen, Jaakko

    2007-01-01

    Monte Carlo neutron transport codes are widely used in various reactor physics applications, traditionally related to criticality safety analyses, radiation shielding problems, detector modelling and validation of deterministic transport codes. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to so...

  7. The MCNPX Monte Carlo Radiation Transport Code

    International Nuclear Information System (INIS)

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4c and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics, particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development

  8. THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE

    Energy Technology Data Exchange (ETDEWEB)

    WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory

    2007-01-10

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.

  9. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  10. Development of a New Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Monte Carlo neutron transport codes are widely used in various reactor physics applications, traditionally related to criticality safety analyses, radiation shielding problems, detector modelling and validation of deterministic transport codes. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to some extent. The importance of Monte Carlo calculation is likely to increase in the future, along with the development in computer capacities and parallel calculation. An interesting near-future application for the Monte Carlo method is the generation of input parameters for deterministic reactor simulator codes. These codes are used in coupled LWR full-core analyses and typically based on few-group nodal diffusion methods. The input data consists of homogenised few-group constants, presently generated using deterministic lattice transport codes. The task is becoming increasingly challenging, along with the development in nuclear technology. Calculations involving high-burnup fuels, advanced MOX technology and next-generation reactor systems are likely to cause problems in the future, if code development cannot keep up with the applications. A potential solution is the use of Monte Carlo based lattice transport codes, which brings all the advantages of the calculation method. So far there has been only a handful of studies on group constant generation using the Monte Carlo method, although the interest has clearly increased during the past few years. The homogenisation of reaction cross sections is simple and straightforward, and it can be carried out using any Monte Carlo code. Some of the parameters, however, require the use of special techniques that are usually not available in general-purpose codes. The main problem is the calculation of neutron diffusion coefficients, which

  11. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes; Calculos de dosis para un sistema Mammosite simplificado con los codigos de simulacion Monte Carlo PENELOPE y MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: elrc@nuclear.inin.mx

    2007-07-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  12. A validation report for the KALIMER core design computing system by the Monte Carlo transport theory code

    International Nuclear Information System (INIS)

    In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy

  13. A semianalytic Monte Carlo code for modelling LIDAR measurements

    Science.gov (United States)

    Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.

  14. Coupling of system thermal–hydraulics and Monte-Carlo code: Convergence criteria and quantification of correlation between statistical uncertainty and coupled error

    International Nuclear Information System (INIS)

    Highlights: • Coupling of Monte Carlo code Serpent and thermal–hydraulics code RELAP5. • A convergence criterion is developed based on the statistical uncertainty of power. • Correlation between MC statistical uncertainty and coupled error is quantified. • Both UO2 and MOX single assembly models are used in the coupled simulation. • Validation of coupling results with a multi-group transport code DeCART. - Abstract: Coupled multi-physics approach plays an important role in improving computational accuracy. Compared with deterministic neutronics codes, Monte Carlo codes have the advantage of a higher resolution level. In the present paper, a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, Serpent, is coupled with a thermal–hydraulics safety analysis code, RELAP5. The coupled Serpent/RELAP5 code capability is demonstrated by the improved axial power distribution of UO2 and MOX single assembly models, based on the OECD-NEA/NRC PWR MOX/UO2 Core Transient Benchmark. Comparisons of calculation results using the coupled code with those from the deterministic methods, specifically heterogeneous multi-group transport code DeCART, show that the coupling produces more precise results. A new convergence criterion for the coupled simulation is developed based on the statistical uncertainty in power distribution in the Monte Carlo code, rather than ad-hoc criteria used in previous research. The new convergence criterion is shown to be more rigorous, equally convenient to use but requiring a few more coupling steps to converge. Finally, the influence of Monte Carlo statistical uncertainty on the coupled error of power and thermal–hydraulics parameters is quantified. The results are presented such that they can be used to find the statistical uncertainty to use in Monte Carlo in order to achieve a desired precision in coupled simulation

  15. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    CERN Document Server

    Lomax, O

    2016-01-01

    We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  16. Parallel implementation of the Monte Carlo transport code EGS4 on the hypercube

    International Nuclear Information System (INIS)

    Monte Carlo transport codes are commonly used in the study of particle interactions. The CALOR89 code system is a combination of several Monte Carlo transport and analysis programs. In order to produce good results, a typical Monte Carlo run will have to produce many particle histories. On a single processor computer, the transport calculation can take a huge amount of time. However, if the transport of particles were divided among several processors in a multiprocessor machine, the time can be drastically reduced

  17. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    International Nuclear Information System (INIS)

    Proton interaction with an exposed object material needs to be modeled with account for three basic processes: electromagnetic stopping of protons in matter, multiple coulomb scattering and nuclear interactions. Just the last type of processes is the topic of this paper. Monte Carlo codes are often used to simulate high-energy particle interaction with matter. However, nuclear interaction models implemented in these codes are rather extensive and their use in treatment planning systems requires huge computational resources. We have selected the IThMC code for its ability to reproduce experiments which measure the distribution of the projected ranges of nuclear secondary particles generated by proton beams in a multi-layer Faraday cup. The multi-layer Faraday cup detectors measure charge rather than dose and allow distinguishing between electromagnetic and nuclear interactions. The event generator used in the IThMC code is faster, but less accurate than any other used in testing. Our model of nuclear reactions demonstrates quite good agreement with experiment in the context of their effect on the Bragg peak in therapeutic applications

  18. Use of Serpent Monte-Carlo code for development of 3D full-core models of Gen-IV fast spectrum reactors and preparation of safety parameters/cross-section data for transient analysis with FAST code system

    International Nuclear Information System (INIS)

    Current work presents a new methodology which uses Serpent Monte-Carlo (MC) code for generating multi-group beginning-of-life (BOL) cross section (XS) database file that is compatible with PARCS 3D reactor core simulator and allows simulation of transients with the FAST code system. The applicability of the methodology was tested on European Sodium-cooled Fast Reactor (ESFR) design with an oxide fuel proposed by CEA (France). The k-effective, power peaking factors and safety parameters (such as Doppler constant, coolant density coefficient, fuel axial expansion coefficient, diagrid expansion coefficients and control rod worth) calculated by PARCS/TRACE were compared with the results of the Serpent MC code. The comparison indicates overall reasonable agreement between conceptually different (deterministic and stochastic) codes. The new development makes it in principle possible to use the Serpent MC code for cross section generation for the PARCS code to perform transient analyses for fast reactors. The advantages and limitations of this methodology are discussed in the paper. (author)

  19. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  20. Proton therapy Monte Carlo SRNA-VOX code

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2012-01-01

    Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.

  1. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  2. Vectorization of continuous energy Monte Carlo code VIM

    International Nuclear Information System (INIS)

    VIM is a continuous energy Monte Carlo code for criticality calculation. The random walk control system which uses combinatorial geometry system has been vectorized on FACOM VP-100. Vectorization has been done by the event bank method which controls simultaneous multiple particle's random walks, since behavior of neutron is independent. In vectorization of VIM code, we have two problems. One is a large overhead introduced by program modifications for vectorization. Another is a lowering of vector processing efficiency, since the vector length decreases with time according to the absorption and leakage of neutron and cut off of neutron for variance reduction. The average vector length during the random walks has been kept long by utilizing cross section library of single energy band and by reducing the number of the event banks. The performance ratio of vectorized version to the original one is 1.39 for the simple geometry and 1.13 for the complex geometry. (author)

  3. Fast code for Monte Carlo simulations

    International Nuclear Information System (INIS)

    A computer code to generate the dynamic evolution of the Ising model on a square lattice, following the Metropolis algorithm is presented. The computer time consumption is reduced by a factor of 8 when one compares our code with traditional multiple spin codes. The memory allocation size is also reduced by a factor of 4. The code is easily generalizable for other lattices and models. (author)

  4. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  5. MCNP-POLIMI v1.0, Monte Carlo N-Particle Transport Code System To Simulate Time-Analysis Quantities

    International Nuclear Information System (INIS)

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. Based on the Los Alamos National Laboratory code MCNP4C (formerly distributed as CCC-700), MCNP-PoliMi was developed to simulate time-analysis quantities. In particular, the code includes the correlation between neutron interaction and the corresponding photon production. Conversely to the technique adopted by standard MCNP, MCNP PoliMi samples secondary photons according to the neutron collision type. A post-processing code, i.e. the Matlab script 'postmain', is included and can be tailored to model specific detector characteristics. These features make MCNP-PoliMi a versatile tool to simulate particle interactions and detection processes. 2 - Methods: MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV - 1 GeV for photons and electrons. The MCNP-PoliMi code was developed to simulate each neutron-nucleus interaction as closely as possible. In particular, neutron interaction and

  6. MOx benchmark calculations by deterministic and Monte Carlo codes

    International Nuclear Information System (INIS)

    Highlights: ► MOx based depletion calculation. ► Methodology to create continuous energy pseudo cross section for lump of minor fission products. ► Mass inventory comparison between deterministic and Monte Carlo codes. ► Higher deviation was found for several isotopes. - Abstract: A depletion calculation benchmark devoted to MOx fuel is an ongoing objective of the OECD/NEA WPRS following the study of depletion calculation concerning UOx fuels. The objective of the proposed benchmark is to compare existing depletion calculations obtained with various codes and data libraries applied to fuel and back-end cycle configurations. In the present work the deterministic code NEWT/ORIGEN-S of the SCALE6 codes package and the Monte Carlo based code MONTEBURNS2.0 were used to calculate the masses of inventory isotopes. The methodology to apply the MONTEBURNS2.0 to this benchmark is also presented. Then the results from both code were compared.

  7. A New Monte Carlo Neutron Transport Code at UNIST

    International Nuclear Information System (INIS)

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  8. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  9. Benchmarking Monte Carlo codes for criticality safety using subcritical measurements

    International Nuclear Information System (INIS)

    Monte Carlo codes that are used for criticality safety evaluations are typically validated using critical experiments in which the neutron multiplication factor is unity. However, the conditions for most fissile material operations do not coincide to those of the critical experiments. This paper demonstrates that Monte Carlo methods and nuclear data can be validated using subcritical measurements whose conditions may coincide more closely to actual configurations of fissile material. (orig.)

  10. Design of shielding of LILW containers by Monte Carlo codes

    International Nuclear Information System (INIS)

    Accurate prediction of dose rates from containers with radioactive waste is becoming more important regarding more rigorous regulative in this area. The usual approach to the problem consists in combining numerical and measuring methods. In this paper a Monte Carlo calculations were used for calculating doses from a standard 200 liter drum which contains the intermediate level radioactive waste. Two different Monte Carlo codes were applied and compared, for the same combination of parameters. (author)

  11. MCNP, a general Monte Carlo code for neutron and photon transport: a summary

    International Nuclear Information System (INIS)

    The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces

  12. Progress on burnup calculation methods coupling Monte Carlo and depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, Francisco [Comision Nacional de Energia Atomica, San Carlos de Bariloche, RN (Argentina). Centro Atomico Bariloche]. E-mail: lesinki@cab.cnea.gob.ar

    2005-07-01

    Several methods of burnup calculations coupling Monte Carlo and depletion codes that were investigated and applied for the author last years are described. here. Some benchmark results and future possibilities are analyzed also. The methods are: depletion calculations at cell level with WIMS or other cell codes, and use of the resulting concentrations of fission products, poisons and actinides on Monte Carlo calculation for fixed burnup distributions obtained from diffusion codes; same as the first but using a method o coupling Monte Carlo (MCNP) and a depletion code (ORIGEN) at a cell level for obtaining the concentrations of nuclides, to be used on full reactor calculation with Monte Carlo code; and full calculation of the system with Monte Carlo and depletion codes, on several steps. All these methods were used for different problems for research reactors and some comparisons with experimental results of regular lattices were performed. On this work, a resume of all these works is presented and discussion of advantages and problems found are included. Also, a brief description of the methods adopted and MCQ system for coupling MCNP and ORIGEN codes is included. (author)

  13. Evaluation of integral quantities in an accelerator driven system using different nuclear models implemented in the MCNPX Monte Carlo transport code

    International Nuclear Information System (INIS)

    Highlights: • We investigated the main quantities determining ADS performance. • We calculated ADS performance such as neutron yield, neutron leakage spectra, heating and neutron and proton spectra in the target and in the beam window. • We used the MCNPX-2.7.0 Monte Carlo code for three-dimensional calculations. - Abstract: The MCNPX code offers options based on physics packages; the Bertini, ISABEL, INCL4 intra-nuclear models, and Dresner, ABLA evaporation–fission models and CEM2k cascade-exciton model. This study analyzes the main quantities determining ADS performance, such as neutron yield, neutron leakage spectra, heating and neutron and proton spectra in the target and in the beam window calculated by the MCNPX-2.5.0 Monte Carlo transport code, which is a combination of LAHET and MCNP codes. The results obtained by simulating different models cited above and implemented in MCNPX are compared with each other. The investigated system is composed of a natural lead cylindrical target and stainless steel (HT9) beam window. The target has been optimized to produce maximum number of neutrons with a radius of 20 cm and 70 cm of height. The target is bombarded with a high intensity linear accelerator by a 1 GeV, 1 mA proton beam. The protons are assumed uniformly distributed across the beam of radius 3 cm, and entering the target through a hole of 5.3 cm radius. The proton beam has an outer radius of 5.3 cm and an inner radius of 5.0 cm. The maximum value of the neutron flux in the target is observed on the axis ∼10 cm below the beam window, where the maximum difference between 7 different models is ∼15%. The total neutron leakage of the target calculated with the Bertini/ABLA is 1.83 × 1017 n/s, and is about 14% higher than the value calculated by the INCL4/Dresner (1.60 × 1017 n/s). Bertini/ABLA calculates top, bottom and side neutron leakage fractions as 20%, 2.3%, 77.6% of the total leakage, respectively, whereas, the calculated fractions are 18

  14. Current status of the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    PSG is a new Monte Carlo neutron transport code, developed at the Technical Research Centre of Finland (VTT). The code is mainly intended for fuel assembly-level reactor physics calculations, such as group constant generation for deterministic reactor simulator codes. This paper presents the current status of the project and the essential capabilities of the code. Although the main application of PSG is in lattice calculations, the geometry is not restricted in two dimensions. This paper presents the validation of PSG against the experimental results of the three-dimensional MOX fuelled VENUS-2 reactor dosimetry benchmark. (authors)

  15. Vectorization techniques for neutron transport Monte Carlo codes

    International Nuclear Information System (INIS)

    Four Monte Carlo codes, KENO IV, MORSE-DD, MCNP and VIM, have been vectorized already at JAERI Computing Center aiming at an increase in clculation performance, and speed-up ratios of vectorized codes to the original ones were found to be low values between 1.3 and 1.5. In this report the vectorization processes for these four codes are reviewed comprehensively, and methods of analysis for vectorization, modification of control structures of codes and debugging techniques are discussed. The reason for low speed-up ratios is also discussed. (author)

  16. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.)

  17. A Monte Carlo code for ion beam therapy

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  18. The Monte Carlo code TRAMO - Capabilities and instructions for application

    International Nuclear Information System (INIS)

    The report is intended for readers familiar with the fundamentals of the Monte Carlo method. Those readers might be interested in learning about successful generalisations as well as new ideas for curbing the statistical errors involved. Another intention however is to explain the significant basic features of the multigroup Monte Carlo code TRAMO, including the required input, so that readers will be able to performing the required adjustments to the specific calculation technique and develop their own tools for performing their specific calculations. An indispensable code needed for such TRAMO applications is the TRAWEI Monte Carlo code which calculates he required weightings for applications of the variance reducing Weight Window Method; other codes required are those for generating the neutron cross-section data and the group data. The TRAMO code calculates, with given source distribution of neutrons in multigroup approximation, multigroup flux data, integrated group flux data, and dose values for given partial volumes and surfaces. There are further code versions for calculation of neutron and gamma fluxes, or criticality data, but these are not considered in the report. (orig./CB)

  19. Taylor series development in the Monte Carlo code Tripoli-4

    Science.gov (United States)

    Mazzolo, Alain; Zoia, Andrea; Martin, Brunella

    2014-06-01

    Perturbation methods for one or several variables based on the Taylor series development up to the second order is presented for the collision estimator in the framework of the Monte Carlo code Tripoli-4. Comparisons with the correlated sampling method implemented in Tripoli-4 demonstrate the need of including the cross derivatives in the development.

  20. Monte Carlo solver for UWB1 nuclear fuel depletion code

    International Nuclear Information System (INIS)

    Highlights: • A new Monte Carlo solver was developed in order to speed-up depletion calculations. • For LWR model, UWB1 Monte Carlo solver is on average 10 times faster than MCNP6. • The UWB1 code will allow faster calculation analysis of BA parameters in fuel design. - Abstract: Recent nuclear reactor burnable absorber research tries to introduce new materials in the nuclear fuel. As a part of this effort, a fast computational tool is being developed for the advanced nuclear fuel. The first version of the newly developed UWB1 fast nuclear fuel depletion code significantly reduced calculation time by omitting the solution step for the Boltzmann transport equation. However, estimation of neutron multiplication factor during depletion was not sufficiently calculated. Therefore, at least one transport calculation for fuel depletion is necessary. This paper presents a new Monte Carlo solver that is implemented into the UWB1 code. The UWB1 Monte Carlo solver calculates neutron multiplication factor and neutron flux in the fuel for collapsed cross sections. Accuracy of the solver is supported by using current nuclear data stored in the ENDF/B-VII.1 library. Speed of the solver is the product of development focusing on minimization of CPU utilization at the expense of RAM demands. The UWB1 Monte Carlo solver is approximately 14 times faster than the MCNP6 reference code when one transport equation solution within fuel depletion is compared. Another speed-up can be achieved by employing advanced depletion scheme in the coupled transport and burnup equations. The resulting faster code will be used in optimization studies for ideal burnable absorber material selection where many various materials and concentrations will be evaluated

  1. Acceleration of a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  2. MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2

    International Nuclear Information System (INIS)

    This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The first chapter is a primer for the novice user. The second chapter describes the mathematics, data, physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be exhaustive - details of the particular techniques and of the Monte Carlo method itself will have to be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and the fifth chapter explains the output. The appendices show how to use MCNP on particular computer systems at the Los Alamos National Laboratory and also give details about some of the code internals that those who wish to modify the code may find useful. 57 refs

  3. Study on random number generator in Monte Carlo code

    International Nuclear Information System (INIS)

    The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)

  4. Development of a computer code using the EGS4 Monte Carlo simulation system to evaluate the response of a NaI(Tl) detector to photons with energies below 300 keV

    International Nuclear Information System (INIS)

    In this paper, the EGS4 Monte Carlo simulation system was used to develop a computer code for a study of the response of a NaI(Tl) detector exposed to γ-rays with energies below 300 keV. This study comprised registration of the spectra of the incident rays and determination of the photo peaks. In addition, the probability of the K X-ray escape from a NaI(Tl) crystal and its dependence on the detector shape and volume were considered. The results of the Monte Carlo simulation are in good agreement with the experimental data (the estimated discrepancy is below 5%). This demonstrates a high efficiency of the used simulation code in quantifying the physical parameters that are difficult to evaluate by experimental methods

  5. Burnup calculations of TR-2 Research Reactor with Monteburns Monte Carlo Code

    International Nuclear Information System (INIS)

    Full text: In this study, some neutronic calculations of first and second core cycles of 5 MW pool type TR-2 Research Reactor have been performed using Multi-Step Monte Carlo Burnup Code System MONTEBURNS and the results were compared with the values of experiments and other codes. Time dependent keff distribution and burnup ratios belong to first and second core cycles of TR-2 Research Reactor were compared and quite good consistence in the results were observed. After modeling the first and second core cycles of TR-2 with MCNP5 Monte Carlo code, MCNP5 used in MONTEBURNS code has been parallelized in 8 HP ProLiant BL680C G5 systems with 4 quad-core Intel Xeon E7330 CPU, utilizing the MPI parallel protocol and simulations were performed on the 128 cores Linux parallel computing machine system. The computation time was reduced by parallelization of MONTEBURNS which uses MCNP in many steps. (authors)

  6. MCAM 5: an advanced interface program for multiple Monte Carlo Codes

    International Nuclear Information System (INIS)

    The Automatic Modeling Program for Neutronics and Radiation Transport Simulation (MCAM) developed in China, is an advanced interface program between CAD (Computer Aided Design) systems and Monte Carlo (MC) codes. It can significantly reduce the manpower and enhance reliability for constructing MC codes input of complex systems. The latest version MCAM 4.8 was a mature and efficient version which was benchmarked with ITER benchmark model and has been used by hundreds of institutes in more than 40 countries all over the world. It can deal with MCNP and TRIPOLI models. The main function of MCAM is to convert geometries in CAD systems to geometries in MC codes input files. The MCAM version 5.2 is going to be released with added capabilities to support SuperMC, Geant4 and FLUKA Monte Carlo codes

  7. TRIPOLI-3: a neutron/photon Monte Carlo transport code

    International Nuclear Information System (INIS)

    The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)

  8. Burnup calculation methodology in the serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  9. On the inner workings of Monte Carlo codes

    OpenAIRE

    Dubbeldam, D.; Torres Knoop, A.; Walton, K.S.

    2013-01-01

    We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal-organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC, configurational-bias Monte Carlo and continuous fractional MC. The latter technique overcomes the problem of low insertion probabilities in open systems. Other modern methods are (hyper-)parallel...

  10. Proton therapy Monte Carlo SRNA-VOX code

    OpenAIRE

    Ilić Radovan D.

    2012-01-01

    The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube). Some of the possible applications of the SRNA program are:...

  11. Full-core pin-power calculations using Monte Carlo codes

    International Nuclear Information System (INIS)

    Pin wise calculations of core power distribution have been performed for a criticality mock up installation that models a WWER-1000 reactor. Two Monte Carlo codes have been applied for solving of this problem: the MCNP4B code and the KENO-VI code from the SCALE 4.4 system. The codes use different kinds of neutron cross section data: pointwise continuous-energy ENDF/B-VI data and multigroup ENDF/B-V data. Comparisons of calculated results show that the MCNP4B and KENO-VI results are in good agreement. (authors)

  12. Verification of Monte Carlo transport codes by activation experiments

    International Nuclear Information System (INIS)

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

  13. Longitudinal development of extensive air showers: hybrid code SENECA and full Monte Carlo

    CERN Document Server

    Ortiz, J A; De Souza, V; Ortiz, Jeferson A.; Tanco, Gustavo Medina

    2004-01-01

    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air hower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower devel...

  14. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    International Nuclear Information System (INIS)

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system

  15. Nanodosimetric verification in proton therapy: Monte Carlo Codes Comparison

    International Nuclear Information System (INIS)

    Full text: Nanodosimetry strives to develop a novel dosimetry concept suitable for advanced modalities of cancer radiotherapy, such as proton therapy. This project aims to evaluate the plausibility of the physical models implemented in the Geant4 Very Low Energy (Geant4-DNA) extensions by comparing nanodosimetric quantities calculated with Geant4-DNA and the PTB Monte Carlo track structure code. Nanodosimetric track structure parameters were calculated for cylindrical targets representing DNA and nucleosome segments and converted into the probability of producing a DSB using the model proposed by Garty et al. [1]. Monoenergetic protons and electrons of energies typical for 6-electron spectra were considered as primary particles. Good agreement was found between the two codes for electrons of energies above 200 eV. Below this energy Geant4-DNA produced slightly higher numbers of ionisations in the sensitive volumes and higher probabilities for DSB formation. For protons, Geant4-DNA also gave higher numbers of ionisations and DSB probabilities, particularly in the low energy range, while a satisfactory agreement was found for energies higher than I MeV. Comparing two codes can be useful as any observed divergence in results between the two codes provides valuable information as to where further consideration of the underlying physical models used in each code may be required. Consistently it was seen that the largest difference between the codes was in the low energy ranges for each particle type. (author)

  16. Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.

    Science.gov (United States)

    Smith, M F

    1993-10-01

    A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288

  17. Adjoint Monte Carlo techniques and codes for organ dose calculations

    International Nuclear Information System (INIS)

    Adjoint Monte Carlo simulations can be effectively used for the estimation of doses in small targets when the sources are extended in large volumes or surfaces. The main features of two computer codes for calculating doses at free points or in organs of an anthropomorphic phantom are described. In the first program (REBEL-3) natural gamma-emitting sources are contained in the walls of a dwelling room; in the second one (POKER-CAMP) the user can specify arbitrary gamma sources with different spatial distributions in the environment: in (or on the surface of) the ground and in the air. 3 figures

  18. ALEPH 1.1.2: A Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    In the last 40 years, Monte Carlo particle transport has been applied to a multitude of problems such as shielding and medical applications, to various types of nuclear reactors, . . . The success of the Monte Carlo method is mainly based on its broad application area, on its ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, complex interaction laws, detailed energy-angle correlations, multi-particle physics, . . . ), on its capability of modeling geometries from simple 1D to complex 3D, . . . There is also a current trend in Monte Carlo applications toward high detail 3D calculations (for instance voxel-based medical applications), something for which deterministic codes are neither suited nor performant as to computational time and precision. Apart from all these fields where Monte Carlo particle transport has been applied successfully, there is at least one area where Monte Carlo has had limited success, namely burn-up and activation calculations where the time parameter is added to the problem. The concept of Monte Carlo burn-up consists of coupling a Monte Carlo code to a burn-up module to improve the accuracy of depletion and activation calculations. For every time step the Monte Carlo code will provide reaction rates to the burn-up module which will return new material compositions to the Monte Carlo code. So if static Monte Carlo particle transport is slow, then Monte Carlo particle transport with burn-up will be even slower as calculations have to be performed for every time step in the problem. The computational issues to perform accurate Monte Carlo calculations are however continuously reduced due to improvements made in the basic Monte Carlo algorithms, due to the development of variance reduction techniques and due to developments in computer architecture (more powerful processors, the so-called brute force approach through parallel processors and networked systems

  19. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    MCNP is a very general Monte Carlo neutron photon transport code system with approximately 250 person years of Group X-6 code development invested. It is extremely portable, user-oriented, and a true production code as it is used about 60 Cray hours per month by about 150 Los Alamos users. It has as its data base the best cross-section evaluations available. MCNP contains state-of-the-art traditional and adaptive Monte Carlo techniques to be applied to the solution of an ever-increasing number of problems. Excellent user-oriented documentation is available for all facets of the MCNP code system. Many useful and important variants of MCNP exist for special applications. The Radiation Shielding Information Center (RSIC) in Oak Ridge, Tennessee is the contact point for worldwide MCNP code and documentation distribution. A much improved MCNP Version 3A will be available in the fall of 1985, along with new and improved documentation. Future directions in MCNP development will change the meaning of MCNP to Monte Carlo N Particle where N particle varieties will be transported

  20. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files

  1. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    1998-11-22

    TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.

  2. Parallel computing by Monte Carlo codes MVP/GMVP

    International Nuclear Information System (INIS)

    General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)

  3. Simulating fast transients with fuel behavior feedback using the Serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    Simulating transients with reactivity feedback effects using Monte Carlo neutron transport codes can be used for validating deterministic transient codes or estimating for example the total deposited energy in a fuel rod following a known reactivity insertion in the system. Recent increases in computational power as well as developments in calculation methodology makes it possible to obtain a coupled solution for several aspects of the multi-physics problem in a single calculation. This paper describes the different methods implemented in Serpent 2 Monte Carlo code that enable it to model fast transients with fuel behavior feedback. The capability is demonstrated in a prompt critical pin-cell case, where the transient is shut down by the negative reactivity from rising fuel temperature. (author)

  4. A comparison between the Monte Carlo radiation transport codes MCNP and MCBEND

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Hidenori; Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)

    2001-01-01

    In Japan, almost of all radiation analysts are using the MCNP code and MVP code on there studies. But these codes have not had automatic variance reduction. MCBEND code made by UKAEA have automatic variance reduction. And, MCBEND code is user friendly more than other Monte Carlo Radiation Transport Codes. Our company was first introduced MCBEND code in Japan. Therefore, we compared with MCBEND code and MCNP code about functions and production capacity. (author)

  5. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    Science.gov (United States)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  6. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  7. Criticality qualification of a new Monte Carlo code for reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Catsaros, N. [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece); Gaveau, B. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Jaekel, M. [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Maillard, J. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); CNRS-IDRIS, Bt 506, BP167, 91403 Orsay (France); CNRS-IN2P3, 3 rue Michel Ange, 75794 Paris (France); Maurel, G. [Faculte de Medecine, Universite Paris VI, 27 rue de Chaligny, 75012 Paris (France); MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Savva, P., E-mail: savvapan@ipta.demokritos.g [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece); Silva, J. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Varvayanni, M.; Zisis, Th. [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece)

    2009-11-15

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  8. Monte Carlo simulation of medical linear accelerator using primo code

    International Nuclear Information System (INIS)

    The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)

  9. The development of depletion program coupled with Monte Carlo computer code

    International Nuclear Information System (INIS)

    The paper presents the development of depletion code for light water reactor coupled with MCNP5 code called the MCDL code (Monte Carlo Depletion for Light Water Reactor). The first order differential depletion system equations of 21 actinide isotopes and 50 fission product isotopes are solved by the Radau IIA Implicit Runge Kutta (IRK) method after receiving neutron flux, reaction rates in one group energy and multiplication factors for fuel pin, fuel assembly or whole reactor core from the calculation results of the MCNP5 code. The calculation for beryllium poisoning and cooling time is also integrated in the code. To verify and validate the MCDL code, high enriched uranium (HEU) and low enriched uranium (LEU) fuel assemblies VVR-M2 types and 89 fresh HEU fuel assemblies, 92 LEU fresh fuel assemblies cores of the Dalat Nuclear Research Reactor (DNRR) have been investigated and compared with the results calculated by the SRAC code and the MCNPREBUS linkage system code. The results show good agreement between calculated data of the MCDL code and reference codes. (author)

  10. Verification of Monte Carlo transport codes FLUKA, Mars and Shield

    International Nuclear Information System (INIS)

    The present study is a continuation of the project 'Verification of Monte Carlo Transport Codes' which is running at GSI as a part of activation studies of FAIR relevant materials. It includes two parts: verification of stopping modules of FLUKA, MARS and SHIELD-A (with ATIMA stopping module) and verification of their isotope production modules. The first part is based on the measurements of energy deposition function of uranium ions in copper and stainless steel. The irradiation was done at 500 MeV/u and 950 MeV/u, the experiment was held at GSI from September 2004 until May 2005. The second part is based on gamma-activation studies of an aluminium target irradiated with an argon beam of 500 MeV/u in August 2009. Experimental depth profiling of the residual activity of the target is compared with the simulations. (authors)

  11. Tokamak Systems Code

    International Nuclear Information System (INIS)

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  12. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    Science.gov (United States)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  13. The Physical Models and Statistical Procedures Used in the RACER Monte Carlo Code

    International Nuclear Information System (INIS)

    This report describes the MCV (Monte Carlo - Vectorized)Monte Carlo neutron transport code [Brown, 1982, 1983; Brown and Mendelson, 1984a]. MCV is a module in the RACER system of codes that is used for Monte Carlo reactor physics analysis. The MCV module contains all of the neutron transport and statistical analysis functions of the system, while other modules perform various input-related functions such as geometry description, material assignment, output edit specification, etc. MCV is very closely related to the 05R neutron Monte Carlo code [Irving et al., 1965] developed at Oak Ridge National Laboratory. 05R evolved into the 05RR module of the STEMB system, which was the forerunner of the RACER system. Much of the overall logic and physics treatment of 05RR has been retained and, indeed, the original verification of MCV was achieved through comparison with STEMB results. MCV has been designed to be very computationally efficient [Brown, 1981, Brown and Martin, 1984b; Brown, 1986]. It was originally programmed to make use of vector-computing architectures such as those of the CDC Cyber- 205 and Cray X-MP. MCV was the first full-scale production Monte Carlo code to effectively utilize vector-processing capabilities. Subsequently, MCV was modified to utilize both distributed-memory [Sutton and Brown, 1994] and shared memory parallelism. The code has been compiled and run on platforms ranging from 32-bit UNIX workstations to clusters of 64-bit vector-parallel supercomputers. The computational efficiency of the code allows the analyst to perform calculations using many more neutron histories than is practical with most other Monte Carlo codes, thereby yielding results with smaller statistical uncertainties. MCV also utilizes variance reduction techniques such as survival biasing, splitting, and rouletting to permit additional reduction in uncertainties. While a general-purpose neutron Monte Carlo code, MCV is optimized for reactor physics calculations. It has the

  14. A Monte Carlo track structure code for low energy protons

    CERN Document Server

    Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K

    2002-01-01

    A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...

  15. Monte Carlo simulation in UWB1 depletion code

    International Nuclear Information System (INIS)

    UWB1 depletion code is being developed as a fast computational tool for the study of burnable absorbers in the University of West Bohemia in Pilsen, Czech Republic. In order to achieve higher precision, the newly developed code was extended by adding a Monte Carlo solver. Research of fuel depletion aims at development and introduction of advanced types of burnable absorbers in nuclear fuel. Burnable absorbers (BA) allow the compensation of the initial reactivity excess of nuclear fuel and result in an increase of fuel cycles lengths with higher enriched fuels. The paper describes the depletion calculations of VVER nuclear fuel doped with rare earth oxides as burnable absorber based on performed depletion calculations, rare earth oxides are divided into two equally numerous groups, suitable burnable absorbers and poisoning absorbers. According to residual poisoning and BA reactivity worth, rare earth oxides marked as suitable burnable absorbers are Nd, Sm, Eu, Gd, Dy, Ho and Er, while poisoning absorbers include Sc, La, Lu, Y, Ce, Pr and Tb. The presentation slides have been added to the article

  16. The Monte Carlo code MCSHAPE: Main features and recent developments

    International Nuclear Information System (INIS)

    MCSHAPE is a general purpose Monte Carlo code developed at the University of Bologna to simulate the diffusion of X- and gamma-ray photons with the special feature of describing the full evolution of the photon polarization state along the interactions with the target. The prevailing photon–matter interactions in the energy range 1–1000 keV, Compton and Rayleigh scattering and photoelectric effect, are considered. All the parameters that characterize the photon transport can be suitably defined: (i) the source intensity, (ii) its full polarization state as a function of energy, (iii) the number of collisions, and (iv) the energy interval and resolution of the simulation. It is possible to visualize the results for selected groups of interactions. MCSHAPE simulates the propagation in heterogeneous media of polarized photons (from synchrotron sources) or of partially polarized sources (from X-ray tubes). In this paper, the main features of MCSHAPE are illustrated with some examples and a comparison with experimental data. - Highlights: • MCSHAPE is an MC code for the simulation of the diffusion of photons in the matter. • It includes the proper description of the evolution of the photon polarization state. • The polarization state is described by means of the Stokes vector, I, Q, U, V. • MCSHAPE includes the computation of the detector influence in the measured spectrum. • MCSHAPE features are illustrated with examples and comparison with experiments

  17. Development and verification of Monte Carlo burnup calculation system

    International Nuclear Information System (INIS)

    Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)

  18. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    OpenAIRE

    H A Nedaie; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous...

  19. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  20. Review of the Monte Carlo and deterministic codes in radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Modelling a physical system can be carried out either stochastically or deterministically. An example of the former method is the Monte Carlo technique, in which statistically approximate methods are applied to exact models. No transport equation is solved as individual particles are simulated and some specific aspect (tally) of their average behaviour is recorded. The average behaviour of the physical system is then inferred using the central limit theorem. In contrast, deterministic codes use mathematically exact methods that are applied to approximate models to solve the transport equation for the average particle behaviour. The physical system is subdivided in boxes in the phase-space system and particles are followed from one box to the next. The smaller the boxes the better the approximations become. Although the Monte Carlo method has been used for centuries, its more recent manifestation has really emerged from the Manhattan project of the Word War II. Its invention is thought to be mainly due to Metropolis, Ulah (through his interest in poker), Fermi, von Neuman and Richtmeyer. Over the last 20 years or so, the Monte Carlo technique has become a powerful tool in radiation transport. This is due to users taking full advantage of richer cross section data, more powerful computers and Monte Carlo techniques for radiation transport, with high quality physics and better known source spectra. This method is a common sense approach to radiation transport and its success and popularity is quite often also due to necessity, because measurements are not always possible or affordable. In the Monte Carlo method, which is inherently realistic because nature is statistical, a more detailed physics is made possible by isolation of events while rather elaborate geometries can be modelled. Provided that the physics is correct, a simulation is exactly analogous to an experimenter counting particles. In contrast to the deterministic approach, however, a disadvantage of the

  1. Method of tallying adjoint fluence and calculating kinetics parameters in Monte Carlo codes

    International Nuclear Information System (INIS)

    A method of using iterated fission probability to estimate the adjoint fluence during particles simulation, and using it as the weighting function to calculate kinetics parameters βeff and A in Monte Carlo codes, was introduced in this paper. Implements of this method in continuous energy Monte Carlo code MCNP and multi-group Monte Carlo code MCMG are both elaborated. Verification results show that, with regardless additional computing cost, using this method, the adjoint fluence accounted by MCMG matches well with the result computed by ANISN, and the kinetics parameters calculated by MCNP agree very well with benchmarks. This method is proved to be reliable, and the function of calculating kinetics parameters in Monte Carlo codes is carried out effectively, which could be the basement for Monte Carlo codes' utility in the analysis of nuclear reactors' transient behavior. (authors)

  2. Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code

    Science.gov (United States)

    He, Tongming Tony

    In IMRT inverse planning, inaccurate dose calculations and limitations in optimization algorithms introduce both systematic and convergence errors to treatment plans. The goal of this work is to practically implement a Monte Carlo based inverse planning model for clinical IMRT. The intention is to minimize both types of error in inverse planning and obtain treatment plans with better clinical accuracy than non-Monte Carlo based systems. The strategy is to calculate the dose matrices of small beamlets by using a Monte Carlo based method. Optimization of beamlet intensities is followed based on the calculated dose data using an optimization algorithm that is capable of escape from local minima and prevents possible pre-mature convergence. The MCNP 4B Monte Carlo code is improved to perform fast particle transport and dose tallying in lattice cells by adopting a selective transport and tallying algorithm. Efficient dose matrix calculation for small beamlets is made possible by adopting a scheme that allows concurrent calculation of multiple beamlets of single port. A finite-sized point source (FSPS) beam model is introduced for easy and accurate beam modeling. A DVH based objective function and a parallel platform based algorithm are developed for the optimization of intensities. The calculation accuracy of improved MCNP code and FSPS beam model is validated by dose measurements in phantoms. Agreements better than 1.5% or 0.2 cm have been achieved. Applications of the implemented model to clinical cases of brain, head/neck, lung, spine, pancreas and prostate have demonstrated the feasibility and capability of Monte Carlo based inverse planning for clinical IMRT. Dose distributions of selected treatment plans from a commercial non-Monte Carlo based system are evaluated in comparison with Monte Carlo based calculations. Systematic errors of up to 12% in tumor doses and up to 17% in critical structure doses have been observed. The clinical importance of Monte Carlo based

  3. Dose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    Asghar Mesbahi

    2015-09-01

    Full Text Available Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linear accelerator was simulated, using MCNPX Monte Carlo code, according to manufacturer’s instructions. Three analytical algorithms for dose calculation including full scatter convolution (FSC in TiGRT, along with convolution and superposition in XiO system were evaluated for a small solid liver tumor. This solid tumor with a diameter of 1.8 cm was evaluated in a thorax phantom, and calculations were performed for different field sizes (1×1, 2×2, 3×3 and4×4 cm2. The results obtained in these treatment planning systems were compared with calculations by MC method (regarded as the most reliable method. Results For FSC and convolution algorithm, comparison with MC calculations indicated dose overestimations of up to 120%and 25% inside the lung and tumor, respectively in 1×1 cm2field size, using an 18 MV photon beam. Regarding superposition, a close agreement was seen with MC simulation in all studied field sizes. Conclusion The obtained results showed that FSC and convolution algorithm significantly overestimated doses of the lung and solid tumor; therefore, significant errors could arise in treatment plans of lung region, thus affecting the treatment outcomes. Therefore, use of MC-based methods and super position is recommended for lung treatments, using small fields and beamlets.

  4. Accuracy assessment of a new Monte Carlo based burnup computer code

    International Nuclear Information System (INIS)

    Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.

  5. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  6. MCT: a Monte Carlo code for time-dependent neutron thermalization problems

    International Nuclear Information System (INIS)

    In the Monte Carlo simulation of pulse source experiments, the neutron energy spectrum, spatial distribution and total density may be required for a long time after the pulse. If the assemblies are very small, as often occurs in the cases of interest, sophisticated Monte Carlo techniques must be applied which force neutrons to remain in the system during the time interval investigated. In the MCT code a splitting technique has been applied to neutrons exceeding assigned target times, and we have found that this technique compares very favorably with more usual ones, such as the expected leakage probability, giving large gains in computational time and variance. As an example, satisfactory asymptotic thermal spectra with a neutron attenuation of 10-5 were quickly obtained. (U.S.)

  7. MULTI-KENO: a Monte Carlo code for criticality safety analysis

    International Nuclear Information System (INIS)

    Modifying the Monte Carlo code KENO-IV, the MULTI-KENO code was developed for criticality safety analysis. The following functions were added to the code; (1) to divide a system into many sub-systems named super boxes where the size of box types in each super box can be selected independently, (2) to output graphical view of a system for examining geometrical input data, (3) to solve fixed source problems, (4) to permit intersection of core boundaries and inner geometries, (5) to output ANISN type neutron balance table. With the above function (1), many cases which had to be applied a general geometry option of KENO-IV, became to be treated as box type geometry. In such a case, input data became simpler and required computer time became shorter than those of KENO-IV. This code is now available for the FACOM-M200 computer and the CDC 6600 computer. This report is a computer code manual for MULTI-KENO. (author)

  8. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  9. The calculation of criticality using the three dimensional Monte Carlo particle transport code SPARTAN

    International Nuclear Information System (INIS)

    Two methods of calculating criticality are available in the 3D generalised geometry Monte Carlo particle transport code SPARTAN (Bending and Heffer, 1975). The first is a matrix technique in which the multiplication constant and source distribution of the system under study are calculated from estimates of fission probabilities and the second a method in which the multiplication constant is inferred from estimates of changes in neutron population over a number of neutron generations. Modifications are described which have been made to the way in which these methods are used in SPARTAN in order to improve the efficiency of criticality calculations. (author)

  10. FORTRAN code-evaluation system

    Science.gov (United States)

    Capps, J. D.; Kleir, R.

    1977-01-01

    Automated code evaluation system can be used to detect coding errors and unsound coding practices in any ANSI FORTRAN IV source code before they can cause execution-time malfunctions. System concentrates on acceptable FORTRAN code features which are likely to produce undesirable results.

  11. An EGS4 Monte Carlo user code for radiation therapy planning

    International Nuclear Information System (INIS)

    An EGS4 Monte Carlo user code (the UCRTP code) with voxel geometry has been developed as a prototype of the dose calculation engine for radiation therapy planning. A series of dose calculations for photon beam irradiation to a simplified heterogenous voxel phantom of a lung cancer patient has shown that significant build-up in lung tumor and build-down in surrounding normal lung tissue region exist due to the heterogeneity of the media and small field size. Most of the heterogeneity correction algorithms employed by the current commercial treatment planning systems are not satisfactory enough to account for the build-up/down. Since the commercial systems may significantly underestimate the dose in normal lung tissues, sufficient verification and quality assurance of the radiation therapy planning is needed especially in the lung cancer treatment. (author)

  12. Current status of safety analysis code MARS and uncertainty quantification by Monte-Carlo method

    International Nuclear Information System (INIS)

    MARS (Multi-dimensional Analysis of Reactor Safety) code has been developed since 1997 for a realistic multi-dimensional thermal-hydraulic system analysis of light water reactor transients. The backbones of MARS are the RELAP5/MOD3.2.1.2 and COBRA-TF codes of USNRC. These two codes were consolidated into a single code by integrating the hydrodynamic solution schemes. New multidimensional TH model has been developed and extended to enable integrated coupled TH analysis through code coupling technique, DLL. The motivation for uncertainty quantification of MARS is considered twofold, 1) to provide “best estimate plus uncertainty” analysis for licensing of commercial power reactor with realistic margins, and 2) to provide support to design and/or validation related analysis for research and production reactors. An assessment of the current LBLOCA uncertainty analysis methodology has been done using data from an integral thermal-hydraulic experiment LOFT L2-5. Monte Carlo calculation has been performed and compared with the tolerance level determined by Wilks formula. The calculation has been done within reasonable CPU time on PC cluster system. Monte-Carlo exercise shows that the 95% upper limit value can be obtained well with 95% confidence level by Wilks formula, although we have to endure 5% risk of PCT under-prediction. The result also shows the statistical fluctuation of limit value using Wilks 1st order is as large as PCT uncertainty itself. The main conclusion is that it is desirable to increase the order of Wilks formula to be higher than the second order to get the reliable safety margin of current design feature. (author)

  13. Coupling CFD code with system code and neutron kinetic code

    Energy Technology Data Exchange (ETDEWEB)

    Vyskocil, Ladislav, E-mail: Ladislav.Vyskocil@ujv.cz; Macek, Jiri

    2014-11-15

    Highlights: • Coupling interface between CFD code Fluent and system code Athlet was created. • Athlet code is internally coupled with neutron kinetic code Dyn3D. • Explicit coupling of overlapped computational domains was used. • A coupled system of Athlet/Dyn3D+Fluent codes was successfully tested on a real case. - Abstract: The aim of this work was to develop the coupling interface between CFD code Fluent and system code Athlet internally coupled with neutron kinetic code Dyn3D. The coupling interface is intended for simulation of complex transients such as Main Steam Line Break scenarios, which cannot be modeled separately first by system and neutron kinetic code and then by CFD code, because of the feedback between the codes. In the first part of this article, the coupling method is described. Explicit coupling of overlapped computational domains is used in this work. The second part of the article presents a demonstration simulation performed by the coupled system of Athlet/Dyn3D and Fluent. The “Opening a Steam Dump to the Atmosphere” test carried out at the Temelin NPP (VVER-1000) was simulated by the coupled system. In this simulation, the primary and secondary circuits were modeled by Athlet, mixing in downcomer and lower plenum was simulated by Fluent and heat generation in the core was calculated by Dyn3D. The results of the simulation with Athlet/Dyn3D+Fluent were compared with the experimental data and the results from a calculation performed with Athlet/Dyn3D without Fluent.

  14. Coupling CFD code with system code and neutron kinetic code

    International Nuclear Information System (INIS)

    Highlights: • Coupling interface between CFD code Fluent and system code Athlet was created. • Athlet code is internally coupled with neutron kinetic code Dyn3D. • Explicit coupling of overlapped computational domains was used. • A coupled system of Athlet/Dyn3D+Fluent codes was successfully tested on a real case. - Abstract: The aim of this work was to develop the coupling interface between CFD code Fluent and system code Athlet internally coupled with neutron kinetic code Dyn3D. The coupling interface is intended for simulation of complex transients such as Main Steam Line Break scenarios, which cannot be modeled separately first by system and neutron kinetic code and then by CFD code, because of the feedback between the codes. In the first part of this article, the coupling method is described. Explicit coupling of overlapped computational domains is used in this work. The second part of the article presents a demonstration simulation performed by the coupled system of Athlet/Dyn3D and Fluent. The “Opening a Steam Dump to the Atmosphere” test carried out at the Temelin NPP (VVER-1000) was simulated by the coupled system. In this simulation, the primary and secondary circuits were modeled by Athlet, mixing in downcomer and lower plenum was simulated by Fluent and heat generation in the core was calculated by Dyn3D. The results of the simulation with Athlet/Dyn3D+Fluent were compared with the experimental data and the results from a calculation performed with Athlet/Dyn3D without Fluent

  15. Calibration and simulation of a HPGe well detector using Monte Carlo computer code

    International Nuclear Information System (INIS)

    Monte Carlo methods are often used in simulating physical and mathematical systems. This computer code is a class of computational algorithms that rely on repeated random sampling to compute their results. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm. The Monte Carlo method is used to determine a detector's response curves which are difficult to obtain experimentally. It deals with random numbers for the simulation of the decay conditions and angle of incidence at a given energy value, studying, thus, the random behavior of the radiation, providing response and efficiency curves. The MCNP5 computer code provides means to simulate gamma ray detectors and has been used for this work for the 50keV - 2000 keV energy range. The HPGe well detector was simulated with the MCNP5 computer code and compared with experimental data. The dimensions of both dead layer and the transition layer were determined, and the response curve for a particular geometry was then obtained and compared with the experimental results, in order to verify the detector's simulation. Both results were in very good agreement. (author)

  16. Analysis of the tritium breeding ratio benchmark experiments using the Monte Carlo code TRIPOLI-4

    International Nuclear Information System (INIS)

    Tritium breeding is an essential element of fusion nuclear technology. A tritium breeding ratio greater than unity is necessary for self-sufficient fueling. To simulate the 14 MeV neutron transport in tritium breeding systems from the D-T fusion reaction, the 3D realistic modeling with Monte Carlo code and the point-wise nuclear data are recommended. Continuous-energy TRIPOLI-4 Monte Carlo transport code has been widely used on the radiation shielding, criticality safety, and fission reactor physics. For supporting the ITER TBM (test blanket module) neutronics study with TRIPOLI-4 code, this paper presents the TRIPOLI-4 simulation of TBR (tritium breeding ratio) for six OKTAVIAN spherical assemblies of Osaka University: Li, Li-C, Pb-Li, Pb-Li-C, Be-Li, and Be-Li-C. It also investigates the impact of nuclear data libraries on TBR calculations from ENDF/B-VI.4, ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and FENDL-2.1. In general, TRIPOLI-4 produced satisfactory C/E values. Only beryllium of JEFF-3.1 library introduces higher uncertainties.

  17. Recent developments of JAEA’s Monte Carlo code MVP for reactor physics applications

    International Nuclear Information System (INIS)

    Highlights: • This paper describes the recent development status of the Monte Carlo code MVP. • The basic features and capabilities of MVP are briefly described. • New capabilities useful for reactor analysis are also described. - Abstract: This paper describes the recent development status of a Monte Carlo code MVP developed at Japan Atomic Energy Agency. The basic features and capabilities of MVP are overviewed. In addition, new capabilities useful for reactor analysis are also described

  18. Monte Carlo simulation of nuclear energy study (II). Annual report on Nuclear Code Evaluation Committee

    International Nuclear Information System (INIS)

    In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)

  19. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower keff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher keff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  20. MCNP4B-GN, Monte Carlo Code System for (gamma,n) production and transport in high-Z materials

    International Nuclear Information System (INIS)

    1 - Description of program or function: MCNP4B-GN is used to treat (gamma,n) production and transport in medical accelerator heads, to study the undesired neutron dose to patients, employing a single code for both the electromagnetic and the neutron transport. 2 - Methods: The code simulates the production of giant dipole resonance (GDR) photoneutrons in thick layers of high-Z elements. Neutrons are generated through evaporation of the compound nucleus or through direct channel; the photoneutron origin coordinates, evaluated as the electromagnetic shower develops are taken into account as well as the energy spectrum of the generated photoneutron. Photoneutron production routines have been inserted into MCNP4B, thus allowing a handling of complicated geometries with a single input definition, a fundamental requirement for this kind of application. The modifications to the standard MCNP4B were made as a 'patch' (i.e. a series of instructions on how to modify the basic code) which is distributed together with a preprocessor. The preprocessor reads the patch, reads MCNP4B and writes MCNP4B-GN. A new subroutine 'GAMMN' has been written, analogous to the subroutine 'ACEGAM' for (n,gamma). GAMMN is called from subroutine 'COLIDP' at a photon collision with one of the 6 elements in question when the energy of the photon is such that there is a non-zero probability of producing a neutron. In analogy with the (n,gamma) capability, the production or not of a neutron is not correlated with the subsequent history of the photon and in particular the choice of the type of photon collision at that spatial point. 3 - Restrictions on the complexity of the problem: The upper energy limit, imposed by theoretical considerations, is 30 MeV for photons and 20 MeV for photoneutrons. The physical model breaks down at higher photon energies, whilst the neutron transport performed with MCNP cannot be simulated for neutron energies greater than 20 MeV (the neutron energy regime in MCNP is

  1. Integrated Tiger Series of electron/photon Monte Carlo transport codes: a user's guide for use on IBM mainframes

    International Nuclear Information System (INIS)

    The ITS (Integrated Tiger Series) Monte Carlo code package developed at Sandia National Laboratories and distributed as CCC-467/ITS by the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory (ORNL) consists of eight codes - the standard codes, TIGER, CYLTRAN, ACCEPT; the P-codes, TIGERP, CYLTRANP, ACCEPTP; and the M-codes ACCEPTM, CYLTRANM. The codes have been adapted to run on the IBM 3081, VAX 11/780, CDC-7600, and Cray 1 with the use of the update emulator UPEML. This manual should serve as a guide to a user running the codes on IBM computers having 370 architecture. The cases listed were tested on the IBM 3033, under the MVS operating system using the VS Fortran Level 1.3.1 compiler

  2. Coded aperture coherent scatter imaging for breast cancer detection: a Monte Carlo evaluation

    Science.gov (United States)

    Lakshmanan, Manu N.; Morris, Robert E.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-03-01

    It is known that conventional x-ray imaging provides a maximum contrast between cancerous and healthy fibroglandular breast tissues of 3% based on their linear x-ray attenuation coefficients at 17.5 keV, whereas coherent scatter signal provides a maximum contrast of 19% based on their differential coherent scatter cross sections. Therefore in order to exploit this potential contrast, we seek to evaluate the performance of a coded- aperture coherent scatter imaging system for breast cancer detection and investigate its accuracy using Monte Carlo simulations. In the simulations we modeled our experimental system, which consists of a raster-scanned pencil beam of x-rays, a bismuth-tin coded aperture mask comprised of a repeating slit pattern with 2-mm periodicity, and a linear-array of 128 detector pixels with 6.5-keV energy resolution. The breast tissue that was scanned comprised a 3-cm sample taken from a patient-based XCAT breast phantom containing a tomosynthesis- based realistic simulated lesion. The differential coherent scatter cross section was reconstructed at each pixel in the image using an iterative reconstruction algorithm. Each pixel in the reconstructed image was then classified as being either air or the type of breast tissue with which its normalized reconstructed differential coherent scatter cross section had the highest correlation coefficient. Comparison of the final tissue classification results with the ground truth image showed that the coded aperture imaging technique has a cancerous pixel detection sensitivity (correct identification of cancerous pixels), specificity (correctly ruling out healthy pixels as not being cancer) and accuracy of 92.4%, 91.9% and 92.0%, respectively. Our Monte Carlo evaluation of our experimental coded aperture coherent scatter imaging system shows that it is able to exploit the greater contrast available from coherently scattered x-rays to increase the accuracy of detecting cancerous regions within the breast.

  3. Accumulative Landings System Code Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Code Tables Used In Landings System. These tables assign meanings to the codes that appear in the data tables. Code tables exist for species, gear, state, county,...

  4. Development of a Monte-Carlo Radiative Transfer Code for the Juno/JIRAM Limb Measurements

    Science.gov (United States)

    Sindoni, G.; Adriani, A.; Mayorov, B.; Aoki, S.; Grassi, D.; Moriconi, M.; Oliva, F.

    2013-09-01

    The Juno/JIRAM instrument will acquire limb spectra of the Jupiter atmosphere in the infrared spectral range. The analysis of these spectra requires a radiative transfer code that takes into account the multiple scattering by particles in a spherical-shell atmosphere. Therefore, we are developing a code based on the Monte-Carlo approach to simulate the JIRAM observations. The validation of the code was performed by comparison with DISORT-based codes.

  5. Application of Monte Carlo code EGS4 to calculate gamma exposure buildup factors

    International Nuclear Information System (INIS)

    Exposure buildup factors up to 40 mean free paths ranging from 0.015 MeV to 15 MeV photon energy were calculated by using the Monte Carlo simulation code EGS4 for ordinary concrete. The calculation involves PHOTX cross section library, a point isotropic source, infinite uniform medium model and a particle splitting method and considers the Bremsstrahlung, fluorescent effect, correlative (Rayleigh) scatter. The results were compared with the relevant data. Results show that the data of the buildup factors calculated by the Monte Carlo code EGS4 was reliable. The Monte Carlo method can be used widely to calculate gamma-ray exposure buildup factors. (authors)

  6. A 3DHZETRN Code in a Spherical Uniform Sphere with Monte Carlo Verification

    Science.gov (United States)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation is under development. In the present report, new algorithms for light ion and neutron propagation with well-defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations to verify the solution methodology. The code will be available through the software system, OLTARIS, for shield design and validation and provides a basis for personal computer software capable of space shield analysis and optimization.

  7. Point KENO V.a: A continuous-energy Monte Carlo code for transport applications

    International Nuclear Information System (INIS)

    KENO V.a is a multigroup Monte Carlo code that solves the Boltzmann transport equation and is used extensively in the criticality safety community to calculate the effective multiplication factor of systems with fissionable material. In this work, a continuous-energy or pointwise version of KENO V.a has been developed by first designing a new continuous-energy cross-section format and then by developing the appropriate Monte Carlo transport procedures to sample the new cross-section format. In order to generate pointwise cross sections for a test library, a series of cross-section processing modules were developed and used to process 50 ENDF/B-VI Release 7 nuclides for the test library. Once the cross-section processing procedures were in place, a continuous-energy version of KENO V.a was developed and tested by calculating 46 test cases that include critical and calculational benchmark problems. The Point KENO-calculated results for the test problems are in agreement with calculated results obtained with the multigroup version of KENO V.a and MCNP4C. Based on the calculated results with the prototypic cross-section library, a continuous-energy version of the KENO V.a code has been successfully developed and demonstrated for modeling systems with fissionable material. (authors)

  8. The EGS5 code system

    International Nuclear Information System (INIS)

    The Electron-Gamma Shower (EGS) code system is a general purpose package for the Monte Carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies above a few keV up to several hundred GeV (depending on the atomic numbers of the target materials). This report introduces a new, enhanced version called EGS5. In addition to explaining and documenting the various enhancements and changes to the previous version (EGS4), this document includes several introductory and advanced tutorials on the use of EGS5, and also contains the EGS5 User Manual. Our intention has been to make this document wholly self-contained so that the user need not refer to the original EGS4 manual (SLAC-265) in order to use the code. To this end, we have taken the liberty of incorporating into Chapter 2 of this report those portions of Chapter 2 of SLAC-265 which describe physics models of EGS4 retained by EGS5, thereby documenting all the physics contained in EGS5. (author)

  9. The analog linear interpolation approach for Monte Carlo simulation of PGNAA: The CEARPGA code

    Science.gov (United States)

    Zhang, Wenchao; Gardner, Robin P.

    2004-01-01

    The analog linear interpolation approach (ALI) has been developed and implemented to eliminate the big weight problem in the Monte Carlo simulation code CEARPGA. The CEARPGA code was previously developed to generate elemental library spectra for using the Monte Carlo - library least-squares (MCLLS) approach in prompt gamma-ray neutron activation analysis (PGNAA). In addition, some other improvements to this code have been introduced, including (1) adopting the latest photon cross-section data, (2) using an improved detector response function, (3) adding the neutron activation backgrounds, (4) generating the individual natural background libraries, (5) adding the tracking of annihilation photons from pair production interactions outside of the detector and (6) adopting a general geometry package. The simulated result from the new CEARPGA code is compared with those calculated from the previous CEARPGA code and the MCNP code and experimental data. The new CEARPGA code is found to give the best result.

  10. Running the EGS4 Monte Carlo code with Fortran 90 on a pentium computer

    International Nuclear Information System (INIS)

    The possibility to run the EGS4 Monte Carlo code radiation transport system for medical radiation modelling on a microcomputer is discussed. This has been done using a Fortran 77 compiler with a 32-bit memory addressing system running under a memory extender operating system. In addition a virtual memory manager such as QEMM386 was required. It has successfully run on a SUN Sparcstation2. In 1995 faster Pentium-based microcomputers became available as did the Windows 95 operating system which can handle 32-bit programs, multitasking and provides its own virtual memory management. The paper describe how with simple modification to the batch files it was possible to run EGS4 on a Pentium under Fortran 90 and Windows 95. This combination of software and hardware is cheaper and faster than running it on a SUN Sparcstation2. 8 refs., 1 tab

  11. On the inner workings of Monte Carlo codes

    NARCIS (Netherlands)

    D. Dubbeldam; A. Torres Knoop; K.S. Walton

    2013-01-01

    We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal-organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC

  12. Data libraries as a collaborative tool across Monte Carlo codes

    CERN Document Server

    Augelli, Mauro; Han, Mincheol; Hauf, Steffen; Kim, Chan-Hyeung; Kuster, Markus; Pia, Maria Grazia; Quintieri, Lina; Saracco, Paolo; Seo, Hee; Sudhakar, Manju; Eidenspointner, Georg; Zoglauer, Andreas

    2010-01-01

    The role of data libraries in Monte Carlo simulation is discussed. A number of data libraries currently in preparation are reviewed; their data are critically examined with respect to the state-of-the-art in the respective fields. Extensive tests with respect to experimental data have been performed for the validation of their content.

  13. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  14. Aurora T: a Monte Carlo code for transportation of neutral atoms in a toroidal plasma

    International Nuclear Information System (INIS)

    This paper contains a short description of Aurora code. This code have been developed at Princeton with Monte Carlo method for calculating neutral gas in cylindrical plasma. In this work subroutines such one can take in account toroidal geometry are developed

  15. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  16. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    Science.gov (United States)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system

  17. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes.

    Science.gov (United States)

    Pinsky, L S; Wilson, T L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be useful in the design and analysis of experiments such as ACCESS (Advanced Cosmic-ray Composition Experiment for Space Station), which is an Office of Space Science payload currently under evaluation for deployment on the International Space Station (ISS). FLUKA will be significantly improved and tailored for use in simulating space radiation in four ways. First, the additional physics not presently within the code that is necessary to simulate the problems of interest, namely the heavy ion inelastic processes, will be incorporated. Second, the internal geometry package will be replaced with one that will substantially increase the calculation speed as well as simplify the data input task. Third, default incident flux packages that include all of the different space radiation sources of interest will be included. Finally, the user interface and internal data structure will be melded together with ROOT, the object-oriented data analysis infrastructure system. Beyond

  18. Measured performances on vectorization and multitasking with a Monte Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in our neutron transport problems, we briefly describe the work we have done in order to get a vector code. Vectorization principles will be presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples will be presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example we propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion we prove that Monte Carlo algorithms are very well suited to future vector and parallel computers. (orig.)

  19. OpenMC: A state-of-the-art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    Highlights: • OpenMC is an open source Monte Carlo particle transport code. • Solid geometry and continuous-energy physics allow high-fidelity simulations. • Development has focused on high performance and modern I/O techniques. • OpenMC is capable of scaling up to hundreds of thousands of processors. • Other features include plotting, CMFD acceleration, and variance reduction. - Abstract: This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes

  20. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  1. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    Directory of Open Access Journals (Sweden)

    H A Nedaie

    2013-01-01

    Full Text Available Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions.

  2. Development of CAD-Based Geometry Processing Module for a Monte Carlo Particle Transport Analysis Code

    International Nuclear Information System (INIS)

    As The Monte Carlo (MC) particle transport analysis for a complex system such as research reactor, accelerator, and fusion facility may require accurate modeling of the complicated geometry. Its manual modeling by using the text interface of a MC code to define the geometrical objects is tedious, lengthy and error-prone. This problem can be overcome by taking advantage of modeling capability of the computer aided design (CAD) system. There have been two kinds of approaches to develop MC code systems utilizing the CAD data: the external format conversion and the CAD kernel imbedded MC simulation. The first approach includes several interfacing programs such as McCAD, MCAM, GEOMIT etc. which were developed to automatically convert the CAD data into the MCNP geometry input data. This approach makes the most of the existing MC codes without any modifications, but implies latent data inconsistency due to the difference of the geometry modeling system. In the second approach, a MC code utilizes the CAD data for the direct particle tracking or the conversion to an internal data structure of the constructive solid geometry (CSG) and/or boundary representation (B-rep) modeling with help of a CAD kernel. MCNP-BRL and OiNC have demonstrated their capabilities of the CAD-based MC simulations. Recently we have developed a CAD-based geometry processing module for the MC particle simulation by using the OpenCASCADE (OCC) library. In the developed module, CAD data can be used for the particle tracking through primitive CAD surfaces (hereafter the CAD-based tracking) or the internal conversion to the CSG data structure. In this paper, the performances of the text-based model, the CAD-based tracking, and the internal CSG conversion are compared by using an in-house MC code, McSIM, equipped with the developed CAD-based geometry processing module

  3. Using deterministic codes to accelerate continuous energy Monte-Carlo standards calculations

    International Nuclear Information System (INIS)

    Deterministic codes are usually used for critical parameters or one dimension geometry calculations. Advantages of the use of deterministic codes are speed of the calculation and the absence of standard deviation on the keff results. Nevertheless, the deterministic results are affected by several intrinsic uncertainties as energetic condensation or self-shielding. So the way to proceed at CEA expert criticality group (CEA/SERMA/CP2C) is to always check the main results (minimum critical or maximal permissible values and un-moderated values) with a punctual Monte Carlo calculation. These last years, in particular cases (pure actinide fissile media, exotic reflectors), large discrepancies have been observed between the keff calculated by the CRISTAL V1 route reference (continuous energy Monte Carlo code TRIPOLI-4) and the keff target (by the standard route APOLLO2-Sn). The problematic for these cases was how to transpose the keff discrepancies observed between standard and reference routes to the dimensions (mass, thickness...) or how to reduce the keff discrepancies using optimized options of the deterministic code. One solution to transpose discrepancies is to iterate on dimensions using a punctual Monte Carlo code to achieve the desired keff eigenvalue. But, the amount of time for obtaining a good standard deviation and also the desired keff eigenvalue inside the Monte Carlo calculation uncertainty can quickly increase. The principle of the method presented in this paper is that the discrepancy between deterministic code and Monte-Carlo code, calculated at the same dimension, is low variable with the dimension. Therefore, correcting the keff eigenvalue on which the deterministic code converge with the discrepancy observed, leads to a dimension nearer to the true dimension (i.e. the dimension where Monte-Carlo code keff calculation is close to the keff eigenvalue). If the keff eigenvalue is outside the Monte Carlo uncertainty, the discrepancy is recalculated and

  4. Calculations of neutron penetration through graphite medium with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Experiments for fast neutron penetration through graphite are analysed with the continuous energy Monte Carlo code MCNP. Reaction rates and energy spectra obtained with the MCNP are compared with measured values and calculated ones with McBEND code. And validity of penetration calculation with the MCNP is comfirmed. In addition, it is revealed that the MCNP code using Weight-Window method is well applicable to calculations of neutron penetration through graphite up to 70 cm in depth. (author)

  5. Monte-Carlo Simulation for PDC-Based Optical CDMA System

    OpenAIRE

    FAHIM AZIZ UMRANI; AHSAN AHMED URSANI; ABDUL WAHEED UMRANI

    2010-01-01

    This paper presents the Monte-Carlo simulation of Optical CDMA (Code Division Multiple Access) systems, and analyse its performance in terms of the BER (Bit Error Rate). The spreading sequence chosen for CDMA is Perfect Difference Codes. Furthermore, this paper derives the expressions of noise variances from first principles to calibrate the noise for both bipolar (electrical domain) and unipolar (optical domain) signalling required for Monte-Carlo simulation. The simulated res...

  6. A collision history-based approach to sensitivity/perturbation calculations in the continuous energy Monte Carlo code SERPENT

    International Nuclear Information System (INIS)

    Highlights: • We present a new Monte Carlo method to perform sensitivity/perturbation calculations. • Sensitivity of keff, reaction rates, point kinetics parameters to nuclear data. • Fully continuous implicitly constrained Monte Carlo sensitivities to scattering distributions. • Implementation of the method in the continuous energy Monte Carlo code SERPENT. • Verification against ERANOS and TSUNAMI generalized perturbation theory results. - Abstract: In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the effects of nuclear data perturbation on several response functions: the effective multiplication factor, reaction rate ratios and bilinear ratios (e.g., effective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators

  7. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables

  8. SU-E-T-578: MCEBRT, A Monte Carlo Code for External Beam Treatment Plan Verifications

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); Al-Azhar University, Cairo (Egypt)

    2014-06-01

    Purpose: Present a new Monte Carlo code (MCEBRT) for patient-specific dose calculations in external beam radiotherapy. The code MLC model is benchmarked and real patient plans are re-calculated using MCEBRT and compared with commercial TPS. Methods: MCEBRT is based on the GEPTS system (Med. Phys. 29 (2002) 835–846). Phase space data generated for Varian linac photon beams (6 – 15 MV) are used as source term. MCEBRT uses a realistic MLC model (tongue and groove, rounded ends). Patient CT and DICOM RT files are used to generate a 3D patient phantom and simulate the treatment configuration (gantry, collimator and couch angles; jaw positions; MLC sequences; MUs). MCEBRT dose distributions and DVHs are compared with those from TPS in absolute way (Gy). Results: Calculations based on the developed MLC model closely matches transmission measurements (pin-point ionization chamber at selected positions and film for lateral dose profile). See Fig.1. Dose calculations for two clinical cases (whole brain irradiation with opposed beams and lung case with eight fields) are carried out and outcomes are compared with the Eclipse AAA algorithm. Good agreement is observed for the brain case (Figs 2-3) except at the surface where MCEBRT dose can be higher by 20%. This is due to better modeling of electron contamination by MCEBRT. For the lung case an overall good agreement (91% gamma index passing rate with 3%/3mm DTA criterion) is observed (Fig.4) but dose in lung can be over-estimated by up to 10% by AAA (Fig.5). CTV and PTV DVHs from TPS and MCEBRT are nevertheless close (Fig.6). Conclusion: A new Monte Carlo code is developed for plan verification. Contrary to phantombased QA measurements, MCEBRT simulate the exact patient geometry and tissue composition. MCEBRT can be used as extra verification layer for plans where surface dose and tissue heterogeneity are an issue.

  9. MCMG: a 3-D multigroup P3 Monte Carlo code and its benchmarks

    International Nuclear Information System (INIS)

    In this paper a 3-D Monte Carlo multigroup neutron transport code MCMG has been developed from a coupled neutron and photon transport Monte Carlo code MCNP. The continuous-energy cross section library of the MCNP code is replaced by the multigroup cross section data generated by the transport lattice code, such as the WIMS code. It maintains the strong abilities of MCNP for geometry treatment, counting, variance reduction techniques and plotting. The multigroup neutron scattering cross sections adopt the Pn (n ≤ 3) approximation. The test results are in good agreement with the results of other methods and experiments. The number of energy groups can be varied from few groups to multigroup, and either macroscopic or microscopic cross section can be used. (author)

  10. A vectorized Monte Carlo code for modeling photon transport in SPECT

    International Nuclear Information System (INIS)

    A vectorized Monte Carlo computer code has been developed for modeling photon transport in single photon emission computed tomography (SPECT). The code models photon transport in a uniform attenuating region and photon detection by a gamma camera. It is adapted from a history-based Monte Carlo code in which photon history data are stored in scalar variables and photon histories are computed sequentially. The vectorized code is written in FORTRAN77 and uses an event-based algorithm in which photon history data are stored in arrays and photon history computations are performed within DO loops. The indices of the DO loops range over the number of photon histories, and these loops may take advantage of the vector processing unit of our Stellar GS1000 computer for pipelined computations. Without the use of the vector processor the event-based code is faster than the history-based code because of numerical optimization performed during conversion to the event-based algorithm. When only the detection of unscattered photons is modeled, the event-based code executes 5.1 times faster with the use of the vector processor than without; when the detection of scattered and unscattered photons is modeled the speed increase is a factor of 2.9. Vectorization is a valuable way to increase the performance of Monte Carlo code for modeling photon transport in SPECT

  11. User's manual of the MKENO-DAR code system

    International Nuclear Information System (INIS)

    The computer code manual of MKENO-DAR which is a direct angular representation Monte Carlo code for criticality safety analysis is already issued as JAERI-M report, however, complex pre-stage data handlings and calculations by auxiliary programs are required before the execution of MKENO-DAR. The MKENO-DAR CODE SYSTEM widely spans a whole code system including MKENO-DAR and other pre-stage auxiliary programs. This report discusses the systematic treatment of the MKENO-DAR CODE SYSTEM and shows the simplified calculation technique from the user side of view. (author)

  12. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)

  13. Development of Monte Carlo code for Z-pinch driven fusion neutron imaging diagnosis system simulation%Z箍缩中子编码诊断系统模拟平台搭建

    Institute of Scientific and Technical Information of China (English)

    贾清刚; 张天奎; 张凤娜; 胡华四

    2013-01-01

    开发了基于Geant4的Z箍缩中子编码成像系统模拟平台,实现聚变中子编码成像诊断系统各关键部件的完整模拟.获得了低中子产额(约1010量级)下,中子经编码孔编码后在闪烁体阵列中形成的发光分布图像.利用维纳滤波、Richardson-Lucy(RL)及遗传算法(GA)对低中子产额下获得的极低信噪比图像进行重建,并对信噪比、中子产额及重建效果进行了对比研究,结果表明:遗传算法对低信噪比中子编码图像的重建具有很强的鲁棒性;中子编码图像的信噪比与遗传算法重建结果的准确性呈正比.%The model of Z-pinch driven fusion imaging diagnosis system was set up by a Monte Carlo code based on the Geant4 simulation toolkit. All physical processes that the reality involves are taken into consideration in simulation. The light image of low neutron yield (about 1010) pill was obtained. Three types of image reconstruction algorithm, i. e. Richardson-Lucy, Wiener filtering and genetic algorithm were employed to reconstruct the neutron image with a low signal to noise ratio (SNR) and yield. The effects of neutron yields and the SNR on reconstruction performance were discussed. The results show that genetic algorithm is very robust for reconstructing neutron images with a low SNR. And the index of reconstruction performance and the image correlation coefficient using genetic algorithm, are proportional to the SNR of the neutron coded image.

  14. The information education using EGS4 Monte Carlo code of Tokyo Metropolitan University of Health Sciences

    International Nuclear Information System (INIS)

    Tokyo Metropolitan University of Health Sciences has done The Information Education using EGS4 Monte Carlo code since the 1998 fiscal year. Two items under practical training item were done. 1. The interaction between photon of 0.1 ∼ 10 MeV (Mega Electron Volt: MeV) and Aluminum (Al), Iron (Fe) and Lead (Pb). 2. The simulation of gamma ray energy measurement of the radiation detector. As the result, the student was possible the understanding of the radiation physics for the easiness at Practical training of EGS4 Monte Carlo code. (author)

  15. The Monte Carlo code MCBEND - where it is and where it's going

    International Nuclear Information System (INIS)

    The Monte Carlo method forms a corner stone to the calculational procedures established in the UK for shielding design and assessment. The emphasis of the work in the shielding area is centred on the Monte Carlo code MCBEND. The work programme in support of the code is broadly directed towards utilisation of new hardware, the development of improved modelling algorithms, the development of new acceleration methods for specific applications and enhancements to user image. This paper summarises the current status of MCBEND and reviews developments carried out over the past two years and planned for the future. (author)

  16. Parallelization of MCATNP MONTE CARLO particle transport code by using MPI

    International Nuclear Information System (INIS)

    A Monte Carlo code for simulating Atmospheric Transport of Neutrons and Photons (MCATNP) is used to simulate the ionization effects caused by high altitude nuclear detonation (HAND) and it was parallelized in MPI by adopting the leap random number producer and modifying the original serial code. The parallel results and serial results are identical. The speedup increases almost linearly with the number of processors used. The parallel efficiency is up to to 97% while 16 processors are used, and 94% while 32 are used. The experimental results show that parallelization can obviously reduce the calculation time of Monte Carlo simulation of HAND ionization effects. (authors)

  17. Generalized Albedo option on the Morse Monte Carlo code

    International Nuclear Information System (INIS)

    The advisability of using the albedo procedure for solving deep penetration shielding problems which have ducts and other penetrations is investigated. It is generally accepted that the use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations - however the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study has been done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo modified calculations. The major modifications include the tracking of special particles inside albedo media, an option to displace the point-of-emergence during an albedo event, and an option to read, process, and use spatially-dependent albedo data for both forward and adjoint calculations. (author)

  18. The three-dimensional Monte-Carlo code TRIPOLI-02

    International Nuclear Information System (INIS)

    TRIPOLI-2 solves the transport equation for neutrons or gamma rays in tridimensional geometrical configurations. TRIPOLI uses the Monte Carlo method. This method allows to treat exactly the geometrical configurations, the energy losses and the scattering laws. TRIPOLI 2 allows to treat the following problems: gamma transport problems, neutrons transport problems with fixed source (the problems can be time dependent or not), critical problems without fixed source and research of multiplication factor due to fissions, subcritical problems with fixed source and with multiplication by fission. These problems can be separate in two types. First type: shielding problems essentially with deep penetration and streaming through voids. Biasing technics are used to reduce the computing time. Second type: core problems for cell calculations or for small core calculations. In this case, it is necessary to have a fine representation of the cross sections. The thermalization is also treated exactly

  19. Importance function by collision probabilities for Monte Carlo code Tripoli

    International Nuclear Information System (INIS)

    We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We have run simulations with this new biasing method for one-group transport problems with isotropic shocks (one dimension geometry and X-Y geometry) and for multigroup problems with anisotropic shocks (one dimension geometry). For the anisotropic problems we solve the adjoint equation with anisotropic collision probabilities. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without Splitting and Russian Roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add Splitting and Russian Roulette technique

  20. OpenMC: a state-of-the-Art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes. (authors)

  1. The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    CERN Document Server

    Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F

    2010-01-01

    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...

  2. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  3. Tripoli-3: monte Carlo transport code for neutral particles - version 3.5 - users manual

    International Nuclear Information System (INIS)

    The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)

  4. Depletion of a BWR lattice using the racer continuous energy Monte Carlo code

    International Nuclear Information System (INIS)

    In the past several years there has been a renewed interest in the accuracy of a new generation of lattice physics codes. Most of the time these codes are benchmarked against Monte Carlo codes only at beginning of cycle. In this paper a highly heterogeneous BWR lattice depletion benchmark problem is presented. Results of a 40% void depletion using the RACER continuous energy Monte Carlo code are also presented. Complete problem specifications are given so that comparisons with lattice physics codes or other Monte Carlo codes is possible. The RACER calculations were performed with the ENDF/B-V cross section set. Each flux calculation utilized 2.7 million histories resulting in 95% confidence intervals of ∼1 milli-k on the eigenvalue and ∼1% uncertainties on pin-wise power fractions. Timing statistics for the calculation using the vectorized RACER code averaged ∼ 24,000 neutrons/minute on a single processor of a CRAY-C90 computer

  5. MKENO-DAR: a direct angular representation Monte Carlo code for criticality safety analysis

    International Nuclear Information System (INIS)

    Improving the Monte Carlo code MULTI-KENO, the MKENO-DAR (Direct Angular Representation) code has been developed for criticality safety analysis in detail. A function was added to MULTI-KENO for representing anisotropic scattering strictly. With this function, the scattering angle of neutron is determined not by the average scattering angle μ-bar of the Pl Legendre polynomial but by the random work operation using probability distribution function produced with the higher order Legendre polynomials. This code is avilable for the FACOM-M380 computer. This report is a computer code manual for MKENO-DAR. (author)

  6. Comparison of Sensitivity Analysis Techniques in Monte Carlo Codes for Multi-Region Criticality Calculations

    International Nuclear Information System (INIS)

    Recently, sensitivity and uncertainty (S/U) techniques have been used to determine the area of applicability (AOA) of critical experiments used for code and data validation. These techniques require the computation of energy-dependent sensitivity coefficients for multiple reaction types for every nuclide in each system included in the validation. The sensitivity coefficients, as used for this application, predict the relative change in the system multiplication factor due to a relative change in a given cross-section data component or material number density. Thus, a sensitivity coefficient, S, for some macroscopic cross section, Σ, is expressed as S = Σ/k ∂k/∂Σ, where k is the effective neutron multiplication factor for the system. The sensitivity coefficient for the density of a material is equivalent to that of the total macroscopic cross section. Two distinct techniques have been employed in Monte Carlo radiation transport codes for the computation of sensitivity coefficients. The first, and most commonly employed, is the differential sampling technique. The second is the adjoint-based perturbation theory approach. This paper briefly describes each technique and presents the results of a simple test case, pointing out discrepancies in the computed results and proposing a remedy to these discrepancies

  7. A Monte Carlo study of the effect of coded-aperture material and thickness on neutron imaging

    International Nuclear Information System (INIS)

    In this paper, a coded-aperture design for a scintillator-based neutron imaging system has been simulated using a series of Monte Carlo simulations. Using Monte Carlo simulations, work to optimise a system making use of the EJ-426 neutron scintillator detector has been conducted. This type of scintillator has a low sensitivity to gamma rays and is therefore particularly useful for neutron detection in a mixed radiation environment. Simulations have been conducted using varying coded-aperture materials and different coded-aperture thicknesses. From this, neutron images have been produced, compared qualitatively and quantitatively for each case to find the best material for the MURA (modified uniformly redundant array) pattern. The neutron images generated also allow observations on how differing thicknesses of coded-aperture impact the system. A system in which a neutron sensitive scintillator has been used in conjunction with a MURA coded aperture to detect and locate a neutron emitting point source centralised in the system has been simulated. A comparison between the results of the different coded-aperture thicknesses is discussed, via the calculation of system error between the reconstructed source location and the actual location. As the system is small scale with a relatively large step along the axis (0.5 cm), it is justifiable to say that the smaller error values provide satisfactory results, which correlate with only a few centimetres difference in the reconstructed source location to actual source location. A general trend of increasing error can be deduced both as the thickness of the coded-aperture material decreases and the capture cross section of the different materials reduces. (authors)

  8. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  9. Development of 3d reactor burnup code based on Monte Carlo method and exponential Euler method

    International Nuclear Information System (INIS)

    Burnup analysis plays a key role in fuel breeding, transmutation and post-processing in nuclear reactor. Burnup codes based on one-dimensional and two-dimensional transport method have difficulties in meeting the accuracy requirements. A three-dimensional burnup analysis code based on Monte Carlo method and Exponential Euler method has been developed. The coupling code combines advantage of Monte Carlo method in complex geometry neutron transport calculation and FISPACT in fast and precise inventory calculation, meanwhile resonance Self-shielding effect in inventory calculation can also be considered. The IAEA benchmark text problem has been adopted for code validation. Good agreements were shown in the comparison with other participants' results. (authors)

  10. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Martin, William R [University of Michigan; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  11. Its version 3.0. The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    The ITS system is described, which is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures. (author)

  12. QCDMPI - pure QCD Monte Carlo simulation code with MPI

    International Nuclear Information System (INIS)

    QCDMPI is a pure QCD simulation code with MPI calls. QCDMPI is very portable because; - you can simulate any-dimensional QCD, - on any-dimensional partitioning, - on any number of processors, - with rather small working area. Also by this program, you can get two performances, - calculation (link update time) - communication (MB/sec). In this paper, outline of QCDMPI is reported. Comparison of the performances on several parallel machines; AP1000, AP1000+, AP3000, Cenju-3, Paragon, SR2201 and Workstation Cluster, is also reported. (orig.)

  13. Verification of the shift Monte Carlo code with the C5G7 reactor benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Sly, N. C.; Mervin, B. T. [Dept. of Nuclear Engineering, Univ. of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States); Mosher, S. W.; Evans, T. M.; Wagner, J. C. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    Shift is a new hybrid Monte Carlo/deterministic radiation transport code being developed at Oak Ridge National Laboratory. At its current stage of development, Shift includes a parallel Monte Carlo capability for simulating eigenvalue and fixed-source multigroup transport problems. This paper focuses on recent efforts to verify Shift's Monte Carlo component using the two-dimensional and three-dimensional C5G7 NEA benchmark problems. Comparisons were made between the benchmark eigenvalues and those output by the Shift code. In addition, mesh-based scalar flux tally results generated by Shift were compared to those obtained using MCNP5 on an identical model and tally grid. The Shift-generated eigenvalues were within three standard deviations of the benchmark and MCNP5-1.60 values in all cases. The flux tallies generated by Shift were found to be in very good agreement with those from MCNP. (authors)

  14. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  15. The present of shielding analysis with nuclear data for continuous energy Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Following three problems are analyzed by continuous energy Monte Carlo code MCNP with JENDL-3.2, 3.3, and ENDF/B-VI. 1. Shielding analysis of WINFRITH-Aspins iron deep penetration experiment. 2. Shielding analysis of TN-12A spent fuel transport cask experiment. 3. Shielding analysis of modular shielding house keeping spent fuel transportable casks. (author)

  16. Use of the FLUKA Monte Carlo code for Hadron Therapy Application

    International Nuclear Information System (INIS)

    Monte Carlo (M C) codes are increasingly spreading in the hadron therapy community due to their detailed description of radiation transport and interaction with matter. M C methods are being utilized at several institutions for a wide range of activities spanning from beam characterization to quality assurance and dosimetric/radiobiological studies. The suitability of a M C code for application to hadron therapy demands accurate and reliable physical models for the description of the transport and the interaction of all components of the expected radiation field (ions, hadrons, electrons, positrons and photons). This becomes extremely important for correctly performing not only physical but also biologically based dose calculations especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in emerging areas of research aiming to in vivo treatment verification. This contribution will address the specific case of the general-purpose particle and interaction code FLUKA. Validations and applications at several experimental sites as well as proton/ion therapy facilities with active beam delivery systems will be presented: Generation of synchrotron accelerator library of proton/carbon ion beam energies and foci (i.e., lateral widths at the iso centre of the treatment unit). Physical database generation: laterally integrated depth-dose profiles, lateral-dose distributions at different depths, secondary fragments yields and fragment energy spectra at different depths. Forward M C re-calculations of physical/RBE-weighted dose distributions of proton and carbon ion treatment plans. M C-based treatment planning in proton therapy. The satisfactorily agreement of FLUKA against several dosimetric/nuclear yields data indicates that the code already represents a valuable choice for supporting a large variety of applications in proton and ion beam therapy

  17. Evaluation of Monte Carlo Codes Regarding the Calculated Detector Response Function in NDP Method

    International Nuclear Information System (INIS)

    The basis of the NDP is the irradiation of a sample with a thermal or cold neutron beam and the subsequent release of charged particles due to neutron-induced exoergic charged particle reactions. Neutrons interact with the nuclei of elements and release mono-energetic charged particles, e.g. alpha particles or protons, and recoil atoms. Depth profile of the analyzed element can be obtained by making a linear transformation of the measured energy spectrum by using the stopping power of the sample material. A few micrometer of the material can be analyzed nondestructively, and on the order of 10nm depth resolution can be obtained depending on the material type with NDP method. In the NDP method, the one first steps of the analytical process is a channel-energy calibration. This calibration is normally made with the experimental measurement of NIST Standard Reference Material sample (SRM-93a). In this study, some Monte Carlo (MC) codes were tried to calculate the Si detector response function when this detector accounted the energy charges particles emitting from an analytical sample. In addition, these MC codes were also tried to calculate the depth distributions of some light elements (10B, 3He, 6Li, etc.) in SRM-93a and SRM-2137 samples. These calculated profiles were compared with the experimental profiles and SIMS profiles. In this study, some popular MC neutron transport codes are tried and tested to calculate the detector response function in the NDP method. The simulations were modeled based on the real CN-NDP system which is a part of Cold Neutron Activation Station (CONAS) at HANARO (KAERI). The MC simulations are very successful at predicting the alpha peaks in the measured energy spectrum. The net area difference between the measured and predicted alpha peaks are less than 1%. A possible explanation might be bad cross section data set usage in the MC codes for the transport of low energetic lithium atoms inside the silicon substrate

  18. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    CERN Document Server

    Lestone, J P

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and measured neutron-neutron correlation data for both the spontaneous fission of 252Cf and the thermal neutron induced fission of 235U. The codes presented here can be used to study the possible uses of neutron-neutron correlations in the area of transparency measurements and the uses of neutron-neutron correlations in coincidence neutron imaging.

  19. Verification of Three Dimensional Triangular Prismatic Discrete Ordinates Transport Code ENSEMBLE-TRIZ by Comparison with Monte Carlo Code GMVP

    Science.gov (United States)

    Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi

    2014-06-01

    This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.

  20. Verification of SMART Neutronics Design Methodology by the MCNAP Monte Carlo Code

    International Nuclear Information System (INIS)

    SMART is a small advanced integral pressurized water reactor (PWR) of 330 MW(thermal) designed for both electricity generation and seawater desalinization. The CASMO-3/MASTER nuclear analysis system, a design-basis of Korean PWR plants, has been employed for the SMART core nuclear design and analysis because the fuel assembly (FA) characteristics and reactor operating conditions in temperature and pressure are similar to those of PWR plants. However, the SMART FAs are highly poisoned with more than 20 Al2O3-B4C plus additional Gd2O3/UO2 BPRs each FA. The reactor is operated with control rods inserted. Therefore, the flux and power distribution may become more distorted than those of commercial PWR plants. In addition, SMART should produce power from room temperature to hot-power operating condition because it employs nuclear heating from room temperature. This demands reliable predictions of core criticality, shutdown margin, control rod worth, power distributions, and reactivity coefficients at both room temperature and hot operating condition, yet no such data are available to verify the CASMO-3/MASTER (hereafter MASTER) code system. In the absence of experimental verification data for the SMART neutronics design, the Monte Carlo depletion analysis program MCNAP is adopted as near-term alternatives for qualifying MASTER neutronics design calculations. The MCNAP is a personal computer-based continuous energy Monte Carlo neutronics analysis program written in C++ language. We established its qualification by presenting its prediction accuracy on measurements of Venus critical facilities and core neutronics analysis of a PWR plant in operation, and depletion characteristics of integral burnable absorber FAs of the current PWR. Here, we present a comparison of MASTER and MCNAP neutronics design calculations for SMART and establish the qualification of the MASTER system

  1. SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Under the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD/NEA, an international collaboration benchmark was recently established on the neutronic analysis of four Sodium-cooled Fast Reactor (SFR) concepts of the Generation- IV nuclear energy systems. As the whole core Monte Carlo depletion calculation is one of the essential challenges of current reactor physics studies, the continuous-energy TRIPOLI-4 Monte Carlo transport code was firstly used in this study to perform whole core 3D neutronic calculations for these four SFR cores. Two medium size (1000 MWt) and two large size (3600 MWt) SFR of GEN-IV systems were analyzed. The medium size SFR concepts are from the Advanced Burner Reactors (ABR). The large size SFR concepts are from the self-breeding reactors. The TRIPOLI-4 depletion calculations were made with MOX and metallic U-Pu-Zr fuels for the ABR cores and with MOX and Carbide (U,Pu)C fuels for the self-breeding cores. The whole core reactor physics parameters calculations were performed for the BOEC and EOEC (Beginning and End of Equilibrium Cycle) conditions. This paper summarizes the TRIPOLI-4 calculation results of Keff, βeff, sodium void worth, Doppler constant, control rod worth, and core power distributions for the BOEC and EOEC conditions. The one-cycle depletion calculation results of the core inventory of U and TRU (Pu, Am, Cm, and Np) are also analyzed, after 328.5 days depletion irradiation for the ABR cores, 410 days for the large MOX core, and 500 days for the large carbide core. (author)

  2. Benchmarking computations using the Monte Carlo code ritracks with data from a tissue equivalent proportional counter

    Science.gov (United States)

    Brogan, John

    Understanding the dosimetry for high-energy, heavy ions (HZE), especially within living systems, is complex and requires the use of both experimental and computational methods. Tissue-equivalent proportional counters (TEPCs) have been used experimentally to measure energy deposition in volumes similar in dimension to a mammalian cell. As these experiments begin to include a wider range of ions and energies, considerations to cost, time, and radiation protection are necessary and may limit the extent of these studies. Multiple Monte Carlo computational codes have been created to remediate this problem and serve as a mode of verification for pervious experimental methods. One such code, Relativistic-Ion Tracks (RITRACKS), is currently being developed at the NASA Johnson Space center. RITRACKS was designed to describe patterns of ionizations responsible for DNA damage on the molecular scale (nanometers). This study extends RITRACKS version 3.07 into the microdosimetric scale (microns), and compares computational results to previous experimental TEPC data. Energy deposition measurements for 1000 MeV nucleon-1 Fe ions in a 1 micron spherical target were compared. Different settings within RITRACKS were tested to verify their effects on dose to a target and the resulting energy deposition frequency distribution. The results were then compared to the TEPC data.

  3. Burnup calculation capability in the PSG2 / Serpent Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    The PSG continuous-energy Monte Carlo reactor physics code has been developed at VTT Technical Research Centre of Finland since 2004. The code is mainly intended for group constant generation for coupled reactor simulator calculations and other tasks traditionally handled using deterministic lattices physics codes. The name was recently changed from acronym PSG to 'Serpent', and the capabilities have been extended by implementing built-in burnup calculation routines that enable the code to be used for fuel cycle studies and the modelling of irradiated fuels. This paper presents the methodology used for burnup calculation. Serpent has two fundamentally different options for solving the Bateman depletion equations: 1) the Transmutation Trajectory Analysis method (TTA), based on the analytical solution of linearized depletion chains and 2) the Chebyshev Rational Approximation Method (CRAM), an advanced matrix exponential solution developed at VTT. The first validation results are compared to deterministic CASMO-4E calculations. It is also shown that the overall running time in Monte Carlo burnup calculation can be significantly reduced using specialized calculation techniques, and that the continuous-energy Monte Carlo method is becoming a viable alternative to deterministic assembly burnup codes. (authors)

  4. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    CERN Document Server

    Battistoni, Giuseppe; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R; Santana, Mario; Sarchiapone, Lucia; Sioli, Maximiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-01-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such top...

  5. Dose conversion coefficients for ICRP110 voxel phantom in the Geant4 Monte Carlo code

    Science.gov (United States)

    Martins, M. C.; Cordeiro, T. P. V.; Silva, A. X.; Souza-Santos, D.; Queiroz-Filho, P. P.; Hunt, J. G.

    2014-02-01

    The reference adult male voxel phantom recommended by International Commission on Radiological Protection no. 110 was implemented in the Geant4 Monte Carlo code. Geant4 was used to calculate Dose Conversion Coefficients (DCCs) expressed as dose deposited in organs per air kerma for photons, electrons and neutrons in the Annals of the ICRP. In this work the AP and PA irradiation geometries of the ICRP male phantom were simulated for the purpose of benchmarking the Geant4 code. Monoenergetic photons were simulated between 15 keV and 10 MeV and the results were compared with ICRP 110, the VMC Monte Carlo code and the literature data available, presenting a good agreement.

  6. ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Jaafar EL Bakkali

    2016-07-01

    Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.

  7. A new Monte Carlo code for absorption simulation of laser-skin tissue interaction

    Institute of Scientific and Technical Information of China (English)

    Afshan Shirkavand; Saeed Sarkar; Marjaneh Hejazi; Leila Ataie-Fashtami; Mohammad Reza Alinaghizadeh

    2007-01-01

    In laser clinical applications, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue during laser irradiation are crucial. Such information allows the selection of proper operating parameters such as laser power, and exposure time for optimal therapeutic. The Monte Carlo method is a useful tool for studying laser-tissue interaction and simulation of energy absorption in tissue during laser irradiation. We use the principles of this technique and write a new code with MATLAB 6.5, and then validate it against Monte Carlo multi layer (MCML) code. The new code is proved to be with good accuracy. It can be used to calculate the total power bsorbed in the region of interest. This can be combined for heat modelling with other computerized programs.

  8. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2004-06-01

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  9. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability

  10. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Iandola, F N; O' Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  11. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  12. The use of an inbuilt importance generator for acceleration of the Monte Carlo code MCBEND

    International Nuclear Information System (INIS)

    Monte Carlo is currently the most accurate method for the analysis of neutron and gamma-ray transport. However its application, especially to deep penetration studies, is costly in terms of the man-days to set up the calculation and in terms of computer usage. The MAGIC module, developed at the Winfrith Technology Centre, addresses both these problems. It employs an automated procedure based upon the established technique of splitting/roulette with an importance function derived from the solution of the adjoint diffusion equation. Examples are given of the application of the module with Monte Carlo code MCBEND

  13. Estimation of skyshine dose from turbine building of BWR plant using Monte Carlo code

    International Nuclear Information System (INIS)

    The Monte Carlo N-Particle transport code (MCNP) was adopted to calculate the skyshine dose from the turbine building of a BWR plant for obtaining precise estimations at the site boundary. In MCNP calculation, the equipment and piping arranged on the operating floor of the turbine building were considered and modeled in detail. The inner and outer walls of the turbine building, the shielding materials around the high-pressure turbine, and the piping connected from the moisture separator to the low-pressure turbine were all considered. A three-step study was conducted to estimate the applicability of MCNP code. The first step is confirming the propriety of calculation models. The atmospheric relief diaphragms, which are installed on top of the low-pressure turbine exhaust hood, are not considered in the calculation model. There was little difference between the skyshine dose distributions that were considered when using and not using the atmospheric relief diaphragms. The calculated dose rates agreed well with the measurements taken around the turbine. The second step is estimating the dose rates on the outer roof surface of the turbine building. This calculation was made to confirm the dose distribution of gamma-rays on the turbine roof before being scattered into the air. The calculated dose rates agreed well with the measured data. The third step is making a final confirmation by comparing the calculations and measurements of skyshine dose rates around the turbine building. The source terms of the main steam system are based on the measured activity data of N-16 and C-15. As a conclusion, we were able to calculate reasonable skyshine dose rates by using MCNP code. (authors)

  14. A new assembly-level Monte Carlo neutron transport code for reactor physics calculations

    International Nuclear Information System (INIS)

    This paper presents a new assembly-level Monte Carlo neutron transport code, specifically intended for diffusion code group-constant generation and other reactor physics calculations. The code is being developed at the Technical Research Centre of Finland (VTT), under the working title 'Probabilistic Scattering Game', or PSG. The PSG code uses a method known as Woodcock tracking to simulate neutron histories. The advantages of the method include fast simulation in complex geometries and relatively simple handling of complicated geometrical objects. The main drawback is the inability to calculate reaction rates in optically thin volumes. This narrows the field of application to calculations involving parameters integrated over large volumes. The main features of the PSG code and the Woodcock tracking method are introduced. The code is applied in three example cases, involving infinite lattices of two-dimensional LWR fuel assemblies. Comparison calculations are carried out using MCNP4C and CASMO-4E. The results reveal that the code performs quite well in the calculation cases of this study, especially when compared to MCNP. The PSG code is still under extensive development and there are both flaws in the simulation of the interaction physics and programming errors in the source code. The results presented here, however, seem very encouraging, especially considering the early development stage of the code. (author)

  15. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  16. Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2002-01-01

    Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.

  17. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    International Nuclear Information System (INIS)

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice. (author)

  18. Calculation of effective delayed neutron fraction with modified library of Monte Carlo code

    International Nuclear Information System (INIS)

    Highlights: ► We propose a new Monte Carlo method to calculate the effective delayed neutron fraction by changing the library. ► We study the stability of our method. When the particles and cycles are sufficiently great, the stability is very good. ► The final result is determined to make the deviation least. ► We verify our method on several benchmarks, and the results are very good. - Abstract: A new Monte Carlo method is proposed to calculate the effective delayed neutron fraction βeff. Based on perturbation theory, βeff is calculated with modified library of Monte Carlo code. To verify the proposed method, calculations are performed on several benchmarks. The error of the method is analyzed and the way to reduce error is proposed. The results are in good agreement with the reference data

  19. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  20. Recent code systems at JAERI

    International Nuclear Information System (INIS)

    Recently several code systems have been developed and utilized at Japan Atomic Energy Research Institute. It is not easy to construct and maintain a code system, but the fact is not well known in the researchers. For this reason, it will be very useful to publish informations about design concepts, characteristics, necessary computer features and amounts of invested manpower for the developments of some recent JAERI code systems. In this report, a general view of required manpower on unification of nuclear codes is discussed and four code systems, i.e., SRAC for thermal reactor analysis, TRITON for Tokamak MHD analysis, SPEEDI for emergent environmental dose prediction and RADHEAT for radiation shielding analysis are presented. They are described from aspects of (1) purpose and schedule of development, (2) outline of system, (3) results of benchmark tests, (4) utilized computer features, (5) invested manpower, and (6) desirable computer features. Finally common aspects of four code systems from viewpoint of necessary computer hardwares and softwares are discussed for future development of code systems. (author)

  1. DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries

    Science.gov (United States)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2016-07-01

    In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.

  2. FAST CONVERGENT MONTE CARLO RECEIVER FOR OFDM SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Wu Lili; Liao Guisheng; Bao Zheng; Shang Yong

    2005-01-01

    The paper investigates the problem of the design of an optimal Orthogonal Frequency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel estimation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms.One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.

  3. On the use of SERPENT Monte Carlo code to generate few group diffusion constants

    Energy Technology Data Exchange (ETDEWEB)

    Piovezan, Pamela, E-mail: pamela.piovezan@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Carluccio, Thiago; Domingos, Douglas Borges; Rossi, Pedro Russo; Mura, Luiz Felipe, E-mail: fermium@cietec.org.b, E-mail: thiagoc@ipen.b [Fermium Tecnologia Nuclear, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The accuracy of diffusion reactor codes strongly depends on the quality of the groups constants processing. For many years, the generation of such constants was based on 1-D infinity cell transport calculations. Some developments using collision probability or the method of characteristics allow, nowadays, 2-D assembly group constants calculations. However, these 1-D and 2-D codes how some limitations as , for example, on complex geometries and in the neighborhood of heavy absorbers. On the other hand, since Monte Carlos (MC) codes provide accurate neutro flux distributions, the possibility of using these solutions to provide group constants to full-core reactor diffusion simulators has been recently investigated, especially for the cases in which the geometry and reactor types are beyond the capability of the conventional deterministic lattice codes. The two greatest difficulties on the use of MC codes to group constant generation are the computational costs and the methodological incompatibility between analog MC particle transport simulation and deterministic transport methods based in several approximations. The SERPENT code is a 3-D continuous energy MC transport code with built-in burnup capability that was specially optimized to generate these group constants. In this work, we present the preliminary results of using the SERPENT MC code to generate 3-D two-group diffusion constants for a PWR like assembly. These constants were used in the CITATION diffusion code to investigate the effects of the MC group constants determination on the neutron multiplication factor diffusion estimate. (author)

  4. Randomly dispersed particle fuel model in the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    High-temperature gas-cooled reactor fuels are composed of thousands of microscopic fuel particles, randomly dispersed in a graphite matrix. The modelling of such geometry is complicated, especially using continuous-energy Monte Carlo codes, which are unable to apply any deterministic corrections in the calculation. This paper presents the geometry routine developed for modelling randomly dispersed particle fuels using the PSG Monte Carlo reactor physics code. The model is based on the delta-tracking method, and it takes into account the spatial self-shielding effects and the random dispersion of the fuel particles. The calculation routine is validated by comparing the results to reference MCNP4C calculations using uranium and plutonium based fuels. (authors)

  5. Evaluation of CASMO-3 and HELIOS for Fuel Assembly Analysis from Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyung Jin; Song, Jae Seung; Lee, Chung Chan

    2007-05-15

    This report presents a study comparing deterministic lattice physics calculations with Monte Carlo calculations for LWR fuel pin and assembly problems. The study has focused on comparing results from the lattice physics code CASMO-3 and HELIOS against those from the continuous-energy Monte Carlo code McCARD. The comparisons include k{sub inf}, isotopic number densities, and pin power distributions. The CASMO-3 and HELIOS calculations for the k{sub inf}'s of the LWR fuel pin problems show good agreement with McCARD within 956pcm and 658pcm, respectively. For the assembly problems with Gadolinia burnable poison rods, the largest difference between the k{sub inf}'s is 1463pcm with CASMO-3 and 1141pcm with HELIOS. RMS errors for the pin power distributions of CASMO-3 and HELIOS are within 1.3% and 1.5%, respectively.

  6. TRIPOLI-4{sup ®} Monte Carlo code ITER A-lite neutronic model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, Jean-Charles, E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Cayla, Pierre-Yves; Fausser, Clement [MILLENNIUM, 16 Av du Québec Silic 628, F-91945 Villebon sur Yvette (France); Damian, Frederic; Lee, Yi-Kang; Puma, Antonella Li; Trama, Jean-Christophe [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France)

    2014-10-15

    3D Monte Carlo transport codes are extensively used in neutronic analysis, especially in radiation protection and shielding analyses for fission and fusion reactors. TRIPOLI-4{sup ®} is a Monte Carlo code developed by CEA. The aim of this paper is to show its capability to model a large-scale fusion reactor with complex neutron source and geometry. A benchmark between MCNP5 and TRIPOLI-4{sup ®}, on the ITER A-lite model was carried out; neutron flux, nuclear heating in the blankets and tritium production rate in the European TBMs were evaluated and compared. The methodology to build the TRIPOLI-4{sup ®} A-lite model is based on MCAM and the MCNP A-lite model. Simplified TBMs, from KIT, were integrated in the equatorial-port. A good agreement between MCNP and TRIPOLI-4{sup ®} is shown; discrepancies are mainly included in the statistical error.

  7. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  8. Shielding evaluation for e-Linac - Inter-comparison of Monte Carlo codes and analytical calculations

    International Nuclear Information System (INIS)

    Estimation of optimum shielding thickness is an important aspect in radiation protection as well as in assessment of cost effectiveness of any upcoming accelerator facility. Analytical calculations for shielding estimates are fast and being frequently used even though they are very approximate. Estimates by Monte Carlo codes, on the other hand is accurate, provided used in a judicious manner, but they are very time consuming and require high end computational hardware. The purpose of this work is to compare the results from various available Monte Carlo codes, such as FLUKA and EGSmc. The estimated output was also compared with the analytical techniques. For the work, an e-Linac facility of 50 MeV electron beam was used and calculations were carried out with 1 mA beam current. (author)

  9. Applications of the COG multiparticle Monte Carlo transport code to simulated imaging of complex objects

    International Nuclear Information System (INIS)

    COG is a major multiparticle simulation code in the LLNL Monte Carlo radiation transport toolkit. It was designed to solve deep-penetration radiation shielding problems in arbitrarily complex 3D geometries, involving coupled transport of photons, neutrons, and electrons. COG was written to provide as much accuracy as the underlying cross-sections will allow, and has a number of variance-reduction features to speed computations. Recently COG has been applied to the simulation of high- resolution radiographs of complex objects and the evaluation of contraband detection schemes. In this paper we will give a brief description of the capabilities of the COG transport code and show several examples of neutron and gamma-ray imaging simulations. Keywords: Monte Carlo, radiation transport, simulated radiography, nonintrusive inspection, neutron imaging

  10. Vectorization and multitasking with a Monte-Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    This paper summarizes two improvements of a Monte Carlo code by resorting to vectorization and multitasking techniques. After a short presentation of the physical problem to solve and a description of the main difficulties to produce an efficient coding, this paper introduces the vectorization principles employed and briefly describes how the vectorized algorithm works. Next, measured performances on CRAY 1S, CYBER 205 and CRAY X-MP are compared. The second part of this paper is devoted to multitasking technique. Starting from the standard multitasking tools available with FORTRAN on CRAY X-MP/4, a multitasked algorithm and its measured speed-ups are presented. In conclusion we prove that vector and parallel computers are a great opportunity for such Monte Carlo algorithms

  11. PEREGRINE: An all-particle Monte Carlo code for radiation therapy

    International Nuclear Information System (INIS)

    The goal of radiation therapy is to deliver a lethal dose to the tumor while minimizing the dose to normal tissues. To carry out this task, it is critical to calculate correctly the distribution of dose delivered. Monte Carlo transport methods have the potential to provide more accurate prediction of dose distributions than currently-used methods. PEREGRINE is a new Monte Carlo transport code developed at Lawrence Livermore National Laboratory for the specific purpose of modeling the effects of radiation therapy. PEREGRINE transports neutrons, photons, electrons, positrons, and heavy charged-particles, including protons, deuterons, tritons, helium-3, and alpha particles. This paper describes the PEREGRINE transport code and some preliminary results for clinically relevant materials and radiation sources

  12. Development of Monte Carlo decay gamma-ray transport calculation system

    International Nuclear Information System (INIS)

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  13. Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

    Directory of Open Access Journals (Sweden)

    Diego Ferraro

    2011-01-01

    Full Text Available Monte Carlo neutron transport codes are usually used to perform criticality calculations and to solve shielding problems due to their capability to model complex systems without major approximations. However, these codes demand high computational resources. The improvement in computer capabilities leads to several new applications of Monte Carlo neutron transport codes. An interesting one is to use this method to perform cell-level fuel assembly calculations in order to obtain few group constants to be used on core calculations. In the present work the VTT recently developed Serpent v.1.1.7 cell-oriented neutronic calculation code is used to perform cell calculations of a theoretical BWR lattice benchmark with burnable poisons, and the main results are compared to reported ones and with calculations performed with Condor v.2.61, the INVAP's neutronic collision probability cell code.

  14. The Serpent Monte Carlo Code: Status, Development and Applications in 2013

    Science.gov (United States)

    Leppänen, Jaakko; Pusa, Maria; Viitanen, Tuomas; Valtavirta, Ville; Kaltiaisenaho, Toni

    2014-06-01

    The Serpent Monte Carlo reactor physics burnup calculation code has been developed at VTT Technical Research Centre of Finland since 2004, and is currently used in 100 universities and research organizations around the world. This paper presents the brief history of the project, together with the currently available methods and capabilities and plans for future work. Typical user applications are introduced in the form of a summary review on Serpent-related publications over the past few years.

  15. Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code

    International Nuclear Information System (INIS)

    A model of a gamma sterilizer was built using the ITS/ACCEPT Monte Carlo code and verified through dosimetry. Individual dosimetry measurements in homogeneous material were pooled to represent larger bodies that could be simulated in a reasonable time. With the assumptions and simplifications described, dose predictions were within 2-5% of dosimetry. The model was used to simulate product movement through the sterilizer and to predict information useful for process optimization and facility design

  16. Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam

    International Nuclear Information System (INIS)

    The head of a clinical linear accelerator based on the manufacturer detailed information is simulated by using GEANT4. Percentage Depth Dose (PDD) and flatness symmetry (lateral dose profiles) in water phantom were evaluated. Comparisons between experimental and simulated data were carried out for two field sizes; 5 × 5, and 10 ×10 cm2. The obtained results indicated that GEANT4 code is a promising and validated Monte Carlo program for using in radiotherapy applications

  17. TRIMARAN: a three dimensional multigroup P1 Monte Carlo code for criticallity studies

    International Nuclear Information System (INIS)

    TRIMARAN is developed for safety analysis of nuclar components containing fissionnable materials: shipping casks, storage and cooling pools, manufacture and reprocessing plants. It solves the transport equation by Monte Carlo method in general three dimensional geometry with multigroup P1 approximation. A special representation of cross sections and numbers has been developed in order to reduce considerably the computing cost and allow this three dimensional code to compete with standard numerical program used in parametric studies

  18. Monte-Carlo Simulation for PDC-Based Optical CDMA System

    Directory of Open Access Journals (Sweden)

    FAHIM AZIZ UMRANI

    2010-10-01

    Full Text Available This paper presents the Monte-Carlo simulation of Optical CDMA (Code Division Multiple Access systems, and analyse its performance in terms of the BER (Bit Error Rate. The spreading sequence chosen for CDMA is Perfect Difference Codes. Furthermore, this paper derives the expressions of noise variances from first principles to calibrate the noise for both bipolar (electrical domain and unipolar (optical domain signalling required for Monte-Carlo simulation. The simulated results conform to the theory and show that the receiver gain mismatch and splitter loss at the transceiver degrades the system performance.

  19. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, C.; Martin, W. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States); Rearden, B.; Williams, M. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Div., Bldg. 5700, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  20. Exact modeling of the torus geometry with Monte Carlo transport code

    International Nuclear Information System (INIS)

    It is valuable to model torus geometry exactry for the neutronics design of fusion reactor in order to assess neutronics characteristics such as tritium breeding ratio, heat generation rate, etc, near the plasma. Monte Carlo code MORSE-GG which plays important role in the radiation streaming calculation of fusion reactors had been able to deal with the geometry composed of second order surfaces. The MORSE-GG program is modified to be able to deal with torus geometry which has fourth order surface by solving biquadratic equations, hoping that MORSE-GG code becomes more effective for the neutronics calculation of the Tokamak fusion reactor. (author)

  1. Efficient data management techniques implemented in the Karlsruhe Monte Carlo code KAMCCO

    International Nuclear Information System (INIS)

    The Karlsruhe Monte Carlo Code KAMCCO is a forward neutron transport code with an eigenfunction and a fixed source option, including time-dependence. A continuous energy model is combined with a detailed representation of neutron cross sections, based on linear interpolation, Breit-Wigner resonances and probability tables. All input is processed into densely packed, dynamically addressed parameter fields and networks of pointers (addresses). Estimation routines are decoupled from random walk and analyze a storage region with sample records. This technique leads to fast execution with moderate storage requirements and without any I/O-operations except in the input and output stages. 7 references. (U.S.)

  2. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    Energy Technology Data Exchange (ETDEWEB)

    Procassini, R.J. [Lawrence Livermore National lab., CA (United States)

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.

  3. ASCOT: redesigned Monte Carlo code for simulations of minority species in tokamak plasmas

    CERN Document Server

    Hirvijoki, Eero; Koskela, Tuomas; Kurki-Suonio, Taina; Miettunen, Juho; Sipilä, Seppo; Snicker, Antti; Äkäslompolo, Simppa

    2013-01-01

    A comprehensive description of methods for Monte Carlo studies of fast ions and impurity species in tokamak plasmas is presented. The described methods include Hamiltonian orbit-following in particle and guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations in the presence of Coulomb collisions, Neoclassical tearing modes and Alfv\\'en eigenmodes as electromagnetic perturbations relevant for fast ions, together with plasma flow and atomic reactions relevant for impurity studies. Applying the methods, a complete reimplementation of a well-established minority species code is carried out as a response both to the increase in computing power during the last twenty years and to the weakly structured growth of the previous code which has made implementation of additional models impractical. Also, a thorough benchmark between the previous code and the reimplementation is accomplished, showing good agreement between the codes.

  4. Uncertainties associated with the use of the KENO Monte Carlo criticality codes

    International Nuclear Information System (INIS)

    The KENO multi-group Monte Carlo criticality codes have earned the reputation of being efficient, user friendly tools especially suited for the analysis of situations commonly encountered in the storage and transportation of fissile materials. Throughout their twenty years of service, a continuing effort has been made to maintain and improve these codes to meet the needs of the nuclear criticality safety community. Foremost among these needs is the knowledge of how to utilize the results safely and effectively. Therefore it is important that code users be aware of uncertainties that may affect their results. These uncertainties originate from approximations in the problem data, methods used to process cross sections, and assumptions, limitations and approximations within the criticality computer code itself. 6 refs., 8 figs., 1 tab

  5. Specific Monte Carlo code development for nuclear well-logging tool responses

    International Nuclear Information System (INIS)

    McPNL is a specific Monte Carlo computer code that has been developed to simulate a pulsed neutron oil well logging tool and uses implicit capture, Russian roulette and statistical estimation techniques as primary variance reduction methods. The code has been validated by benchmarking against six sets of laboratory test pit data on water, limestone and quartz formations with widely varying sets of borehole and formation conditions. McDNL is a specific Monte Carlo computer code that has been developed to simulate a dual-spaced neutron porosity tool. The low counting yield in the far detector of the tool requires the use of biasing schemes to obtain adequate efficiency. Exponential transform and directional biasing techniques have been applied with remarkable success for this problem, along with source biasing, implicit capture, Russian roulette and statistical estimation techniques. The code has been benchmarked against five sets of laboratory test pit data and found to be valid. Correlated sampling can be optionally used in the code to accurately predict the relative change in the detector response due to small perturbations in the formation porosity. (author)

  6. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code.

    Science.gov (United States)

    Parach, Ali Asghar; Rajabi, Hossein; Askari, Mohammad Ali

    2011-08-01

    GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r (2)>0.99) between the two series of data. However, the GATE/GEANT data were on average -0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10-20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50-1000 keV. For photon energies of 10-30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10-30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50-1,000 keV, the bias was negligible and the agreement was acceptable. PMID:21573984

  7. An analytical solution to a simplified EDXRF model for Monte Carlo code verification

    International Nuclear Information System (INIS)

    The objective of this study is to obtain an analytical solution to the scalar photon transport equation that can be used to obtain benchmark results for the verification of energy dispersive X-Ray fluorescence (EDXRF) Monte Carlo simulation codes. The multi-collided flux method (multiple scattering method) is implemented to obtain analytical expressions for the space-, energy-, and angle-dependent scalar photon flux for a one dimensional EDXRF model problem. In order to obtain benchmark results, higher-order multiple scattering terms are included in the multi-collided flux method. The details of the analytical solution and of the proposed EDXRF model problem are presented. Analytical expressions obtained are then used to calculate the energy-dependent current. The analytically-calculated energy-dependent current is compared with Monte Carlo code results. The findings of this study show that analytical solutions to the scalar photon transport equation with the proposed model problem can be used as a verification tool in EDXRF Monte Carlo code development.

  8. Unstructured mesh based multi-physics interface for CFD code coupling in the Serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents an unstructured mesh based multi-physics interface implemented in the Serpent 2 Monte Carlo code, for the purpose of coupling the neutronics solution to component-scale thermal hydraulics calculations, such as computational fluid dynamics (CFD). The work continues the development of a multi-physics coupling scheme, which relies on the separation of state-point information from the geometry input, and the capability to handle temperature and density distributions by a rejection sampling algorithm. The new interface type is demonstrated by a simplified molten-salt reactor test case, using a thermal hydraulics solution provided by the CFD solver in OpenFOAM. (author)

  9. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    International Nuclear Information System (INIS)

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  10. Evaluation of Monte Carlo Codes Regarding the Calculated Detector Response Function in NDP Method

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min; Park, Byung Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The basis of the NDP is the irradiation of a sample with a thermal or cold neutron beam and the subsequent release of charged particles due to neutron-induced exoergic charged particle reactions. Neutrons interact with the nuclei of elements and release mono-energetic charged particles, e.g. alpha particles or protons, and recoil atoms. Depth profile of the analyzed element can be obtained by making a linear transformation of the measured energy spectrum by using the stopping power of the sample material. A few micrometer of the material can be analyzed nondestructively, and on the order of 10nm depth resolution can be obtained depending on the material type with NDP method. In the NDP method, the one first steps of the analytical process is a channel-energy calibration. This calibration is normally made with the experimental measurement of NIST Standard Reference Material sample (SRM-93a). In this study, some Monte Carlo (MC) codes were tried to calculate the Si detector response function when this detector accounted the energy charges particles emitting from an analytical sample. In addition, these MC codes were also tried to calculate the depth distributions of some light elements ({sup 10}B, {sup 3}He, {sup 6}Li, etc.) in SRM-93a and SRM-2137 samples. These calculated profiles were compared with the experimental profiles and SIMS profiles. In this study, some popular MC neutron transport codes are tried and tested to calculate the detector response function in the NDP method. The simulations were modeled based on the real CN-NDP system which is a part of Cold Neutron Activation Station (CONAS) at HANARO (KAERI). The MC simulations are very successful at predicting the alpha peaks in the measured energy spectrum. The net area difference between the measured and predicted alpha peaks are less than 1%. A possible explanation might be bad cross section data set usage in the MC codes for the transport of low energetic lithium atoms inside the silicon substrate.

  11. Evaluation of scattered radiation from radiographic intensifying screen on dental image contrast using Monte Carlo code

    International Nuclear Information System (INIS)

    The most dental imaging is performed by means a imaging system consisting of a film/screen combination. Fluorescent intensifying screens for X-ray films are used in order to reduce the radiation dose. They produce visible light which increases the efficiency of the film. In addition, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering) which will degrade the image resolution. Scattered radiation produced in Gd2O2S:Tb intensifying screens was simulated by using a Monte Carlo radiation transport code - the EGS4. The magnitude of scattered radiation striking the film is typically quantified using the scatter to primary radiation and the scatter fraction. The angular distribution of the intensity of the scattered radiation (sum of both the scattering effects) was simulated, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 5.67% and 3.28 % and the scatter function is about 5.27% and 3.18% for the front and back screen, respectively, over the range from 0 to π rad. (author)

  12. Verification of the spectral history correction method with fully coupled Monte Carlo code BGCore

    International Nuclear Information System (INIS)

    Recently, a new method for accounting for burnup history effects on few-group cross sections was developed and implemented in the reactor dynamic code DYN3D. The method relies on the tracking of the local Pu-239 density which serves as an indicator of burnup spectral history. The validity of the method was demonstrated in PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. Therefore, the purpose of the current work is to further investigate the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal hydraulic solvers and thus capable of providing a reference solution for 3D simulations. The results dearly show that neglecting the spectral history effects leads to a very large deviation (e.g. 2000 pcm in reactivity) from fee reference solution. However, a very good agreement between DYN3D and BGCore is observed (on the order of 200 pcm in reactivity), when the. Pu-correction method is applied. (author)

  13. Modelling of a general purpose irradiation chamber using a Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Full-text: The aim of this research is to stimulate the effectiveness use of a general purpose irradiation chamber to contain pure neutron particles obtained from a research reactor. The secondary neutron and gamma particles dose discharge from the chamber layers will be used as a platform to estimate the safe dimension of the chamber. The chamber, made up of layers of lead (Pb), shielding, polyethylene (PE), moderator and commercial grade aluminium (Al) cladding is proposed for the use of interacting samples with pure neutron particles in a nuclear reactor environment. The estimation was accomplished through simulation based on general Monte Carlo N-Particle transport code using Los Alamos MCNPX software. Simulations were performed on the model of the chamber subjected to high neutron flux radiation and its gamma radiation product. The model of neutron particle used is based on the neutron source found in PUSPATI TRIGA MARK II research reactor which holds a maximum flux value of 1 x 1012 neutron/ cm2s. The expected outcomes of this research are zero gamma dose in the core of the chamber and neutron dose rate of less than 10 μSv/ day discharge from the chamber system. (author)

  14. ESCADRE and ICARE code systems

    International Nuclear Information System (INIS)

    The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab

  15. Uncertainty and sensitivity analysis using probabilistic system assessment code. 1

    International Nuclear Information System (INIS)

    This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)

  16. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  17. Validation the Monte Carlo code RMC with C5G7 benchmark

    International Nuclear Information System (INIS)

    Highlights: • The RMC code was verified based on the benchmark of C5G7. • Calculation speed of RMC is better than MCNP, especially in the flux tallies. • Eigenvalues calculated by RMC were within 2σ of the benchmark in all cases. • The pin by pin flux tallies of RMC are consistent with MCNP well. - Abstract: RMC (Reactor Monte Carlo code) is a new 3D Monte Carlo neutron transport code being developed by Department of Engineering Physics in Tsinghua University. The current version of RMC is a β version. In this paper, based on 2D and 3D benchmark of C5G7, the criticality calculation capacity of RMC was verified. Comparisons were made between the benchmark eigenvalues and those outputs by the RMC code. The RMC-generated eigenvalues were within two standard deviations of the benchmark and MCNP values in all cases. Additionally, the flux was compared pin by pin between MCNP and RMC. The flux tallies generated by RMC were found to be in well agreement with those from MCNP

  18. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  19. ETR/ITER systems code

    International Nuclear Information System (INIS)

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  20. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.

    Science.gov (United States)

    Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong

    2015-09-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. PMID:25883312

  1. DNA strand breaks induced by electrons simulated with nanodosimetry Monte Carlo simulation code: NASIC

    International Nuclear Information System (INIS)

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway (authors)

  2. Overview of TRIPOLI-4 version 7, Continuous-energy Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    The TRIPOLI-4 code is used essentially for four major classes of applications: shielding studies, criticality studies, core physics studies, and instrumentation studies. In this updated overview of the Monte Carlo transport code TRIPOLI-4, we list and describe its current main features, including recent developments or extended capacities like effective beta estimation, photo-nuclear reactions or extended mesh tallies. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. TRIPOLI-4 has support for execution in parallel mode. Special features and applications are also presented concerning: 'particles storage', resuming a stopped TRIPOLI-4 run, collision bands, Green's functions, source convergence in criticality mode, and mesh tally

  3. Application of ENDF nuclear data for testing a Monte-Carlo neutron and photon transport code

    International Nuclear Information System (INIS)

    A Monte-Carlo photon and neutron transport code was developed at OAEP. The code was written in C and C++ languages in an object-oriented programming style. Constructive solid geometry (CSG), rather than combinatorial, was used such that making its input file more readable and recognizable. As the first stage of code validation, data from some ENDF files, in the MCNP's specific format, were used and compared with experimental data. The neutron (from a 300 mCi Am/Be source) attenuation by water was chosen to compare the results. The agreement of the quantity 1/Σ among the calculation from SIPHON and MCNP, and the experiment - which are 10.39 cm, 9.71 cm and 10.25 cm respectively - was satisfactorily well within the experimental uncertainties. These results also agree with the 10.8 cm result of N.M., Mirza, et al. (author)

  4. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    Science.gov (United States)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  5. Contributions at the Tripoli Monte Carlo code qualifying on critical experiences and at neutronic interaction study of fissile units

    International Nuclear Information System (INIS)

    Criticality studies in nuclear fuel cycle are based on Monte Carlo method. These codes use multigroup cross sections which can verify by experimental configurations or by use of reference codes such Tripoli 2. In this Tripoli 2 code nuclear data are errors attached and asked for experimental studies with critical experiences. This is one of the aim of this thesis. To calculate the keff of interacted fissile units we have used the multigroup Monte Carlo code Moret with convergence problems. A new estimator of reactions rates permit to better approximate the neutrons exchange between units and a new importance function has been tested. 2 annexes

  6. Analysing the statistics of group constants generated by Serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    An important topic in Monte Carlo neutron transport calculations is to verify that the statistics of the calculated estimates are correct. Undersampling, non-converged fission source distribution and inter-cycle correlations may result in inaccurate results. In this paper, we study the effect of the number of neutron histories on the distributions of homogenized group constants and assembly discontinuity factors generated using Serpent 2 Monte Carlo code. We apply two normality tests and a so-called “drift-in-mean” test to the batch-wise distributions of selected parameters generated for two assembly types taken from the MIT BEAVRS benchmark. The results imply that in the tested cases the batch-wise estimates of the studied group constants can be regarded as normally distributed. We also show that undersampling is an issue with the calculated assembly discontinuity factors when the number of neutron histories is small. (author)

  7. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results

  8. Conversion coefficients for individual monitoring calculated with integrated tiger series, ITS3, Monte Carlo code

    International Nuclear Information System (INIS)

    The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included

  9. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    Science.gov (United States)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2016-03-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.

  10. An object-oriented implementation of a parallel Monte Carlo code for radiation transport

    Science.gov (United States)

    Santos, Pedro Duarte; Lani, Andrea

    2016-05-01

    This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.

  11. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    CERN Document Server

    Ilic, R D; Stankovic, S J

    2002-01-01

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...

  12. Simulation and study on the γ response spectrum of BGO detector by the application of monte carlo code MOCA

    International Nuclear Information System (INIS)

    Application of Monte Carlo method to build spectra library is useful to reduce experiment workload in Prompt Gamma Neutron Activation Analysis (PGNAA). The new Monte Carlo Code MOCA was used to simulate the response spectra of BGO detector for gamma rays from 137Cs, 60Co and neutron induced gamma rays from S and Ti. The results were compared with general code MCNP, show that the agreement of MOCA between simulation and experiment is better than MCNP. This research indicates that building spectra library by Monte Carlo method is feasible. (authors)

  13. Monte carlo simulation for designing an explosive-inspection system

    International Nuclear Information System (INIS)

    In order to optimize the design of γ-ray detectors and data analysis of the system for inspection of explosive with associated alpha particle technique, Monte Carlo code EGSnrc was used to simulated detection efficiency and response function of inorganic scintillator detector for γ-rays, aimed at choosing the right type detector. Pulse height spectra of γ-rays of φ5' x 8' NaI(Tl) from graphite, water, ammonium nitrate and simulated explosive induced by 14 MeV neutron were simulated. The calculated results were analyzed and compared with experiments results, demonstrating that simulation method is reliable and it can be used to obtain the database of response function for explosive inspection. (authors)

  14. Calculation of Gamma-ray Responses for HPGe Detectors with TRIPOLI-4 Monte Carlo Code

    Science.gov (United States)

    Lee, Yi-Kang; Garg, Ruchi

    2014-06-01

    The gamma-ray response calculation of HPGe (High Purity Germanium) detector is one of the most important topics of the Monte Carlo transport codes for nuclear instrumentation applications. In this study the new options of TRIPOLI-4 Monte Carlo transport code for gamma-ray spectrometry were investigated. Recent improvements include the gamma-rays modeling of the electron-position annihilation, the low energy electron transport modeling, and the low energy characteristic X-ray production. The impact of these improvements on the detector efficiency of the gamma-ray spectrometry calculations was verified. Four models of HPGe detectors and sample sources were studied. The germanium crystal, the dead layer of the crystal, the central hole, the beryllium window, and the metal housing are the essential parts in detector modeling. A point source, a disc source, and a cylindrical extended source containing a liquid radioactive solution were used to study the TRIPOLI-4 calculations for the gamma-ray energy deposition and the gamma-ray self-shielding. The calculations of full-energy-peak and total detector efficiencies for different sample-detector geometries were performed. Using TRIPOLI-4 code, different gamma-ray energies were applied in order to establish the efficiency curves of the HPGe gamma-ray detectors.

  15. Modern calculations of pulsed-sphere time-of-flight experiments using the mercury Monte Carlo transport code

    International Nuclear Information System (INIS)

    Modern Monte Carlo transport simulations of the Lawrence Livermore National Laboratory pulsed-sphere time of flight experiments have recently been performed. In these experiments, 14 MeV neutrons, generated via the 3H(d, n)4He reaction, interact with a sphere of material that surrounds the neutron generating target. The time of arrival of the uncollided and collided neutrons are recorded in a detector system placed up to 10 meters from the center of the sphere. A collection of experiments with varying sphere materials, mean-free-paths and detector systems have been modeled using the Mercury Monte Carlo transport code. This effort serves to validate new features of the Mercury code, including general sources, tallies and point-detector / biased-collisions variance reduction methods, as well as assess the quality of evaluated nuclear data sets. In general, the level of agreement between the calculations and experiment is very good. However, for certain pulsed spheres, discrepancies are observed between the simulations using different nuclear data sets. (author)

  16. HERMES - a Monte Carlo program system for beam-materials interaction studies

    International Nuclear Information System (INIS)

    HERMES (High Energy Radiation Monte Carlo Elaborate System) is a system of Monte-Carlo computer codes that are necessary to treat the different physics to be considered in computer simulation of radiation transport and interaction problems. The HERMES collection of physics programs permits the simulation of secondary particle histories induced by primary particles of any energy up to the regime of high-energy physics and down to thermal energies, e.g. for neutrons. The particles, that are considered by the programs of the HERMES system are p, n, π+, π-, π0, π±, e+, e-, γ, and light ions to A=10. The programs of the HERMES system have been taken as original codes as far as possible. To satisfy the needs of some applications, extensions and changes became necessary. Also the interfacing technique by HERMES submission files needs some additional programming. All changes made to the original codes are documented. (orig./DG)

  17. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  18. HERMES: a Monte Carlo Code for the Propagation of Ultra-High Energy Nuclei

    OpenAIRE

    De Domenico, Manlio; Lyberis, Haris; Settimo, Mariangela

    2013-01-01

    Although the recent experimental efforts to improve the observation of Ultra-High Energy Cosmic Rays (UHECRs) above $10^{18}$ eV, the origin and the composition of such particles is still unknown. In this work, we present the novel Monte Carlo code (HERMES) simulating the propagation of UHE nuclei, in the energy range between $10^{16}$ and $10^{22}$ eV, accounting for propagation in the intervening extragalactic and Galactic magnetic fields and nuclear interactions with relic photons of the e...

  19. Sampling-Based Nuclear Data Uncertainty Quantification for Continuous Energy Monte Carlo Codes

    OpenAIRE

    Zhu, Ting

    2015-01-01

    The goal of the present PhD research is to establish a methodology of nuclear data uncertainty quantification (NDUQ) for MCNPX, the continuous-energy Monte-Carlo (M-C) code. The high fidelity (continuous-energy treatment and flexible geometry modelling) of MCNPX makes it the choice of routine criticality safety calculations at PSI/LRS, but also raises challenges for NDUQ by conventional sensitivity/uncertainty (S/U) methods. The methodology developed during this PhD research is fundamentally ...

  20. Simulation of clinical X-ray tube using the Monte Carlo Method - PENELOPE code

    International Nuclear Information System (INIS)

    Breast cancer is the most common type of cancer among women. The main strategy to increase the long-term survival of patients with this disease is the early detection of the tumor, and mammography is the most appropriate method for this purpose. Despite the reduction of cancer deaths, there is a big concern about the damage caused by the ionizing radiation to the breast tissue. To evaluate these measures it was modeled a mammography equipment, and obtained the depth spectra using the Monte Carlo method - PENELOPE code. The average energies of the spectra in depth and the half value layer of the mammography output spectrum. (author)

  1. 3-D Monte Carlo neutron-photon transport code JMCT and its algorithms

    International Nuclear Information System (INIS)

    JMCT Monte Carlo neutron and photon transport code has been developed which is based on the JCOGIN toolbox. JCOGIN includes the geometry operation, tally, the domain decomposition and the parallel computation about particle (MPI) and spatial domain (OpenMP) etc. The viewdata of CAD is equipped in JMCT preprocessor. The full-core pin-mode, which is from Chinese Qinshan-II nuclear power station, is design and simulated by JMCT. The detail pin-power distribution and keff results are shown in this paper. (author)

  2. Monte Carlo simulations of quantum systems on massively parallel supercomputers

    International Nuclear Information System (INIS)

    A large class of quantum physics applications uses operator representations that are discrete integers by nature. This class includes magnetic properties of solids, interacting bosons modeling superfluids and Cooper pairs in superconductors, and Hubbard models for strongly correlated electrons systems. This kind of application typically uses integer data representations and the resulting algorithms are dominated entirely by integer operations. The authors implemented an efficient algorithm for one such application on the Intel Touchstone Delta and iPSC/860. The algorithm uses a multispin coding technique which allows significant data compactification and efficient vectorization of Monte Carlo updates. The algorithm regularly switches between two data decompositions, corresponding naturally to different Monte Carlo updating processes and observable measurements such that only nearest-neighbor communications are needed within a given decomposition. On 128 nodes of Intel Delta, this algorithm updates 183 million spins per second (compared to 21 million on CM-2 and 6.2 million on a Cray Y-MP). A systematic performance analysis shows a better than 90% efficiency in the parallel implementation

  3. System Design Description for the TMAD Code

    International Nuclear Information System (INIS)

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System

  4. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Highlights: • The performance of nuclear reactor Monte Carlo transport applications is examined. • A “proxy-application” (XSBench) is presented representing the key kernel. • In-depth performance analyses reveal the algorithm is bottlenecked by bandwidth. • Strategies are discussed to improve scalability on next generation HPC systems. - Abstract: We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm – the calculation of macroscopic cross sections – in an effort to expose bottlenecks within multi-core, shared memory architectures

  5. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code

    Science.gov (United States)

    Parodi, K.; Ferrari, A.; Sommerer, F.; Paganetti, H.

    2007-07-01

    Clinical investigations on post-irradiation PET/CT (positron emission tomography/computed tomography) imaging for in vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project, we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation-induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modelling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except a few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper, we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation

  6. Antiproton annihilation physics in the Monte Carlo particle transport code SHIELD-HIT12A

    International Nuclear Information System (INIS)

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi–Teller Z-law, which is implemented by default in SHIELD-HIT12A has been shown not to be a good approximation for the capture probability of negative projectiles by nuclei. We investigate other theories which have been developed, and give a better agreement with experimental findings. The consequence of these updates is tested by comparing simulated data with the antiproton depth dose curve in water. It is found that the implementation of these new capture probabilities results in an overestimation of the depth dose curve in the Bragg peak. This can be mitigated by scaling the antiproton collision cross sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds

  7. Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system

    Science.gov (United States)

    Mowlavi, Ali Asghar; Hadizadeh Yazdi, Mohammad Hadi

    2011-12-01

    We have applied a pile-up Monte Carlo simulation code on gamma spectrum of a prompt gamma neutron activation analysis (PGNAA) system. The code has been run in nonparalyzable mode for a specific geometry of a PGNAA system with 241Am-9Be source and NaI(Tl) detector to obtain the distortion due to “pile-up” in the pulse height of gamma spectrum. The results show that the main background in the nitrogen region of interest (ROI) is due to two pile-ups. We have also evaluated the variation of count rate and total photon sampling over the Monte Carlo spectra. At high count rates, not only the nitrogen ROI but also carbon ROI, and hydrogen peak are disturbed strongly. Comparison between the results of simulations and the experimental spectra has shown a good agreement. The code could be used for other source setups and different gamma detection systems.

  8. Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system

    Energy Technology Data Exchange (ETDEWEB)

    Mowlavi, Ali Asghar, E-mail: amowlavi@sttu.ac.ir [Physics Department, School of Sciences, Sabzevar Tarbiat Moallem University, Sabzevar (Iran, Islamic Republic of); TRIL, ICTP, Trieste (Italy); Hadizadeh Yazdi, Mohammad Hadi [Physics Department, School of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2011-12-21

    We have applied a pile-up Monte Carlo simulation code on gamma spectrum of a prompt gamma neutron activation analysis (PGNAA) system. The code has been run in nonparalyzable mode for a specific geometry of a PGNAA system with {sup 241}Am-{sup 9}Be source and NaI(Tl) detector to obtain the distortion due to 'pile-up' in the pulse height of gamma spectrum. The results show that the main background in the nitrogen region of interest (ROI) is due to two pile-ups. We have also evaluated the variation of count rate and total photon sampling over the Monte Carlo spectra. At high count rates, not only the nitrogen ROI but also carbon ROI, and hydrogen peak are disturbed strongly. Comparison between the results of simulations and the experimental spectra has shown a good agreement. The code could be used for other source setups and different gamma detection systems.

  9. Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system

    International Nuclear Information System (INIS)

    We have applied a pile-up Monte Carlo simulation code on gamma spectrum of a prompt gamma neutron activation analysis (PGNAA) system. The code has been run in nonparalyzable mode for a specific geometry of a PGNAA system with 241Am-9Be source and NaI(Tl) detector to obtain the distortion due to “pile-up” in the pulse height of gamma spectrum. The results show that the main background in the nitrogen region of interest (ROI) is due to two pile-ups. We have also evaluated the variation of count rate and total photon sampling over the Monte Carlo spectra. At high count rates, not only the nitrogen ROI but also carbon ROI, and hydrogen peak are disturbed strongly. Comparison between the results of simulations and the experimental spectra has shown a good agreement. The code could be used for other source setups and different gamma detection systems.

  10. Development of burnup calculation function in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)

  11. The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Document Server

    CERN. Geneva; Ferrari, Alfredo; Silari, Marco

    2006-01-01

    Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...

  12. Simulation of density curve for slim borehole using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Borehole logging for formation density has been an important geophysical measurement in oil industry. For calibration of the Gamma Ray nuclear logging tool, numerous rock models of different lithology and densities are necessary. However, the full success of this calibration process is determined by a reliable benchmark, where the complete and precise chemical composition of the standards is necessary. Simulations using the Monte Carlo MCNP have been widely employed in well logging application once it serves as a low-cost substitute for experimental test pits, as well as a means for obtaining data that are difficult to obtain experimentally. Considering this, the purpose of this work is to use the code MCNP to obtain density curves for slim boreholes using Gamma Ray logging tools. For this, a Slim Density Gamma Probe, named TRISONDR, and a 100 mCi Cs-137 gamma source has been modeled with the new version of MCNP code MCNPX. (author)

  13. Simulation of density curve for slim borehole using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu, E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda Cristine Arruda, E-mail: scorrea@nuclear.ufrj.b [Centro Universitario Estadual da Zona Oeste (CCMAT/UEZO), Rio de Janeiro, RJ (Brazil); Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Universidade Estadual do Rio de Janeiro (IPRJ/UERJ) Nova Friburgo, Rio de Janeiro, RJ (Brazil). Instituto Politecnico do Rio de Janeiro; Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ) RJ (Brazil). Dept. de Geologia

    2010-07-01

    Borehole logging for formation density has been an important geophysical measurement in oil industry. For calibration of the Gamma Ray nuclear logging tool, numerous rock models of different lithology and densities are necessary. However, the full success of this calibration process is determined by a reliable benchmark, where the complete and precise chemical composition of the standards is necessary. Simulations using the Monte Carlo MCNP have been widely employed in well logging application once it serves as a low-cost substitute for experimental test pits, as well as a means for obtaining data that are difficult to obtain experimentally. Considering this, the purpose of this work is to use the code MCNP to obtain density curves for slim boreholes using Gamma Ray logging tools. For this, a Slim Density Gamma Probe, named TRISOND{sup R}, and a 100 mCi Cs-137 gamma source has been modeled with the new version of MCNP code MCNPX. (author)

  14. Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code

    International Nuclear Information System (INIS)

    Shielding properties of a lateral iron shield and of iron and concrete shields at angles between 5deg and 30deg are studied by means of the Monte Carlo program FLUNEV (DESY-D3 version of the FLUKA code extended for emission and transport of low energy neutrons). The following quantities were calculated for a high energy proton beam hitting an extended iron target: total and partial dose equivalents, attenuation coefficients, neutron spectra, star densities (compared also with the CASIM code) and quality factors. The dependence of the dose equivalent on the energy of primary protons, the effect of a concrete layer behind a lateral iron shielding and the total number of neutrons produced in the target were also estimated. (orig.)

  15. Preliminary analyses for HTTR's start-up physics tests by Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Analyses of start-up physics tests for High Temperature Engineering Test Reactor (HTTR) have been carried out by Monte Carlo code MVP based on continuous energy method. Heterogeneous core structures were modified precisely, such as the fuel compacts, fuel rods, coolant channels, burnable poisons, control rods, control rod insertion holes, reserved shutdown pellet insertion holes, gaps between graphite blocks, etc. Such precise modification of the core structures was difficult with diffusion calculation. From the analytical results, the followings were confirmed; The first criticality will be achieved around 16 fuel columns loaded. The reactivity at the first criticality can be controlled by only one control rod located at the center of the core with other fifteen control rods fully withdrawn. The excess reactivity, reactor shutdown margin and control rod criticality positions have been evaluated. These results were used for planning of the start-up physics tests. This report presents analyses of start-up physics tests for HTTR by MVP code. (author)

  16. Speedup of MCACE, a Monte Carlo code for evaluation of shielding safety, by parallel computer, 1

    International Nuclear Information System (INIS)

    In order to improve the accuracy of shielding analysis, we have modified MCACE, a Monte Carlo code for shielding analysis, to be able to execute on a parallel computer. The suitable algorithms for efficient paralleling has been investigated by static and dynamic analyses of the code. This includes a strategy where new units of batches are assigned to the idling cells dynamically during the execution. The efficiency of paralleling has been measured by using a simulator of a parallel computer. It is found that the load factor of all cells reached nearly 100%, and consequently, it can be said that the most effective paralleling has been achieved. The simulator has estimated the effect of paralleling as the speedup of 7.13 times when a sample problem of 8 batches, 400 particles per one batch, is loaded on parallel computer equipped with 8 cells. (author)

  17. Implementation of mathematical phantom of hand and forearm in GEANT4 Monte Carlo code

    International Nuclear Information System (INIS)

    In this work, the implementation of a hand and forearm Geant4 phantom code, for further evaluation of occupational exposure of ends of the radionuclides decay manipulated during procedures involving the use of injection syringe. The simulation model offered by Geant4 includes a full set of features, with the reconstruction of trajectories, geometries and physical models. For this work, the values calculated in the simulation are compared with the measurements rates by thermoluminescent dosimeters (TLDs) in physical phantom REMAB®. From the analysis of the data obtained through simulation and experimentation, of the 14 points studied, there was a discrepancy of only 8.2% of kerma values found, and these figures are considered compatible. The geometric phantom implemented in Geant4 Monte Carlo code was validated and can be used later for the evaluation of doses at ends

  18. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute α-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed

  19. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    Energy Technology Data Exchange (ETDEWEB)

    Hart, S. W. D. [University of Tennessee, Knoxville (UTK); Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK); Celik, Cihangir [ORNL; Leal, Luiz C [ORNL

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  20. A parallelization study of the general purpose Monte Carlo code MCNP4 on a distributed memory highly parallel computer

    International Nuclear Information System (INIS)

    The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)

  1. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    Science.gov (United States)

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger

  2. ACCEPT: three-dimensional electron/photon Monte Carlo transport code using combinatorial geometry

    International Nuclear Information System (INIS)

    The ACCEPT code provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through three-dimensional multimaterial geometries described by the combinational method. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. ACCEPT combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. The ACCEPT code is currently running on the CDC-7600 (66000) where the bulk of the cross-section data and the statistical variables are stored in Large Core Memory

  3. Simulations of fast ions distribution in stellarators based on coupled Monte Carlo fuelling and orbit codes

    International Nuclear Information System (INIS)

    The numerical simulation of the dynamics of fast ions coming from neutral beam injection (NBI) heating is an important task in fusion devices, since these particles are used as sources to heat and fuel the plasma and their uncontrolled losses can damage the walls of the reactor. This paper shows a new application that simulates these dynamics on the grid: FastDEP. FastDEP plugs together two Monte Carlo codes used in fusion science, namely FAFNER2 and ISDEP, and add new functionalities. Physically, FAFNER2 provides the fast ion initial state in the device while ISDEP calculates their evolution in time; as a result, the fast ion distribution function in TJ-II stellerator has been estimated, but the code can be used on any other device. In this paper a comparison between the physics of the two NBI injectors in TJ-II is presented, together with the differences between fast ion confinement and the driven momentum in the two cases. The simulations have been obtained using Montera, a framework developed for achieving grid efficient executions of Monte Carlo applications. (paper)

  4. Monte Carlo studies of the self-correcting properties of the Majorana quantum error correction code under braiding

    Science.gov (United States)

    Pedrocchi, Fabio L.; Bonesteel, N. E.; DiVincenzo, David P.

    2015-09-01

    The Majorana code is an example of a stabilizer code where the quantum information is stored in a system supporting well-separated Majorana bound states (MBSs). We focus on one-dimensional realizations of the Majorana code, as well as networks of such structures, and investigate their lifetime when coupled to a parity-preserving thermal environment. We apply the Davies prescription, a standard method that describes the basic aspects of a thermal environment, and derive a master equation in the Born-Markov limit. We first focus on a single wire with immobile MBSs and perform error correction to annihilate thermal excitations. In the high-temperature limit, we show both analytically and numerically that the lifetime of the Majorana qubit grows logarithmically with the size of the wire. We then study a trijunction with four MBSs when braiding is executed. We study the occurrence of dangerous error processes that prevent the lifetime of the Majorana code from growing with the size of the trijunction. The origin of the dangerous processes is the braiding itself, which separates pairs of excitations and renders the noise nonlocal; these processes arise from the basic constraints of moving MBSs in one-dimensional (1D) structures. We confirm our predictions with Monte Carlo simulations in the low-temperature regime, i.e., the regime of practical relevance. Our results put a restriction on the degree of self-correction of this particular 1D topological quantum computing architecture.

  5. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  6. The Monte-Carlo-code BAMJET to stimulate the fragmentation of quark-antiquark jets

    International Nuclear Information System (INIS)

    A computer code BAMJET (Baryon-Meson JET) in Fortran language is described. The code BAMJET simulates the fragmentation into hadrons of quark-antiquark systems produced in positron-electron-annihilation processes on the basis of a chain decay model. The programme treats also the fragmentation of charmed quarks. In detail all subroutines are described, the most important input and output variables and fields are listed. Besides the flow diagramm of the code BAMJET the results of the simulation are tabulated

  7. Monali-Rev.1: a Monte Carlo code for analysing fuel assemblies of nuclear reactors

    International Nuclear Information System (INIS)

    MONALI-Rev.1 is a multigroup Monte Carlo program developed on ND computers for analysing fuel assemblies of nuclear reactors. This version of the code is flexibly dimensioned so that the allowed size of a problem is limited only by the total data storage required. The code can read multigroup data for various nuclides directly from WIMS multigroup (69/27) cross section sets. Most of the input data, with the exception of cross sections, if needed, are read in free format. The treatment of anisotropy (up to P1 at present) may be in selective mixtures. The input to the geometry module has been simplified. The code has flexibility in the definition of regions. The results calculated by the code include Keff, multigroup leakages and absorptions, group- and region-dependent fluxes. The multigroup leakages are calculated for each outer-most surface. Statistical confidence limits are also assigned to the results. In the end frequency distributions are found for the multiplication factor and optionally a normality test is also performed on the multiplication factors. (author). 8 refs., 4 figs., 2 tabs., 2 appendices

  8. PENLINAC: extending the capabilities of the Monte Carlo code PENELOPE for the simulation of therapeutic beams

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, M L [Centro Medico Paitilla. Calle 53 y ave Balboa, Paitilla (Panama)], E-mail: milrocas@gmail.com

    2008-09-07

    In this work we present PENLINAC, a code package developed to facilitate the use of the Monte Carlo code PENELOPE for the simulation of therapeutic beams, including high-energy electrons, photons and {sup 60}Co beams. The code simplifies the creation of the treatment machine geometry, allowing the modeling of their components from elementary geometric bodies and their further conversion to the quadric functions-based structure handled by PENELOPE. The code is implemented in various subroutines that allow the user to handle several models of radiation sources and phase spaces. The phase spaces are not part of the geometry and can store many variables of the particle in a relatively small data space. The set of subroutines does not alter the PENELOPE algorithms; thus, the main program implemented by the user can maintain its kind-of-particle-independent structure. A support program can handle and analyze the phase spaces to generate, among others, last interaction maps and probability distributions that can be used as sources in simulation. Results from simulations of a Clinac linear accelerator head are presented in order to demonstrate the package capabilities. Dose distributions calculated in a water phantom for a variety of beams of this accelerator showed good agreement with measurements.

  9. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    International Nuclear Information System (INIS)

    In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  10. COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics

    Science.gov (United States)

    Barletta, Paolo

    2012-02-01

    Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability

  11. On the use of the Serpent Monte Carlo code for few-group cross section generation

    International Nuclear Information System (INIS)

    Research highlights: → B1 methodology was used for generation of leakage-corrected few-group cross sections in the Serpent Monte-Carlo code. → Few-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. → 3D analysis of a PWR core was performed by a nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. → An excellent agreement in the results of 3D core calculations obtained with Helios and Serpent generated cross-section libraries was observed. - Abstract: Serpent is a recently developed 3D continuous-energy Monte Carlo (MC) reactor physics burnup calculation code. Serpent is specifically designed for lattice physics applications including generation of homogenized few-group constants for full-core core simulators. Currently in Serpent, the few-group constants are obtained from the infinite-lattice calculations with zero neutron current at the outer boundary. In this study, in order to account for the non-physical infinite-lattice approximation, B1 methodology, routinely used by deterministic lattice transport codes, was considered for generation of leakage-corrected few-group cross sections in the Serpent code. A preliminary assessment of the applicability of the B1 methodology for generation of few-group constants in the Serpent code was carried out according to the following steps. Initially, the two-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. Then, a 3D analysis of a Pressurized Water Reactor (PWR) core was performed by the nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. At this stage thermal-hydraulic (T-H) feedback was neglected. The DYN3D results were compared with those obtained from the 3D full core Serpent MC calculations. Finally, the full core DYN3D calculations were repeated taking into account T-H feedback and

  12. X-ray microbeam radiation therapy calculations, including polarisation effects, with the Monte Carlo code EGS5

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, Richard P., E-mail: r.p.hugtenburg@swansea.ac.u [School of Medicine, Swansea University, Swansea SA2 8PP (United Kingdom); Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg University, LHB, Swansea SA2 8QA (United Kingdom); Adegunloye, A.S.; Bradley, David A. [Department of Physics, Surrey University, Guildford (United Kingdom)

    2010-07-21

    Microbeam radiation therapy (MRT) is currently being considered for the treatment of glioblastoma multiforme. A high degree of dosimetric accuracy (around 5%) is known to be required for a successful outcome in conventional radiation therapy, Modelling of MRT beams, measurements and treatments have been performed with Monte Carlo methods using the code EGS5, which features improved physics models for low energy scattering processes including linear polarisation. Polarisation of the X-ray source leads to distortions in beam profiles that exceed the usual clinical tolerances. Changes in the energy spectrum also effect the response of many dosimetry systems. Anatomical (CT) data has been used in the dose calculations and the manipulation of dose data with the open-source software treatment planning system, PlanUNC, is demonstrated, in order that the therapeutic effects of the different components, e.g. the microbeam and scattered photons, can examined separately in relation to relevant anatomy.

  13. Tripoli-3: monte Carlo transport code for neutral particles - version 3.5 - users manual; Tripoli-3: code de transport des particules neutres par la methode de monte carlo - version 3.5 - manuel d'utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Vergnaud, Th.; Nimal, J.C.; Chiron, M

    2001-07-01

    The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)

  14. Condensation and homogenization of cross sections for the deterministic transport codes with Monte Carlo method: Application to the GEN IV fast neutron reactors

    International Nuclear Information System (INIS)

    In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3 for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4). At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4 code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation. Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries. Finally, a B1 leakage model is implemented in the TRIPOLI-4 code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPOLI-4 code allows producing multi-group constants which can then be used in the core

  15. Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A

    International Nuclear Information System (INIS)

    Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.

  16. Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes

    International Nuclear Information System (INIS)

    The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)

  17. Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Ratzinger, Ulrich [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); Latysheva, Ludmila; Sobolevskiy, Nikolai [Institute for Nuclear Research RAS, Moscow (Russian Federation)

    2011-07-01

    Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.

  18. Calculation of personal dose equivalent for positron-emitting radionuclides using Monte Carlo code EGS5

    International Nuclear Information System (INIS)

    The conversion coefficients, H'(d,α)/φ, for monoenergetic positrons and positron-emitting radionuclides were calculated by using the user code UCICRPM of the Monte Carlo code EGS5 to estimate the radiation dose for medical staff involved in positron emission tomography examinations. From these coefficients, the dose equivalent rates per unit activity at 0.07 and 10 mm depths in a soft tissue for a straight-line source of 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) were calculated by using the developed user code UCF18DOSE. The dose equivalent rates per unit activity at 0.07 and 10 mm depths were measured by using a personal dosemeter (DOSE 3) under the same conditions as those considered in the calculation. The calculated dose equivalent rates per unit activity at 0.07 and 10 mm depths were 0.116 and 0.0352 pSv min-1 Bq-1, respectively, at 20 cm from the 18F-FDG injection tube. (authors)

  19. Recent R and D around the Monte-Carlo code Tripoli-4 for criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hugot, F.X.; Lee, Y.K.; Malvagi, F. [CEA - DEN/DANS/DM2S/SERMA/LTSD, Saclay (France)

    2008-07-01

    TRIPOLI-4 [1] is the fourth generation of the TRIPOLI family of Monte Carlo codes developed from the 60's by CEA. It simulates the 3D transport of neutrons, photons, electrons and positrons as well as coupled neutron-photon propagation and electron-photons cascade showers. The code addresses radiation protection and shielding problems, as well as criticality and reactor physics problems through both critical and subcritical neutronics calculations. It uses full pointwise as well as multigroup cross-sections. The code has been validated through several hundred benchmarks as well as measurement campaigns. It is used as a reference tool by CEA as well as its industrial and institutional partners, and in the NURESIM [2] European project. Section 2 reviews its main features, with emphasis on the latest developments. Section 3 presents some recent R and D for criticality calculations. Fission matrix, Eigen-values and eigenvectors computations will be exposed. Corrections on the standard deviation estimator in the case of correlations between generation steps will be detailed. Section 4 presents some preliminary results obtained by the new mesh tally feature. The last section presents the interest of using XML format output files. (authors)

  20. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  1. Testing the accuracy of electron transport in the Monte Carlo code FLUKA for calculation of ion chamber wall perturbation factors

    International Nuclear Information System (INIS)

    A reliable Monte Carlo based investigation of ion chambers in medical physics problems depends on the accuracy of the charged particle transport and implementations of the condensed history technique. Improper handling of media interfaces can lead to anomalous results or 'interface artefacts'. This work presents a rigorous investigation of the electron transport algorithm in the general purpose Monte Carlo (MC) code FLUKA (2008.3b.1). A 'Fano test' was implemented in order to benchmark the accuracy of the algorithm. Furthermore, the calculation of wall perturbation factors pwall of a Roos type chamber irradiated by electrons were performed and compared with values based on the EGSnrc MC code

  2. Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code

    Science.gov (United States)

    Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.

    2016-02-01

    Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.

  3. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (keff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of keff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of keff from MCNP5 were obtained when the control fuel rods were fully inserted, the keff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of keff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  4. Characterization of 60Co dose distribution using BEAMnrc Monte Carlo code

    International Nuclear Information System (INIS)

    In this study BEAMnrc based on EGSnrc as Monte Carlo code has been used for modeling and simulating 60Co machine in radioisotope centre of Khartoum (RICK), Two fields size ( 5 cm x 5 cm and 35 cm x 35 cm), were been studied, to define the characterization of 60Co machine and to investigate the effect of increasing the surface to skin distance (SSD) on the 60Co machine properties, e.g.; beam profile and percentage depth dose (Pdd). For the narrow field size there is a small change observed in the curves representing beam profile and the percentage depth dose when increasing the distance by 5 cm, for the wide fi ld size there relatively clear different in curves. The study results been compared with other previous studies and clear consistence observed. (Author)

  5. Application of a Monte Carlo Penelope code at diverse dosimetric problems in radiotherapy

    International Nuclear Information System (INIS)

    In the present communication it is presented the results of the simulation utilizing the Penelope code (Penetration and Energy loss of Positrons and Electrons) in several applications of radiotherapy which can be the radioactive sources simulation: 192 Ir, 125 I, 106 Ru or the electron beams simulation of a linear accelerator Siemens KDS. The simulations presented in this communication have been on computers of type Pentium PC of 100 throughout 300 MHz, and the times of execution were from some hours until several days depending of the complexity of the problem. It is concluded that Penelope is a very useful tool for the Monte Carlo calculations due to its great ability and its relative handling facilities. (Author)

  6. MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners

    International Nuclear Information System (INIS)

    MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)

  7. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model.

    Science.gov (United States)

    Zhao, L; Cluggish, B; Kim, J S; Pardo, R; Vondrasek, R

    2010-02-01

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recent charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed. PMID:20192325

  8. MC++: A parallel, portable, Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms

  9. TRIPOLI-4®, CEA, EDF and AREVA Reference Monte Carlo Code

    Science.gov (United States)

    2014-06-01

    This paper presents an overview of TRIPOLI-4®, the fourth generation of the 3D continuous-energy Monte Carlo code developed by the Service d'Etudes des Réacteurs et de Mathématiques Appliquées (SERMA) at CEA Saclay. The paper surveys the generic features: programming language, parallel operation, tracked particles, nuclear data, geometry, simulation modes, standard variance reduction techniques, sources, tracking and collision algorithms, tallies, sensitivity studies. Moreover, specific and recent features are also detailed: Doppler broadening of the elastic scattering kernel, neutron and photon material irradiation, advanced variance reduction techniques, Green's functions, cycle correlation correction, nuclear data management and depletion capabilities. The productivity tools (T4G, SALOME TRIPOLI, T4RootTools), the Verification & Validation process and the distribution and licensing policy are finally presented.

  10. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  11. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    International Nuclear Information System (INIS)

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs

  12. New strategies of sensitivity analysis capabilities in continuous-energy Monte Carlo code RMC

    International Nuclear Information System (INIS)

    Highlights: • Data decomposition techniques are proposed for memory reduction. • New strategies are put forward and implemented in RMC code to improve efficiency and accuracy for sensitivity calculations. • A capability to compute region-specific sensitivity coefficients is developed in RMC code. - Abstract: The iterated fission probability (IFP) method has been demonstrated to be an accurate alternative for estimating the adjoint-weighted parameters in continuous-energy Monte Carlo forward calculations. However, the memory requirements of this method are huge especially when a large number of sensitivity coefficients are desired. Therefore, data decomposition techniques are proposed in this work. Two parallel strategies based on the neutron production rate (NPR) estimator and the fission neutron population (FNP) estimator for adjoint fluxes, as well as a more efficient algorithm which has multiple overlapping blocks (MOB) in a cycle, are investigated and implemented in the continuous-energy Reactor Monte Carlo code RMC for sensitivity analysis. Furthermore, a region-specific sensitivity analysis capability is developed in RMC. These new strategies, algorithms and capabilities are verified against analytic solutions of a multi-group infinite-medium problem and against results from other software packages including MCNP6, TSUANAMI-1D and multi-group TSUNAMI-3D. While the results generated by the NPR and FNP strategies agree within 0.1% of the analytic sensitivity coefficients, the MOB strategy surprisingly produces sensitivity coefficients exactly equal to the analytic ones. Meanwhile, the results generated by the three strategies in RMC are in agreement with those produced by other codes within a few percent. Moreover, the MOB strategy performs the most efficient sensitivity coefficient calculations (offering as much as an order of magnitude gain in FoMs over MCNP6), followed by the NPR and FNP strategies, and then MCNP6. The results also reveal that these

  13. The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere

    International Nuclear Information System (INIS)

    The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department

  14. MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10-5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each

  15. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  16. ORPHEE research reactor: 3D core depletion calculation using Monte-Carlo code TRIPOLI-4®

    Science.gov (United States)

    Damian, F.; Brun, E.

    2014-06-01

    ORPHEE is a research reactor located at CEA Saclay. It aims at producing neutron beams for experiments. This is a pool-type reactor (heavy water), and the core is cooled by light water. Its thermal power is 14 MW. ORPHEE core is 90 cm height and has a cross section of 27x27 cm2. It is loaded with eight fuel assemblies characterized by a various number of fuel plates. The fuel plate is composed of aluminium and High Enriched Uranium (HEU). It is a once through core with a fuel cycle length of approximately 100 Equivalent Full Power Days (EFPD) and with a maximum burnup of 40%. Various analyses under progress at CEA concern the determination of the core neutronic parameters during irradiation. Taking into consideration the geometrical complexity of the core and the quasi absence of thermal feedback for nominal operation, the 3D core depletion calculations are performed using the Monte-Carlo code TRIPOLI-4® [1,2,3]. A preliminary validation of the depletion calculation was performed on a 2D core configuration by comparison with the deterministic transport code APOLLO2 [4]. The analysis showed the reliability of TRIPOLI-4® to calculate a complex core configuration using a large number of depleting regions with a high level of confidence.

  17. PINSPEC. A Monte Carlo code for pin cell spectral calculations for educational applications

    International Nuclear Information System (INIS)

    Students in many reactor physics courses are exposed to canonical reactor physics concepts through theoretical problems simplified to allow for tractable analytical solutions. Such problems typically require tedious mathematical derivation which is often not the most effective approach to teaching basic reactor physics concepts. A new complementary methodology to introduce these concepts is made possible with PINSPEC, a pin cell Monte Carlo code for educational use. PINSPEC enables students to simulate pin cell models for various reactor types with a simple-to-use Python interface. PINSPEC uses point-wise cross section data and includes a module for Single-Level Breit-Wigner cross-section generation and Doppler broadening. The PINSPEC code supports a variety of tallies which students may use to compute resonance integrals, multi-group cross sections, and more for various materials and pin configurations. PINSPEC is undergoing review for open source release in the near future such that it will be a free and accessible tool for instructors developing reactor physics curricula with an applied and interactive approach to learning. (author)

  18. Development of an unstructured mesh based geometry model in the Serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents a new unstructured mesh based geometry type, developed in the Serpent 2 Monte Carlo code as a by-product of another study related to multi-physics applications and coupling to CFD codes. The new geometry type is intended for the modeling of complicated and irregular objects, which are not easily constructed using the conventional CSG based approach. The capability is put to test by modeling the 'Stanford Critical Bunny' – a variation of a well-known 3D test case for methods used in the world of computer graphics. The results show that the geometry routine in Serpent 2 can handle the unstructured mesh, and that the use of delta-tracking results in a considerable reduction in the overall calculation time as the geometry is refined. The methodology is still very much under development, with the final goal of implementing a geometry routine capable of reading standardized geometry formats used by 3D design and imaging tools in industry and medical physics. (author)

  19. BREESE-II: auxiliary routines for implementing the albedo option in the MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    The routines in the BREESE package implement the albedo option in the MORSE Monte Carlo Code by providing (1) replacements for the default routines ALBIN and ALBDO in the MORSE Code, (2) an estimating routine ALBDOE compatible with the SAMBO package in MORSE, and (3) a separate program that writes a tape of albedo data in the proper format for ALBIN. These extensions of the package initially reported in 1974 were performed jointly by ORNL, Bechtel Power Corporation, and Science Applications, Inc. The first version of BREESE had a fixed number of outgoing polar angles and the number of outgoing azimuthal angles was a function of the value of the outgoing polar angle only. An examination of differential albedo data led to this modified version which allows the number of outgoing polar angles to be dependent upon the value of the incoming polar angle and the number of outgoing azimuthal angles to be a function of the value of both incoming and outgoing polar angles

  20. Diffusion Monte Carlo: Exponentially inefficent for large systems?

    CERN Document Server

    Nemec, Norbert

    2009-01-01

    The computational cost of a Monte Carlo algorithm can only be meaningfully discussed when taking into account the magnitude of the resulting statistical error. Aiming for a fixed error per particle, we study the scaling behavior of the diffusion Monte Carlo method for large quantum systems. We identify the correlation within the population of walkers as the dominant scaling factor for large systems. While this factor is negligible for small and medium sized systems that are typically studied, it ultimately shows exponential scaling beyond system sizes that can be estimated straightforwardly for each specific system.

  1. Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    CERN Document Server

    Jia, Xun; Sempau, Josep; Choi, Dongju; Majumdar, Amitava; Jiang, Steve B

    2009-01-01

    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in two cases. Our results demonstrate the adequate accuracy of the GPU implementation for both electron and photon beams in radiotherapy energy range. A speed up factor of 4.5 and 5.5 times have been observed for electron and photon testing cases, respectively, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor .

  2. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  3. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron--photon transport. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation (such as ENDF/B-IV) are accounted for. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. Standard optional variance reduction schemes include geometry splitting and Russian roulette, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point detectors, track-length estimators, and source biasing. The standard output of MCNP includes two-way current as a function of energy, time, and angle with the normal, across any subset of bounding surfaces in the problem. Fluxes across any set of bounding surfaces are available as a function of time and energy. Similarly, the flux at designated points and the average flux in a cell (track length per unit volume) are standard tallies. Reactions such as fissions or absorptions may be obtained in a subset of geometric cells. The heating tallies give the energy deposition per starting particle. In addition, particles may be flagged when they cross specified surfaces or enter designated cells, and the contributions of these flagged particles to certain of the tallies are listed separately. All quantities printed out have their relative errors listed also. 11 figures, 27 tables

  4. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  5. Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

    International Nuclear Information System (INIS)

    Highlights: • Pu-239 based spectral history method was tested on 3D BWR single assembly case. • Burnup of a BWR fuel assembly was performed with the nodal code DYN3D. • Reference solution was obtained by coupled Monte-Carlo thermal-hydraulic code BGCore. • The proposed method accurately reproduces moderator density history effect for BWR test case. - Abstract: This research focuses on the verification of a recently developed methodology accounting for spectral history effects in 3D full core nodal simulations. The traditional deterministic core simulation procedure includes two stages: (1) generation of homogenized macroscopic cross section sets and (2) application of these sets to obtain a full 3D core solution with nodal codes. The standard approach adopts the branch methodology in which the branches represent all expected combinations of operational conditions as a function of burnup (main branch). The main branch is produced for constant, usually averaged, operating conditions (e.g. coolant density). As a result, the spectral history effects that associated with coolant density variation are not taken into account properly. Number of methods to solve this problem (such as micro-depletion and spectral indexes) were developed and implemented in modern nodal codes. Recently, we proposed a new and robust method to account for history effects. The methodology was implemented in DYN3D and involves modification of the few-group cross section sets. The method utilizes the local Pu-239 concentration as an indicator of spectral history. The method was verified for PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. The purpose of the current work is investigating the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal-hydraulic solvers and

  6. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF3 proportional counter

    International Nuclear Information System (INIS)

    The method to calculate the response function of spherical BF3 proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF3 proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within ±10%. (author)

  7. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  8. Investigation of Nuclear Data Libraries with TRIPOLI-4 Monte Carlo Code for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Lee, Y.-K.; Brun, E.

    2014-04-01

    The Sodium-cooled fast neutron reactor ASTRID is currently under design and development in France. Traditional ECCO/ERANOS fast reactor code system used for ASTRID core design calculations relies on multi-group JEFF-3.1.1 data library. To gauge the use of ENDF/B-VII.0 and JEFF-3.1.1 nuclear data libraries in the fast reactor applications, two recent OECD/NEA computational benchmarks specified by Argonne National Laboratory were calculated. Using the continuous-energy TRIPOLI-4 Monte Carlo transport code, both ABR-1000 MWth MOX core and metallic (U-Pu) core were investigated. Under two different fast neutron spectra and two data libraries, ENDF/B-VII.0 and JEFF-3.1.1, reactivity impact studies were performed. Using JEFF-3.1.1 library under the BOEC (Beginning of equilibrium cycle) condition, high reactivity effects of 808 ± 17 pcm and 1208 ± 17 pcm were observed for ABR-1000 MOX core and metallic core respectively. To analyze the causes of these differences in reactivity, several TRIPOLI-4 runs using mixed data libraries feature allow us to identify the nuclides and the nuclear data accounting for the major part of the observed reactivity discrepancies.

  9. Dosimetric reconstruction of radiological accident by numerical simulations by means associating an anthropomorphic model and a Monte Carlo computation code

    International Nuclear Information System (INIS)

    After a description of the context of radiological accidents (definition, history, context, exposure types, associated clinic symptoms of irradiation and contamination, medical treatment, return on experience) and a presentation of dose assessment in the case of external exposure (clinic, biological and physical dosimetry), this research thesis describes the principles of numerical reconstruction of a radiological accident, presents some computation codes (Monte Carlo code, MCNPX code) and the SESAME tool, and reports an application to an actual case (an accident which occurred in Equator in April 2009). The next part reports the developments performed to modify the posture of voxelized phantoms and the experimental and numerical validations. The last part reports a feasibility study for the reconstruction of radiological accidents occurring in external radiotherapy. This work is based on a Monte Carlo simulation of a linear accelerator, with the aim of identifying the most relevant parameters to be implemented in SESAME in the case of external radiotherapy

  10. Generation of one-group SELF shielded cross sections with multi-group approach for Monte Carlo burnup codes

    International Nuclear Information System (INIS)

    Allowing Monte Carlo (MC) codes to perform fuel cycle calculations requires coupling to a point depletion solver. In order to perform depletion calculations, one-group (1-g) cross sections must be provided in advance. This paper focuses on generating accurate 1-g cross section values that are necessary for evaluation of nuclide densities as a function of burnup. The proposed method is an alternative to the conventional direct reaction rate tally approach, which requires extensive computational efforts. The method presented here is based on the multi-group (MG) approach, in which pre-generated MG sets are collapsed with MC calculated flux. In our previous studies, we showed that generating accurate 1-g cross sections requires their tabulation against the background cross-section (σ0) to account for the self-shielding effect. However, in previous studies, the model that was used to calculate σ0 was simplified by fixing Bell and Dancoff factors. This work demonstrates that 1-g values calculated under the previous simplified model may not agree with the tallied values. Therefore, the original background cross section model was extended by implicitly accounting for the Dancoff and bell factors. The method developed here reconstructs the correct value of σ0 by utilizing statistical data generated within the MC transport calculation by default. The proposed method was implemented into BGCore code system. The 1-g cross section values generated by BGCore were compared with those tallied directly from the MCNP code. Very good agreement (<0.05%) in the 1-g cross values was observed. The method dose not carry any additional computational burden and it is universally applicable to the analysis of thermal as well as fast reactor systems. (author)

  11. Meaningful timescales from Monte Carlo simulations of molecular systems

    CERN Document Server

    Costa, Liborio I

    2016-01-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  12. Monte Carlo methods for the reliability analysis of Markov systems

    International Nuclear Information System (INIS)

    This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator

  13. Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers

    International Nuclear Information System (INIS)

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran

  14. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    Science.gov (United States)

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy. PMID:15487756

  15. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications

    International Nuclear Information System (INIS)

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1x108 or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8x108 histories. For a smaller number of histories (1x108) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1x108 histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy

  16. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    Full Text Available Purpose: Melanoma at the choroid region is the most common primary cancer that affects the eye in adult patients. Concave ophthalmic applicators with 106Ru/106Rh beta sources are the more used for treatment of these eye lesions, mainly lesions with small and medium dimensions. The available treatment planning system for 106Ru applicators is based on dose distributions on a homogeneous water sphere eye model, resulting in a lack of data in the literature of dose distributions in the eye radiosensitive structures, information that may be crucial to improve the treatment planning process, aiming the maintenance of visual acuity. Methods: The Monte Carlo code MCNPX was used to calculate the dose distribution in a complete mathematical model of the human eye containing a choroid melanoma; considering the eye actual dimensions and its various component structures, due to an ophthalmic brachytherapy treatment, using 106Ru/106Rh beta-ray sources. Two possibilities were analyzed; a simple water eye and a heterogeneous eye considering all its structures. Two concave applicators, CCA and CCB manufactured by BEBIG and a complete mathematical model of the human eye were modeled using the MCNPX code. Results and Conclusion: For both eye models, namely water model and heterogeneous model, mean dose values simulated for the same eye regions are, in general, very similar, excepting for regions very distant from the applicator, where mean dose values are very low, uncertainties are higher and relative differences may reach 20.4%. For the tumor base and the eye structures closest to the applicator, such as sclera, choroid and retina, the maximum difference observed was 4%, presenting the heterogeneous model higher mean dose values. For the other eye regions, the higher doses were obtained when the homogeneous water eye model is taken into consideration. Mean dose distributions determined for the homogeneous water eye model are similar to those obtained for the

  17. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  18. Modeling Monte Carlo of multileaf collimators using the code GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Alex C.H.; Lima, Fernando R.A., E-mail: oliveira.ach@yahoo.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Lima, Luciano S.; Vieira, Jose W., E-mail: lusoulima@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation is linear accelerator (Linac). Among the many algorithms developed for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo (MC) methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. of millions of particles (photons, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). Accurate modeling of the Linac head is of particular interest in the calculation of dose distributions for intensity modulated radiation therapy (IMRT), where complex intensity distributions are delivered using a multileaf collimator (MLC). The objective of this work is to describe a methodology for modeling MC of MLCs using code Geant4. To exemplify this methodology, the Varian Millennium 120-leaf MLC was modeled, whose physical description is available in BEAMnrc Users Manual (20 11). The dosimetric characteristics (i.e., penumbra, leakage, and tongue-and-groove effect) of this MLC were evaluated. The results agreed with data published in the literature concerning the same MLC. (author)

  19. HERMES: a Monte Carlo Code for the Propagation of Ultra-High Energy Nuclei

    CERN Document Server

    De Domenico, Manlio; Settimo, Mariangela

    2013-01-01

    Although the recent experimental efforts to improve the observation of Ultra-High Energy Cosmic Rays (UHECRs) above $10^{18}$ eV, the origin and the composition of such particles is still unknown. In this work, we present the novel Monte Carlo code (HERMES) simulating the propagation of UHE nuclei, in the energy range between $10^{16}$ and $10^{22}$ eV, accounting for propagation in the intervening extragalactic and Galactic magnetic fields and nuclear interactions with relic photons of the extragalactic background radiation. In order to show the potential applications of HERMES for astroparticle studies, we estimate the expected flux of UHE nuclei in different astrophysical scenarios, the GZK horizons and we show the expected arrival direction distributions in the presence of turbulent extragalactic magnetic fields. A stable version of HERMES will be released in the next future for public use together with libraries of already propagated nuclei to allow the community to perform mass composition and energy sp...

  20. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  1. Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code

    CERN Document Server

    Nunomiya, T; Nakamura, T; Nakao, N

    2002-01-01

    A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were trans...

  2. Benchmark analysis of TRIGA mark II reactivity experiment using a continuous energy Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    The benchmark analysis of reactivity experiments in the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor; 100 kW) was performed by a three-dimensional continuous-energy Monte Carlo code MCNP4A. The reactivity worth and integral reactivity curves of the control rods as well as the reactivity worth distributions of fuel and graphite elements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated values of integral reactivity curves of the control rods were in agreement with the experimental data obtained by the period method. The integral worth measured by the rod drop method was also consistent with the calculation. The calculated values of the fuel and the graphite element worth distributions were consistent with the measured ones within the statistical error estimates. These results showed that the exact core configuration including the control rod positions to reproduce the fission source distribution in the experiment must be introduced into the calculation core for obtaining the precise solution. It can be concluded that our simulation model of the TRIGA-II core is precise enough to reproduce the control rod worth, fuel and graphite elements reactivity worth distributions. (author)

  3. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyNT = 1,35x108 n/cm , a fast neutron dose of 5,86x10-10 Gy/NT and a gamma ray dose of 8,30x10-14 Gy/NT. (author)

  4. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency ΝΤ = 1,35x108 n/cm2, a fast neutron dose of 5,86x-10 Gy/ΝΤ and a gamma ray dose of 8,30x-14 Gy/ΝΤ. (author)

  5. MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.

    Science.gov (United States)

    Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio

    2012-03-26

    This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470

  6. Verification of Monte Carlo transport codes FLUKA, GEANT4 and SHIELD for radiation protection purposes at relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    The crucial problem for radiation shielding design at heavy ion accelerator facilities with beam energies of several GeV/n is the source term problem. Experimental data on double differential neutron yields from thick targets irradiated with high-energy uranium nuclei are lacking. At present there are not many Monte Carlo multipurpose codes that can work with primary high-energy uranium nuclei. These codes use different physical models for simulating nucleus-nucleus reactions. Therefore, verification of the codes with available experimental data is very important for selection of the most reliable code for practical tasks. This paper presents comparisons of the FLUKA, GEANT4 and SHIELD code simulations with experimental data on neutron production at 1 GeV/n 238U beam interaction with a thick Fe target

  7. Applicability of quasi-Monte Carlo for lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics

    2013-11-15

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  8. Applicability of quasi-Monte Carlo for lattice systems

    International Nuclear Information System (INIS)

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N-1/2, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N-1, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  9. Applicability of Quasi-Monte Carlo for lattice systems

    CERN Document Server

    Ammon, Andreas; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Müller-Preussker, Micheal

    2013-01-01

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like $N^{-1/2}$, where $N$ is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to $N^{-1}$, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  10. Verification of DeCART/CAPP code system for VHTR by HTTR core analysis

    International Nuclear Information System (INIS)

    The DeCART/CAPP code system has been developed and verified against the numerical benchmark calculations for an HTTR. The reference calculations have been carried out by the Monte Carlo McCARD code in which a double heterogeneity model was used. Verification results show that the DeCART/CAPP code system gives less negative MTC and RTC than the McCARD code, and thus the DeCART code overestimates the multiplication factors at states with a high moderator and reflector temperature. However, the DeCART/CAPP code system predicts more negative FTC than McCARD code does. In the depletion calculation for the HTTR single cell and single block, the error of DeCART/CAPP code system increases with the burnup (authors)

  11. Application of the Monte Carlo code DETEFF to efficiency calibrations for in situ gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Carrazana Gonzalez, J.; Cornejo Diaz, N. [Centre for Radiological Protection and Hygiene, P.O. Box 6195, Habana (Cuba); Jurado Vargas, M., E-mail: mjv@unex.es [Departamento de Fisica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2012-05-15

    We studied the applicability of the Monte Carlo code DETEFF for the efficiency calibration of detectors for in situ gamma-ray spectrometry determinations of ground deposition activity levels. For this purpose, the code DETEFF was applied to a study case, and the calculated {sup 137}Cs activity deposition levels at four sites were compared with published values obtained both by soil sampling and by in situ measurements. The {sup 137}Cs ground deposition levels obtained with DETEFF were found to be equivalent to the results of the study case within the uncertainties involved. The code DETEFF could thus be used for the efficiency calibration of in situ gamma-ray spectrometry for the determination of ground deposition activity using the uniform slab model. It has the advantage of requiring far less simulation time than general Monte Carlo codes adapted for efficiency computation, which is essential for in situ gamma-ray spectrometry where the measurement configuration yields low detection efficiency. - Highlights: Black-Right-Pointing-Pointer Application of the code DETEFF to in situ gamma-ray spectrometry. Black-Right-Pointing-Pointer {sup 137}Cs ground deposition levels evaluated assuming a uniform slab model. Black-Right-Pointing-Pointer Code DETEFF allows a rapid efficiency calibration.

  12. The specific purpose Monte Carlo code McENL for simulating the response of epithermal neutron lifetime well logging tools

    International Nuclear Information System (INIS)

    A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The code was developed so that the Monte Carlo neophyte can easily use it. A minimum amount of input preparation is required and specified fixed values of the parameters used to control the code operation can be used. The weight windows technique, employing splitting and Russian Roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given here for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity (PNP) tool and found to be very accurate. Results of the experimental validation and details of code performance are presented

  13. Validation of IRBURN calculation code system through burnup benchmark analysis

    International Nuclear Information System (INIS)

    Assessment of the reactor fuel composition during the irradiation time, fuel management and criticality safety analysis require the utilization of a validated burnup calculation code system. In this work a newly developed burnup calculation code system, IRBURN, is introduced for the estimation and analysis of the fuel burnup in LWR reactors. IRBURN provides the full capabilities of the Monte Carlo neutron and photon transport code MCNP4C as well as the versatile code for calculating the buildup and decay of nuclides in nuclear materials, ORIGEN2.1, along with other data processing and linking subroutines. This code has the capability of using different depletion calculation schemes. The accuracy and precision of the implemented algorithms to estimate the eigenvalue and spent fuel isotope concentrations are demonstrated by validation against reliable benchmark problem analyses. A comparison of IRBURN results with experimental data demonstrates that the code predicts the spent fuel concentrations within 10% accuracy. Furthermore, standard deviations of the average values for isotopic concentrations including IRBURN data decreases considerably in comparison with the same parameter excluding IRBURN results, except for a few sets of isotopes. The eigenvalue comparison between our results and the benchmark problems shows a good prediction of the k-inf values during the entire burnup history with the maximum difference of 1% at 100 MWd/kgU.

  14. Parallelizing Monte Carlo with PMC

    Energy Technology Data Exchange (ETDEWEB)

    Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.

    1994-11-01

    PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.

  15. Neutronic calculations for CANDU thorium systems using Monte Carlo techniques

    Science.gov (United States)

    Saldideh, M.; Shayesteh, M.; Eshghi, M.

    2014-08-01

    In this paper, we have investigated the prospects of exploiting the rich world thorium reserves using Canada Deuterium Uranium (CANDU) reactors. The analysis is performed using the Monte Carlo MCNP code in order to understand how much time the reactor is in criticality conduction. Four different fuel compositions have been selected for analysis. We have obtained the infinite multiplication factor, k∞, under full power operation of the reactor over 8 years. The neutronic flux distribution in the full core reactor has already been investigated.

  16. Towards scalable parellelism in Monte Carlo particle transport codes using remote memory access

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Forget, Benoit [MIT

    2010-01-01

    One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, they investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.

  17. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    International Nuclear Information System (INIS)

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior

  18. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  19. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    International Nuclear Information System (INIS)

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character

  20. MC21 v.6.0 – A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    Highlights: • Overview of the capabilities and features of the MC21 Monte Carlo code, version 6. • Detailed description of in-line reactor feedback capabilities in MC21. • Discussion of running strategies for Monte Carlo simulations with feedback effects. • Includes representative MC21 results for massively-parallel 3D reactor simulations. - Abstract: MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10−5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells

  1. Sodium void reactivity effect analysis using the newly developed exact perturbation theory in Monte-Carlo code TRIPOLI-4®

    International Nuclear Information System (INIS)

    The analysis of void reactivity effect is prominent interest for Sodium-cooled Fast Reactor (SFR) safety. Indeed, in case of sodium leakage of the primary circuit, void reactivity represents the main passive negative feedback to ensure reactivity control. The core can be designed to maximize neutron leakage and lower the average neutron multiplication factor in the event of sodium disappearing from within assemblies. Thus, the nuclear chain reaction is stopped. The most promising solution is to place a sodium region above the fuel in order for neutrons to be reflected when the region is filled and escape when the region is empty. In terms of simulation, this configuration is a challenge for usual calculation schemes: 1. Deterministic codes are typically limited in their ability to homogenize a sub-critical medium as the sodium plenum. 2. Monte Carlo codes are typically not able to split the total reactivity effect on different components, which prevents to achieve straightforward uncertainty analysis. Furthermore, since experimental values can sometimes be small, Monte Carlo codes may not converge within a reasonable computation time. A new feature recently available in the Monte Carlo TRIPOLI-4® based on the Exact Perturbation Theory allows very small reactivity perturbations to be computed accurately as well as reactivity effect to be estimated on distinct isotopes cross-sections. In the first part of this paper, this new feature of the code is described and then applied in the second part to a core configuration composed of several layers of fuel and fertile zones below a sodium plenum. Reactivity and its contributions from specific reactions and energy groups are calculated and compared with the results of the deterministic code ERANOS. The aim of this work is twofold: (1) Achieve a numerical validation of the new TRIPOLI-4® features and (2) Identify where deterministic codes might be less accurate and why – even when using them at full capacity (S16

  2. Monte Carlo simulation in systems biology

    OpenAIRE

    Schellenberger, Jan

    2010-01-01

    Constraint Based Reconstruction and Analysis (COBRA) is a framework within the field of Systems Biology which aims to understand cellular metabolism through the analysis of large scale metabolic models. These models are based on meticulously curated reconstructions of all chemical reactions in an organism. Instead of attempting to predict the exact state of the biological system, COBRA describes the physiological constraints that the system must satisfy and studies the range of solutions sati...

  3. An Analysis of the Nuclear Data Libraries' Impact on the Criticality Computations Performed using Monte Carlo Codes

    International Nuclear Information System (INIS)

    The major aim of this work is a sensitivity analysis related to the influence of the different nuclear data libraries on the k-infinity values and on the void coefficient estimations performed for various CANDU fuel projects, and on the simulations related to the replacement of the original stainless steel adjuster rods by cobalt assemblies in the CANDU reactor core. The computations are performed using the Monte Carlo transport codes MCNP5 and MONTEBURNS 1.0 for the actual, detailed geometry and material composition of the fuel bundles and reactivity devices. Some comparisons with deterministic and probabilistic codes involving the WIMS library are also presented

  4. Monte-Carlo Impurity transport simulations in the edge of the DIII-D tokamak using the MCI code

    International Nuclear Information System (INIS)

    A Monte-Carlo Impurity (MCI) transport code is used to follow trace impurities through multiple ionization states in realistic 2-D tokamak geometries. The MCI code is used to study impurity transport along the open magnetic field lines of the Scrape-off Layer (SOL) and to understand how impurities get into the core from the SOL. An MCI study concentrating on the entrainment of carbon impurities ions by deuterium background plasma into the DIII-D divertor is discussed. MCI simulation results are compared to experimental DIII-D carbon measurements

  5. Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5

    International Nuclear Information System (INIS)

    A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)

  6. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, Josep [Technical University of Catalonia (Spain)

    2010-07-01

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  7. Modeling of realistic pebble bed reactor geometries using the Serpent Monte Carlo code

    International Nuclear Information System (INIS)

    Highlights: • The explicit stochastic geometry model in Serpent is documented. • A pebble bed criticality benchmark was calculated demonstrating the geometry model. • Stochastic pebble configurations were obtained from discrete element simulations. • Results deviate from experiments but are in line with example calculations. - Abstract: This paper documents the models available in Serpent for high temperature reactor (HTR) calculations. It is supplemented by a calculation example of ASTRA critical pebble bed experiments. In the pebble bed reactor modeling, different methods have been used to model the double heterogeneity problem occurring in pebble bed reactor calculations. A solution was sought to avoid unphysical simplifications in the pebble bed modeling and the stochastic geometry modeling features available in the Monte Carlo code Serpent were applied for exact placement of pebbles and fuel particles. Randomly packed pebble beds were produced in discrete element method (DEM) simulations and fuel particles were positioned randomly inside the pebbles. Pebbles and particles are located using a Cartesian search mesh, which provides necessary computational efficiency. Serpent uses Woodcock delta-tracking which provides efficient neutron tracking in the complicated geometries. This detailed pebble bed modeling approach was tested by calculating the ASTRA criticality benchmark experiment done at the Kurchatov Institute in 2004. The calculation results are in line with the sample calculations provided with the benchmark documentation. The material library selected for the calculations has a major effect on the results. The difference in graphite absorption cross section is considered the cause of this result. The model added in Serpent is very efficient with a calculation time slightly higher than with a regular lattice approximation. It is demonstrated that Serpent can be used for pebble bed reactor calculations with minimal geometric approximations as it

  8. Accurate simulation of ionisation chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Ionisation chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, for various decades, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects can be sizeable when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artefact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics are discussed in the context of the transport model implemented in the PENELOPE code. The degree of violation of the Fano theorem for a simple, planar geometry, is used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It is shown that, with a suitable choice of transport parameters, PENELOPE simulates IC response with an accuracy of the order of 0.1%.

  9. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  10. Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code

    International Nuclear Information System (INIS)

    A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were transported up to approximately 1 m before the region for benchmark calculation. Finally, the energy spectra of neutrons behind the very thick shield were calculated down to the thermal energy with good statistics, and typically agree well within a factor of two with the experimental data over a broad energy range. The 12C(n,2n)11C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem. In this report, the calculation conditions, geometry and the variance reduction techniques used in the deep-penetration calculation with the MARS14 code are clarified, and several subroutines of MARS14 which were used in our calculation are also given in the appendix. The numerical data of the calculated neutron energy spectra, reaction rates, dose rates and their C/E (Calculation/Experiment) values are also summarized. The

  11. The Monte Carlo srna code as the engine in istar proton dose planning software for the tesla accelerator installation

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2004-01-01

    Full Text Available This paper describes the application of SRNA Monte Carlo package for proton transport simulations in complex geometry and different material composition. SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our own and the Russian MSDM models using ICRU 63 data. The developed package consists of two codes SRNA-2KG, which simulates proton transport in the combinatorial geometry and SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield’s data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of proton beam characterization by Multi-Layer Faraday Cup, spatial distribution of positron emitters obtained by SRNA-2KG code, and intercomparison of computational codes in radiation dosimetry, indicate the immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in SRNA pack age, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumor.

  12. The Monte Carlo SRNA code as the engine in ISTAR proton dose planning software for the tesla accelerator installation

    International Nuclear Information System (INIS)

    This paper describes the application of SRNA Monte Carlo package for proton transport simulations in complex geometry and different material composition. SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our own and the Russian MSDM models using ICRU 63 data. The developed package consists of two codes: SRNA-2KG, which simulates proton transport in the combinatorial geometry and SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of proton beam characterization by Multi-Layer Faraday Cup, spatial distribution of positron emitters obtained by SRNA-2KG code, and intercomparison of computational codes in radiation dosimetry, indicate the immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumor. (author)

  13. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, Radovan D [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Spasic-Jokic, Vesna [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Belicev, Petar [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Dragovic, Milos [Center for Nuclear Medicine MEDICA NUCLEARE, Bulevar Despota Stefana 69, 11000 Belgrade (Serbia and Montenegro)

    2005-03-07

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.

  14. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    Science.gov (United States)

    Ilic, Radovan D.; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-03-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.

  15. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  16. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code

    International Nuclear Information System (INIS)

    Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy

  17. Implementation of hybrid variance reduction methods in a multi group Monte Carlo code for deep shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, E.; Palmer, T. S. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 116 Radiation Center, Corvallis, OR 97332-5902 (United States)

    2013-07-01

    In this paper, the work that has been done to implement variance reduction techniques in a three dimensional, multi group Monte Carlo code - Tortilla, that works within the frame work of the commercial deterministic code - Attila, is presented. This project is aimed to develop an integrated Hybrid code that seamlessly takes advantage of the deterministic and Monte Carlo methods for deep shielding radiation detection problems. Tortilla takes advantage of Attila's features for generating the geometric mesh, cross section library and source definitions. Tortilla can also read importance functions (like adjoint scalar flux) generated from deterministic calculations performed in Attila and use them to employ variance reduction schemes in the Monte Carlo simulation. The variance reduction techniques that are implemented in Tortilla are based on the CADIS (Consistent Adjoint Driven Importance Sampling) method and the LIFT (Local Importance Function Transform) method. These methods make use of the results from an adjoint deterministic calculation to bias the particle transport using techniques like source biasing, survival biasing, transport biasing and weight windows. The results obtained so far and the challenges faced in implementing the variance reduction techniques are reported here. (authors)

  18. Implementation of hybrid variance reduction methods in a multi group Monte Carlo code for deep shielding problems

    International Nuclear Information System (INIS)

    In this paper, the work that has been done to implement variance reduction techniques in a three dimensional, multi group Monte Carlo code - Tortilla, that works within the frame work of the commercial deterministic code - Attila, is presented. This project is aimed to develop an integrated Hybrid code that seamlessly takes advantage of the deterministic and Monte Carlo methods for deep shielding radiation detection problems. Tortilla takes advantage of Attila's features for generating the geometric mesh, cross section library and source definitions. Tortilla can also read importance functions (like adjoint scalar flux) generated from deterministic calculations performed in Attila and use them to employ variance reduction schemes in the Monte Carlo simulation. The variance reduction techniques that are implemented in Tortilla are based on the CADIS (Consistent Adjoint Driven Importance Sampling) method and the LIFT (Local Importance Function Transform) method. These methods make use of the results from an adjoint deterministic calculation to bias the particle transport using techniques like source biasing, survival biasing, transport biasing and weight windows. The results obtained so far and the challenges faced in implementing the variance reduction techniques are reported here. (authors)

  19. Check and visualization of input geometry data using the geometrical module of the Monte Carlo code MCU: WWER-440 pressure vessel dosimetry benchmarks

    International Nuclear Information System (INIS)

    The Monte Carlo method gives the opportunity to conduct the calculations of neutron and photon flux without any simplifications of the 3-D geometry of the nuclear power and experimental devices. So, each graduated Monte Carlo code includes the combinatorial geometry module and tools for the geometry description giving a possibility to describe very complex systems with a number of hierarchy levels of the geometrical objects. Such codes as usual have special modules for the visual checking of geometry input information. These geometry opportunities could be used for all cases when the accurate 3-D description of the complex geometry becomes a necessity. The description (specification) of benchmark experiments is one of the such cases. Such accurate and uniform description detects all mistakes and ambiguities in the starting information of various kinds (drawings, reports etc.). Usually the quality of different parts of the starting information (generally produced by different persons during the different stages of the device elaboration and operation) is different. After using the above mentioned modules and tools, the resultant geometry description can be used as a standard for this device. One can automatically produce any type of the device figure. The detail geometry description can be used as input for different calculation models carrying out (not only for Monte Carlo). The application of that method to the description of the WWER-440 mock-ups is represented in the report. The mock-ups were created on the reactor LR-O (NRI) and the reactor vessel dosimetry benchmarks were developed on the basis of these mock-up experiments. The NCG-8 module of the Russian Monte Carlo code MCU was used. It is the combinatorial multilingual universal geometrical module. The MCU code was certified by Russian Nuclear Regulatory Body. Almost all figures for mentioned benchmarks specifications were made by the MCU visualization code. The problem of the automatic generation of the

  20. Source convergence diagnostics using Boltzmann entropy criterion application to different OECD/NEA criticality benchmarks with the 3-D Monte Carlo code Tripoli-4

    International Nuclear Information System (INIS)

    The measurement of the stationarity of Monte Carlo fission source distributions in keff calculations plays a central role in the ability to discriminate between fake and 'true' convergence (in the case of a high dominant ratio or in case of loosely coupled systems). Recent theoretical developments have been made in the study of source convergence diagnostics, using Shannon entropy. We will first recall those results, and we will then generalize them using the expression of Boltzmann entropy, highlighting the gain in terms of the various physical problems that we can treat. Finally we will present the results of several OECD/NEA benchmarks using the Tripoli-4 Monte Carlo code, enhanced with this new criterion. (authors)

  1. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  2. Simulation of Cherenkov photons emitted in photomultiplier windows induced by Compton diffusion using the Monte Carlo code GEANT4

    International Nuclear Information System (INIS)

    The implementation of the TDCR method (Triple to Double Coincidence Ratio) is based on a liquid scintillation system which comprises three photomultipliers; at LNHB, this counter can also be used in the β-channel of a 4π(LS)β-γ coincidence counting equipment. It is generally considered that the γ-sensitivity of the liquid scintillation detector comes from the interaction of the γ-photons in the scintillation cocktail but when introducing solid γ-ray emitting sources instead of the scintillation vial, light emitted by the surrounding of the counter is observed. The explanation proposed in this article is that this effect comes from the emission of Cherenkov photons induced by Compton diffusion in the photomultiplier windows. In order to support this assertion, the creation and the propagation of Cherenkov photons inside the TDCR counter is simulated using the Monte Carlo code GEANT4. Stochastic calculations of double coincidences confirm the hypothesis of Cherenkov light produced in the photomultiplier windows.

  3. A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter

    International Nuclear Information System (INIS)

    In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)

  4. Simulation of Cherenkov photons emitted in photomultiplier windows induced by Compton diffusion using the Monte Carlo code GEANT4.

    Science.gov (United States)

    Thiam, C; Bobin, C; Bouchard, J

    2010-01-01

    The implementation of the TDCR method (Triple to Double Coincidence Ratio) is based on a liquid scintillation system which comprises three photomultipliers; at LNHB, this counter can also be used in the beta-channel of a 4pi(LS)beta-gamma coincidence counting equipment. It is generally considered that the gamma-sensitivity of the liquid scintillation detector comes from the interaction of the gamma-photons in the scintillation cocktail but when introducing solid gamma-ray emitting sources instead of the scintillation vial, light emitted by the surrounding of the counter is observed. The explanation proposed in this article is that this effect comes from the emission of Cherenkov photons induced by Compton diffusion in the photomultiplier windows. In order to support this assertion, the creation and the propagation of Cherenkov photons inside the TDCR counter is simulated using the Monte Carlo code GEANT4. Stochastic calculations of double coincidences confirm the hypothesis of Cherenkov light produced in the photomultiplier windows. PMID:20031429

  5. Modeling of a three-source perfusion and blood oxygenation sensor for transplant monitoring using multilayer Monte Carlo code

    Science.gov (United States)

    Ibey, Bennett L.; Lee, Seungjoon; Ericson, M. Nance; Wilson, Mark A.; Cote, Gerard L.

    2004-06-01

    A Multi-Layer Monte Carlo (MLMC) model was developed to predict the results of in vivo blood perfusion and oxygenation measurement of transplanted organs as measured by an indwelling optical sensor. A sensor has been developed which uses three-source excitation in the red and infrared ranges (660, 810, 940 nm). In vitro data was taken using this sensor by changing the oxygenation state of whole blood and passing it through a single-tube pump system wrapped in bovine liver tissue. The collected data showed that the red signal increased as blood oxygenation increased and infrared signal decreased. The center wavelength of 810 nanometers was shown to be quite indifferent to blood oxygenation change. A model was developed using MLMC code that sampled the wavelength range from 600-1000 nanometers every 6 nanometers. Using scattering and absorption data for blood and liver tissue within this wavelength range, a five-layer model was developed (tissue, clear tubing, blood, clear tubing, tissue). The theoretical data generated from this model was compared to the in vitro data and showed good correlation with changing blood oxygenation.

  6. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  7. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    Directory of Open Access Journals (Sweden)

    Ayyangar Komanduri

    2010-01-01

    Full Text Available This investigation aims to design a practical multi-leaf collimator (MLC system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC, Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed.

  8. FENDL/MC. Library of continuous energy cross sections in ACE format for neutron-photon transport calculations with the Monte Carlo N-particle Transport Code system MCNP 4A. Version 1.1 of March 1995. Summary documentation

    International Nuclear Information System (INIS)

    Selected neutron reaction nuclear data evaluations for elements of interest to the IAEA's program on Fusion Evaluated Nuclear Data Library (FENDL) have been processed into ACE format using the NJOY system by R.E. MacFarlane. This document summarizes the resulting continuous energy cross-section data library FENDL/MC version 1.1. The data are available cost free, upon request from the IAEA Nuclear Data Section, online or on magnetic tape. (author). 1 tab

  9. Thyroid cell irradiation by radioiodines: a new Monte Carlo electron track-structure code

    Directory of Open Access Journals (Sweden)

    Christophe Champion

    2007-09-01

    Full Text Available The most significant impact of the Chernobyl accident is the increased incidence of thyroid cancer among children who were exposed to short-lived radioiodines and 131-iodine. In order to accurately estimate the radiation dose provided by these radioiodines, it is necessary to know where iodine is incorporated. To do that, the distribution at the cellular level of newly organified iodine in the immature rat thyroid was performed using secondary ion mass microscopy (NanoSIMS50. Actual dosimetric models take only into account the averaged energy and range of beta particles of the radio-elements and may, therefore, imperfectly describe the real distribution of dose deposit at the microscopic level around the point sources. Our approach is radically different since based on a track-structure Monte Carlo code allowing following-up of electrons down to low energies (~ 10eV what permits a nanometric description of the irradiation physics. The numerical simulations were then performed by modelling the complete disintegrations of the short-lived iodine isotopes as well as of 131I in new born rat thyroids in order to take into account accurate histological and biological data for the thyroid gland.O impacto mais significante do acidente de Chernobyl é o crescimento da incidência de câncer de tireóide em crianças que foram expostas a radioiodos de vida curta e ao Iodo-131. Na estimativa precisa da dose de radiação fornecida por esses radioiodos, é necessário conhecer onde o iodo está incorporado. Para obtermos esse resultado, a distribuição em nível celular de iodo recentemente organificado na tireóde de ratos imaturos foi realizada usando microscopia de massa iônica secundária (NanoSIMS50. Modelos dosimétricos atuais consideram apenas a energia média das partículas beta dos radioelementos e pode, imperfeitamente descrever a distribuição real de dose ao nível microscópico em torno dos pontos pesquisados. Nossa abordagem

  10. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    CERN Document Server

    De Geyter, Gert; Fritz, Jacopo; Camps, Peter

    2012-01-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different...

  11. Diffusion Monte Carlo calculations of three-body systems

    Institute of Scientific and Technical Information of China (English)

    L(U) Meng-Jiao; REN Zhong-Zhou; LIN Qi-Hu

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied.We develop a program and use it to calculate the property of various three-body systems.Regular Coulomb systems such as atoms,molecules,and ions are investigated.The calculation is then extended to exotic systems where electrons are replaced by muons.Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons.Our results agree well with experiments and others' work.

  12. On the Performance of Synchronous DS—CDMA Systems with Generalized Orthogonal Spreading Codes

    Institute of Scientific and Technical Information of China (English)

    HAOLi; FANPingzhi

    2003-01-01

    A new synchronous DS-CDMA system em-ploying generalized orthogonal (GO) spreading codes and maximum ratio combining (MRC) scheme is presented in this paper. In particular, the forward link of the system is discussed in detail. The GO codes are used to combat the interference caused by multipath components. The aver-age correlation properties of GO codes are evaluated andthe signal interference ratio (SIR) expressions based on the Rayleigh and Racian fading multipath channel models are derived respectively. The link performance in terms of bit error rate (BER) is obtained for GO codes with different orthogonal zones by Gaussian Approximation and Monte-Carlo simulation respectively. The results reveal that the GO codes appear better BER performance than traditional orthogonal codes in synchronous CDMA systems, and the GO code with larger orthogonal zone exhibits larger per-formance gain.

  13. Analysis of void coefficient in fast spectrum BWR core with Monte Carlo code 'MVP'

    International Nuclear Information System (INIS)

    An innovative large BWR core concept has been proposed for aiming at fuel breeding as well as negative void reactivity coefficient. The core consists of two types of MOX fuel assemblies. One is a triangular tight lattice bundle 1.6 m in active core height and the other is the same bundle 0.8 m. The ratio of flow area to fuel area of the bundle is set at about 0.5 in order to increase breeding ratio. A neutron-streaming channel that consists of a cavity-can containing helium gas and a flow gap between the cavity-can and the channel box is located above each short bundle. It will decrease void reactivity coefficient by enhancing neutron leakage from the core when the void fraction is increased in the flow gap. A core composed of tight lattice bundles provides a much harder neutron spectrum than that of conventional BWRs but a slightly softer one than that of typical FBRs. The cavity-can and the flow gap will cause a steep gradient of neutron flux. The neutronics for such a complicated core structure could not be properly analyzed by conventional analysis methods. In particular, the analysis of void reactivity coefficient requires a sophisticated method because it deals with a small change in core composition. In the analysis of the void reactivity coefficient, we adopted a three-dimensional Monte Carlo code 'MVP', which has been developed by JAERI and has many advantages such as an easy input form for lattice structures, a short run time and a continuous neutron energy method. The continuous neutron energy method is important for the analysis of this core because fission reactions occur mainly in the resonance energy region, where the evaluation of accurate cross sections is difficult with conventional methods. The library used is JENDL-3.2. The multi-layer structure of lattices is also essential for the analysis because its hard spectrum and relatively long neutron mean free path require a modeling for the full core with a lot of bundles. The analysis indicates that

  14. The PENELOPE code system. Specific features and recent improvements

    International Nuclear Information System (INIS)

    Since its first release, back in 1996, the Monte Carlo code system PENELOPE has evolved into a flexible and reliable tool for describing coupled electron-photon transport in complex material structures. The present article contains an overview of the physical interaction models, particle tracking methods, geometry tools, and variance-reduction techniques implemented in PENELOPE. Recent refinements aimed at improving the accuracy of the code, and its stability under variations of user-defined simulation parameters, are also described. These include the use of reliable cross sections for the ionization of inner atomic electron shells by electron/positron impact, a reformulation of the random-hinge method, and the use of fuzzy quadric surfaces in the description of the geometry. (author)

  15. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  16. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  17. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations; Apport d'un code de simulation Monte Carlo pour l'etude des proprietes thermodynamiques d'un plasma a l'equilibre et application au calcul de l'elargissement des profils de raies ioniques emises dans les plasmas denses, aux opacites spectrales et aux equations d'etat de systemes fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, D

    2005-07-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  18. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  19. Quantitative comparisons between experimentally measured 2-D carbon radiation and Monte Carlo impurity (MCI) code simulations

    International Nuclear Information System (INIS)

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value

  20. Fixed-Node Diffusion Monte Carlo of Lithium Systems

    CERN Document Server

    Rasch, Kevin

    2015-01-01

    We study lithium systems over a range of number of atoms, e.g., atomic anion, dimer, metallic cluster, and body-centered cubic crystal by the diffusion Monte Carlo method. The calculations include both core and valence electrons in order to avoid any possible impact by pseudo potentials. The focus of the study is the fixed-node errors, and for that purpose we test several orbital sets in order to provide the most accurate nodal hyper surfaces. We compare our results to other high accuracy calculations wherever available and to experimental results so as to quantify the the fixed-node errors. The results for these Li systems show that fixed-node quantum Monte Carlo achieves remarkably high accuracy total energies and recovers 97-99 % of the correlation energy.

  1. Application of a Monte Carlo Penelope code at diverse dosimetric problems in radiotherapy; Aplicacion del codigo Monte Carlo Penelope a diversos problemas dosimetricos en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.A.; Fernandez V, J.M.; Salvat, F. [Servicio de Oncologia Radioterapica. Hospital Clinico de Barcelona. Villarroel 170 08036 Barcelona (Spain)

    1998-12-31

    In the present communication it is presented the results of the simulation utilizing the Penelope code (Penetration and Energy loss of Positrons and Electrons) in several applications of radiotherapy which can be the radioactive sources simulation: {sup 192} Ir, {sup 125} I, {sup 106} Ru or the electron beams simulation of a linear accelerator Siemens KDS. The simulations presented in this communication have been on computers of type Pentium PC of 100 throughout 300 MHz, and the times of execution were from some hours until several days depending of the complexity of the problem. It is concluded that Penelope is a very useful tool for the Monte Carlo calculations due to its great ability and its relative handling facilities. (Author)

  2. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    Science.gov (United States)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We

  3. Development and validation of MCNPX-based Monte Carlo treatment plan verification system

    Directory of Open Access Journals (Sweden)

    Iraj Jabbari

    2015-01-01

    Full Text Available A Monte Carlo treatment plan verification (MCTPV system was developed for clinical treatment plan verification (TPV, especially for the conformal and intensity-modulated radiotherapy (IMRT plans. In the MCTPV, the MCNPX code was used for particle transport through the accelerator head and the patient body. MCTPV has an interface with TiGRT planning system and reads the information which is needed for Monte Carlo calculation transferred in digital image communications in medicine-radiation therapy (DICOM-RT format. In MCTPV several methods were applied in order to reduce the simulation time. The relative dose distribution of a clinical prostate conformal plan calculated by the MCTPV was compared with that of TiGRT planning system. The results showed well implementation of the beams configuration and patient information in this system. For quantitative evaluation of MCTPV a two-dimensional (2D diode array (MapCHECK2 and gamma index analysis were used. The gamma passing rate (3%/3 mm of an IMRT plan was found to be 98.5% for total beams. Also, comparison of the measured and Monte Carlo calculated doses at several points inside an inhomogeneous phantom for 6- and 18-MV photon beams showed a good agreement (within 1.5%. The accuracy and timing results of MCTPV showed that MCTPV could be used very efficiently for additional assessment of complicated plans such as IMRT plan.

  4. Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

    Science.gov (United States)

    Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.

    2010-01-01

    The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,

  5. Benchmark calculations by the nuclear criticality safety analysis code system JACS(MGCL, KENO-IV)

    International Nuclear Information System (INIS)

    Since 1980, as many as 1394 cases of benchmark calculations on criticality problems have been performed by the KENO-IV Monte Carlo calculation code with the MGCL cross section data library. The code system is a part of the criticality safety evaluation code system JACS developed at JAERI. The code validation results have been published in a series of JAERI-M reports and others. This report summarizes these results and the reliability of the code system systematically. The number of the calculated cases briefly described in this report together with their experimental systems and data are 502 for 17 kinds of homogeneous single-unit systems, 331 for 8 kinds of homogeneous multi-unit systems and 561 for 16 kinds of heterogeneous systems. Discussions and interpretations are made on the calculated keff's (neutron multiplication factors) with their bias errors. The factors related to the bias errors are confirmed together with their causes and trends. (author)

  6. ITS version 5.0: the integrated TIGER series of coupled electron/Photon Monte Carlo transport codes with CAD geometry

    International Nuclear Information System (INIS)

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability

  7. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  8. Qualification of the HTR neutronics code system NEPHTIS

    International Nuclear Information System (INIS)

    AREVA's joint subsidiary with Siemens, Framatome ANP, has launched the ANTARES Program (AREVA New Technology based on Advanced gas cooled Reactor for Energy Supply) for the development of an advanced commercial HTR reactor. In this context, Framatome ANP is developing NEPHTIS in partnership with Cea and EDF. NEPHTIS is an industrial deterministic code system based on Apollo2 spectral code and Cronos2 core simulator, specially developed to handle the neutronics of prismatic block-type HTR reactors. This paper describes the NEPHTIS qualification program which includes HTTR and Fort Saint-Vrain experimental results. The preliminary qualification results for NEPHTIS are very promising. The HTTR results are well reproduced for the full core configuration (30 columns) with a discrepancy of 320 pcm. For annular configurations, intrinsically more complex to handle with a two-step deterministic approach, NEPHTIS results remain close to MCNP reference model (around 600 pcm). The isotopic content of a fuel assembly irradiated in Fort Saint-Vrain until 32 GWd/t is also well predicted by NEPHTIS and Monteburns with calculation vs. measurement discrepancies of around 3% for the main nuclides. The remaining validation domain is covered by code-to-code comparisons with Monte Carlo code systems (MCNP and Monteburns). A sample of the benchmarking between Apollo2 and Monteburns performed at assembly level on various Plutonium vectors are presented in this paper. The very good agreement between the two code systems validate the NEPHTIS depletion for UO2 and Pu fuel in HTR spectrum up to 60 GWd/t. (authors)

  9. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  10. BOT3P: a mesh generation software package for transport analysis with deterministic and Monte Carlo codes

    International Nuclear Information System (INIS)

    BOT3P consists of a set of standard Fortran 77 language programs that gives the users of the deterministic transport codes DORT, TORT, TWODANT, THREEDANT, PARTISN and the sensitivity code SUSD3D some useful diagnostic tools to prepare and check the geometry of their input data files for both Cartesian and cylindrical geometries, including graphical display modules. Users can produce the geometrical and material distribution data for all the cited codes for both two-dimensional and three-dimensional applications and, only in 3-dimensional Cartesian geometry, for the Monte Carlo Transport Code MCNP, starting from the same BOT3P input. Moreover, BOT3P stores the fine mesh arrays and the material zone map in a binary file, the content of which can be easily interfaced to any deterministic and Monte Carlo transport code. This makes it possible to compare directly for the same geometry the effects stemming from the use of different data libraries and solution approaches on transport analysis results. BOT3P Version 5.0 lets users optionally and with the desired precision compute the area/volume error of material zones with respect to the theoretical values, if any, because of the stair-cased representation of the geometry, and automatically update material densities on the whole zone domains to conserve masses. A local (per mesh) density correction approach is also available. BOT3P is designed to run on Linux/UNIX platforms and is publicly available from the Organization for Economic Cooperation and Development (OECD/NEA)/Nuclear Energy Agency Data Bank. Through the use of BOT3P, radiation transport problems with complex 3-dimensional geometrical structures can be modelled easily, as a relatively small amount of engineer-time is required and refinement is achieved by changing few parameters. This tool is useful for solving very large challenging problems, as successfully demonstrated not only in some complex neutron shielding and criticality benchmarks but also in a power

  11. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10-5-10-6 %) instead of values around 5*10-1 % that have been achieved in PET system. (author)

  12. Presentation of the HTR neutronics code system NEPHTIS

    International Nuclear Information System (INIS)

    AREVA's joint subsidiary with Siemens, Framatome ANP, has launched the ANTARES Program (AREVA New Technology based on Advanced gas-cooled Reactor for Energy Supply) for the development of an advanced commercial HTR reactor for electricity generation and process heat supply. In this context, specific development and qualification R and D programs were established with CEA to set-up NEPHTIS (Neutronics Process for HTR Innovating System), a new industrial neutronics code system for the computation of V/HTR reactors. After a brief overview of the ANTARES Program, this paper aims to present the characteristics of the HTR neutronics code system NEPHTIS and to show the validation performed against reference (Monte-Carlo) codes and versus experimental results. Nephis is a deterministic calculation scheme dedicated to the computation of prismatic block-type HTR cores. It is based on a usual two-step approach. First, the fuel element is calculated in 2D transport theory in its true heterogeneous representation (including fuel particles double-heterogeneity) using the APOLLO2 spectral code with a very fine energy meshing (172 groups). Then, this calculation provides condensed (8 groups) and homogenized cross sections to the core simulator CRONOS2, which performs 3D calculations in diffusion theory with finite-elements. Validations were performed on several geometry configurations (assembly/core; 2D/3D) for UOX fuel. The two-steps approach used in NEPHTIS is validated by comparisons with an APOLLO2 reference calculation (whole core computed in 2D transport theory) and with Monte-Carlo calculations. Specific complementary validations (e.g. control rod worth), using TRIPOLI and MCNP calculations, are presented as well in this paper. Calculations vs. experiment (C/E) comparisons have been performed on the two main existing block-type HTR reactors: HTTR and Fort Saint-Vrain (FSV). NEPHTIS results were compared with the HTTR benchmark, proposed by IAEA in 1999, on the first

  13. Code Formal Verification of Operation System

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2010-12-01

    Full Text Available with the increasing pressure on non-function attributes (security, safety and reliability requirements of an operation system, high–confidence operation system is becoming more important. Formal verification is the only known way to guarantee that a system is free of programming errors. We research on formal verification of operation system kernel in system code level and take theorem proving and model checking as the main technical methods to resolve the key techniques of verifying operation system kernel in C code level. We present a case study to the verification of real-world C systems code derived from an implementation of μC/OS – II in the end.

  14. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code

    International Nuclear Information System (INIS)

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate keff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  15. A New Monte Carlo Photon Transport Code for Research Reactor Hotcell Shielding Calculation using Splitting and Russian Roulette Methods

    International Nuclear Information System (INIS)

    The Monte Carlo method was used to build a new code for the simulation of particle transport. Several calculations were done after that for verification, where different sources were used, the source term was obtained using the ORIGEN-S code. Water and lead shield were used with spherical geometry, and the tally results were obtained on the external surface of the shield, afterward the results were compared with the results of MCNPX for verification of the new code. The variance reduction techniques of splitting and Russian Roulette were implemented in the code to be more efficient, by reducing the amount of custom programming required, by artificially increasing the particles being tallied with decreasing the weight. The code shows lower results than the results of MCNPX, this can be interpreted by the effect of the secondary gamma radiation that can be produced by the electron, which is ejected by the primary radiation. In the future a more study will be made on the effect of the electron production and transport, either by a real transport of the electron or by simply using an approximation such the thick target bremsstahlung(TTB) option which is used in MCNPX

  16. A New Monte Carlo Photon Transport Code for Research Reactor Hotcell Shielding Calculation using Splitting and Russian Roulette Methods

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, Alaaddin [Univ. of Science and Technology, Daejeon (Korea, Republic of); Park, Chang Je; Lee, Byunchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Monte Carlo method was used to build a new code for the simulation of particle transport. Several calculations were done after that for verification, where different sources were used, the source term was obtained using the ORIGEN-S code. Water and lead shield were used with spherical geometry, and the tally results were obtained on the external surface of the shield, afterward the results were compared with the results of MCNPX for verification of the new code. The variance reduction techniques of splitting and Russian Roulette were implemented in the code to be more efficient, by reducing the amount of custom programming required, by artificially increasing the particles being tallied with decreasing the weight. The code shows lower results than the results of MCNPX, this can be interpreted by the effect of the secondary gamma radiation that can be produced by the electron, which is ejected by the primary radiation. In the future a more study will be made on the effect of the electron production and transport, either by a real transport of the electron or by simply using an approximation such the thick target bremsstahlung(TTB) option which is used in MCNPX.

  17. Monte Carlo simulation code for photon collection in S(T)EM scintillation detectors

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr; Autrata, Rudolf

    Ljubljana : Jožef Stefan Institute, 2005, s. 199-200. ISBN 961-6303-69-4. [Multinational Congress on Microscopy /7./. Portorož (SI), 26.06.2005-30.06.2005] R&D Projects: GA ČR(CZ) GA102/04/2144 Keywords : collection of photons * scintillation detector * Monte Carlo simulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. A new method for commissioning Monte Carlo treatment planning systems

    Science.gov (United States)

    Aljarrah, Khaled Mohammed

    2005-11-01

    The Monte Carlo method is an accurate method for solving numerical problems in different fields. It has been used for accurate radiation dose calculation for radiation treatment of cancer. However, the modeling of an individual radiation beam produced by a medical linear accelerator for Monte Carlo dose calculation, i.e., the commissioning of a Monte Carlo treatment planning system, has been the bottleneck for the clinical implementation of Monte Carlo treatment planning. In this study a new method has been developed to determine the parameters of the initial electron beam incident on the target for a clinical linear accelerator. The interaction of the initial electron beam with the accelerator target produces x-ray and secondary charge particles. After successive interactions in the linac head components, the x-ray photons and the secondary charge particles interact with the patient's anatomy and deliver dose to the region of interest. The determination of the initial electron beam parameters is important for estimating the delivered dose to the patients. These parameters, such as beam energy and radial intensity distribution, are usually estimated through a trial and error process. In this work an easy and efficient method was developed to determine these parameters. This was accomplished by comparing calculated 3D dose distributions for a grid of assumed beam energies and radii in a water phantom with measurements data. Different cost functions were studied to choose the appropriate function for the data comparison. The beam parameters were determined on the light of this method. Due to the assumption that same type of linacs are exactly the same in their geometries and only differ by the initial phase space parameters, the results of this method were considered as a source data to commission other machines of the same type.

  19. Monte Carlo simulations of star clusters - II. Tidally limited, multi-mass systems with stellar evolution

    CERN Document Server

    Giersz, M

    2000-01-01

    A revision of Stod\\{'o}{\\l}kiewicz's Monte Carlo code is used to simulate evolution of large star clusters. A survey of the evolution of N-body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. The results presented are in good agreement with theoretical expectations and the results of other methods (Fokker-Planck, Monte Carlo and N-body). The initial rapid mass loss, due to stellar evolution of the most massive stars, causes expansion of the whole cluster and eventually leads to the disruption of less bound systems ($W_0=3$). Models with larger $W_0$ survive this phase of evolution and then undergo core collapse and subsequent post-collapse expansion, like isolated models. The expansion phase is eventually reversed when tidal limitation becomes important. The results presented are the first major step in the direction of simulating evolution of real globular clusters by means of the Monte Carlo method.

  20. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    Science.gov (United States)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  1. Application Monte Carlo code calculates dose distribution of the emitted photon beams from linear accelerator in case radiotherapy lung cancer

    International Nuclear Information System (INIS)

    The dose distribution calculation is one of major steps in cancer radiotherapy. This paper applies Monte Carlo code, MCNP5, in simulation 15 MV photon beams from linear accelerator of General Hospital of Kien Giang in a case treatment of lung cancer. The settings for beam direction, field size and isocenter position used in MCNP5 must be the same as in treatment plan at hospital to ensure the results from MCNP5 are accurate. We also built a program CODIM by using MATLAB® programming software. This program is used to construct digital voxel phantoms from lung CT images obtained from cancer treatment cases at Kien Giang hospital and then simulate the delivered dose of linac in these phantoms by using MCNP5 simulation code. The results show that there is a difference of 5% in comparison to Prowess Panther program - a semi-empirical simulation program which is being used for treatment planning in Kien Giang hospital. (author)

  2. Application of a Monte-Carlo simulation code for the research and development of self-powered flux detectors

    International Nuclear Information System (INIS)

    This report reviews the Monte-Carlo Simulation Code, ICARES, developed to simulate the actual physical processes that occur inside a Self-Powered Flux Detector (SPED) which is used for flux mapping, control and safety in CANDU-PHWR. in addition, the various current producing mechanisms, electron transport and the calculation of detector sensitivity is briefly described. Moreover, two applications of the code to the development of SPFDs are presented: 1) the first application is to the development of a prompt-neutron sensitive flux-mapping detector using iron on titanium as an emitter material, 2) the second application is to the calculation of the sensitivity of a larger outside diameter lead cable for SPFDs. (Author) 8 refs., 3 figs., 7 tabs

  3. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    SuperMC is a (Computer-Aided-Design) CAD-based Monte Carlo (MC) program for integrated simulation of nuclear systems developed by FDS Team (China), making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC are presented in this paper. The taking into account of multi-physics processes and the use of advanced computer technologies such as automatic geometry modeling, intelligent data analysis and visualization, high performance parallel computing and cloud computing, contribute to the efficiency of the code. SuperMC2.1, the latest version of the code for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model

  4. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    International Nuclear Information System (INIS)

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMARGET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.

  5. The McLDL code with subspace weight window-biasing combined with the Monte Carlo multiply scattered components approach for simulation of gamma—gamma litho-density logging tools

    Science.gov (United States)

    A. O., Q.; Gardner, R. P.

    1995-12-01

    A new Monte Carlo method for modelling photon transport in the presence of deep-penetration and streaming effects by combining a subspace weight window and biasing schemes has been developed. This method is based on use of an importance map from which an importance subspace is identified for a given particle transport system. Biasing schemes, including direction biasing and the exponential transform, are applied to drive particles into the importance subspace. The subspace weight window approach used consists of splitting and Russian Roulette that acts as a particle weight stabilizer in the subspace to control weight fluctuations caused by the biasing schemes. This approach has been implemented in the optimization of the McLDL code, a specific purpose Monte Carlo code for modelling the spectral response of dual-spaced γ-γ litho-density logging tools. which are highly collimated, deep-penetration, three-dimensional, and low-yield photon transport systems. The McLDL code has been tested on a computational benchmark tool and benchmarked experimentally against laboratory test pit data for a commercial γ-γ litho-density logging tool (the Z-Densilog). The Monte Carlo Multiply Scattered Components (MCMSC) approach has been developed in conjunction with the McLDL code and Library Least-Squares (LLS) analysis. The MCMSC approach consists of constructing component libraries (1 4, 5 8 scatters, etc.) of γ-ray scattered spectra for a reference formation and borehole with the McLDL Monte Carlo code. Then the LLS approach is used with these library spectra to obtain empirical relationships between formation and borehole parameters and the component amounts. These, in turn, can be used to construct the spectra for samples with a range of formation and borehole parameters. This approach should significantly reduce the amount of experimental effort or extent of the Monte Carlo calculations necessary for complete logging tool calibration while maintaining a close physical

  6. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra

    Science.gov (United States)

    Lazarakis, P.; Bug, M. U.; Gargioni, E.; Guatelli, S.; Rabus, H.; Rosenfeld, A. B.

    2012-03-01

    The concept of nanodosimetry is based on the assumption that initial damage to cells is related to the number of ionizations (the ionization cluster size) directly produced by single particles within, or in the close vicinity of, short segments of DNA. The ionization cluster-size distribution and other nanodosimetric quantities, however, are not directly measurable in biological targets and our current knowledge is mostly based on numerical simulations of particle tracks in water, calculating track structure parameters for nanometric target volumes. The assessment of nanodosimetric quantities derived from particle-track calculations using different Monte Carlo codes plays, therefore, an important role for a more accurate evaluation of the initial damage to cells and, as a consequence, of the biological effectiveness of ionizing radiation. The aim of this work is to assess the differences in the calculated nanodosimetric quantities obtained with Geant4-DNA as compared to those of the ad hoc particle-track Monte Carlo code ‘PTra’ developed at Physikalisch-Technische Bundesanstalt (PTB), Germany. The comparison of the two codes was made for incident electrons of energy in the range between 50 eV and 10 keV, for protons of energy between 300 keV and 10 MeV, and for alpha particles of energy between 1 and 10 MeV as these were the energy ranges available in both codes at the time this investigation was carried out. Good agreement was found for nanodosimetric characteristics of track structure calculated in the high-energy range of each particle type. For lower energies, significant differences were observed, most notably in the estimates of the biological effectiveness. The largest relative differences obtained were over 50%; however, generally the order of magnitude was between 10% and 20%.

  7. Systems Improved Numerical Fluids Analysis Code

    Science.gov (United States)

    Costello, F. A.

    1990-01-01

    Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to April, 1983, version of SINDA. Additional routines provide for mathematical modeling of active heat-transfer loops. Simulates steady-state and pseudo-transient operations of 16 different components of heat-transfer loops, including radiators, evaporators, condensers, mechanical pumps, reservoirs, and many types of valves and fittings. Program contains property-analysis routine used to compute thermodynamic properties of 20 different refrigerants. Source code written in FORTRAN 77.

  8. Code Formal Verification of Operation System

    OpenAIRE

    Yu Zhang; Yunwei Dong; Huo Hong; Fan Zhang

    2010-01-01

    with the increasing pressure on non-function attributes (security, safety and reliability) requirements of an operation system, high–confidence operation system is becoming more important. Formal verification is the only known way to guarantee that a system is free of programming errors. We research on formal verification of operation system kernel in system code level and take theorem proving and model checking as the main technical methods to resolve the key techniques of verifying operatio...

  9. The code system COROUT: Radioactive inventory calculations

    International Nuclear Information System (INIS)

    The code system COROUT is devoted to the evaluation of nuclear reactor out-of-core radioactive inventory for the sake of the nuclear power plant decommissioning problem. The code includes calculations of the neutron flux distributions and activation kinetics in the consistent way. Only thermal neutrons are taken into consideration in the present code version. Code is divided into three steps. The first step prepares the necessary data file containing data on reactor geometry, core flux, reactor operational history and data on elements in the out-of-core zones. The main part of calculations are performed during the second step. Here the thermal neutron flux distribution in the out-of-core area is calculated for two-dimensional cylindrical geometry and the system of gain-loss equations and the activation kinetics is solved for the elements in the different out-of-core shells. The Vladimirov's method of iterations on the spatial grid is used for the neutron flux calculations. The kinetic equations are solved by the operational method. The change of neutron field due to activation during reactor campaign is taken into account. The third part of COROUT code system allows to prepare plots of flux and activity distribution for different shells. All steps could be initiated independently using the results stored at the previous steps. The code is destined for the personal computers and has been written on the base of 32-bit FORTRAN language for IBM PC. 4 refs, 6 figs, 1 tab

  10. Data processing code system for foil experiments

    International Nuclear Information System (INIS)

    A code system has been developed for an efficient measurement of reaction rates in foil irradiation experiments. The code system consists of four codes, namely of, (i) setting up experimental parameters and collecting γ-ray spectrum data, (ii) analysing γ-ray spectrum, (iii) calculating reaction rate distributions, and (iv) furnishing utility programs. This code system provides a useful tool of data processing of irradiated foil to obtain the γ-ray spectrum and the reaction rate distribution. These procedures can be executed automatically. The routine for processing foil counting data covers the following functions : the data smoothing, the peak searching by means of the first and second derivative methods, and the determination of the photo peak area and its error with use of a functional fitted by a non-linear least squares method. The code for reaction rate calculation has the following functions : the determination of decay constants of each isotope by using decay data of foil counting and the calculation of reaction rates after correcting irradiation time and weight of a foil. These codes are written by FORTRAN-77 for mini-computer PDP-11/44 (DEC), of which the maximum program memory size is limited to 32k bytes. (author)

  11. Application of the Monte Carlo thermal design analysis to evaluate uncertainties of the PWR core using the THALES subchannel code

    International Nuclear Information System (INIS)

    In order to maintain the safety of the reactor core, the minimum DNBR (Departure from Nucleate Boiling Ratio) in the PWR (Pressurized-Water Reactor) core remains higher than the DNBR limit during Condition I and II events. Therefore, it is important to adequately evaluate the thermal performance of the PWR core. To realistically evaluate the relationship among the uncertainties and reduce the conservatism resulting from the unknown phenomena, the Monte Carlo method is being used in many areas requiring the statistical approach. Especially, the Monte Carlo method is drawing attention as the method for the evaluation of the thermal performance of the PWR core. For the best estimate evaluation of the uncertainties in the PWR core, KEPCO Nuclear Fuel (hereinafter KEPCO NF) has been developing the thermal design analysis based on the Monte Carlo method. For the Monte Carlo thermal design analysis, various studies are conducted as follows. To generate the Gaussian random numbers, Gaussian random number generators are investigated. In this paper, Box-Muller, Polar, GRAND, and Ziggurat method are briefly reviewed. The random numbers are generated on the basis of the nominal value and uncertainty of the parameter. If the normal distribution is acceptable at 5% significance level through the normality tests, the random numbers are used for the Monte Carlo thermal design analysis. Using the subchannel code THALES (Thermal Hydraulic AnaLyzer for Enhanced Simulation of core) developed by KEPCO NF, the subchannel analyses are carried out considering the core operating parameters randomized, and then DNBR distribution is derived. Finally, if the DNBR distribution is statistically combined with the uncertainties of the other parameters, the DNBRT distribution can be obtained. From the DNBRT distribution, the DNBR limit is determined to avoid DNB (Departure from Nucleate Boiling) at a 95% probability at a 95% confidence level. Through the example calculation, it is verified that

  12. Development and validation of Monte-Carlo burnup calculation code MCNTRANS

    International Nuclear Information System (INIS)

    A new nuclear fuel burnup calculation code MCNTRANS based on MCNP was introduced in this paper. The neutronics calculation parameter was extracted from the MCNP5 reaction rate tally result, while a graph theory algorithm was implemented to track the burnup chain and the analytic solution of the Bateman equation was given. At the same time, the detailed physical process was considered to improve the accuracy and serviceability of this code, and prediction-correction method was used to allow a large burnup step. The OECD/NEA and JAERI pin cell benchmark problems were used to validate the code MCNTRANS while a reference result was given by other code. It can be concluded that the calculation results of MCNTRANS are generally consistent with the experimental result and that of the other burnup codes, and part of the actinides and fission products calculation result show better accuracy. (authors)

  13. Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: A novel approach and computer code

    Science.gov (United States)

    Kunz, Lothar; Kuhn, Frank M.; Deutschmann, Olaf

    2015-07-01

    So far most kinetic Monte Carlo (kMC) simulations of heterogeneously catalyzed gas phase reactions were limited to flat crystal surfaces. The newly developed program MoCKA (Monte Carlo Karlsruhe) combines graph-theoretical and lattice-based principles to be able to efficiently handle multiple lattices with a large number of sites, which account for different facets of the catalytic nanoparticle and the support material, and pursues a general approach, which is not restricted to a specific surface or reaction. The implementation uses the efficient variable step size method and applies a fast update algorithm for its process list. It is shown that the analysis of communication between facets and of (reverse) spillover effects is possible by rewinding the kMC simulation. Hence, this approach offers a wide range of new applications for kMC simulations in heterogeneous catalysis.

  14. A user-friendly, graphical interface for the Monte Carlo neutron optics code MCLIB

    International Nuclear Information System (INIS)

    The authors describe a prototype of a new user interface for the Monte Carlo neutron optics simulation program MCLIB. At this point in its development the interface allows the user to define an instrument as a set of predefined instrument elements. The user can specify the intrinsic parameters of each element, its position and orientation. The interface then writes output to the MCLIB package and starts the simulation. The present prototype is an early development stage of a comprehensive Monte Carlo simulations package that will serve as a tool for the design, optimization and assessment of performance of new neutron scattering instruments. It will be an important tool for understanding the efficacy of new source designs in meeting the needs of these instruments

  15. SPHERE: a spherical-geometry multimaterial electron/photon Monte Carlo transport code

    International Nuclear Information System (INIS)

    SPHERE provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through multimaterial configurations possessing spherical symmetry. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. SPHERE combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies, with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. 8 figs., 3 tables

  16. Criticality calculations on pebble-bed HTR-PROTEUS configuration as a validation for the pseudo-scattering tracking method implemented in the MORET 5 Monte Carlo code

    International Nuclear Information System (INIS)

    The MORET code is a three dimensional Monte Carlo criticality code. It is designed to calculate the effective multiplication factor (keff) of any geometrical configuration as well as the reaction rates in the various volumes and the neutron leakage out of the system. A recent development for the MORET code consists of the implementation of an alternate neutron tracking method, known as the pseudo-scattering tracking method. This method has been successfully implemented in the MORET code and its performances have been tested by mean of an extensive parametric study on very simple geometrical configurations. In this context, the goal of the present work is to validate the pseudo-scattering method against realistic configurations. In this perspective, pebble-bed cores are particularly well-adapted cases to model, as they exhibit large amount of volumes stochastically arranged on two different levels (the pebbles in the core and the TRISO particles inside each pebble). This paper will introduce the techniques and methods used to model pebble-bed cores in a realistic way. The results of the criticality calculations, as well as the pseudo-scattering tracking method performance in terms of computation time, will also be presented. (authors)

  17. Criticality calculations on realistic modelling of pebble-bed HTR-PROTEUS as a validation for the woodcock tracking method implemented in the MORET 5 Monte Carlo code

    International Nuclear Information System (INIS)

    The MORET code is a three dimensional Monte Carlo criticality code. It is designed to calculate the effective multiplication factor (keff) of any geometrical configuration as well as the reaction rates in the various volumes and the neutron leakage out of the system. A recent development for the MORET code consists of the implementation of an alternate neutron tracking method known as the pseudo-scattering tracking method. This method has been successfully implemented in the MORET code and its performances have been tested by the means of an extensive parametric study on very simple geometrical configurations. In this context, the goal of the present work is to validate the pseudo-scattering method against realistic configurations. In this perspective, pebble-bed cores are particularly well-adapted cases to model as they exhibit large amount of volumes stochastically arranged on two different levels (the pebbles in the core and the TRISO particles inside each pebble). This paper will introduce the techniques and methods used to model pebble-bed cores in a realistic way. The results of the criticality calculations, as well as the pseudo-scattering tracking method performance in terms of computation time will be presented. (authors)

  18. Multi-way Monte Carlo Method for Linear Systems

    OpenAIRE

    Wu, Tao; Gleich, David F.

    2016-01-01

    We study the Monte Carlo method for solving a linear system of the form $x = H x + b$. A sufficient condition for the method to work is $\\| H \\| < 1$, which greatly limits the usability of this method. We improve this condition by proposing a new multi-way Markov random walk, which is a generalization of the standard Markov random walk. Under our new framework we prove that the necessary and sufficient condition for our method to work is the spectral radius $\\rho(H^{+}) < 1$, which is a weake...

  19. R and D on automatic modeling methods for Monte Carlo codes FLUKA

    International Nuclear Information System (INIS)

    FLUKA is a fully integrated particle physics Monte Carlo simulation package. It is necessary to create the geometry models before calculation. However, it is time- consuming and error-prone to describe the geometry models manually. This study developed an automatic modeling method which could automatically convert computer-aided design (CAD) geometry models into FLUKA models. The conversion program was integrated into CAD/image-based automatic modeling program for nuclear and radiation transport simulation (MCAM). Its correctness has been demonstrated. (authors)

  20. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    International Nuclear Information System (INIS)

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  1. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Alan, E.; Nahum, PhD. [Copenhagen University Hospital, Radiation Physics Dept. (Denmark)

    2003-07-01

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  2. A development of NRESPG Monte Carlo code for the calculation of neutron response function for gas counters

    International Nuclear Information System (INIS)

    A Monte Carlo code Neutron RESPonse function for Gas counters (NRESPG) has been developed for the calculation of neutron response functions and efficiencies for neutron energies up to 20 MeV, which can be applied for 3He, H2, or BF3 gas proportional counters with or without moderator. This code can simulate the neutron behavior in a two-dimensional detector configuration and treat the thermal motion of a moderator atom which becomes important as the neutron energy becomes sufficiently low. Further, a more precise measured data was taken to simulate the position-dependent gas multiplication in the sensitive and insensitive gas region of a proportional counter. The NRESPG code has been applied for the calculation of response functions of 3He cylindrical proportional counters to determine neutron energy and neutron fluence in a monoenergetic calibration field. Thus, a remarkable discrepancy in the lower portion of the full-energy peak produced by the 3He(n,p)T reaction can be removed which results in a good agreement between simulations and experiments. The code has been also used for the simulation of the response of a McTaggart-type long counter consisting of a central cylindrical BF3 counter surrounded by a polyethylene moderator. The results of the NRESPG simulations were compared with those obtained from MCNP calculations

  3. Testing the Accuracy of Electron Transport in the Monte Carlo Code FLUKA for Calculation of Ionization Chamber Wall Perturbation Factors

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the Monte Carlo (MC) code FLUKA, regarding its ability to accurately simulate electron transport at density inhomogeneities and in ionization chamber geometries. In order to evaluate the accuracy of FLUKA's electron transport algorithm and the implementation of the condensed history technique, a Fano test was used. This test allows the comparison of calculated and theoretically expected results. The ratio of the two results is ideally equal to unity, and a deviation usually indicates artifacts in the treatment of density interfaces. As a more practical problem, wall perturbation factors pwall of a plane parallel chamber in electron beams were calculated and compared with results based on the EGSnrc MC code. Additionally, the impact of wall material and thickness on calculated cavity dose was investigated for two different thimble chambers irradiated by 60Co. The correct choice of parameters within FLUKA's electron transport algorithm ensured passing the Fano test within ∼0.7% and a good agreement for practical examples within 0.4% compared to results of the EGSnrc MC code. The latter is known to allow an artifact free simulation of ionization chamber response in photon and electron beams. Based on these results, the electron transport accuracy within the FLUKA code can generally be regarded as much better than 1% for typical ionization chamber dosimetry problems. (author)

  4. A development of NRESPG Monte Carlo code for the calculation of neutron response function for gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, N. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kudo, K. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Toyokawa, H. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Torii, T. [Japan Power Reactor and Nuclear Fuel Development Corporation, Tsuruga Office, Fukui 919-12 (Japan); Hashimoto, M. [Japan Power Reactor and Nuclear Fuel Development Corporation, O-arai Engineering Center, Ibaraki 311-13 (Japan); Sugita, T. [Science System Laboratory, Ibaraki 309-17 (Japan); Dietze, G. [Physikalisch-Technische Bundesanstalt, 38023 Braunschweig (Germany); Yang, X. [China Institute of Atomic Energy (China)

    1999-02-11

    A Monte Carlo code Neutron RESPonse function for Gas counters (NRESPG) has been developed for the calculation of neutron response functions and efficiencies for neutron energies up to 20 MeV, which can be applied for {sup 3}He, H{sub 2}, or BF{sub 3} gas proportional counters with or without moderator. This code can simulate the neutron behavior in a two-dimensional detector configuration and treat the thermal motion of a moderator atom which becomes important as the neutron energy becomes sufficiently low. Further, a more precise measured data was taken to simulate the position-dependent gas multiplication in the sensitive and insensitive gas region of a proportional counter. The NRESPG code has been applied for the calculation of response functions of {sup 3}He cylindrical proportional counters to determine neutron energy and neutron fluence in a monoenergetic calibration field. Thus, a remarkable discrepancy in the lower portion of the full-energy peak produced by the {sup 3}He(n,p)T reaction can be removed which results in a good agreement between simulations and experiments. The code has been also used for the simulation of the response of a McTaggart-type long counter consisting of a central cylindrical BF{sub 3} counter surrounded by a polyethylene moderator. The results of the NRESPG simulations were compared with those obtained from MCNP calculations.

  5. Evaluation of PENFAST - A fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Habib, B.; Poumarede, B.; Tola, F.; Barthe, J. [CEA, LIST, Dept Technol Capteur et Signal, F-91191 Gif Sur Yvette, (France)

    2010-07-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within {+-} 1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE. (authors)

  6. The Monte Carlo code CSSE for the simulation of realistic thermal neutron sensor devices for Humanitarian Demining

    Energy Technology Data Exchange (ETDEWEB)

    Palomba, M. E-mail: maurizio.palomba@ba.infn.it; D' Erasmo, G.; Pantaleo, A

    2003-02-11

    The CSSE code, a GEANT3-based Monte Carlo simulation program, has been developed in the framework of the EXPLODET project (Nucl. Instr. and Meth. A 422 (1999) 918) with the aim to simulate experimental set-ups employed in Thermal Neutron Analysis (TNA) for the landmines detection. Such a simulation code appears to be useful for studying the background in the {gamma}-ray spectra obtained with this technique, especially in the region where one expects to find the explosive signature (the {gamma}-ray peak at 10.83 MeV coming from neutron capture by nitrogen). The main features of the CSSE code are introduced and original innovations emphasized. Among the latter, an algorithm simulating the time correlation between primary particles, according with their time distributions is presented. Such a correlation is not usually achievable within standard GEANT-based codes and allows to reproduce some important phenomena, as the pulse pile-up inside the NaI(Tl) {gamma}-ray detector employed, producing a more realistic detector response simulation. CSSE has been successfully tested by reproducing a real nuclear sensor prototype assembled at the Physics Department of Bari University.

  7. Design and evaluation of a Monte Carlo based model of an orthovoltage treatment system

    International Nuclear Information System (INIS)

    The aim of this study was to develop a flexible framework of an orthovoltage treatment system capable of calculating and visualizing dose distributions in different phantoms and CT datasets. The framework provides a complete set of various filters, applicators and X-ray energies and therefore can be adapted to varying studies or be used for educational purposes. A dedicated user friendly graphical interface was developed allowing for easy setup of the simulation parameters and visualization of the results. For the Monte Carlo simulations the EGSnrc Monte Carlo code package was used. Building the geometry was accomplished with the help of the EGSnrc C++ class library. The deposited dose was calculated according to the KERMA approximation using the track-length estimator. The validation against measurements showed a good agreement within 4-5% deviation, down to depths of 20% of the depth dose maximum. Furthermore, to show its capabilities, the validated model was used to calculate the dose distribution on two CT datasets. Typical Monte Carlo calculation time for these simulations was about 10 minutes achieving an average statistical uncertainty of 2% on a standard PC. However, this calculation time depends strongly on the used CT dataset, tube potential, filter material/thickness and applicator size.

  8. Design and evaluation of a Monte Carlo based model of an orthovoltage treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Penchev, Petar; Maeder, Ulf; Fiebich, Martin [IMPS University of Applied Sciences, Giessen (Germany). Inst. of Medical Physics and Radiation Protection; Zink, Klemens [IMPS University of Applied Sciences, Giessen (Germany). Inst. of Medical Physics and Radiation Protection; University Hospital Marburg (Germany). Dept. of Radiotherapy and Oncology

    2015-07-01

    The aim of this study was to develop a flexible framework of an orthovoltage treatment system capable of calculating and visualizing dose distributions in different phantoms and CT datasets. The framework provides a complete set of various filters, applicators and X-ray energies and therefore can be adapted to varying studies or be used for educational purposes. A dedicated user friendly graphical interface was developed allowing for easy setup of the simulation parameters and visualization of the results. For the Monte Carlo simulations the EGSnrc Monte Carlo code package was used. Building the geometry was accomplished with the help of the EGSnrc C++ class library. The deposited dose was calculated according to the KERMA approximation using the track-length estimator. The validation against measurements showed a good agreement within 4-5% deviation, down to depths of 20% of the depth dose maximum. Furthermore, to show its capabilities, the validated model was used to calculate the dose distribution on two CT datasets. Typical Monte Carlo calculation time for these simulations was about 10 minutes achieving an average statistical uncertainty of 2% on a standard PC. However, this calculation time depends strongly on the used CT dataset, tube potential, filter material/thickness and applicator size.

  9. Principles of the reactor code system RHEIN

    International Nuclear Information System (INIS)

    A description is given of the principles of the reactor code system RHEIN which is applied in connection with a BESM6-type computer. In transfering data between the components of the system external storage is used. The programme passage is controlled by the input data. (author)

  10. Overview of particle and heavy ion transport code system PHITS

    International Nuclear Information System (INIS)

    Highlights: • We developed a general-purpose Monte Carlo particle transport code PHITS. • PHITS can deal with the transport of nearly all particles over wide energy ranges. • More than 1500 researchers have been used PHITS for various applications. • Physics models and special functions implemented in PHITS are briefly summarized. - Abstract: A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research Organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development’s Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1500 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions

  11. Modern Nuclear Data Evaluation with the TALYS Code System

    International Nuclear Information System (INIS)

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  12. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  13. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  14. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  15. Recent transportation calculation code systems and their accuracy evaluation

    International Nuclear Information System (INIS)

    In the field of shielding design, many studies have been carried out for the development of radiation transportation calculation codes (transportation codes) including Monte Carlo codes. The present report outlines major transportation codes used in Japan for design of shielding. Major one-dimensional codes include ANISN (Sn), PALLAS-PL and SP-Br (direct integration) whili two-dimensional ones include DOT-3.5 and TWOTRAN-II. All these transportation codes have been developed on the basis of numerical solution to the Boltzmann's transportation equation. These codes are roughly divided into two groups: discrete ordinates type and Monte Carlo type. The former include Sn-type codes and direct integration type codes. Sn-type codes are currently used most widely. The accuracy and other features of a code should be tested before applysing it to practical shielding design. One of the techniques for this purpose is the benchmark method, which consists of benchmark tests and analysis of the test results. The possible overall error involved in calculations can be determined from the benchmark tests. (Nogami, K.)

  16. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k∞) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  17. Interacting multiagent systems kinetic equations and Monte Carlo methods

    CERN Document Server

    Pareschi, Lorenzo

    2014-01-01

    The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...

  18. Domain decomposition and terabyte tallies with the OpenMC Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Memory limitations are a key obstacle to applying Monte Carlo neutron transport methods to high-fidelity full-core reactor analysis. Billions of unique regions are needed to carry out full-core depletion and fuel performance analyses, equating to terabytes of memory for isotopic abundances and tally scores - far more than can fit on a single computational node in modern architectures. This work introduces an implementation of domain decomposition that addresses this problem, demonstrating excellent scaling up to a 2.39TB mesh-tally distributed across 512 compute nodes running a full-core reactor benchmark on the Mira Blue Gene/Q supercomputer at Argonne National Laboratory. (author)

  19. The PENELOPE code system. Specific features and recent improvements

    International Nuclear Information System (INIS)

    Highlights: • PENELOPE implements state-of-the-art models for electron and photon interactions. • It is characterized by a systematic use of class-II tracking of charged particles. • The code includes elaborate variance reduction methods and flexible geometry tools. - Abstract: Since its first release, back in 1996, the Monte Carlo code system PENELOPE has evolved into both a flexible and reliable tool for describing coupled electron–photon transport in complex material structures. The present article contains an overview of the physical interaction models, particle tracking methods, geometry tools, and variance-reduction techniques implemented in PENELOPE. Recent refinements aimed at improving the accuracy of the code, and its stability under variations of user-defined simulation parameters, are also described. These include the use of reliable cross sections for the ionization of inner atomic electron shells by electron/positron impact, a reformulation of the random-hinge method, and the use of fuzzy quadric surfaces in the description of the geometry

  20. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  1. Monte Carlo burnup code acceleration with the correlated sampling method. Preliminary test on an UOX cell with TRIPOLI-4{sup R}

    Energy Technology Data Exchange (ETDEWEB)

    Dieudonne, C.; Dumonteil, E.; Malvagi, F.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, Service d' Etude des Reacteurs et de Mathematiques Appliquees, DEN/DANS/DM2S/SERMA/LTSD, F91191 Gif-sur-Yvette cedex (France)

    2013-07-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple a Monte Carlo code to simulate the neutron transport to a deterministic method that computes the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3 dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the time-expensive Monte Carlo solver called at each time step. Therefore, great improvements in term of calculation time could be expected if one could get rid of Monte Carlo transport sequences. For example, it may seem interesting to run an initial Monte Carlo simulation only once, for the first time/burnup step, and then to use the concentration perturbation capability of the Monte Carlo code to replace the other time/burnup steps (the different burnup steps are seen like perturbations of the concentrations of the initial burnup step). This paper presents some advantages and limitations of this technique and preliminary results in terms of speed up and figure of merit. Finally, we will detail different possible calculation scheme based on that method. (authors)

  2. Basic physical and chemical information needed for development of Monte Carlo codes

    International Nuclear Information System (INIS)

    It is important to view track structure analysis as an application of a branch of theoretical physics (i.e., statistical physics and physical kinetics in the language of the Landau school). Monte Carlo methods and transport equation methods represent two major approaches. In either approach, it is of paramount importance to use as input the cross section data that best represent the elementary microscopic processes. Transport analysis based on unrealistic input data must be viewed with caution, because results can be misleading. Work toward establishing the cross section data, which demands a wide scope of knowledge and expertise, is being carried out through extensive international collaborations. In track structure analysis for radiation biology, the need for cross sections for the interactions of electrons with DNA and neighboring protein molecules seems to be especially urgent. Finally, it is important to interpret results of Monte Carlo calculations fully and adequately. To this end, workers should document input data as thoroughly as possible and report their results in detail in many ways. Workers in analytic transport theory are then likely to contribute to the interpretation of the results

  3. Using SERPENT Monte Carlo and Burnup code to model Traveling Wave Reactors - TWR

    International Nuclear Information System (INIS)

    This paper is mainly devoted to the proof-of-principle implementation of the SERPENT code for the simulation of traveling wave reactors. Traveling wave reactors are both fast reactors and nuclear burning wave reactors in which the breeding and burning of nuclear fuel appear almost simultaneously. SERPENT is a neutron transport code whose last official update package is SERPENT 1.1.19 and whose SERPENT 2 version is currently in progress. The investigation of SERPENT 1.1.19 and of SERPENT 2 codes for multiprocessor tasks with long burnup steps was performed. It appears that SERPENT 2 has eliminated parallelization problems efficiently. Methods to remove the influence of the ignition zone were considered, and neutron transport simulations with various fragmentations of the burnup zone were performed. (authors)

  4. Neutron secondary-particle production cross sections and their incorporation into Monte-Carlo transport codes

    International Nuclear Information System (INIS)

    Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs

  5. Nanometer scale description of electron transport and damage in condensed media using the TRAX Monte Carlo Code

    International Nuclear Information System (INIS)

    The single interaction Monte Carlo code TRAX has been extended to describe low-energy electron creation and transport in solids. Electrons with energies below 1 keV have ranges in solids on the nanometerscale. Complete sets of electron interaction cross sections for energies below 1 keV down to 1 eV have been compiled and assessed for various target materials. The applicability of the cross sections has been validated by comparisons with experimental data as far as available. The code has further been extended to handle the production of Auger electrons and cascades. Furthermore, the capability to handle non-uniform targets has been added. With the extended TRAX code, experimental data from GSI's Toroid electron spectrometer have been reproduced using thin solid state foils of carbon, nickel, silver and gold as targets. Furthermore, the radial dose distribution around ion tracks has been investigated on the nanometer scale. The explicit consideration of Auger electron cascades has been used to evaluate whether metallic nanoparticles can locally enhance the dose in combination with proton or electron irradiation.

  6. Application of a Java-based, univel geometry, neutral particle Monte Carlo code to the searchlight problem

    International Nuclear Information System (INIS)

    A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random number generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN

  7. Analysis of the TRIGA Mark-II benchmark IEU-COMP-THERM-003 with Monte Carlo code MVP

    International Nuclear Information System (INIS)

    The benchmark experiments of the TRIGA Mark-II reactor in the ICSBEP handbook have been analyzed with the Monte Carlo code MVP using the cross section libraries based on JENDL-3.3, JENDL-3.2 and ENDF/B-VI.8. The MCNP calculations have been also performed with the ENDF/B-VI.6 library for comparison between the MVP and MCNP results. For both cores labeled 132 and 133, which have different core configurations, the ratio of the calculated to the experimental results (C/E) for keff obtained by the MVP code is 0.999 for JENDL-3.3, 1.003 for JENDL-3.2, and 0.998 for ENDF/B-VI.8. For the MCNP code, the C/E values are 0.998 for both Core 132 and 133. All the calculated results agree with the reference values within the experimental uncertainties. The results obtained by MVP with ENDF/B-VI.8 and MCNP with ENDF/B-VI.6 differ only by 0.02% for Core 132, and by 0.01% for Core 133. (author)

  8. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  9. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    Science.gov (United States)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  10. TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study

    International Nuclear Information System (INIS)

    Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavities and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases

  11. Evaluation of Monte Carlo electron-Transport algorithms in the integrated Tiger series codes for stochastic-media simulations

    International Nuclear Information System (INIS)

    Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)

  12. Organ and effective dose arising from conventional diagnostic x-ray examinations by monte Carlo simulation (MCNP-4C code)

    International Nuclear Information System (INIS)

    Monte Carlo simulation has been used by many researchers to calculate organ and effective dose of patients arising from conventional X-ray examinations. In this study the radiation transport code, MCNP4C, has been used to perform Monte Carlo simulations to estimate radiation dose delivered to different organs in conventional X-ray examinations. Materials and Methods: In this work we have made use of ORNL mathematical phantoms with few modifications which have been made. The source has been defined as a point source, emitting photons into a solid angle. The X-ray beam was shaped by a collimator to produce a rectangular field at the midline of the phantom. Results: to validate the simulation executed in this study normalized organs doses to unit ESD for hermaphrodite phantom were computed. Our results were compared with corresponding values presented by NRPB. In general organs doses obtained by application of MCNP-4C (present study) and corresponding values presented in NRPB were in good agreement. For further evaluation of our phantom, the values acquired for organ and effective doses by MCNP-4C and ODS-60 were compared. Conclusion: the technique we have developed is capable of estimating organ and effective doses with a better accuracy than dose values obtained by employment of NRPB and ODS-60 technique

  13. Benchmark analysis of criticality experiments in the TRIGA mark II using a continuous energy Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    The criticality analysis of the TRIGA-II benchmark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuels and control rods as well as vicinity of the core were precisely modeled. Effective multiplication factors (keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated keff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements (fuels or graphite elements were added only to the outer-ring), but the discrepancy increased to 1.8%Δk/k for the some fuel-loading patterns (graphite elements were inserted into the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-II reactor. (author)

  14. Mercury + VisIt: Integration of a Real-Time Graphical Analysis Capability into a Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Validation of the problem definition and analysis of the results (tallies) produced during a Monte Carlo particle transport calculation can be a complicated, time-intensive processes. The time required for a person to create an accurate, validated combinatorial geometry (CG) or mesh-based representation of a complex problem, free of common errors such as gaps and overlapping cells, can range from days to weeks. The ability to interrogate the internal structure of a complex, three-dimensional (3-D) geometry, prior to running the transport calculation, can improve the user's confidence in the validity of the problem definition. With regard to the analysis of results, the process of extracting tally data from printed tables within a file is laborious and not an intuitive approach to understanding the results. The ability to display tally information overlaid on top of the problem geometry can decrease the time required for analysis and increase the user's understanding of the results. To this end, our team has integrated VisIt, a parallel, production-quality visualization and data analysis tool into Mercury, a massively-parallel Monte Carlo particle transport code. VisIt provides an API for real time visualization of a simulation as it is running. The user may select which plots to display from the VisIt GUI, or by sending VisIt a Python script from Mercury. The frequency at which plots are updated can be set and the user can visualize the simulation results as it is running

  15. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  16. Bar-code automated waste tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  17. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code.

    Science.gov (United States)

    Dos Santos, M; Clairand, I; Gruel, G; Barquinero, J F; Incerti, S; Villagrasa, C

    2014-10-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or decondensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with decondensed chromatin. PMID:24615262

  18. Energy distribution of cosmic rays in the Earth’s atmosphere and avionic area using Monte Carlo codes

    Indian Academy of Sciences (India)

    MOHAMED M OULD; DIB A S A; BELBACHIR A H

    2016-07-01

    Cosmic rays cause significant damage to the electronic equipments of the aircrafts. In this paper, we have investigated the accumulation of the deposited energy of cosmic rays on the Earth’s atmosphere, especially in the aircraft area. In fact, if a high-energy neutron or proton interacts with a nanodevice having only a few atoms, this neutron or proton particle can change the nature of this device and destroy it. Our simulation based on Monte Carlo using Geant4 code shows that the deposited energy of neutron particles ranging between 200MeV and 5 GeV are strongly concentrated in the region between 10 and 15 km from the sea level which is exactly the avionic area. However, the Bragg peak energy of proton particle is slightly localized above the avionic area.

  19. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    International Nuclear Information System (INIS)

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  20. Borehole prompt gamma neutron activation and comparison with Monte Carlo simulation using MCNP code Borehole PGNAA experiment comparison with MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabpour, M. [Gamma Irradiation Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Shahriari, M. [Physics Department, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Zarifian, V.; Moghadam, K.K. [Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    1999-04-01

    A borehole experiment using prompt gamma neutron activation analysis has been performed in a large sample box having a volume of 1 m{sup 3}. Brine solutions having a salt concentration in the range of 0-10 wt% of sodium chloride has been used. Chlorine prompt gamma spectral response as a function of the salt concentrations have been obtained. A simulation of the above experiments has also been carried out using the MCNP4A Monte Carlo code. Comparison of the experimental spectral response versus the simulated MCNP4A data has produced excellent agreement. In view of the good benchmark data it is proposed that due to the inherent problems associated with the ordinary calibration procedures for the borehole logging tools, one could employ a combined calibration/simulation scheme to circumvent these difficulties and achieve more effective results.