Progress on burnup calculation methods coupling Monte Carlo and depletion codes
Energy Technology Data Exchange (ETDEWEB)
Leszczynski, Francisco [Comision Nacional de Energia Atomica, San Carlos de Bariloche, RN (Argentina). Centro Atomico Bariloche]. E-mail: lesinki@cab.cnea.gob.ar
2005-07-01
Several methods of burnup calculations coupling Monte Carlo and depletion codes that were investigated and applied for the author last years are described. here. Some benchmark results and future possibilities are analyzed also. The methods are: depletion calculations at cell level with WIMS or other cell codes, and use of the resulting concentrations of fission products, poisons and actinides on Monte Carlo calculation for fixed burnup distributions obtained from diffusion codes; same as the first but using a method o coupling Monte Carlo (MCNP) and a depletion code (ORIGEN) at a cell level for obtaining the concentrations of nuclides, to be used on full reactor calculation with Monte Carlo code; and full calculation of the system with Monte Carlo and depletion codes, on several steps. All these methods were used for different problems for research reactors and some comparisons with experimental results of regular lattices were performed. On this work, a resume of all these works is presented and discussion of advantages and problems found are included. Also, a brief description of the methods adopted and MCQ system for coupling MCNP and ORIGEN codes is included. (author)
Development of burnup calculation function in reactor Monte Carlo code RMC
International Nuclear Information System (INIS)
This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)
Using SERPENT Monte Carlo and Burnup code to model Traveling Wave Reactors - TWR
International Nuclear Information System (INIS)
This paper is mainly devoted to the proof-of-principle implementation of the SERPENT code for the simulation of traveling wave reactors. Traveling wave reactors are both fast reactors and nuclear burning wave reactors in which the breeding and burning of nuclear fuel appear almost simultaneously. SERPENT is a neutron transport code whose last official update package is SERPENT 1.1.19 and whose SERPENT 2 version is currently in progress. The investigation of SERPENT 1.1.19 and of SERPENT 2 codes for multiprocessor tasks with long burnup steps was performed. It appears that SERPENT 2 has eliminated parallelization problems efficiently. Methods to remove the influence of the ignition zone were considered, and neutron transport simulations with various fragmentations of the burnup zone were performed. (authors)
Burnup simulations of different fuel grades using the MCNPX Monte Carlo code
Directory of Open Access Journals (Sweden)
Asah-Opoku Fiifi
2014-01-01
Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.
Energy Technology Data Exchange (ETDEWEB)
Dieudonne, C.; Dumonteil, E.; Malvagi, F.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, Service d' Etude des Reacteurs et de Mathematiques Appliquees, DEN/DANS/DM2S/SERMA/LTSD, F91191 Gif-sur-Yvette cedex (France)
2013-07-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple a Monte Carlo code to simulate the neutron transport to a deterministic method that computes the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3 dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the time-expensive Monte Carlo solver called at each time step. Therefore, great improvements in term of calculation time could be expected if one could get rid of Monte Carlo transport sequences. For example, it may seem interesting to run an initial Monte Carlo simulation only once, for the first time/burnup step, and then to use the concentration perturbation capability of the Monte Carlo code to replace the other time/burnup steps (the different burnup steps are seen like perturbations of the concentrations of the initial burnup step). This paper presents some advantages and limitations of this technique and preliminary results in terms of speed up and figure of merit. Finally, we will detail different possible calculation scheme based on that method. (authors)
Development and validation of ALEPH2 Monte Carlo burn-up code
Energy Technology Data Exchange (ETDEWEB)
Van Den Eynde, G.; Stankovskiy, A.; Fiorito, L.; Broustaut, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)
2013-07-01
The ALEPH2 Monte Carlo depletion code has two principal features that make it a flexible and powerful tool for reactor analysis. First of all, its comprehensive nuclear data library ensures the consistency between steady-state Monte Carlo and deterministic depletion modules. It covers neutron and proton induced reactions, neutron and proton fission product yields, spontaneous fission product yields, radioactive decay data and total recoverable energies per fission. Secondly, ALEPH2 uses an advanced numerical solver for the first order ordinary differential equations describing the isotope balances, namely a Radau IIA implicit Runge-Kutta method. The versatility of the code allows using it for time behavior simulation of various systems ranging from single pin model to full-scale reactor model. The code is extensively used for the neutronics design of the MYRRHA research fast spectrum facility which will operate in both critical and sub-critical modes. The code has been validated on the decay heat data from JOYO experimental fast reactor. (authors)
SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code
International Nuclear Information System (INIS)
Under the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD/NEA, an international collaboration benchmark was recently established on the neutronic analysis of four Sodium-cooled Fast Reactor (SFR) concepts of the Generation- IV nuclear energy systems. As the whole core Monte Carlo depletion calculation is one of the essential challenges of current reactor physics studies, the continuous-energy TRIPOLI-4 Monte Carlo transport code was firstly used in this study to perform whole core 3D neutronic calculations for these four SFR cores. Two medium size (1000 MWt) and two large size (3600 MWt) SFR of GEN-IV systems were analyzed. The medium size SFR concepts are from the Advanced Burner Reactors (ABR). The large size SFR concepts are from the self-breeding reactors. The TRIPOLI-4 depletion calculations were made with MOX and metallic U-Pu-Zr fuels for the ABR cores and with MOX and Carbide (U,Pu)C fuels for the self-breeding cores. The whole core reactor physics parameters calculations were performed for the BOEC and EOEC (Beginning and End of Equilibrium Cycle) conditions. This paper summarizes the TRIPOLI-4 calculation results of Keff, βeff, sodium void worth, Doppler constant, control rod worth, and core power distributions for the BOEC and EOEC conditions. The one-cycle depletion calculation results of the core inventory of U and TRU (Pu, Am, Cm, and Np) are also analyzed, after 328.5 days depletion irradiation for the ABR cores, 410 days for the large MOX core, and 500 days for the large carbide core. (author)
International Nuclear Information System (INIS)
Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)
International Nuclear Information System (INIS)
When the residence time of nuclear fuel rods exceeds a given threshold value, several properties of the pellet material suffer changes and hence the posterior behaviour of the rod is significantly altered. Structural modifications start at the pellet periphery, which is usually referred to as rim zone. It is presently believed that these changes are a consequence of the localized absorption of epithermal neutrons by 238U, which effective cross section presents resonant peaks. Due to the chain of nuclear reactions that take place, several Pu isotopes are born especially at the rim. In particular, the fissile character of 239Pu and 241Pu is the cause of the increased number of fission events that occur in the pellet periphery. For this reason, the power generation rate and the burnup adopt a non uniform distribution in the pellet, reaching at the rim values two or three times higher than the average [1]. The rim zone starts to form for a burnup threshold value of about 50-60 MWd/kgHM and its width increases as the irradiation progresses. The microstructure of this zone is characterized by the presence of small grains, with a typical size of 200 nm, and large pores, of some μm. Even though the rim zone is very thin, it has a significant effect on the mechanical integrity of the pellet, particularly when it makes contact with the cladding, and on the temperature distribution in the whole pellet, because of its low thermal conductivity [1,2]. The numerical codes designed to simulate fuel behaviour under irradiation must include the phenomena associated to high burnup if they aim at extending the prediction range, and this is the purpose with our DIONISIO code. But a detailed analysis of the phenomena that take place in this region demands the use of neutronic codes that solve the Boltzmann transport equations [3] in a number of energy intervals (groups), including adequate considerations in the region of the resonant absorption peaks of 238U. These cell codes predict
Burnup calculation code system COMRAD96
International Nuclear Information System (INIS)
COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)
Burnup calculations using serpent code in accelerator driven thorium reactors
International Nuclear Information System (INIS)
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232Th and mixed 233U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
Burnup calculations using serpent code in accelerator driven thorium reactors
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.
2013-07-15
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chersola, Davide [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Lomonaco, Guglielmo, E-mail: guglielmo.lomonaco@unige.it [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Marotta, Riccardo [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Mazzini, Guido [Centrum výzkumu Řež (Research Centre Rez), Husinec-Rez, cp. 130, 25068 Rez (Czech Republic)
2014-07-01
Highlights: • MC codes are widely adopted to analyze nuclear facilities, including GEN-IV reactors. • Burnup calculations are an efficient tool to test neutronic Monte Carlo codes. • In this comparison the used codes show some differences but a good agreement exists. - Abstract: This paper presents the comparison between two Monte Carlo based burnup codes: SERPENT and MONTEBURNS. Monte Carlo codes are fully and worldwide adopted to perform analyses on nuclear facilities, also in the frame of Generation IV advanced reactors simulations. Thus, faster and most powerful calculation codes are needed with the aim to analyze complex geometries and specific neutronic behaviors. Burnup calculations are an efficient tool to test neutronic Monte Carlo codes: indeed these calculations couple transport and depletion procedures, so that neutronic reactor behavior can be simulated in its totality. Comparisons have been performed on a configuration representing the Allegro MOX 75 MW{sub th} reactor proposed by the European GoFastR (Gas-cooled Fast Reactor) Project in the frame of the 7th Euratom Framework Program. Although in burnup and criticality comparisons the codes used in simulations show different calculation times and some differences in amounts and in precision (in term of statistical errors), a reasonably good agreement between them exists.
Burnup Estimation for Plate Type Fuel Assembly Using SCALE6 Code
Energy Technology Data Exchange (ETDEWEB)
Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
Accurate burnup estimation is not an easy job due to several reasons such as the effect of fission products and the power change caused by fuel refueling and depletion. The presence of fission products may distort the linear relationship between burnup and input parameters including power density and enrichment. The feasibility test of this approach has been done by comparing the results with a Monte Carlo code results. In this paper, it has been tried to get a crude formula to estimate burnup for an open pool type research reactor. In addition, we want to investigate the perturbation of each factor on burnup, and then combine the effects in one fitted formula for each cycle. This work is focused on calculating burnup for plate type fuel assembly of research reactors through a couple of code systems such as TRITON/NEWT and ORIGEN-ARP. Several sensitivity calculations have been done and the least square fitting is carried out to express a unified formula for burnup. The estimated burnup is compared with that of McCARD calculation. It is founded that the fitted burnup agrees well with the McCARD results.
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)
2008-04-15
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.
Revised SWAT. The integrated burnup calculation code system
Energy Technology Data Exchange (ETDEWEB)
Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)
2000-07-01
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)
Development and validation of burnup function in reactor Monte Carlo RMC
International Nuclear Information System (INIS)
This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including middle-of-step approximation and predictor-corrector method, are adopted by RMC to assure accuracy under large step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably save computational time with negligible accuracy loss. According to validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (author)
Miniature neutron source reactor burnup calculations using IRBURN code system
International Nuclear Information System (INIS)
Highlights: ► Fuel consumption of Iranian MNSR during 15 years of operation has been investigated. ► Calculations have been performed by the IRBURN code. Precision and accuracy of the implemented model has been validated. ► Our study shows the consumption rate of MNSR is about 1%. - Abstract: Fuel consumption of Iranian miniature neutron source reactor (MNSR) during 15 years of operation has been investigated. Reactor core neutronic parameters such as flux and power distributions, control rod worth and effective multiplication factor at BOL and after 15 years of irradiation has been calculated. The Monte Carlo-based depletion code system IRBURN has been used for studying the reactor core neutronic parameters as well as the isotopic inventory of the fuel during burnup. The precision and accuracy of the implemented model has been verified via validation the results for neutronic parameters in the MNSR final safety analysis report. The results show that keff decreases from 1.0034 to 0.9897 and the total U-235 consumption in the core is about 13.669 g after 15 years of operational time. Finally, our studying shows the consumption rate of MNSR is about 1%.
Directory of Open Access Journals (Sweden)
Kępisty Grzegorz
2015-09-01
Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.
Systemization of burnup sensitivity analysis code (2) (Contract research)
International Nuclear Information System (INIS)
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion
International Nuclear Information System (INIS)
External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation
MCNPX Monte Carlo burnup simulations of the isotope correlation experiments in the NPP Obrigheim
Energy Technology Data Exchange (ETDEWEB)
Cao Yan, E-mail: ycao@anl.go [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Broeders, Cornelis H.M. [Forschungszentrum Karlsruhe, Institute for Neutron Physics and Reactor Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)
2010-10-15
This paper describes the simulation work of the Isotope Correlation Experiment (ICE) using the MCNPX Monte Carlo computer code package. The Monte Carlo simulation results are compared with the ICE-Experimental measurements for burnup up to 30 GWD/t. The comparison shows the good capabilities of the MCNPX computer code package for predicting the depletion of the uranium fuel and the buildup of the plutonium isotopes in a PWR thermal reactor. The Monte Carlo simulation results show also good agreements with the experimental data for calculating several long-lived and stable fission products. However, for the americium and curium actinides, it is difficult to judge the predication capabilities for these actinides due to the large uncertainties in the ICE-Experimental data. In the MCNPX numerical simulations, a pin cell model is utilized to simulate the fuel lattice of the nuclear power reactor. Temperature dependent libraries based on JEFF3.1 nuclear data files are utilized for the calculations. In addition, temperature dependent libraries based ENDF/B-VII nuclear data files are utilized and the obtained results are very close to the JEFF3.1 results, except for {approx}10% differences in the prediction of the minor actinide isotopes buildup.
MCOR - Monte Carlo depletion code for reference LWR calculations
Energy Technology Data Exchange (ETDEWEB)
Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)
2011-04-15
Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally
Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
Energy Technology Data Exchange (ETDEWEB)
Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2015-09-15
A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.
Dufek, Jan; Anglart, Henryk
2013-01-01
Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the previously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this scheme can be easily extended to include the thermal-hydraulic feedback during the Monte Carlo burnup simulations, while preserving its unconditional stability property. At each time step, the implicit solution (for the end-of-step neutron flux, fuel nuclide densities and thermal-hydrauli...
Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki
1997-11-01
EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.
International Nuclear Information System (INIS)
The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Holly R. Trellue
1998-12-01
Monteburns is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code 0RIGEN2. Monteburns produces many criticality and burnup computational parameters based on material feed/removal specifications, power(s), and time intervals. This code processes input from the user indicating the system geometry, initial material compositions, feed/removal, and other code-specific parameters. Results from MCNP, 0RIGEN2, and other calculations are then output successively as the code runs. The principle function of monteburns is to first transfer one-group cross sections and fluxes from MCNP to 0RIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from 0RIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with 0RIGEN2 and other calculations are performed by monteburns. This report presents the results obtained from the benchmarking of monteburns to measured and previously obtained data from traditional Light Water Reactor systems. The majority of the differences seen between the two were less than five percent. These were primarily a result of variances in cross sections between MCNP, cross section libraries used by other codes, and observed values. With this understanding, this code can now be used with confidence for burnup calculations in three-dimensional systems. It was designed for use in the Accelerator Transmutation of Waste project at Los Alamos National Laboratory but is also being applied to the analysis of isotopic production/destruction of transuranic actinides in a reactor system. The code has now been shown to sufficiently support these calculations.
Energy Technology Data Exchange (ETDEWEB)
Kuroishi, Takeshi; Hoang, Anh Tuan; Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2003-03-01
The reactivity effect of the asymmetry of axial burnup profile in burnup credit criticality safety is studied for a realistic PWR spent fuel transport cask proposed in the current OECD/NEA Phase II-C benchmark problem. The axial burnup profiles are simulated in 21 material zones based on in-core flux measurements varying from strong asymmetry to more or less no asymmetry. Criticality calculations in a 3-D model have been performed using the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculation conditions are determined with consideration of the axial fission source convergence. Calculations are carried out not only for cases proposed in the benchmark but also for additional cases assuming symmetric burnup profile. The actinide-only approach supposed for first domestic introduction of burnup credit into criticality evaluation is also considered in addition to the actinide plus fission product approach adopted in the benchmark. The calculated results show that k{sub eff} and the end effect increase almost linearly with increasing burnup axial offset that is defined as one of typical parameters showing the intensity of axial burnup asymmetry. The end effect is more sensitive to the asymmetry of burnup profile for the higher burnup. For an axially distributed burnup, the axial fission source distribution becomes strongly asymmetric as its peak shifts toward the top end of the fuel's active zone where the local burnup is less than that of the bottom end. The peak of fission source distribution becomes higher with the increase of either the asymmetry of burnup profile or the assembly-averaged burnup. The conservatism of the assumption of uniform axial burnup based on the actinide-only approach is estimated quantitatively in comparison with the k{sub eff} result calculated with experiment-based strongest asymmetric axial burnup profile with the actinide plus fission product approach. (author)
Monte Carlo uncertainty propagation approaches in ADS burn-up calculations
International Nuclear Information System (INIS)
Highlights: ► Two Monte Carlo uncertainty propagation approaches are compared. ► How to make both approaches equivalent is presented and applied. ► ADS burn-up calculation is selected as the application of approaches. ► The cross-section uncertainties of 239Pu and 241Pu are propagated. ► Cross-correlations appear as a source of differences between approaches. - Abstract: In activation calculations, there are several approaches to quantify uncertainties: deterministic by means of sensitivity analysis, and stochastic by means of Monte Carlo. Here, two different Monte Carlo approaches for nuclear data uncertainty are presented: the first one is the Total Monte Carlo (TMC). The second one is by means of a Monte Carlo sampling of the covariance information included in the nuclear data libraries to propagate these uncertainties throughout the activation calculations. This last approach is what we named Covariance Uncertainty Propagation, CUP. This work presents both approaches and their differences. Also, they are compared by means of an activation calculation, where the cross-section uncertainties of 239Pu and 241Pu are propagated in an ADS activation calculation
New high burnup fuel models for NRC`s licensing audit code, FRAPCON
Energy Technology Data Exchange (ETDEWEB)
Lanning, D.D.; Beyer, C.E.; Painter, C.L. [Pacific Northwest Laboratory, Richland, WA (United States)
1996-03-01
Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.
Energy Technology Data Exchange (ETDEWEB)
Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)
2016-06-15
Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.
Development of Monte Carlo depletion code MCDEP
Energy Technology Data Exchange (ETDEWEB)
Kim, K. S.; Kim, K. Y.; Lee, J. C.; Ji, S. K. [KAERI, Taejon (Korea, Republic of)
2003-07-01
Monte Carlo neutron transport calculation has been used to obtain a reference solution in reactor physics analysis. The typical and widely-used Monte Carlo transport code is MCNP (Monte Carlo N-Particle Transport Code) developed in Los Alamos National Laboratory. The drawbacks of Monte-Carlo transport codes are the lacks of the capacities for the depletion and temperature dependent calculations. In this research we developed MCDEP (Monte Carlo Depletion Code Package) using MCNP with the capacity of the depletion calculation. This code package is the integration of MCNP and depletion module of ORIGEN-2 using the matrix exponential method. This code package enables the automatic MCNP and depletion calculations only with the initial MCNP and MCDEP inputs prepared by users. Depletion chains were simplified for the efficiency of computing time and the treatment of short-lived nuclides without cross section data. The results of MCDEP showed that the reactivity and pin power distributions for the PWR fuel pins and assemblies are consistent with those of CASMO-3 and HELIOS.
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
Leppänen, Jaakko; Pusa, Maria; Viitanen, Tuomas; Valtavirta, Ville; Kaltiaisenaho, Toni
2014-06-01
The Serpent Monte Carlo reactor physics burnup calculation code has been developed at VTT Technical Research Centre of Finland since 2004, and is currently used in 100 universities and research organizations around the world. This paper presents the brief history of the project, together with the currently available methods and capabilities and plans for future work. Typical user applications are introduced in the form of a summary review on Serpent-related publications over the past few years.
SPQR: a Monte Carlo reactor kinetics code
International Nuclear Information System (INIS)
The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations
Development of a fuel rod thermal-mechanical analysis code for high burnup fuel
International Nuclear Information System (INIS)
The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O2 and MOX fuel. The thermal conductivities of all pellet types, UO2, (U, Gd)O2 and (U, Pu)O2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO2 is about 60 deg. C higher than UO2 fuel at 75 GWd/t and 200 W/cm. (author)
Monte Carlo simulation code modernization
CERN. Geneva
2015-01-01
The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...
Energy Technology Data Exchange (ETDEWEB)
Zagar, T.; Ravnik, M.; Persic, A. (J.Stefan Institute, Ljubljana (Slovenia))
1999-12-15
Results of fuel element burn-up determination by measurement and calculation are given. Fuel element burn-up was calculated with two different programs TRIGLAV and TRIGAC using different models. New TRIGLAV code is based on cylindrical, two-dimensional geometry with four group diffusion approximation. TRIGAC program uses one-dimensional cylindrical geometry with twogroup diffusion approximation. Fuel element burn-up was measured with reactivity method. In this paper comparison and analysis of these three methods is presented. Results calculated with TRIGLAV show considerably better alignment with measured values than results calculated with TRIGAC. Some two-dimensional effects in fuel element burn-up can be observed, for instance smaller standard fuel element burn-up in mixed core rings and control rod influence on nearby fuel elements. (orig.)
MODRIB - a zero dimensional code for criticality and burn-up of LWR's
International Nuclear Information System (INIS)
The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)
ELESTRES 2.1 computer code for high burnup CANDU fuel performance analysis
International Nuclear Information System (INIS)
The ELESTRES (ELEment Simulation and sTRESses) computer code models the thermal, mechanical and micro structural behaviours of CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains in fuel element design analysis and assessments. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. ELESTRES 2.1 was developed for high burnup fuel application, based on an industry standard tool version of the code, through the implementation or modification to code models such as fission gas release, fuel pellet densification, flux depression (radial power distribution in the fuel pellet), fuel pellet thermal conductivity, fuel sheath creep, fuel sheath yield strength, fuel sheath oxidation, two dimensional heat transfer between the fuel pellet and the fuel sheath; and an automatic finite element meshing capability to handle various fuel pellet shapes. The ELESTRES 2.1 code design and development was planned, implemented, verified, validated, and documented in accordance with the AECL software quality assurance program, which meets the requirements of the Canadian Standards Association standard for software quality assurance CSA N286.7-99. This paper presents an overview of the ELESTRES 2.1 code with descriptions of the code's theoretical background, solution methodologies, application range, input data, and interface with other analytical tools. Code verification and validation results, which are also discussed in the paper, have confirmed that ELESTRES 2.1 is capable of modelling important fuel phenomena and the code can be used in the design assessment and the verification of high burnup fuels. (author)
International Nuclear Information System (INIS)
In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor keff (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.
Morse Monte Carlo Radiation Transport Code System
Energy Technology Data Exchange (ETDEWEB)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Burnup span sensitivity analysis of different burnup coupling schemes
International Nuclear Information System (INIS)
Highlights: ► The objective of this work is the burnup span sensitivity analysis of different coupling schemes. ► Three kinds of schemes have been implemented in a new MCNP–ORIGEN linkage program. ► Two kinds of schemes are based predictor–corrector technique and the third is based on Euler explicit method. ► The analysis showed that the predictor–corrector approach better accounts for nonlinear behavior of burnup. ► It is sufficiently good to use the Euler method at small spans but for large spans use of second order scheme is mandatory. - Abstract: The analysis of core composition changes is complicated by the fact that the time and spatial variations in isotopic composition depend on the neutron flux distribution and vice versa. Fortunately, changes in core composition occur relatively slowly and hence the burnup analysis can be performed by dividing the burnup period into some burnup spans and assuming that the averaged flux and cross sections are constant during each burn up span. The burnup span sensitivity analysis attempts to find how much the burnup spans could be increased without any significant change in results. This goal has been achieved by developing a new MCNP–ORIGEN linkage program named MOBC (MCNP–ORIGEN Burnup Calculation). Three kinds of coupling scheme have been implemented in MOBC. Two of these are based on second order predictor–corrector technique and enable us to choose larger time steps, whilst the third one is based on Euler explicit first order method and is faster than the other two. The validity of the developed program has been evaluated by the code vs. code comparison technique. Two different types of codes are employed. The first one is based on deterministic two dimensional transport method, like CASMO-4 and HELIOS codes, and the second one is based on Monte Carlo method, like MCODE code. Only one coupling technique is employed in each of these state of the art codes, while the MOBC excels in its ability to
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
Energy Technology Data Exchange (ETDEWEB)
WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System
International Nuclear Information System (INIS)
1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less
Startup of “CANDLE” burnup in a Gas-cooled Fast Reactor using Monte Carlo method
International Nuclear Information System (INIS)
Highlights: ► In equilibrium state of a CANDLE core, the burning region contains fission products and actinides. ► These isotopes are not available. The solution is startup of a reactor using easily available materials. ► At the end of core life the fuel for the equilibrium core is produced. ► In this work the startup of a CANDLE-GFR has been evaluated using Monte Carlo technique. ► The results show that the equilibrium state could be achieved after some minor transients. -- Abstract: During the past decade, the CANDLE burnup strategy has been proposed as an innovative fuel cycle and reactor design for complete utilization of uranium resources. In this strategy the shapes of neutron flux, nuclide densities and power density distribution remain constant but the burning region moves in axial direction. The feasibility of this strategy has been demonstrated widely by using the diffusion technique in conjunction with nuclide transmutation equations. On the other hand since the Monte Carlo method provides the exact solution to the neutron transport, the Monte Carlo technique is becoming more widely used in routine burnup calculations. The main objective of this work is startup of CANDLE burnup in a Gas cooled Fast Reactor using a Monte Carlo burnup scheme. In this case only natural or depleted uranium is required for fresh fuel region. However, the construction of the first CANDLE core is faced with a big problem. In equilibrium state the burning region contains a spectrum of fission products as well as higher actinides. These isotopes are not easily available for constructing the initial CANDLE core. The solution is startup of a special reactor using the enriched uranium in starter zone. At the end of core life the fuel for the next core is produced with the composition close to the equilibrium state. An originally MCNP–ORIGEN linkage program named MOBC has been used for criticality and isotopic evaluation of the core. The results of analysis showed that
Criticality benchmarking of ANET Monte Carlo code
International Nuclear Information System (INIS)
In this work the new Monte Carlo code ANET is tested on criticality calculations. ANET is developed based on the high energy physics code GEANT of CERN and aims at progressively satisfying several requirements regarding both simulations of GEN II/III reactors, as well as of innovative nuclear reactor designs such as the Accelerator Driven Systems (ADSs). Here ANET is applied on three different nuclear configurations, including a subcritical assembly, a Material Testing Reactor and the conceptual configuration of an ADS. In the first case, calculation of the effective multiplication factor (keff) are performed for the Training Nuclear Reactor of the Aristotle University of Thessaloniki, while in the second case keff is computed for the fresh fueled core of the Portuguese research reactor (RPJ) just after its conversion to Low Enriched Uranium, considering the control rods at the position that renders the reactor critical. In both cases ANET computations are compared with corresponding results obtained by three different well established codes, including both deterministic (XSDRNPM/CITATION) and Monte Carlo (TRIPOLI, MCNP). In the RPI case, keff computations are also compared with observations during the reactor core commissioning since the control rods are considered at criticality position. The above verification studies show ANET to produce reasonable results since they are satisfactorily compared with other models as well as with observations. For the third case (ADS), preliminary ANET computations of keff for various intensities of the proton beam are presented, showing also a reasonable code performance concerning both the order of magnitude and the relative variation of the computed parameter. (author)
Nuclear reactions in Monte Carlo codes
Ferrari, Alfredo
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .
Ramamoorthy, Karthikeyan
The main aim of this research is the development and validation of computational schemes for advanced lattice codes. The advanced lattice code which forms the primary part of this research is "DRAGON Version4". The code has unique features like self shielding calculation with capabilities to represent distributed and mutual resonance shielding effects, leakage models with space-dependent isotropic or anisotropic streaming effect, availability of the method of characteristics (MOC), burnup calculation with reaction-detailed energy production etc. Qualified reactor physics codes are essential for the study of all existing and envisaged designs of nuclear reactors. Any new design would require a thorough analysis of all the safety parameters and burnup dependent behaviour. Any reactor physics calculation requires the estimation of neutron fluxes in various regions of the problem domain. The calculation goes through several levels before the desired solution is obtained. Each level of the lattice calculation has its own significance and any compromise at any step will lead to poor final result. The various levels include choice of nuclear data library and energy group boundaries into which the multigroup library is cast; self shielding of nuclear data depending on the heterogeneous geometry and composition; tracking of geometry, keeping error in volume and surface to an acceptable minimum; generation of regionwise and groupwise collision probabilities or MOC-related information and their subsequent normalization thereof, solution of transport equation using the previously generated groupwise information and obtaining the fluxes and reaction rates in various regions of the lattice; depletion of fuel and of other materials based on normalization with constant power or constant flux. Of the above mentioned levels, the present research will mainly focus on two aspects, namely self shielding and depletion. The behaviour of the system is determined by composition of resonant
Shi, Xue-Ming; Peng, Xian-Jue
2016-09-01
Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.
Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.
2013-10-01
In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.
Criticality qualification of a new Monte Carlo code for reactor core analysis
Energy Technology Data Exchange (ETDEWEB)
Catsaros, N. [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece); Gaveau, B. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Jaekel, M. [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Maillard, J. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); CNRS-IDRIS, Bt 506, BP167, 91403 Orsay (France); CNRS-IN2P3, 3 rue Michel Ange, 75794 Paris (France); Maurel, G. [Faculte de Medecine, Universite Paris VI, 27 rue de Chaligny, 75012 Paris (France); MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Savva, P., E-mail: savvapan@ipta.demokritos.g [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece); Silva, J. [MAPS, Universite Paris VI, 4 Place Jussieu, 75005 Paris (France); Varvayanni, M.; Zisis, Th. [Institute of Nuclear Technology - Radiation Protection, NCSR ' DEMOKRITOS' , P.O. Box 60228, 15310 Aghia Paraskevi (Greece)
2009-11-15
In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.
On the use of SERPENT Monte Carlo code to generate few group diffusion constants
Energy Technology Data Exchange (ETDEWEB)
Piovezan, Pamela, E-mail: pamela.piovezan@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Carluccio, Thiago; Domingos, Douglas Borges; Rossi, Pedro Russo; Mura, Luiz Felipe, E-mail: fermium@cietec.org.b, E-mail: thiagoc@ipen.b [Fermium Tecnologia Nuclear, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
The accuracy of diffusion reactor codes strongly depends on the quality of the groups constants processing. For many years, the generation of such constants was based on 1-D infinity cell transport calculations. Some developments using collision probability or the method of characteristics allow, nowadays, 2-D assembly group constants calculations. However, these 1-D and 2-D codes how some limitations as , for example, on complex geometries and in the neighborhood of heavy absorbers. On the other hand, since Monte Carlos (MC) codes provide accurate neutro flux distributions, the possibility of using these solutions to provide group constants to full-core reactor diffusion simulators has been recently investigated, especially for the cases in which the geometry and reactor types are beyond the capability of the conventional deterministic lattice codes. The two greatest difficulties on the use of MC codes to group constant generation are the computational costs and the methodological incompatibility between analog MC particle transport simulation and deterministic transport methods based in several approximations. The SERPENT code is a 3-D continuous energy MC transport code with built-in burnup capability that was specially optimized to generate these group constants. In this work, we present the preliminary results of using the SERPENT MC code to generate 3-D two-group diffusion constants for a PWR like assembly. These constants were used in the CITATION diffusion code to investigate the effects of the MC group constants determination on the neutron multiplication factor diffusion estimate. (author)
Monte carlo depletion analysis of SMART core by MCNAP code
Energy Technology Data Exchange (ETDEWEB)
Jung, Jong Sung; Sim, Hyung Jin; Kim, Chang Hyo [Seoul National Univ., Seoul (Korea, Republic of); Lee, Jung Chan; Ji, Sung Kyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2001-05-01
Depletion an analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/ MASTER nuclear analysis. The difference between MASTER and MCNAP on k{sub eff} prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference bet ween two predict ions on fuel assembly (FA) normalized power distribution is about 6.6% radially , and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations.
Institute of Scientific and Technical Information of China (English)
汪量子; 姚栋; 王侃
2011-01-01
介绍了FMCAHR程序的燃耗计算模型及流程,并使用燃耗基准题和DRAGON程序对燃耗计算结果进行验证.验证结果表明,FMCAHR燃耗计算功能的准确性较高,适用于溶液堆的燃耗计算分析.%Fuel Management Code for Aqueous Homogeneous Reactors(FMCAHR)is developed based on the Monte Carlo transport method,to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment,searching for critical rod heights,thermal hydraulic parameters calculation,radiolytic-gas bubbles' calculation and burn-up calculation. This paper introduces the theory model and scheme of its bum-up function,and then compares its calculation results with benchmarks and with DRAGON'S burn-up results,which confirms its burn-up computing precision and its applicability in the burn-up calculation and analysis for aqueous solution reactors.
Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor
Energy Technology Data Exchange (ETDEWEB)
Čerba, Štefan, E-mail: stefan.cerba@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia); Vrban, Branislav; Lüley, Jakub [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia); Dařílek, Petr [VUJE a.s., Okružná 5, 918 64 Trnava (Slovakia); Zajac, Radoslav, E-mail: radoslav.zajac@vuje.sk [VUJE a.s., Okružná 5, 918 64 Trnava (Slovakia); Nečas, Vladimír; Haščik, Ján [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia)
2014-02-15
Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice.
Criticality benchmarks validation of the Monte Carlo code TRIPOLI-2
Energy Technology Data Exchange (ETDEWEB)
Maubert, L. (Commissariat a l' Energie Atomique, Inst. de Protection et de Surete Nucleaire, Service d' Etudes de Criticite, 92 - Fontenay-aux-Roses (France)); Nouri, A. (Commissariat a l' Energie Atomique, Inst. de Protection et de Surete Nucleaire, Service d' Etudes de Criticite, 92 - Fontenay-aux-Roses (France)); Vergnaud, T. (Commissariat a l' Energie Atomique, Direction des Reacteurs Nucleaires, Service d' Etudes des Reacteurs et de Mathematique Appliquees, 91 - Gif-sur-Yvette (France))
1993-04-01
The three-dimensional energy pointwise Monte-Carlo code TRIPOLI-2 includes metallic spheres of uranium and plutonium, nitrate plutonium solutions, square and triangular pitch assemblies of uranium oxide. Results show good agreements between experiments and calculations, and avoid a part of the code and its ENDF-B4 library validation. (orig./DG)
MOx benchmark calculations by deterministic and Monte Carlo codes
International Nuclear Information System (INIS)
Highlights: ► MOx based depletion calculation. ► Methodology to create continuous energy pseudo cross section for lump of minor fission products. ► Mass inventory comparison between deterministic and Monte Carlo codes. ► Higher deviation was found for several isotopes. - Abstract: A depletion calculation benchmark devoted to MOx fuel is an ongoing objective of the OECD/NEA WPRS following the study of depletion calculation concerning UOx fuels. The objective of the proposed benchmark is to compare existing depletion calculations obtained with various codes and data libraries applied to fuel and back-end cycle configurations. In the present work the deterministic code NEWT/ORIGEN-S of the SCALE6 codes package and the Monte Carlo based code MONTEBURNS2.0 were used to calculate the masses of inventory isotopes. The methodology to apply the MONTEBURNS2.0 to this benchmark is also presented. Then the results from both code were compared.
Energy Technology Data Exchange (ETDEWEB)
Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik
2014-06-15
In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)
2003-07-01
Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)
Parallelization of Monte Carlo codes MVP/GMVP
Energy Technology Data Exchange (ETDEWEB)
Nagaya, Yasunobu; Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sasaki, Makoto
1998-03-01
General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of the parallel processing platforms. The platforms reported are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel Paragon and a distributed-memory scalar-parallel computer Hitachi SR2201. As mentioned generally, ideal speedup could be obtained for large-scale problems but parallelization efficiency got worse as the batch size per a processing element (PE) was smaller. (author)
A Monte Carlo code for ion beam therapy
Anaïs Schaeffer
2012-01-01
Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe. Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...
Development of a New Monte Carlo reactor physics code
Leppänen, Jaakko
2007-01-01
Monte Carlo neutron transport codes are widely used in various reactor physics applications, traditionally related to criticality safety analyses, radiation shielding problems, detector modelling and validation of deterministic transport codes. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to so...
International Nuclear Information System (INIS)
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO2, UO2-Gd2O3, inhomogeneous MOX, and UO2-ThO2. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of 92U233-239, 93Np237-239, 94Pu238-243, 95Am241-244 (including isomers), and 96Cm242-245. Poisoning fission products are represented by 54Xe131,133,135, 48Cd113, 62Sm149,151,152, 64Gd154-160, 63Eu153,155, 36Kr83,85, 42Mo95, 43Tc99, 45Rh103, 47Ag109, 53I127,129,131, 55Cs133, 57La139, 59Pr141, 60Nd143-150, 61Pm147. Fission gases and volatiles included in the code are 36Kr83-86, 54Xe129-136, 52Te125-130, 53I127-131, 55Cs133-137, and 56Ba135-140. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)
MORSE Monte Carlo radiation transport code system
International Nuclear Information System (INIS)
For a number of years the MORSE user community has requested additional help in setting up problems using various options. The sample problems distributed with MORSE did not fully demonstrate the capability of the code. At Oak Ridge National Laboratory the code originators had a complete set of sample problems, but funds for documenting and distributing them were never available. Recently the number of requests for listings of input data and results for running some particular option the user was trying to implement has increased to the point where it is not feasible to handle them on an individual basis. Consequently it was decided to package a set of sample problems which illustrates more adequately how to run MORSE. This write-up may be added to Part III of the MORSE report. These sample problems include a combined neutron-gamma case, a neutron only case, a gamma only case, an adjoint case, a fission case, a time-dependent fission case, the collision density case, an XCHEKR run and a PICTUR run
Taylor series development in the Monte Carlo code Tripoli-4
Mazzolo, Alain; Zoia, Andrea; Martin, Brunella
2014-06-01
Perturbation methods for one or several variables based on the Taylor series development up to the second order is presented for the collision estimator in the framework of the Monte Carlo code Tripoli-4. Comparisons with the correlated sampling method implemented in Tripoli-4 demonstrate the need of including the cross derivatives in the development.
A semianalytic Monte Carlo code for modelling LIDAR measurements
Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio
2007-10-01
LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.
ORPHEE research reactor: 3D core depletion calculation using Monte-Carlo code TRIPOLI-4®
Damian, F.; Brun, E.
2014-06-01
ORPHEE is a research reactor located at CEA Saclay. It aims at producing neutron beams for experiments. This is a pool-type reactor (heavy water), and the core is cooled by light water. Its thermal power is 14 MW. ORPHEE core is 90 cm height and has a cross section of 27x27 cm2. It is loaded with eight fuel assemblies characterized by a various number of fuel plates. The fuel plate is composed of aluminium and High Enriched Uranium (HEU). It is a once through core with a fuel cycle length of approximately 100 Equivalent Full Power Days (EFPD) and with a maximum burnup of 40%. Various analyses under progress at CEA concern the determination of the core neutronic parameters during irradiation. Taking into consideration the geometrical complexity of the core and the quasi absence of thermal feedback for nominal operation, the 3D core depletion calculations are performed using the Monte-Carlo code TRIPOLI-4® [1,2,3]. A preliminary validation of the depletion calculation was performed on a 2D core configuration by comparison with the deterministic transport code APOLLO2 [4]. The analysis showed the reliability of TRIPOLI-4® to calculate a complex core configuration using a large number of depleting regions with a high level of confidence.
A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes
Energy Technology Data Exchange (ETDEWEB)
Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
2001-05-01
In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10{sup 25} m{sup -2}, respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)
TRIPOLI-3: a neutron/photon Monte Carlo transport code
Energy Technology Data Exchange (ETDEWEB)
Nimal, J.C.; Vergnaud, T. [Commissariat a l' Energie Atomique, Gif-sur-Yvette (France). Service d' Etudes de Reacteurs et de Mathematiques Appliquees
2001-07-01
The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)
International Nuclear Information System (INIS)
Highlights: → The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. → These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. → These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O.; Whitworth, A. P.
2016-10-01
We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O
2016-01-01
We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Geometric Templates for Improved Tracking Performance in Monte Carlo Codes
Nease, Brian R.; Millman, David L.; Griesheimer, David P.; Gill, Daniel F.
2014-06-01
One of the most fundamental parts of a Monte Carlo code is its geometry kernel. This kernel not only affects particle tracking (i.e., run-time performance), but also shapes how users will input models and collect results for later analyses. A new framework based on geometric templates is proposed that optimizes performance (in terms of tracking speed and memory usage) and simplifies user input for large scale models. While some aspects of this approach currently exist in different Monte Carlo codes, the optimization aspect has not been investigated or applied. If Monte Carlo codes are to be realistically used for full core analysis and design, this type of optimization will be necessary. This paper describes the new approach and the implementation of two template types in MC21: a repeated ellipse template and a box template. Several different models are tested to highlight the performance gains that can be achieved using these templates. Though the exact gains are naturally problem dependent, results show that runtime and memory usage can be significantly reduced when using templates, even as problems reach realistic model sizes.
Energy Technology Data Exchange (ETDEWEB)
Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-08-01
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)
Institute of Scientific and Technical Information of China (English)
范文玎; 孙光耀; 张彬航; 陈锐; 郝丽娟
2016-01-01
燃耗计算在反应堆设计、分析研究中起着重要作用.相比于传统点燃耗算法,切比雪夫有理逼近方法(Chebyshev rational approximation method,CRAM)具有计算速度快、精度高的优点.基于超级蒙特卡罗核计算仿真软件系统SuperMC(Super Monte Carlo Simulation Program for Nuclear and Radiation Process),采用切比雪夫有理逼近方法和桶排序能量查找方法,进行了蒙特卡罗燃耗计算的初步研究与验证.通过燃料棒燃耗例题以及IAEA-ADS(International Atomic Energy Agency-Accelerator Driven Systems)国际基准题,初步验证了该燃耗计算方法的正确性,且IAEA-ADS基准题测试表明,与统一能量网格方法相比,桶排序能量查找方法在保证了计算效率的同时减少了内存开销.%Background:Burnup calculation is the key point of reactor design and analysis. It's significant to calculate the burnup situation and isotopic atom density accurately while a reactor is being designed.Purpose:Based on the Monte Carlo particle simulation code SuperMC (Super Monte Carlo Simulation Program for Nuclear and Radiation Process), this paper aimed to conduct preliminary study and verification on Monte Carlo burnup calculations. Methods:For the characteristics of accuracy, this paper adopted Chebyshev rational approximation method (CRAM) as the point-burnup algorithm. Moreover, instead of the union energy grids method, this paper adopted an energy searching method based on bucket sort algorithm, which reduced the memory overhead on the condition that the calculation efficiency is ensured.Results:By calculating the fuel rod burnup problem and the IAEA-ADS (International Atomic Energy Agency - Accelerator Driven Systems) international benchmark, the simulation results were basically consistent with Serpent and other counties' results, respectively. In addition, the bucket sort energy searching method reduced about 95% storage space compared with union energy grids method for IAEA
Detailed Burnup Calculations for Testing Nuclear Data
Leszczynski, F.
2005-05-01
A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross
Proton therapy Monte Carlo SRNA-VOX code
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2012-01-01
Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.
A burnup credit calculation methodology for PWR spent fuel transportation
International Nuclear Information System (INIS)
A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)
Adjoint Monte Carlo techniques and codes for organ dose calculations
International Nuclear Information System (INIS)
Adjoint Monte Carlo simulations can be effectively used for the estimation of doses in small targets when the sources are extended in large volumes or surfaces. The main features of two computer codes for calculating doses at free points or in organs of an anthropomorphic phantom are described. In the first program (REBEL-3) natural gamma-emitting sources are contained in the walls of a dwelling room; in the second one (POKER-CAMP) the user can specify arbitrary gamma sources with different spatial distributions in the environment: in (or on the surface of) the ground and in the air. 3 figures
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
A comparison between the Monte Carlo radiation transport codes MCNP and MCBEND
Energy Technology Data Exchange (ETDEWEB)
Sawamura, Hidenori; Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)
2001-01-01
In Japan, almost of all radiation analysts are using the MCNP code and MVP code on there studies. But these codes have not had automatic variance reduction. MCBEND code made by UKAEA have automatic variance reduction. And, MCBEND code is user friendly more than other Monte Carlo Radiation Transport Codes. Our company was first introduced MCBEND code in Japan. Therefore, we compared with MCBEND code and MCNP code about functions and production capacity. (author)
Dependence of control rod worth on fuel burnup
Energy Technology Data Exchange (ETDEWEB)
Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)
2011-02-15
Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.
Directory of Open Access Journals (Sweden)
Gholamzadeh Zohreh
2014-12-01
Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view
Burnup dependent core neutronic analysis for PBMR
International Nuclear Information System (INIS)
The strategy for core neutronics modeling is based on SCALE4.4 code KENOV.a module that uses Monte Carlo calculational methods. The calculations are based on detailed unit cell and detailed core modeling. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and the fuel kernels in the pebble. The core is then modeled by placing these pebbles randomly throughout the core, yet not loosing track of any one of them. For the burnup model, a cyclic manner is adopted by coupling the KENOV.a and ORIGEN-S modules. Shifting down one slice at each discrete time step, and inserting fresh fuel from the top, this cyclic calculation model continues until equilibrium burnup cycle is achieved. (author)
Gholamzadeh Zohreh; Hossein Feghhi Seyed Amir; Soltani Leila; Rezazadeh Marzieh; Tenreiro Claudio; Joharifard Mahdi
2014-01-01
Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. N...
Incorporation of the variation in conductivity with burnup in the stability of code predictive LAPUR
International Nuclear Information System (INIS)
In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.
ThO{sub 2}-UO{sub 2} annular pins for high burnup fuels
Energy Technology Data Exchange (ETDEWEB)
Caner, Marc; Dugan, Edward T
2000-06-01
The main purpose of this work is to investigate the use of annular fuel pins (particularly pins containing thorium dioxide) for high burnup fuel. The following parameters were evaluated and compared between postulated mixed thorium-uranium dioxide standard and annular (9% void fraction) type fuel assemblies, as a function of burnup: the infinite multiplication factor, the uranium and plutonium isotopic compositions, the fuel temperature coefficient of reactivity and the conversion ratio. We used the SCALE-4.3 code system. The calculation method consisted in obtaining actinide and fission product number densities as functions of assembly burnup, by means of a 1-D transport calculation combined with a 0-D burnup calculation. These number densities were then used in a 3-D Monte Carlo code for obtaining k{sub {infinity}} from two-dimensional-symmetry 'snapshots'.
Verification of Monte Carlo transport codes FLUKA, Mars and Shield
International Nuclear Information System (INIS)
The present study is a continuation of the project 'Verification of Monte Carlo Transport Codes' which is running at GSI as a part of activation studies of FAIR relevant materials. It includes two parts: verification of stopping modules of FLUKA, MARS and SHIELD-A (with ATIMA stopping module) and verification of their isotope production modules. The first part is based on the measurements of energy deposition function of uranium ions in copper and stainless steel. The irradiation was done at 500 MeV/u and 950 MeV/u, the experiment was held at GSI from September 2004 until May 2005. The second part is based on gamma-activation studies of an aluminium target irradiated with an argon beam of 500 MeV/u in August 2009. Experimental depth profiling of the residual activity of the target is compared with the simulations. (authors)
Analysis of the burnup of the control rods with the COREMASTER-Presto code
International Nuclear Information System (INIS)
An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods ∼ 1 pcm in hot condition and of ∼ 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)
Monte Carlo Code System Development for Liquid Metal Reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Chang Hyo; Shim, Hyung Jin; Han, Beom Seok; Park, Ho Jin; Park, Dong Gyu [Seoul National University, Seoul (Korea, Republic of)
2007-03-15
We have implemented the composition cell class and the use cell to MCCARD for hierarchy input processing. For the inputs of KALlMER-600 core consisted of 336 assemblies, we require the geometric data of 91,056 pin cells. Using hierarchy input processing, it was observed that the system geometries are correctly handled with the geometric data of total 611 cells; 2 cells for fuel rods, 2 cells for guide holes, 271 translation cells for rods, and 336 translation cells for assemblies. We have developed monte carlo decay-chain models based on decay chain model of REBUS code for liquid metal reactor analysis. Using developed decay-chain models, the depletion analysis calculations have performed for the homogeneous and heterogeneous model of KALlMER-600. The k-effective for the depletion analysis agrees well with that of REBUS code. and the developed decay chain models shows more efficient performance for time and memories, as compared with the existing decay chain model The chi-square criterion has been developed to diagnose the temperature convergence for the MC TjH feedback calculations. From the application results to the KALlMER pin and fuel assembly problem, it is observed that the new criterion works well Wc have applied the high efficiency variance reduction technique by splitting Russian roulette to estimate the PPPF of the KALIMER core at BOC. The PPPF of KALlMER core at BOC is 1.235({+-}0.008). The developed technique shows four time faster calculation, as compared with the existin2 calculation Subject Keywords Monte Carlo
International Nuclear Information System (INIS)
Results of the RTOP-CA code calculations for experiments in the research MIR reactor are presented. The MIR-reactor tests were made to study the activity release from defective WWER fuel at high burnup (∼60 MWd/kgU). The RTOP-CA calculations are compared to experimental data on radial distributions of burnup as well as radial profiles of Pu and Xe concentrations in fuel pellets. The RTOP-CA predictions are also compared to the data on activity release (radionuclides of I, Cs, Xe and Kr) from the test fuel rod with an artificial defect in cladding. Additional calculations were performed for WWER-1000 fuel of an advanced design. In these calculation series the effect of design innovations on activity release from defective fuel rods was estimated. It is demonstrated that in case of a failure the new generation of WWER fuel shows lower levels of activity release into primary coolant. (authors)
A Monte Carlo track structure code for low energy protons
Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K
2002-01-01
A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...
The Monte Carlo code MCSHAPE: Main features and recent developments
Energy Technology Data Exchange (ETDEWEB)
Scot, Viviana, E-mail: viviana.scot@unibo.it; Fernandez, Jorge E.
2015-06-01
MCSHAPE is a general purpose Monte Carlo code developed at the University of Bologna to simulate the diffusion of X- and gamma-ray photons with the special feature of describing the full evolution of the photon polarization state along the interactions with the target. The prevailing photon–matter interactions in the energy range 1–1000 keV, Compton and Rayleigh scattering and photoelectric effect, are considered. All the parameters that characterize the photon transport can be suitably defined: (i) the source intensity, (ii) its full polarization state as a function of energy, (iii) the number of collisions, and (iv) the energy interval and resolution of the simulation. It is possible to visualize the results for selected groups of interactions. MCSHAPE simulates the propagation in heterogeneous media of polarized photons (from synchrotron sources) or of partially polarized sources (from X-ray tubes). In this paper, the main features of MCSHAPE are illustrated with some examples and a comparison with experimental data. - Highlights: • MCSHAPE is an MC code for the simulation of the diffusion of photons in the matter. • It includes the proper description of the evolution of the photon polarization state. • The polarization state is described by means of the Stokes vector, I, Q, U, V. • MCSHAPE includes the computation of the detector influence in the measured spectrum. • MCSHAPE features are illustrated with examples and comparison with experiments.
Fuel burnup analysis for the Moroccan TRIGA research reactor
International Nuclear Information System (INIS)
Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
H A Nedaie; Mosleh-Shirazi, M. A.; Allahverdi, M.
2013-01-01
Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous...
Energy Technology Data Exchange (ETDEWEB)
Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)
2016-06-15
Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.
Fensin, Michael Lorne
Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established
Proton therapy Monte Carlo SRNA-VOX code
Ilić Radovan D.
2012-01-01
The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube). Some of the possible applications of the SRNA program are:...
On the inner workings of Monte Carlo codes
Dubbeldam, D.; Torres Knoop, A.; Walton, K.S.
2013-01-01
We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal-organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC, configurational-bias Monte Carlo and continuous fractional MC. The latter technique overcomes the problem of low insertion probabilities in open systems. Other modern methods are (hyper-)parallel...
Burnup analysis of the VVER-1000 reactor using thorium-based fuel
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science
2014-12-15
This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.
Burnup analysis of the VVER-1000 reactor using thorium-based fuel
International Nuclear Information System (INIS)
This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.
Application of Monte Carlo code EGS4 to calculate gamma exposure buildup factors
International Nuclear Information System (INIS)
Exposure buildup factors up to 40 mean free paths ranging from 0.015 MeV to 15 MeV photon energy were calculated by using the Monte Carlo simulation code EGS4 for ordinary concrete. The calculation involves PHOTX cross section library, a point isotropic source, infinite uniform medium model and a particle splitting method and considers the Bremsstrahlung, fluorescent effect, correlative (Rayleigh) scatter. The results were compared with the relevant data. Results show that the data of the buildup factors calculated by the Monte Carlo code EGS4 was reliable. The Monte Carlo method can be used widely to calculate gamma-ray exposure buildup factors. (authors)
The analog linear interpolation approach for Monte Carlo simulation of PGNAA: The CEARPGA code
Zhang, Wenchao; Gardner, Robin P.
2004-01-01
The analog linear interpolation approach (ALI) has been developed and implemented to eliminate the big weight problem in the Monte Carlo simulation code CEARPGA. The CEARPGA code was previously developed to generate elemental library spectra for using the Monte Carlo - library least-squares (MCLLS) approach in prompt gamma-ray neutron activation analysis (PGNAA). In addition, some other improvements to this code have been introduced, including (1) adopting the latest photon cross-section data, (2) using an improved detector response function, (3) adding the neutron activation backgrounds, (4) generating the individual natural background libraries, (5) adding the tracking of annihilation photons from pair production interactions outside of the detector and (6) adopting a general geometry package. The simulated result from the new CEARPGA code is compared with those calculated from the previous CEARPGA code and the MCNP code and experimental data. The new CEARPGA code is found to give the best result.
On the inner workings of Monte Carlo codes
D. Dubbeldam; A. Torres Knoop; K.S. Walton
2013-01-01
We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal-organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC
Energy Technology Data Exchange (ETDEWEB)
Nimal, J.C.; Vergnaud, T. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))
1990-01-01
This paper describes the most important features of the Monte Carlo code TRIPOLI-2. This code solves the Boltzmann equation in three-dimensional geometries for coupled neutron and gamma rays problems. A particular emphasis is devoted to the biasing techniques, which are very important for deep penetration. Future developments in TRIPOLI are described in the conclusion. (author).
MCNP, a general Monte Carlo code for neutron and photon transport: a summary
International Nuclear Information System (INIS)
The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces
Verification and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A
2004-12-09
Verification and Validation (V&V) is a critical phase in the development cycle of any scientific code. The aim of the V&V process is to determine whether or not the code fulfills and complies with the requirements that were defined prior to the start of the development process. While code V&V can take many forms, this paper concentrates on validation of the results obtained from a modern code against those produced by a validated, legacy code. In particular, the neutron transport capabilities of the modern Monte Carlo code MERCURY are validated against those in the legacy Monte Carlo code TART. The results from each code are compared for a series of basic transport and criticality calculations which are designed to check a variety of code modules. These include the definition of the problem geometry, particle tracking, collisional kinematics, sampling of secondary particle distributions, and nuclear data. The metrics that form the basis for comparison of the codes include both integral quantities and particle spectra. The use of integral results, such as eigenvalues obtained from criticality calculations, is shown to be necessary, but not sufficient, for a comprehensive validation of the code. This process has uncovered problems in both the transport code and the nuclear data processing codes which have since been rectified.
Progress and status of the OpenMC Monte Carlo code
Energy Technology Data Exchange (ETDEWEB)
Romano, P. K.; Herman, B. R.; Horelik, N. E.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Siegel, A. R. [Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division (United States)
2013-07-01
The present work describes the latest advances and progress in the development of the OpenMC Monte Carlo code, an open-source code originating from the Massachusetts Institute of Technology. First, an overview of the development workflow of OpenMC is given. Various enhancements to the code such as real-time XML input validation, state points, plotting, OpenMP threading, and coarse mesh finite difference acceleration are described. (authors)
DEFF Research Database (Denmark)
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael;
2015-01-01
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data...
International Nuclear Information System (INIS)
Tokyo Metropolitan University of Health Sciences has done The Information Education using EGS4 Monte Carlo code since the 1998 fiscal year. Two items under practical training item were done. 1. The interaction between photon of 0.1 ∼ 10 MeV (Mega Electron Volt: MeV) and Aluminum (Al), Iron (Fe) and Lead (Pb). 2. The simulation of gamma ray energy measurement of the radiation detector. As the result, the student was possible the understanding of the radiation physics for the easiness at Practical training of EGS4 Monte Carlo code. (author)
The Monte Carlo code MCBEND - where it is and where it's going
International Nuclear Information System (INIS)
The Monte Carlo method forms a corner stone to the calculational procedures established in the UK for shielding design and assessment. The emphasis of the work in the shielding area is centred on the Monte Carlo code MCBEND. The work programme in support of the code is broadly directed towards utilisation of new hardware, the development of improved modelling algorithms, the development of new acceleration methods for specific applications and enhancements to user image. This paper summarises the current status of MCBEND and reviews developments carried out over the past two years and planned for the future. (author)
Parallelization of MCATNP MONTE CARLO particle transport code by using MPI
International Nuclear Information System (INIS)
A Monte Carlo code for simulating Atmospheric Transport of Neutrons and Photons (MCATNP) is used to simulate the ionization effects caused by high altitude nuclear detonation (HAND) and it was parallelized in MPI by adopting the leap random number producer and modifying the original serial code. The parallel results and serial results are identical. The speedup increases almost linearly with the number of processors used. The parallel efficiency is up to to 97% while 16 processors are used, and 94% while 32 are used. The experimental results show that parallelization can obviously reduce the calculation time of Monte Carlo simulation of HAND ionization effects. (authors)
Generalized Albedo option on the Morse Monte Carlo code
International Nuclear Information System (INIS)
The advisability of using the albedo procedure for solving deep penetration shielding problems which have ducts and other penetrations is investigated. It is generally accepted that the use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations - however the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study has been done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo modified calculations. The major modifications include the tracking of special particles inside albedo media, an option to displace the point-of-emergence during an albedo event, and an option to read, process, and use spatially-dependent albedo data for both forward and adjoint calculations. (author)
Importance function by collision probabilities for Monte Carlo code Tripoli
International Nuclear Information System (INIS)
We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We have run simulations with this new biasing method for one-group transport problems with isotropic shocks (one dimension geometry and X-Y geometry) and for multigroup problems with anisotropic shocks (one dimension geometry). For the anisotropic problems we solve the adjoint equation with anisotropic collision probabilities. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without Splitting and Russian Roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add Splitting and Russian Roulette technique
Longitudinal development of extensive air showers: hybrid code SENECA and full Monte Carlo
Ortiz, J A; De Souza, V; Ortiz, Jeferson A.; Tanco, Gustavo Medina
2004-01-01
New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air hower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower devel...
MKENO-DAR: a direct angular representation Monte Carlo code for criticality safety analysis
International Nuclear Information System (INIS)
Improving the Monte Carlo code MULTI-KENO, the MKENO-DAR (Direct Angular Representation) code has been developed for criticality safety analysis in detail. A function was added to MULTI-KENO for representing anisotropic scattering strictly. With this function, the scattering angle of neutron is determined not by the average scattering angle μ-bar of the Pl Legendre polynomial but by the random work operation using probability distribution function produced with the higher order Legendre polynomials. This code is avilable for the FACOM-M380 computer. This report is a computer code manual for MKENO-DAR. (author)
Burnup study of 18 months and 16/20 months cycle AP1000 cores using CASMO4E and SIMULATE-3 codes
International Nuclear Information System (INIS)
AP1000 reactor is an advanced pressurized water reactor equipped with passive safety systems. AP1000 reactor core is designed for 18 month cycle length and can also be used for 16/20 month alternate cycle lengths to meet energy requirements during high demand periods. The purpose of this study is to analyze the feasibility of AP1000 core for both 18 and 16/20 alternate cycle lengths by using CASMO4E and SIMULATE-3 code package. For this purpose, burnup analysis of both the schemes is carried out from initial core loading through optimized transition cores to equilibrium core. The study is performed by modeling three dimensional full core in SIMULATE-3 with each fuel assembly divided into 40 axial and 4 radial quadrant nodes. Once and twice burned fuel reloading from one cycle to the next and removal of burnable poison rods from the core after first cycle options are used in these codes. The results of this study indicate that both the cycle schemes can be utilized by varying the core loading pattern. Moreover, reactivity coefficients, total power peaking factors and enthalpy rise factors are calculated which indicate that the AP1000 core provide adequate safety margins in both the cycle schemes. (author)
Parallel processing of Monte Carlo code MCNP for particle transport problem
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Kawasaki, Takuji
1996-06-01
It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)
New burnup calculation of TRIGA IPR-R1 reactor
Energy Technology Data Exchange (ETDEWEB)
Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z., E-mail: sinclercdtn@hotmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2015-07-01
The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)
Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.
Smith, M F
1993-10-01
A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288
The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety
International Nuclear Information System (INIS)
It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool keff is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to ∼0.4 for standard and ∼0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, keff values are smaller for ∼0.2 (∼0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is ∼0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the keff of spent-fuel pool and can be neglected in spent-fuel pool design
Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)
International Nuclear Information System (INIS)
The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided
Longitudinal development of extensive air showers: Hybrid code SENECA and full Monte Carlo
Ortiz, Jeferson A.; Medina-Tanco, Gustavo; de Souza, Vitor
2005-06-01
New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air shower modelling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tri-dimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower development: the first step predicts the large fluctuations in the very first particle interactions at high energies while the second step provides a well detailed lateral distribution simulation of the final stages of the air shower. Both Monte Carlo simulation steps are connected by a cascade equation system which reproduces correctly the hadronic and electromagnetic longitudinal profile. We study the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers and compare the predictions of the well known CORSIKA code using the QGSJET hadronic interaction model.
QCDMPI - pure QCD Monte Carlo simulation code with MPI
International Nuclear Information System (INIS)
QCDMPI is a pure QCD simulation code with MPI calls. QCDMPI is very portable because; - you can simulate any-dimensional QCD, - on any-dimensional partitioning, - on any number of processors, - with rather small working area. Also by this program, you can get two performances, - calculation (link update time) - communication (MB/sec). In this paper, outline of QCDMPI is reported. Comparison of the performances on several parallel machines; AP1000, AP1000+, AP3000, Cenju-3, Paragon, SR2201 and Workstation Cluster, is also reported. (orig.)
International Nuclear Information System (INIS)
The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)
Shape based Monte Carlo code for light transport in complex heterogeneous tissues
Margallo-Balbás, E.; French, P.J.
2007-01-01
A Monte Carlo code for the calculation of light transport in heterogeneous scattering media is presented together with its validation. Triangle meshes are used to define the interfaces between different materials, in contrast with techniques based on individual volume elements. This approach allows
Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes
Lestone, J P
2014-01-01
Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and measured neutron-neutron correlation data for both the spontaneous fission of 252Cf and the thermal neutron induced fission of 235U. The codes presented here can be used to study the possible uses of neutron-neutron correlations in the area of transparency measurements and the uses of neutron-neutron correlations in coincidence neutron imaging.
Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi
2014-06-01
This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.
International Nuclear Information System (INIS)
Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, N.; Cabellos, O. [Madrid Polytechnic Univ., Dept. of Nuclear Engineering (Spain); Cabellos, O.; Sanz, J. [Madrid Polytechnic Univ., 2 Instituto de Fusion Nuclear (Spain); Sanz, J. [Univ. Nacional Educacion a Distancia, Dept. of Power Engineering, Madrid (Spain)
2005-07-01
We present a new code system which combines the Monte Carlo neutron transport code MCNP-4C and the inventory code ACAB as a suitable tool for high burnup calculations. Our main goal is to show that the system, by means of ACAB capabilities, enables us to assess the impact of neutron cross section uncertainties on the inventory and other inventory-related responses in high burnup applications. The potential impact of nuclear data uncertainties on some response parameters may be large, but only very few codes exist which can treat this effect. In fact, some of the most reported effective code systems in dealing with high burnup problems, such as CASMO-4, MCODE and MONTEBURNS, lack this capability. As first step, the potential of our system, ruling out the uncertainty capability, has been compared with that of those code systems, using a well referenced high burnup pin-cell benchmark exercise. It is proved that the inclusion of ACAB in the system allows to obtain results at least as reliable as those obtained using other inventory codes, such as ORIGEN2. Later on, the uncertainty analysis methodology implemented in ACAB, including both the sensitivity-uncertainty method and the uncertainty analysis by the Monte Carlo technique, is applied to this benchmark problem. We estimate the errors due to activation cross section uncertainties in the prediction of the isotopic content up to the high-burnup spent fuel regime. The most relevant uncertainties are remarked, and some of the most contributing cross sections to those uncertainties are identified. For instance, the most critical reaction for Am{sup 242m} is Am{sup 241}(n,{gamma}-m). At 100 MWd/kg, the cross-section uncertainty of this reaction induces an error of 6.63% on the Am{sup 242m} concentration.The uncertainties in the inventory of fission products reach up to 30%.
Update on the development and validation of MERCURY: a modern, Monte Carlo particle transport code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R.; Taylor, J.; McKinley, S.; Greenman, G. [Dermott Cullen, Matthew O' Brien, Bret Beck and Christian Hagmann, Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-dimensional combinatorial geometry (CG), 1-dimensional radial meshes, 2-dimensional quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model for free gas and bound, S({alpha}, {beta}) molecular scattering, as well as support for continuous energy cross sections. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base. (authors)
Update on the Development and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Taylor, J M; McKinley, M S; Greenman, G M; Cullen, D E; O' Brien, M J; Beck, B R; Hagmann, C A
2005-06-06
An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-D combinatorial geometry (CG), 1-D radial meshes, 2-D quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model, support for continuous energy cross sections and S ({alpha}, {beta}) molecular bound scattering. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base.
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
MCNP is a very general Monte Carlo neutron photon transport code system with approximately 250 person years of Group X-6 code development invested. It is extremely portable, user-oriented, and a true production code as it is used about 60 Cray hours per month by about 150 Los Alamos users. It has as its data base the best cross-section evaluations available. MCNP contains state-of-the-art traditional and adaptive Monte Carlo techniques to be applied to the solution of an ever-increasing number of problems. Excellent user-oriented documentation is available for all facets of the MCNP code system. Many useful and important variants of MCNP exist for special applications. The Radiation Shielding Information Center (RSIC) in Oak Ridge, Tennessee is the contact point for worldwide MCNP code and documentation distribution. A much improved MCNP Version 3A will be available in the fall of 1985, along with new and improved documentation. Future directions in MCNP development will change the meaning of MCNP to Monte Carlo N Particle where N particle varieties will be transported
Comparative Criticality Analysis of Two Monte Carlo Codes on Centrifugal Atomizer: MCNPS and SCALE
Energy Technology Data Exchange (ETDEWEB)
Kang, H-S; Jang, M-S; Kim, S-R [NESS, Daejeon (Korea, Republic of); Park, J-M; Kim, K-N [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
There are two well-known Monte Carlo codes for criticality analysis, MCNP5 and SCALE. MCNP5 is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical system as a main analysis code. SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. SCALE was conceived and funded by US NRC to perform standardized computer analysis for licensing evaluation and is used widely in the world. We performed a validation test of MCNP5 and a comparative analysis of Monte Carlo codes, MCNP5 and SCALE, in terms of the critical analysis of centrifugal atomizer. In the criticality analysis using MCNP5 code, we obtained the statistically reliable results by using a large number of source histories per cycle and performing of uncertainty analysis.
ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code
Directory of Open Access Journals (Sweden)
Jaafar EL Bakkali
2016-07-01
Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.
A new Monte Carlo code for absorption simulation of laser-skin tissue interaction
Institute of Scientific and Technical Information of China (English)
Afshan Shirkavand; Saeed Sarkar; Marjaneh Hejazi; Leila Ataie-Fashtami; Mohammad Reza Alinaghizadeh
2007-01-01
In laser clinical applications, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue during laser irradiation are crucial. Such information allows the selection of proper operating parameters such as laser power, and exposure time for optimal therapeutic. The Monte Carlo method is a useful tool for studying laser-tissue interaction and simulation of energy absorption in tissue during laser irradiation. We use the principles of this technique and write a new code with MATLAB 6.5, and then validate it against Monte Carlo multi layer (MCML) code. The new code is proved to be with good accuracy. It can be used to calculate the total power bsorbed in the region of interest. This can be combined for heat modelling with other computerized programs.
Dose conversion coefficients for ICRP110 voxel phantom in the Geant4 Monte Carlo code
Martins, M. C.; Cordeiro, T. P. V.; Silva, A. X.; Souza-Santos, D.; Queiroz-Filho, P. P.; Hunt, J. G.
2014-02-01
The reference adult male voxel phantom recommended by International Commission on Radiological Protection no. 110 was implemented in the Geant4 Monte Carlo code. Geant4 was used to calculate Dose Conversion Coefficients (DCCs) expressed as dose deposited in organs per air kerma for photons, electrons and neutrons in the Annals of the ICRP. In this work the AP and PA irradiation geometries of the ICRP male phantom were simulated for the purpose of benchmarking the Geant4 code. Monoenergetic photons were simulated between 15 keV and 10 MeV and the results were compared with ICRP 110, the VMC Monte Carlo code and the literature data available, presenting a good agreement.
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
International Nuclear Information System (INIS)
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Iandola, F N; O' Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes
Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R
2001-01-01
This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
International Nuclear Information System (INIS)
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice. (author)
Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2002-01-01
Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.
Calculation of effective delayed neutron fraction with modified library of Monte Carlo code
International Nuclear Information System (INIS)
Highlights: ► We propose a new Monte Carlo method to calculate the effective delayed neutron fraction by changing the library. ► We study the stability of our method. When the particles and cycles are sufficiently great, the stability is very good. ► The final result is determined to make the deviation least. ► We verify our method on several benchmarks, and the results are very good. - Abstract: A new Monte Carlo method is proposed to calculate the effective delayed neutron fraction βeff. Based on perturbation theory, βeff is calculated with modified library of Monte Carlo code. To verify the proposed method, calculations are performed on several benchmarks. The error of the method is analyzed and the way to reduce error is proposed. The results are in good agreement with the reference data
Validation of the Monteburns code for criticality calculation of TRIGA reactors
Energy Technology Data Exchange (ETDEWEB)
Dalle, Hugo Moura [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Jeraj, Robert [Jozef Stafan Institute, Ljubljana (Slovenia)
2002-07-01
Use of Monte Carlo methods in burnup calculations of nuclear fuel has become practical due to increased speed of computers. Monteburns is an automated computational tool that links the Monte Carlo code MCNP with the burnup and decay code ORIGEN2.1. This code system was used to simulate a criticality benchmark experiment with burned fuel on a TRIGA Mark II research reactor. Two core configurations were simulated and k{sub eff} values calculated. The comparison between the calculated and experimental values shows good agreement, which indicates that the MCNP/Monteburns/ORIGEN2.1 system gives reliable results for neutronic simulations of TRIGA reactors. (author)
DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries
Kargaran, H.; Minuchehr, A.; Zolfaghari, A.
2016-07-01
In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.
Evaluation of CASMO-3 and HELIOS for Fuel Assembly Analysis from Monte Carlo Code
Energy Technology Data Exchange (ETDEWEB)
Shim, Hyung Jin; Song, Jae Seung; Lee, Chung Chan
2007-05-15
This report presents a study comparing deterministic lattice physics calculations with Monte Carlo calculations for LWR fuel pin and assembly problems. The study has focused on comparing results from the lattice physics code CASMO-3 and HELIOS against those from the continuous-energy Monte Carlo code McCARD. The comparisons include k{sub inf}, isotopic number densities, and pin power distributions. The CASMO-3 and HELIOS calculations for the k{sub inf}'s of the LWR fuel pin problems show good agreement with McCARD within 956pcm and 658pcm, respectively. For the assembly problems with Gadolinia burnable poison rods, the largest difference between the k{sub inf}'s is 1463pcm with CASMO-3 and 1141pcm with HELIOS. RMS errors for the pin power distributions of CASMO-3 and HELIOS are within 1.3% and 1.5%, respectively.
TRIPOLI-4{sup ®} Monte Carlo code ITER A-lite neutronic model validation
Energy Technology Data Exchange (ETDEWEB)
Jaboulay, Jean-Charles, E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Cayla, Pierre-Yves; Fausser, Clement [MILLENNIUM, 16 Av du Québec Silic 628, F-91945 Villebon sur Yvette (France); Damian, Frederic; Lee, Yi-Kang; Puma, Antonella Li; Trama, Jean-Christophe [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France)
2014-10-15
3D Monte Carlo transport codes are extensively used in neutronic analysis, especially in radiation protection and shielding analyses for fission and fusion reactors. TRIPOLI-4{sup ®} is a Monte Carlo code developed by CEA. The aim of this paper is to show its capability to model a large-scale fusion reactor with complex neutron source and geometry. A benchmark between MCNP5 and TRIPOLI-4{sup ®}, on the ITER A-lite model was carried out; neutron flux, nuclear heating in the blankets and tritium production rate in the European TBMs were evaluated and compared. The methodology to build the TRIPOLI-4{sup ®} A-lite model is based on MCAM and the MCNP A-lite model. Simplified TBMs, from KIT, were integrated in the equatorial-port. A good agreement between MCNP and TRIPOLI-4{sup ®} is shown; discrepancies are mainly included in the statistical error.
Françoise Benz
2006-01-01
2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...
International Nuclear Information System (INIS)
A model of a gamma sterilizer was built using the ITS/ACCEPT Monte Carlo code and verified through dosimetry. Individual dosimetry measurements in homogeneous material were pooled to represent larger bodies that could be simulated in a reasonable time. With the assumptions and simplifications described, dose predictions were within 2-5% of dosimetry. The model was used to simulate product movement through the sterilizer and to predict information useful for process optimization and facility design
Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam
International Nuclear Information System (INIS)
The head of a clinical linear accelerator based on the manufacturer detailed information is simulated by using GEANT4. Percentage Depth Dose (PDD) and flatness symmetry (lateral dose profiles) in water phantom were evaluated. Comparisons between experimental and simulated data were carried out for two field sizes; 5 × 5, and 10 ×10 cm2. The obtained results indicated that GEANT4 code is a promising and validated Monte Carlo program for using in radiotherapy applications
Platt, M. E.; Lewis, E. E.; Boehm, F.
1991-01-01
A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.
Energy Technology Data Exchange (ETDEWEB)
Perfetti, C.; Martin, W. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States); Rearden, B.; Williams, M. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Div., Bldg. 5700, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)
2012-07-01
Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)
Efficient data management techniques implemented in the Karlsruhe Monte Carlo code KAMCCO
International Nuclear Information System (INIS)
The Karlsruhe Monte Carlo Code KAMCCO is a forward neutron transport code with an eigenfunction and a fixed source option, including time-dependence. A continuous energy model is combined with a detailed representation of neutron cross sections, based on linear interpolation, Breit-Wigner resonances and probability tables. All input is processed into densely packed, dynamically addressed parameter fields and networks of pointers (addresses). Estimation routines are decoupled from random walk and analyze a storage region with sample records. This technique leads to fast execution with moderate storage requirements and without any I/O-operations except in the input and output stages. 7 references. (U.S.)
Exact modeling of the torus geometry with Monte Carlo transport code
International Nuclear Information System (INIS)
It is valuable to model torus geometry exactry for the neutronics design of fusion reactor in order to assess neutronics characteristics such as tritium breeding ratio, heat generation rate, etc, near the plasma. Monte Carlo code MORSE-GG which plays important role in the radiation streaming calculation of fusion reactors had been able to deal with the geometry composed of second order surfaces. The MORSE-GG program is modified to be able to deal with torus geometry which has fourth order surface by solving biquadratic equations, hoping that MORSE-GG code becomes more effective for the neutronics calculation of the Tokamak fusion reactor. (author)
Introduction to the Latest Version of the Test-Particle Monte Carlo Code Molflow+
Ady, M
2014-01-01
The Test-Particle Monte Carlo code Molflow+ is getting more and more attention from the scientific community needing detailed 3D calculations of vacuum in the molecular flow regime mainly, but not limited to, the particle accelerator field. Substantial changes, bug fixes, geometry-editing and modelling features, and computational speed improvements have been made to the code in the last couple of years. This paper will outline some of these new features, and show examples of applications to the design and analysis of vacuum systems at CERN and elsewhere.
Estimating Burnup for UMo Plate Type Fuel with Least Square Fitting
Energy Technology Data Exchange (ETDEWEB)
Alawneh, Luay M.; Jaradat, Mustafa K. [Univ. of Science and Technology, Daejeon (Korea, Republic of); Park, Chang Je; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
The feasibility test of this approach has been done by comparing the results with a Monte Carlo code results. UMo fuel is a promising candidate for a high performance research reactor and provides better fuel performance including an extended burnup and swelling resistance. Additionally, its relatively high uranium content provides high power density. However, when irradiating UMo fuel in the core, lots of pores are produced due to an extensive interaction between the UMo and Al matrix. The pore leads to an expansion of fuel meat and may result in a fuel failure after all. This problem has almost been solved by using an optimal Si additive to depress the interaction layer. An international program has been performed to manufacture a robust UMo fuel. However, in terms of neutronics, the absorption cross section of Mo is much higher than that of Si, and thus a slightly high uranium density of UMo fuel is required to provide equivalent characteristics to U{sub 3}Si{sub 2} fuel. Recently, Korea considers U-Mo fuel for the KJRR design, which is under design stage. This work is focused on calculating burnup for plate type UMo fuel through a couple of code systems such as TRITON/NEWT and ORIGEN-ARP. The estimated burnup is compared with that of MCNPX calculation. It is founded that the fitted burnup agrees well with the MCNPX results. This approach will be applicable to easily estimate discharge burnup in research reactor without additional burden. However, some sensitivity tests required for another parameters in order to obtain burnup exactly.
International Nuclear Information System (INIS)
This paper presents an unstructured mesh based multi-physics interface implemented in the Serpent 2 Monte Carlo code, for the purpose of coupling the neutronics solution to component-scale thermal hydraulics calculations, such as computational fluid dynamics (CFD). The work continues the development of a multi-physics coupling scheme, which relies on the separation of state-point information from the geometry input, and the capability to handle temperature and density distributions by a rejection sampling algorithm. The new interface type is demonstrated by a simplified molten-salt reactor test case, using a thermal hydraulics solution provided by the CFD solver in OpenFOAM. (author)
Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code
He, Tongming Tony
In IMRT inverse planning, inaccurate dose calculations and limitations in optimization algorithms introduce both systematic and convergence errors to treatment plans. The goal of this work is to practically implement a Monte Carlo based inverse planning model for clinical IMRT. The intention is to minimize both types of error in inverse planning and obtain treatment plans with better clinical accuracy than non-Monte Carlo based systems. The strategy is to calculate the dose matrices of small beamlets by using a Monte Carlo based method. Optimization of beamlet intensities is followed based on the calculated dose data using an optimization algorithm that is capable of escape from local minima and prevents possible pre-mature convergence. The MCNP 4B Monte Carlo code is improved to perform fast particle transport and dose tallying in lattice cells by adopting a selective transport and tallying algorithm. Efficient dose matrix calculation for small beamlets is made possible by adopting a scheme that allows concurrent calculation of multiple beamlets of single port. A finite-sized point source (FSPS) beam model is introduced for easy and accurate beam modeling. A DVH based objective function and a parallel platform based algorithm are developed for the optimization of intensities. The calculation accuracy of improved MCNP code and FSPS beam model is validated by dose measurements in phantoms. Agreements better than 1.5% or 0.2 cm have been achieved. Applications of the implemented model to clinical cases of brain, head/neck, lung, spine, pancreas and prostate have demonstrated the feasibility and capability of Monte Carlo based inverse planning for clinical IMRT. Dose distributions of selected treatment plans from a commercial non-Monte Carlo based system are evaluated in comparison with Monte Carlo based calculations. Systematic errors of up to 12% in tumor doses and up to 17% in critical structure doses have been observed. The clinical importance of Monte Carlo based
Dorval, Eric
2016-01-01
Neutron transport calculations by Monte Carlo methods are finding increased application in nuclear reactor simulations. In particular, a versatile approach entails the use of a 2-step pro-cedure, with Monte Carlo as a few-group cross section data generator at lattice level, followed by deterministic multi-group diffusion calculations at core level. In this thesis, the Serpent 2 Monte Carlo reactor physics burnup calculation code is used in order to test a set of diffusion coefficient model...
Activity ratio measurement and burnup analysis for high burnup PWR fuels
International Nuclear Information System (INIS)
Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134Cs/137Cs and 154Eu/137Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134Cs/137Cs and 154Eu/137Cs activity ratios for UO2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154Eu/134Cs activity ratio for Gd2O3+UO2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO2+Gd2O3 fuel with 134Cs/137Cs activity ratios. (author)
Spent fuel pool storage calculations using the ISOCRIT burnup credit tool
International Nuclear Information System (INIS)
Highlights: ► Depletion isotopics are needed for burnup credit in spent fuel pool analyses. ► We developed ISOCRIT to generate the isotopics using conservative depletion assumptions. ► ISOCRIT works in an automated fashion passing data between lattice physics and 3D Monte Carlo codes. ► Analyses to assess the impact of different depletion parameters on the reactivity of the spent fuel in pool conditions. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse’s state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.
Analysis of high burnup fuel safety issues
Energy Technology Data Exchange (ETDEWEB)
Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S
2000-12-01
Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.
Calculation of the CB1 burnup credit benchmark reaction rates with MCNP4B
International Nuclear Information System (INIS)
The first calculational VVER-440 burnup credit benchmark CB1 in 1996. VTT Energy participated in the calculation of the CB1 benchmark with three different codes: CASMO-4, KENO-VI and MCNP4B. However, the reaction rates and the fission ν were calculated only with CASMO-4. Now, the neutron absorption and production reaction rates and the fission ν values have been calculated at VTT Energy with the MCNP4B Monte Carlo code using the ENDF60 neutron data library. (author)
Overview of TRIPOLI-4 version 7, Continuous-energy Monte Carlo Transport Code
International Nuclear Information System (INIS)
The TRIPOLI-4 code is used essentially for four major classes of applications: shielding studies, criticality studies, core physics studies, and instrumentation studies. In this updated overview of the Monte Carlo transport code TRIPOLI-4, we list and describe its current main features, including recent developments or extended capacities like effective beta estimation, photo-nuclear reactions or extended mesh tallies. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. TRIPOLI-4 has support for execution in parallel mode. Special features and applications are also presented concerning: 'particles storage', resuming a stopped TRIPOLI-4 run, collision bands, Green's functions, source convergence in criticality mode, and mesh tally
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code
Yamakov, Vesselin I.
2016-01-01
This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.
Analysing the statistics of group constants generated by Serpent 2 Monte Carlo code
International Nuclear Information System (INIS)
An important topic in Monte Carlo neutron transport calculations is to verify that the statistics of the calculated estimates are correct. Undersampling, non-converged fission source distribution and inter-cycle correlations may result in inaccurate results. In this paper, we study the effect of the number of neutron histories on the distributions of homogenized group constants and assembly discontinuity factors generated using Serpent 2 Monte Carlo code. We apply two normality tests and a so-called “drift-in-mean” test to the batch-wise distributions of selected parameters generated for two assembly types taken from the MIT BEAVRS benchmark. The results imply that in the tested cases the batch-wise estimates of the studied group constants can be regarded as normally distributed. We also show that undersampling is an issue with the calculated assembly discontinuity factors when the number of neutron histories is small. (author)
Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes
Energy Technology Data Exchange (ETDEWEB)
André, T. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Morini, F. [Research Group of Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Karamitros, M. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Delorme, R. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 38026 Grenoble (France); CEA, LIST, F-91191 Gif-sur-Yvette (France); Le Loirec, C. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Campos, L. [Departamento de Física, Universidade Federal de Sergipe, São Cristóvão (Brazil); Champion, C. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Groetz, J.-E.; Fromm, M. [Université de Franche-Comté, Laboratoire Chrono-Environnement, UMR CNRS 6249, Besançon (France); Bordage, M.-C. [Laboratoire Plasmas et Conversion d’Énergie, UMR 5213 CNRS-INPT-UPS, Université Paul Sabatier, Toulouse (France); Perrot, Y. [Laboratoire de Physique Corpusculaire, UMR 6533, Aubière (France); Barberet, Ph. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); and others
2014-01-15
Monte Carlo simulations of S-values have been carried out with the Geant4-DNA extension of the Geant4 toolkit. The S-values have been simulated for monoenergetic electrons with energies ranging from 0.1 keV up to 20 keV, in liquid water spheres (for four radii, chosen between 10 nm and 1 μm), and for electrons emitted by five isotopes of iodine (131, 132, 133, 134 and 135), in liquid water spheres of varying radius (from 15 μm up to 250 μm). The results have been compared to those obtained from other Monte Carlo codes and from other published data. The use of the Kolmogorov–Smirnov test has allowed confirming the statistical compatibility of all simulation results.
Neutron cross-section probability tables in TRIPOLI-3 Monte Carlo transport code
Energy Technology Data Exchange (ETDEWEB)
Zheng, S.H.; Vergnaud, T.; Nimal, J.C. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France). Lab. d`Etudes de Protection et de Probabilite
1998-03-01
Neutron transport calculations need an accurate treatment of cross sections. Two methods (multi-group and pointwise) are usually used. A third one, the probability table (PT) method, has been developed to produce a set of cross-section libraries, well adapted to describe the neutron interaction in the unresolved resonance energy range. Its advantage is to present properly the neutron cross-section fluctuation within a given energy group, allowing correct calculation of the self-shielding effect. Also, this PT cross-section representation is suitable for simulation of neutron propagation by the Monte Carlo method. The implementation of PTs in the TRIPOLI-3 three-dimensional general Monte Carlo transport code, developed at Commissariat a l`Energie Atomique, and several validation calculations are presented. The PT method is proved to be valid not only in the unresolved resonance range but also in all the other energy ranges.
An object-oriented implementation of a parallel Monte Carlo code for radiation transport
Santos, Pedro Duarte; Lani, Andrea
2016-05-01
This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2016-03-01
This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Ilic, R D; Stankovic, S J
2002-01-01
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...
International Nuclear Information System (INIS)
Application of Monte Carlo method to build spectra library is useful to reduce experiment workload in Prompt Gamma Neutron Activation Analysis (PGNAA). The new Monte Carlo Code MOCA was used to simulate the response spectra of BGO detector for gamma rays from 137Cs, 60Co and neutron induced gamma rays from S and Ti. The results were compared with general code MCNP, show that the agreement of MOCA between simulation and experiment is better than MCNP. This research indicates that building spectra library by Monte Carlo method is feasible. (authors)
Calculation of Gamma-ray Responses for HPGe Detectors with TRIPOLI-4 Monte Carlo Code
Lee, Yi-Kang; Garg, Ruchi
2014-06-01
The gamma-ray response calculation of HPGe (High Purity Germanium) detector is one of the most important topics of the Monte Carlo transport codes for nuclear instrumentation applications. In this study the new options of TRIPOLI-4 Monte Carlo transport code for gamma-ray spectrometry were investigated. Recent improvements include the gamma-rays modeling of the electron-position annihilation, the low energy electron transport modeling, and the low energy characteristic X-ray production. The impact of these improvements on the detector efficiency of the gamma-ray spectrometry calculations was verified. Four models of HPGe detectors and sample sources were studied. The germanium crystal, the dead layer of the crystal, the central hole, the beryllium window, and the metal housing are the essential parts in detector modeling. A point source, a disc source, and a cylindrical extended source containing a liquid radioactive solution were used to study the TRIPOLI-4 calculations for the gamma-ray energy deposition and the gamma-ray self-shielding. The calculations of full-energy-peak and total detector efficiencies for different sample-detector geometries were performed. Using TRIPOLI-4 code, different gamma-ray energies were applied in order to establish the efficiency curves of the HPGe gamma-ray detectors.
OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development
Romano, Paul K.; Horelik, Nicholas E.; Herman, Bryan R.; Nelson, Adam G.; Forget, Benoit; Smith, Kord
2014-06-01
This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes.
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Nimal, J.C.; Vergnaud, T. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Etudes des Reacteurs et de Mathematiques Appliquees)
1990-01-01
We discuss an automated biasing procedure for generating the parameters necessary to achieve efficient Monte Carlo biasing shielding calculations. The biasing techniques considered here are exponential transform and collision biasing deriving from the concept of the biased game based on the importance function. We use a simple model of the importance function with exponential attenuation as the distance to the detector increases. This importance function is generated on a three-dimensional mesh including geometry and with graph theory algorithms. This scheme is currently being implemented in the third version of the neutron and gamma ray transport code TRIPOLI-3. (author).
New Capabilities in Mercury: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A; Kramer, K J; McKinley, M S; O' Brien, M J; Taylor, J M
2007-03-08
The new physics, algorithmic and computer science capabilities of the Mercury general-purpose Monte Carlo particle transport code are discussed. The new physics and algorithmic features include in-line energy deposition and isotopic depletion, significant enhancements to the tally and source capabilities, diagnostic ray-traced particles, support for multi-region hybrid (mesh and combinatorial geometry) systems, and a probability of initiation method. Computer science enhancements include a second method of dynamically load-balancing parallel calculations, improved methods for visualizing 3-D combinatorial geometries and initial implementation of an in-line visualization capabilities.
Sampling-Based Nuclear Data Uncertainty Quantification for Continuous Energy Monte Carlo Codes
Zhu, Ting
2015-01-01
The goal of the present PhD research is to establish a methodology of nuclear data uncertainty quantification (NDUQ) for MCNPX, the continuous-energy Monte-Carlo (M-C) code. The high fidelity (continuous-energy treatment and flexible geometry modelling) of MCNPX makes it the choice of routine criticality safety calculations at PSI/LRS, but also raises challenges for NDUQ by conventional sensitivity/uncertainty (S/U) methods. The methodology developed during this PhD research is fundamentally ...
Simulation of clinical X-ray tube using the Monte Carlo Method - PENELOPE code
International Nuclear Information System (INIS)
Breast cancer is the most common type of cancer among women. The main strategy to increase the long-term survival of patients with this disease is the early detection of the tumor, and mammography is the most appropriate method for this purpose. Despite the reduction of cancer deaths, there is a big concern about the damage caused by the ionizing radiation to the breast tissue. To evaluate these measures it was modeled a mammography equipment, and obtained the depth spectra using the Monte Carlo method - PENELOPE code. The average energies of the spectra in depth and the half value layer of the mammography output spectrum. (author)
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
Energy Technology Data Exchange (ETDEWEB)
Cullen, D E
2003-06-06
TART 2002 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART 2002 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART 2002 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART 2002 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART 2002 and its data files.
Energy Technology Data Exchange (ETDEWEB)
Cullen, D.E
2000-11-22
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
MULTI-KENO: a Monte Carlo code for criticality safety analysis
International Nuclear Information System (INIS)
Modifying the Monte Carlo code KENO-IV, the MULTI-KENO code was developed for criticality safety analysis. The following functions were added to the code; (1) to divide a system into many sub-systems named super boxes where the size of box types in each super box can be selected independently, (2) to output graphical view of a system for examining geometrical input data, (3) to solve fixed source problems, (4) to permit intersection of core boundaries and inner geometries, (5) to output ANISN type neutron balance table. With the above function (1), many cases which had to be applied a general geometry option of KENO-IV, became to be treated as box type geometry. In such a case, input data became simpler and required computer time became shorter than those of KENO-IV. This code is now available for the FACOM-M200 computer and the CDC 6600 computer. This report is a computer code manual for MULTI-KENO. (author)
Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code
International Nuclear Information System (INIS)
Shielding properties of a lateral iron shield and of iron and concrete shields at angles between 5deg and 30deg are studied by means of the Monte Carlo program FLUNEV (DESY-D3 version of the FLUKA code extended for emission and transport of low energy neutrons). The following quantities were calculated for a high energy proton beam hitting an extended iron target: total and partial dose equivalents, attenuation coefficients, neutron spectra, star densities (compared also with the CASIM code) and quality factors. The dependence of the dose equivalent on the energy of primary protons, the effect of a concrete layer behind a lateral iron shielding and the total number of neutrons produced in the target were also estimated. (orig.)
A portable, parallel, object-oriented Monte Carlo neutron transport code in C++
Energy Technology Data Exchange (ETDEWEB)
Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A and M Univ., College Station, TX (United States)]|[Los Alamos National Lab., NM (United States)
1997-05-01
We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.
Simulation of density curve for slim borehole using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu, E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda Cristine Arruda, E-mail: scorrea@nuclear.ufrj.b [Centro Universitario Estadual da Zona Oeste (CCMAT/UEZO), Rio de Janeiro, RJ (Brazil); Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Universidade Estadual do Rio de Janeiro (IPRJ/UERJ) Nova Friburgo, Rio de Janeiro, RJ (Brazil). Instituto Politecnico do Rio de Janeiro; Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ) RJ (Brazil). Dept. de Geologia
2010-07-01
Borehole logging for formation density has been an important geophysical measurement in oil industry. For calibration of the Gamma Ray nuclear logging tool, numerous rock models of different lithology and densities are necessary. However, the full success of this calibration process is determined by a reliable benchmark, where the complete and precise chemical composition of the standards is necessary. Simulations using the Monte Carlo MCNP have been widely employed in well logging application once it serves as a low-cost substitute for experimental test pits, as well as a means for obtaining data that are difficult to obtain experimentally. Considering this, the purpose of this work is to use the code MCNP to obtain density curves for slim boreholes using Gamma Ray logging tools. For this, a Slim Density Gamma Probe, named TRISOND{sup R}, and a 100 mCi Cs-137 gamma source has been modeled with the new version of MCNP code MCNPX. (author)
Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code
Energy Technology Data Exchange (ETDEWEB)
O' Brien, M J; Joy, K I; Procassini, R J; Greenman, G M
2008-12-07
Domain decomposition has been implemented in a Constructive Solid Geometry (CSG) Monte Carlo neutron transport code. Previous methods to parallelize a CSG code relied entirely on particle parallelism; but in our approach we distribute the geometry as well as the particles across processors. This enables calculations whose geometric description is larger than what could fit in memory of a single processor, thus it must be distributed across processors. In addition to enabling very large calculations, we show that domain decomposition can speed up calculations compared to particle parallelism alone. We also show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission Energy (LIFE) facility, which has 5.6 million CSG parts.
Preliminary analyses for HTTR`s start-up physics tests by Monte Carlo code MVP
Energy Technology Data Exchange (ETDEWEB)
Nojiri, Naoki [Science and Technology Agency, Tokyo (Japan); Nakano, Masaaki; Ando, Hiroei; Fujimoto, Nozomu; Takeuchi, Mitsuo; Fujisaki, Shingo; Yamashita, Kiyonobu
1998-08-01
Analyses of start-up physics tests for High Temperature Engineering Test Reactor (HTTR) have been carried out by Monte Carlo code MVP based on continuous energy method. Heterogeneous core structures were modified precisely, such as the fuel compacts, fuel rods, coolant channels, burnable poisons, control rods, control rod insertion holes, reserved shutdown pellet insertion holes, gaps between graphite blocks, etc. Such precise modification of the core structures was difficult with diffusion calculation. From the analytical results, the followings were confirmed; The first criticality will be achieved around 16 fuel columns loaded. The reactivity at the first criticality can be controlled by only one control rod located at the center of the core with other fifteen control rods fully withdrawn. The excess reactivity, reactor shutdown margin and control rod criticality positions have been evaluated. These results were used for planning of the start-up physics tests. This report presents analyses of start-up physics tests for HTTR by MVP code. (author)
The use of Monte Carlo radiation transport codes in radiation physics and dosimetry
CERN. Geneva; Ferrari, Alfredo; Silari, Marco
2006-01-01
Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...
Speedup of MCACE, a Monte Carlo code for evaluation of shielding safety, by parallel computer, 1
International Nuclear Information System (INIS)
In order to improve the accuracy of shielding analysis, we have modified MCACE, a Monte Carlo code for shielding analysis, to be able to execute on a parallel computer. The suitable algorithms for efficient paralleling has been investigated by static and dynamic analyses of the code. This includes a strategy where new units of batches are assigned to the idling cells dynamically during the execution. The efficiency of paralleling has been measured by using a simulator of a parallel computer. It is found that the load factor of all cells reached nearly 100%, and consequently, it can be said that the most effective paralleling has been achieved. The simulator has estimated the effect of paralleling as the speedup of 7.13 times when a sample problem of 8 batches, 400 particles per one batch, is loaded on parallel computer equipped with 8 cells. (author)
A 3DHZETRN Code in a Spherical Uniform Sphere with Monte Carlo Verification
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2014-01-01
The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation is under development. In the present report, new algorithms for light ion and neutron propagation with well-defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations to verify the solution methodology. The code will be available through the software system, OLTARIS, for shield design and validation and provides a basis for personal computer software capable of space shield analysis and optimization.
Energy Technology Data Exchange (ETDEWEB)
Hart, S. W. D. [University of Tennessee, Knoxville (UTK); Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK); Celik, Cihangir [ORNL; Leal, Luiz C [ORNL
2014-01-01
For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.
Nelson, Adam
Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system
Coded aperture coherent scatter imaging for breast cancer detection: a Monte Carlo evaluation
Lakshmanan, Manu N.; Morris, Robert E.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2016-03-01
It is known that conventional x-ray imaging provides a maximum contrast between cancerous and healthy fibroglandular breast tissues of 3% based on their linear x-ray attenuation coefficients at 17.5 keV, whereas coherent scatter signal provides a maximum contrast of 19% based on their differential coherent scatter cross sections. Therefore in order to exploit this potential contrast, we seek to evaluate the performance of a coded- aperture coherent scatter imaging system for breast cancer detection and investigate its accuracy using Monte Carlo simulations. In the simulations we modeled our experimental system, which consists of a raster-scanned pencil beam of x-rays, a bismuth-tin coded aperture mask comprised of a repeating slit pattern with 2-mm periodicity, and a linear-array of 128 detector pixels with 6.5-keV energy resolution. The breast tissue that was scanned comprised a 3-cm sample taken from a patient-based XCAT breast phantom containing a tomosynthesis- based realistic simulated lesion. The differential coherent scatter cross section was reconstructed at each pixel in the image using an iterative reconstruction algorithm. Each pixel in the reconstructed image was then classified as being either air or the type of breast tissue with which its normalized reconstructed differential coherent scatter cross section had the highest correlation coefficient. Comparison of the final tissue classification results with the ground truth image showed that the coded aperture imaging technique has a cancerous pixel detection sensitivity (correct identification of cancerous pixels), specificity (correctly ruling out healthy pixels as not being cancer) and accuracy of 92.4%, 91.9% and 92.0%, respectively. Our Monte Carlo evaluation of our experimental coded aperture coherent scatter imaging system shows that it is able to exploit the greater contrast available from coherently scattered x-rays to increase the accuracy of detecting cancerous regions within the breast.
Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
Chow, James C L; Leung, Michael K K
2008-06-01
The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger
International Nuclear Information System (INIS)
The numerical simulation of the dynamics of fast ions coming from neutral beam injection (NBI) heating is an important task in fusion devices, since these particles are used as sources to heat and fuel the plasma and their uncontrolled losses can damage the walls of the reactor. This paper shows a new application that simulates these dynamics on the grid: FastDEP. FastDEP plugs together two Monte Carlo codes used in fusion science, namely FAFNER2 and ISDEP, and add new functionalities. Physically, FAFNER2 provides the fast ion initial state in the device while ISDEP calculates their evolution in time; as a result, the fast ion distribution function in TJ-II stellerator has been estimated, but the code can be used on any other device. In this paper a comparison between the physics of the two NBI injectors in TJ-II is presented, together with the differences between fast ion confinement and the driven momentum in the two cases. The simulations have been obtained using Montera, a framework developed for achieving grid efficient executions of Monte Carlo applications. (paper)
OpenMC: A state-of-the-art Monte Carlo code for research and development
International Nuclear Information System (INIS)
Highlights: • OpenMC is an open source Monte Carlo particle transport code. • Solid geometry and continuous-energy physics allow high-fidelity simulations. • Development has focused on high performance and modern I/O techniques. • OpenMC is capable of scaling up to hundreds of thousands of processors. • Other features include plotting, CMFD acceleration, and variance reduction. - Abstract: This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
Directory of Open Access Journals (Sweden)
H A Nedaie
2013-01-01
Full Text Available Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions.
International Nuclear Information System (INIS)
The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)
Load balancing in highly parallel processing of Monte Carlo code for particle transport
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Takemiya, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Kawasaki, Takuji [Fuji Research Institute Corporation, Tokyo (Japan)
2001-01-01
In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)
Energy Technology Data Exchange (ETDEWEB)
RodrIguez, M L [Centro Medico Paitilla. Calle 53 y ave Balboa, Paitilla (Panama)], E-mail: milrocas@gmail.com
2008-09-07
In this work we present PENLINAC, a code package developed to facilitate the use of the Monte Carlo code PENELOPE for the simulation of therapeutic beams, including high-energy electrons, photons and {sup 60}Co beams. The code simplifies the creation of the treatment machine geometry, allowing the modeling of their components from elementary geometric bodies and their further conversion to the quadric functions-based structure handled by PENELOPE. The code is implemented in various subroutines that allow the user to handle several models of radiation sources and phase spaces. The phase spaces are not part of the geometry and can store many variables of the particle in a relatively small data space. The set of subroutines does not alter the PENELOPE algorithms; thus, the main program implemented by the user can maintain its kind-of-particle-independent structure. A support program can handle and analyze the phase spaces to generate, among others, last interaction maps and probability distributions that can be used as sources in simulation. Results from simulations of a Clinac linear accelerator head are presented in order to demonstrate the package capabilities. Dose distributions calculated in a water phantom for a variety of beams of this accelerator showed good agreement with measurements.
Load balancing in highly parallel processing of Monte Carlo code for particle transport
International Nuclear Information System (INIS)
In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)
International Nuclear Information System (INIS)
There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)
International Nuclear Information System (INIS)
There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables
SU-E-T-578: MCEBRT, A Monte Carlo Code for External Beam Treatment Plan Verifications
Energy Technology Data Exchange (ETDEWEB)
Chibani, O; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); Al-Azhar University, Cairo (Egypt)
2014-06-01
Purpose: Present a new Monte Carlo code (MCEBRT) for patient-specific dose calculations in external beam radiotherapy. The code MLC model is benchmarked and real patient plans are re-calculated using MCEBRT and compared with commercial TPS. Methods: MCEBRT is based on the GEPTS system (Med. Phys. 29 (2002) 835–846). Phase space data generated for Varian linac photon beams (6 – 15 MV) are used as source term. MCEBRT uses a realistic MLC model (tongue and groove, rounded ends). Patient CT and DICOM RT files are used to generate a 3D patient phantom and simulate the treatment configuration (gantry, collimator and couch angles; jaw positions; MLC sequences; MUs). MCEBRT dose distributions and DVHs are compared with those from TPS in absolute way (Gy). Results: Calculations based on the developed MLC model closely matches transmission measurements (pin-point ionization chamber at selected positions and film for lateral dose profile). See Fig.1. Dose calculations for two clinical cases (whole brain irradiation with opposed beams and lung case with eight fields) are carried out and outcomes are compared with the Eclipse AAA algorithm. Good agreement is observed for the brain case (Figs 2-3) except at the surface where MCEBRT dose can be higher by 20%. This is due to better modeling of electron contamination by MCEBRT. For the lung case an overall good agreement (91% gamma index passing rate with 3%/3mm DTA criterion) is observed (Fig.4) but dose in lung can be over-estimated by up to 10% by AAA (Fig.5). CTV and PTV DVHs from TPS and MCEBRT are nevertheless close (Fig.6). Conclusion: A new Monte Carlo code is developed for plan verification. Contrary to phantombased QA measurements, MCEBRT simulate the exact patient geometry and tissue composition. MCEBRT can be used as extra verification layer for plans where surface dose and tissue heterogeneity are an issue.
Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia
Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto
2015-01-01
A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the n...
Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A
Energy Technology Data Exchange (ETDEWEB)
Chetvertkova, Vera [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Ratzinger, Ulrich [IAP, J. W. Goethe-University, Frankfurt am Main (Germany); Latysheva, Ludmila; Sobolevskiy, Nikolai [Institute for Nuclear Research RAS, Moscow (Russian Federation)
2011-07-01
Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.
Recent R and D around the Monte-Carlo code Tripoli-4 for criticality calculation
Energy Technology Data Exchange (ETDEWEB)
Hugot, F.X.; Lee, Y.K.; Malvagi, F. [CEA - DEN/DANS/DM2S/SERMA/LTSD, Saclay (France)
2008-07-01
TRIPOLI-4 [1] is the fourth generation of the TRIPOLI family of Monte Carlo codes developed from the 60's by CEA. It simulates the 3D transport of neutrons, photons, electrons and positrons as well as coupled neutron-photon propagation and electron-photons cascade showers. The code addresses radiation protection and shielding problems, as well as criticality and reactor physics problems through both critical and subcritical neutronics calculations. It uses full pointwise as well as multigroup cross-sections. The code has been validated through several hundred benchmarks as well as measurement campaigns. It is used as a reference tool by CEA as well as its industrial and institutional partners, and in the NURESIM [2] European project. Section 2 reviews its main features, with emphasis on the latest developments. Section 3 presents some recent R and D for criticality calculations. Fission matrix, Eigen-values and eigenvectors computations will be exposed. Corrections on the standard deviation estimator in the case of correlations between generation steps will be detailed. Section 4 presents some preliminary results obtained by the new mesh tally feature. The last section presents the interest of using XML format output files. (authors)
Verification of Monte Carlo transport codes: FLUKA, MARS and SHIELD-A
International Nuclear Information System (INIS)
Monte Carlo transport codes like FLUKA, MARS and SHIELD are widely used for the estimation of radiation hazards in accelerator facilities. Accurate simulations are especially important with increasing energies and intensities of the machines. As the physical models implied in the codes are being constantly further developed, the verification is needed to make sure that the simulations give reasonable results. We report on the verification of electronic stopping modules and the verification of nuclide production modules of the codes. The verification of electronic stopping modules is based on the results of irradiation of stainless steel, copper and aluminum by 500 MeV/u and 950 MeV/u uranium ions. The stopping ranges achieved experimentally are compared with the simulated ones. The verification of isotope production modules is done via comparing the experimental depth profiles of residual activity (aluminum targets were irradiated by 500 MeV/u and 950 MeV/u uranium ions) with the results of simulations. Correspondences and discrepancies between the experiment and the simulations are discussed.
Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes
International Nuclear Information System (INIS)
The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)
COGEMA/TRANSNUCLEAIRE's experience with burnup credit
International Nuclear Information System (INIS)
Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)
Radiosteoplasty study in animal bone and radiodosimetric evaluation using Monte Carlo code
Energy Technology Data Exchange (ETDEWEB)
Silveira, Marcia Flavia; Campos, Tarcisio Passos Ribeiro [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear]. E-mail: marciaflaviafisio@gmail.com; campos@nuclear.ufmg.br
2007-07-01
The radiosteoplasty is a procedure that consists of the injection of a radioactive biomaterial incorporated to the bone cement into the osseous structure affected by cancer. This technique has been developed with the major objective to control the tumor or the regional bone metastasis (in situ) besides pain reduction and structural resistance increasing. In the present study the radiosteoplasty is applied to the bovine and swine bones in vitro using non-radioactive cement. The objective is to know the spatial distribution of the cold compound (non radioactive) in pig and ox bones after implant. A 2 mm needle was introduced into the cortical bone previously perforated. The distribution of this biomaterial was observed trough radiological images obtained just after the compound application. Recent dosimetric studies using Monte Carlo N-Particle method (MCNP-5) concluded that the spatial dose distribution is suitable for the protocol namely radiosteoplasty applied to treat bone tumors on superior and inferior members. The Monte Carlo method simulates the present process and it is particularly interesting tool to solve the complex photon and electron particle transport problems that can not be modeled by codes based on deterministic methods. These related radiodosimetric studies are presented and discussed. (author)
Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code
Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.
2016-02-01
Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.
Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code
International Nuclear Information System (INIS)
A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (keff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of keff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of keff from MCNP5 were obtained when the control fuel rods were fully inserted, the keff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of keff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)
Characterization of 60Co dose distribution using BEAMnrc Monte Carlo code
International Nuclear Information System (INIS)
In this study BEAMnrc based on EGSnrc as Monte Carlo code has been used for modeling and simulating 60Co machine in radioisotope centre of Khartoum (RICK), Two fields size ( 5 cm x 5 cm and 35 cm x 35 cm), were been studied, to define the characterization of 60Co machine and to investigate the effect of increasing the surface to skin distance (SSD) on the 60Co machine properties, e.g.; beam profile and percentage depth dose (Pdd). For the narrow field size there is a small change observed in the curves representing beam profile and the percentage depth dose when increasing the distance by 5 cm, for the wide fi ld size there relatively clear different in curves. The study results been compared with other previous studies and clear consistence observed. (Author)
The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy
Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F
2010-01-01
Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...
Application of a Monte Carlo Penelope code at diverse dosimetric problems in radiotherapy
International Nuclear Information System (INIS)
In the present communication it is presented the results of the simulation utilizing the Penelope code (Penetration and Energy loss of Positrons and Electrons) in several applications of radiotherapy which can be the radioactive sources simulation: 192 Ir, 125 I, 106 Ru or the electron beams simulation of a linear accelerator Siemens KDS. The simulations presented in this communication have been on computers of type Pentium PC of 100 throughout 300 MHz, and the times of execution were from some hours until several days depending of the complexity of the problem. It is concluded that Penelope is a very useful tool for the Monte Carlo calculations due to its great ability and its relative handling facilities. (Author)
MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners
International Nuclear Information System (INIS)
MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)
TRIPOLI-4®, CEA, EDF and AREVA Reference Monte Carlo Code
2014-06-01
This paper presents an overview of TRIPOLI-4®, the fourth generation of the 3D continuous-energy Monte Carlo code developed by the Service d'Etudes des Réacteurs et de Mathématiques Appliquées (SERMA) at CEA Saclay. The paper surveys the generic features: programming language, parallel operation, tracked particles, nuclear data, geometry, simulation modes, standard variance reduction techniques, sources, tracking and collision algorithms, tallies, sensitivity studies. Moreover, specific and recent features are also detailed: Doppler broadening of the elastic scattering kernel, neutron and photon material irradiation, advanced variance reduction techniques, Green's functions, cycle correlation correction, nuclear data management and depletion capabilities. The productivity tools (T4G, SALOME TRIPOLI, T4RootTools), the Verification & Validation process and the distribution and licensing policy are finally presented.
Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2001-09-28
The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs
Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit
International Nuclear Information System (INIS)
The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they
Automated generation of burnup chain for reactor analysis applications
International Nuclear Information System (INIS)
This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)
Investigation of burnup credit implementation for BWR fuel
International Nuclear Information System (INIS)
Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)
International Nuclear Information System (INIS)
Highlights: • A successful validation of the burn-up simulation system EVOLCODE is presented here. • A Sensitivity/Uncertainty model was applied for uncertainty propagation/assessment. • Cross sections are for most cases the main contributors to inventory uncertainties. • The improved model helps to explain some simulation-experiment discrepancies. • Some hints for the improvement of basic data libraries are provided. - Abstract: A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment-simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented
International Nuclear Information System (INIS)
The System of Computerized Analysis for Licensing at Atomic industry (SCALA) is a Russian analogue of the well-known SCALE system. For criticality evaluations the ABBN-93 system is used with TWODANT and with joined American KENO and Russian MMK Monte-Carlo code MMKKENO. Using the same cross sections and input models, all these codes give results that coincide within the statistical uncertainties (for Monte-Carlo codes). Validation of criticality calculations using SCALA was performed using data presented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Another task of the work was to test the burnup capability of SCALA system in complex geometry in compare with other codes. Benchmark models of VVER type reactor assemblies with UO2 and MOX fuel including the cases with burnable gadolinium absorbers were calculated. KENO-VI and MMK codes were used for power distribution calculations, ORIGEN code was used for the isotopic kinetics calculations. (authors)
Carrazana González, J; Cornejo Díaz, N; Jurado Vargas, M
2012-05-01
We studied the applicability of the Monte Carlo code DETEFF for the efficiency calibration of detectors for in situ gamma-ray spectrometry determinations of ground deposition activity levels. For this purpose, the code DETEFF was applied to a study case, and the calculated (137)Cs activity deposition levels at four sites were compared with published values obtained both by soil sampling and by in situ measurements. The (137)Cs ground deposition levels obtained with DETEFF were found to be equivalent to the results of the study case within the uncertainties involved. The code DETEFF could thus be used for the efficiency calibration of in situ gamma-ray spectrometry for the determination of ground deposition activity using the uniform slab model. It has the advantage of requiring far less simulation time than general Monte Carlo codes adapted for efficiency computation, which is essential for in situ gamma-ray spectrometry where the measurement configuration yields low detection efficiency. PMID:22336296
International Nuclear Information System (INIS)
An advanced model GRSWEL-A for fission gas behavior and micro-structural evolutions in Light Water Reactor (LWR) fuels was developed for and embedded in the START-3 fuel performance code. This paper represents the physical basis and verification of the model with emphasis on analysis of High Burn-up Structure (HBS), which is generally ascribed to a so-called rim-layer of high burn-up fuel pellets. Specifically, the issues of microscopic polygonization, loss of matrix fission gas, growth of fuel porosity and fission gas release are highlighted. The effects of HBS on total fission gas release, temperature distribution in the pellet, pellet swelling and permanent strain of the cladding are considered in the appropriate section of the paper by means of comparative and sensitivity analysis with the use of both modeling and available experimental data. In all the cases, an accounting for the present effects is found to be an important integral part of thorough analysis of LWR fuel behavior. Aside from the description of current capabilities of modeling, some priority directions of further improvement are outlined. (author)
PINSPEC. A Monte Carlo code for pin cell spectral calculations for educational applications
International Nuclear Information System (INIS)
Students in many reactor physics courses are exposed to canonical reactor physics concepts through theoretical problems simplified to allow for tractable analytical solutions. Such problems typically require tedious mathematical derivation which is often not the most effective approach to teaching basic reactor physics concepts. A new complementary methodology to introduce these concepts is made possible with PINSPEC, a pin cell Monte Carlo code for educational use. PINSPEC enables students to simulate pin cell models for various reactor types with a simple-to-use Python interface. PINSPEC uses point-wise cross section data and includes a module for Single-Level Breit-Wigner cross-section generation and Doppler broadening. The PINSPEC code supports a variety of tallies which students may use to compute resonance integrals, multi-group cross sections, and more for various materials and pin configurations. PINSPEC is undergoing review for open source release in the near future such that it will be a free and accessible tool for instructors developing reactor physics curricula with an applied and interactive approach to learning. (author)
Development of an unstructured mesh based geometry model in the Serpent 2 Monte Carlo code
International Nuclear Information System (INIS)
This paper presents a new unstructured mesh based geometry type, developed in the Serpent 2 Monte Carlo code as a by-product of another study related to multi-physics applications and coupling to CFD codes. The new geometry type is intended for the modeling of complicated and irregular objects, which are not easily constructed using the conventional CSG based approach. The capability is put to test by modeling the 'Stanford Critical Bunny' – a variation of a well-known 3D test case for methods used in the world of computer graphics. The results show that the geometry routine in Serpent 2 can handle the unstructured mesh, and that the use of delta-tracking results in a considerable reduction in the overall calculation time as the geometry is refined. The methodology is still very much under development, with the final goal of implementing a geometry routine capable of reading standardized geometry formats used by 3D design and imaging tools in industry and medical physics. (author)
Development of Monte Carlo code for coincidence prompt gamma-ray neutron activation analysis
Han, Xiaogang
Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) offers a non-destructive, relatively rapid on-line method for determination of elemental composition of bulk and other samples. However, PGNAA has an inherently large background. These backgrounds are primarily due to the presence of the neutron excitation source. It also includes neutron activation of the detector and the prompt gamma rays from the structure materials of PGNAA devices. These large backgrounds limit the sensitivity and accuracy of PGNAA. Since most of the prompt gamma rays from the same element are emitted in coincidence, a possible approach for further improvement is to change the traditional PGNAA measurement technique and introduce the gamma-gamma coincidence technique. It is well known that the coincidence techniques can eliminate most of the interference backgrounds and improve the signal-to-noise ratio. A new Monte Carlo code, CEARCPG has been developed at CEAR to simulate gamma-gamma coincidence spectra in PGNAA experiment. Compared to the other existing Monte Carlo code CEARPGA I and CEARPGA II, a new algorithm of sampling the prompt gamma rays produced from neutron capture reaction and neutron inelastic scattering reaction, is developed in this work. All the prompt gamma rays are taken into account by using this new algorithm. Before this work, the commonly used method is to interpolate the prompt gamma rays from the pre-calculated gamma-ray table. This technique works fine for the single spectrum. However it limits the capability to simulate the coincidence spectrum. The new algorithm samples the prompt gamma rays from the nucleus excitation scheme. The primary nuclear data library used to sample the prompt gamma rays comes from ENSDF library. Three cases are simulated and the simulated results are benchmarked with experiments. The first case is the prototype for ETI PGNAA application. This case is designed to check the capability of CEARCPG for single spectrum simulation. The second
Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport
Jia, Xun; Sempau, Josep; Choi, Dongju; Majumdar, Amitava; Jiang, Steve B
2009-01-01
Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in two cases. Our results demonstrate the adequate accuracy of the GPU implementation for both electron and photon beams in radiotherapy energy range. A speed up factor of 4.5 and 5.5 times have been observed for electron and photon testing cases, respectively, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor .
High Burnup Fuel Performance and Safety Research
Energy Technology Data Exchange (ETDEWEB)
Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)
2007-03-15
The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.
A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System
Energy Technology Data Exchange (ETDEWEB)
C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler
1998-10-01
The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
International Nuclear Information System (INIS)
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
Energy Technology Data Exchange (ETDEWEB)
Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)
2014-08-15
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
A PWR Thorium Pin Cell Burnup Benchmark
Energy Technology Data Exchange (ETDEWEB)
Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.
2000-05-01
As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.
Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code.
Parach, Ali Asghar; Rajabi, Hossein; Askari, Mohammad Ali
2011-08-01
GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r (2)>0.99) between the two series of data. However, the GATE/GEANT data were on average -0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10-20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50-1000 keV. For photon energies of 10-30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10-30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50-1,000 keV, the bias was negligible and the agreement was acceptable. PMID:21573984
COG10, Multiparticle Monte Carlo Code System for Shielding and Criticality Use
International Nuclear Information System (INIS)
1 - Description of program or function: COG is a modern, full-featured Monte Carlo radiation transport code which provides accurate answers to complex shielding, criticality, and activation problems. COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://www-phys.llnl.gov/N_Div/COG/. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, path-length stretching, point detectors, scattered direction biasing, and forced collisions. Criticality - For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation - COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems - COG can solve coupled problems involving neutrons, photons, and electrons. 2 - Methods:COG uses Monte Carlo methods to solve the Boltzmann transport equation for particles traveling through arbitrary 3-dimensional geometries. Neutrons, photons
International Nuclear Information System (INIS)
After a description of the context of radiological accidents (definition, history, context, exposure types, associated clinic symptoms of irradiation and contamination, medical treatment, return on experience) and a presentation of dose assessment in the case of external exposure (clinic, biological and physical dosimetry), this research thesis describes the principles of numerical reconstruction of a radiological accident, presents some computation codes (Monte Carlo code, MCNPX code) and the SESAME tool, and reports an application to an actual case (an accident which occurred in Equator in April 2009). The next part reports the developments performed to modify the posture of voxelized phantoms and the experimental and numerical validations. The last part reports a feasibility study for the reconstruction of radiological accidents occurring in external radiotherapy. This work is based on a Monte Carlo simulation of a linear accelerator, with the aim of identifying the most relevant parameters to be implemented in SESAME in the case of external radiotherapy
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.; DeHart, M.D.
2000-03-01
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
International Nuclear Information System (INIS)
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified
Energy Technology Data Exchange (ETDEWEB)
Blazy-Aubignac, L
2007-09-15
The treatment planning systems (T.P.S.) occupy a key position in the radiotherapy service: they realize the projected calculation of the dose distribution and the treatment duration. Traditionally, the quality control of the calculated distribution doses relies on their comparisons with dose distributions measured under the device of treatment. This thesis proposes to substitute these dosimetry measures to the profile of reference dosimetry calculations got by the Penelope Monte-Carlo code. The Monte-Carlo simulations give a broad choice of test configurations and allow to envisage a quality control of dosimetry aspects of T.P.S. without monopolizing the treatment devices. This quality control, based on the Monte-Carlo simulations has been tested on a clinical T.P.S. and has allowed to simplify the quality procedures of the T.P.S.. This quality control, in depth, more precise and simpler to implement could be generalized to every center of radiotherapy. (N.C.)
Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code
International Nuclear Information System (INIS)
Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.
Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code
Nunomiya, T; Nakamura, T; Nakao, N
2002-01-01
A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were trans...
International Nuclear Information System (INIS)
The most dental imaging is performed by means a imaging system consisting of a film/screen combination. Fluorescent intensifying screens for X-ray films are used in order to reduce the radiation dose. They produce visible light which increases the efficiency of the film. In addition, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering) which will degrade the image resolution. Scattered radiation produced in Gd2O2S:Tb intensifying screens was simulated by using a Monte Carlo radiation transport code - the EGS4. The magnitude of scattered radiation striking the film is typically quantified using the scatter to primary radiation and the scatter fraction. The angular distribution of the intensity of the scattered radiation (sum of both the scattering effects) was simulated, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 5.67% and 3.28 % and the scatter function is about 5.27% and 3.18% for the front and back screen, respectively, over the range from 0 to π rad. (author)
HERMES: a Monte Carlo Code for the Propagation of Ultra-High Energy Nuclei
De Domenico, Manlio; Settimo, Mariangela
2013-01-01
Although the recent experimental efforts to improve the observation of Ultra-High Energy Cosmic Rays (UHECRs) above $10^{18}$ eV, the origin and the composition of such particles is still unknown. In this work, we present the novel Monte Carlo code (HERMES) simulating the propagation of UHE nuclei, in the energy range between $10^{16}$ and $10^{22}$ eV, accounting for propagation in the intervening extragalactic and Galactic magnetic fields and nuclear interactions with relic photons of the extragalactic background radiation. In order to show the potential applications of HERMES for astroparticle studies, we estimate the expected flux of UHE nuclei in different astrophysical scenarios, the GZK horizons and we show the expected arrival direction distributions in the presence of turbulent extragalactic magnetic fields. A stable version of HERMES will be released in the next future for public use together with libraries of already propagated nuclei to allow the community to perform mass composition and energy sp...
MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.
Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio
2012-03-26
This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470
Modeling Monte Carlo of multileaf collimators using the code GEANT4
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Alex C.H.; Lima, Fernando R.A., E-mail: oliveira.ach@yahoo.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Lima, Luciano S.; Vieira, Jose W., E-mail: lusoulima@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)
2014-07-01
Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation is linear accelerator (Linac). Among the many algorithms developed for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo (MC) methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. of millions of particles (photons, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). Accurate modeling of the Linac head is of particular interest in the calculation of dose distributions for intensity modulated radiation therapy (IMRT), where complex intensity distributions are delivered using a multileaf collimator (MLC). The objective of this work is to describe a methodology for modeling MC of MLCs using code Geant4. To exemplify this methodology, the Varian Millennium 120-leaf MLC was modeled, whose physical description is available in BEAMnrc Users Manual (20 11). The dosimetric characteristics (i.e., penumbra, leakage, and tongue-and-groove effect) of this MLC were evaluated. The results agreed with data published in the literature concerning the same MLC. (author)
International Nuclear Information System (INIS)
The benchmark analysis of reactivity experiments in the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor; 100 kW) was performed by a three-dimensional continuous-energy Monte Carlo code MCNP4A. The reactivity worth and integral reactivity curves of the control rods as well as the reactivity worth distributions of fuel and graphite elements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated values of integral reactivity curves of the control rods were in agreement with the experimental data obtained by the period method. The integral worth measured by the rod drop method was also consistent with the calculation. The calculated values of the fuel and the graphite element worth distributions were consistent with the measured ones within the statistical error estimates. These results showed that the exact core configuration including the control rod positions to reproduce the fission source distribution in the experiment must be introduced into the calculation core for obtaining the precise solution. It can be concluded that our simulation model of the TRIGA-II core is precise enough to reproduce the control rod worth, fuel and graphite elements reactivity worth distributions. (author)
Dose and shielding calculation of galactic cosmic ray using FLUKA Mont Carlo code
Energy Technology Data Exchange (ETDEWEB)
Jalali, Hamide B. [Physics Department, University of Qom, Qom (Iran); Raisali, Golamreza; Babazade, Alireza [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran); Feghhi, Amirhosein [Physics and Nuclear Engineering Department, Amirkabir University, Tehran (Iran)
2009-07-01
Astronauts' exposure to space radiation is a limiting factor for long-term missions. Therefore shielding is a critical issue in space mission success. In this work the FLUKA Monte Carlo code has been coupled with simple models of the spacecraft and equivalent phantom to calculate skin averaged doses due to exposure to Galactic Cosmic Rays (GCR) beyond various thicknesses of aluminium and polyethylene shields. Simulations have been performed for the most abundant elements including H, He, C and Fe ions. The spectra of these ions have been taken from Badhwar-O'Neill's model, and LET distribution of the ions and electrons calculated using SRIM and ESTAR computer programs, respectively. It has been observed that GCR absorbed dose behind the shields remained approximately constant with increasing shield thicknesses, but dose equivalent shows a slight decrease. It is also found that although polyethylene is a more effective GCR shield than aluminum as indicated in the results of similar investigations, but the practical thicknesses of polyethylene are still insufficient to shield high energy GCR ions encountered in long-term space missions.
Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B
International Nuclear Information System (INIS)
Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyNT = 1,35x108 n/cm , a fast neutron dose of 5,86x10-10 Gy/NT and a gamma ray dose of 8,30x10-14 Gy/NT. (author)
Verification of a Multi-group Cross Section Library for Burnup Calculation
Energy Technology Data Exchange (ETDEWEB)
Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of); Joo, Hang Yu [Seoul National Univ., Seoul (Korea, Republic of)
2013-05-15
Despite satisfying the estimation of the neutronic parameters without depletion to some extent, it still requires detailed investigation of the behavior of a fuel with strong neutron absorber over its operating life time by nTRACER, the direct whole core calculation code with the conventional semi Predictor-Corrector method. This study is mainly focused on the verification of the newly generated multi-group library for burnup calculation by nTRACER through the analysis of its performance of depletion calculation of UO{sub 2} fuel with strong neutron absorbers such as Gadolinium. Firstly, the depletion calculation results of nTRACER are presented by comparing the evolution of k-inf and the inventories of commonly found important isotopes as a function of burnup in the cases of gadolinia(GAD)-bearing fuel pin and fuel assembly (FA) with those of MCNPX-version.2.6.0. The newly generated multi-group library for burnup calculation by nTRACER was verified through GAD-bearing fuel after the new approach of resonance treatment had been employed. Though very good agreement in the overall effect reflected on the multiplication factor of FA at BOC, the evolution of k-inf along fuel irradiation history was systematically well underestimated by nTRACER when compared to Monte Carlo results.
Burn-up measurements coupling gamma spectrometry and neutron measurement
International Nuclear Information System (INIS)
The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)
Results of the isotopic concentrations of VVER calculational burnup credit benchmark No. 2(CB2)
International Nuclear Information System (INIS)
Results of the nuclide concentrations are presented of VVER Burnup Credit Benchmark No. 2(CB2) that were performed in The Nuclear Technology Center of Cuba with available codes and libraries. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is summarized. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and cooling time. The depletion point 'ORIGEN2' code and other codes were used for the calculation of the spent fuel concentration. (author)
Energy Technology Data Exchange (ETDEWEB)
Cullen, D E; Hansen, L F; Lent, E M; Plechaty, E F
2003-05-17
Recently we implemented the ENDF/B-VI thermal scattering law data in our neutron transport codes COG and TART. Our objective was to convert the existing ENDF/B data into double differential form in the Livermore ENDL format. This will allow us to use the ENDF/B data in any neutron transport code, be it a Monte Carlo, or deterministic code. This was approached as a multi-step project. The first step was to develop methods to directly use the thermal scattering law data in our Monte Carlo codes. The next step was to convert the data to double-differential form. The last step was to verify that the results obtained using the data directly are essentially the same as the results obtained using the double differential data. Part of the planned verification was intended to insure that the data as finally implemented in the COG and TART codes, gave the same answer as the well known MCNP code, which includes thermal scattering law data. Limitations in the treatment of thermal scattering law data in MCNP have been uncovered that prevented us from performing this part of our verification.
International Nuclear Information System (INIS)
A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The code was developed so that the Monte Carlo neophyte can easily use it. A minimum amount of input preparation is required and specified fixed values of the parameters used to control the code operation can be used. The weight windows technique, employing splitting and Russian Roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given here for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity (PNP) tool and found to be very accurate. Results of the experimental validation and details of code performance are presented
Energy Technology Data Exchange (ETDEWEB)
Carrazana Gonzalez, J.; Cornejo Diaz, N. [Centre for Radiological Protection and Hygiene, P.O. Box 6195, Habana (Cuba); Jurado Vargas, M., E-mail: mjv@unex.es [Departamento de Fisica, Universidad de Extremadura, 06071 Badajoz (Spain)
2012-05-15
We studied the applicability of the Monte Carlo code DETEFF for the efficiency calibration of detectors for in situ gamma-ray spectrometry determinations of ground deposition activity levels. For this purpose, the code DETEFF was applied to a study case, and the calculated {sup 137}Cs activity deposition levels at four sites were compared with published values obtained both by soil sampling and by in situ measurements. The {sup 137}Cs ground deposition levels obtained with DETEFF were found to be equivalent to the results of the study case within the uncertainties involved. The code DETEFF could thus be used for the efficiency calibration of in situ gamma-ray spectrometry for the determination of ground deposition activity using the uniform slab model. It has the advantage of requiring far less simulation time than general Monte Carlo codes adapted for efficiency computation, which is essential for in situ gamma-ray spectrometry where the measurement configuration yields low detection efficiency. - Highlights: Black-Right-Pointing-Pointer Application of the code DETEFF to in situ gamma-ray spectrometry. Black-Right-Pointing-Pointer {sup 137}Cs ground deposition levels evaluated assuming a uniform slab model. Black-Right-Pointing-Pointer Code DETEFF allows a rapid efficiency calibration.
Energy Technology Data Exchange (ETDEWEB)
Gallardo, S.; Querol, A.; Ortiz, J.; Rodenas, J.; Verdu, G.
2014-07-01
In this paper the use of Monte Carlo code SWORD-GEANT is proposed to simulate an ultra pure germanium detector High Purity Germanium detector (HPGe) detector ORTEC specifically GMX40P4, coaxial geometry. (Author)
Analysis of burnup credit on spent fuel storage
International Nuclear Information System (INIS)
Chemical analyses were carried out on high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234U to 242Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)
Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes
International Nuclear Information System (INIS)
The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior
Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes
Energy Technology Data Exchange (ETDEWEB)
Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.
2002-09-11
The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.
International Nuclear Information System (INIS)
The analysis of void reactivity effect is prominent interest for Sodium-cooled Fast Reactor (SFR) safety. Indeed, in case of sodium leakage of the primary circuit, void reactivity represents the main passive negative feedback to ensure reactivity control. The core can be designed to maximize neutron leakage and lower the average neutron multiplication factor in the event of sodium disappearing from within assemblies. Thus, the nuclear chain reaction is stopped. The most promising solution is to place a sodium region above the fuel in order for neutrons to be reflected when the region is filled and escape when the region is empty. In terms of simulation, this configuration is a challenge for usual calculation schemes: 1. Deterministic codes are typically limited in their ability to homogenize a sub-critical medium as the sodium plenum. 2. Monte Carlo codes are typically not able to split the total reactivity effect on different components, which prevents to achieve straightforward uncertainty analysis. Furthermore, since experimental values can sometimes be small, Monte Carlo codes may not converge within a reasonable computation time. A new feature recently available in the Monte Carlo TRIPOLI-4® based on the Exact Perturbation Theory allows very small reactivity perturbations to be computed accurately as well as reactivity effect to be estimated on distinct isotopes cross-sections. In the first part of this paper, this new feature of the code is described and then applied in the second part to a core configuration composed of several layers of fuel and fertile zones below a sodium plenum. Reactivity and its contributions from specific reactions and energy groups are calculated and compared with the results of the deterministic code ERANOS. The aim of this work is twofold: (1) Achieve a numerical validation of the new TRIPOLI-4® features and (2) Identify where deterministic codes might be less accurate and why – even when using them at full capacity (S16
Calculation study of TNPS spent fuel pool using burnup credit
International Nuclear Information System (INIS)
Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks, the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied. The MONK9A code was used to analyze keff, of different enrichment fuels at different burnups. A reference loading curve was proposed in accordance with the system keff's changing with the burnup of different initially enriched nuclear fuels. The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC. (authors)
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, T.; Nimal, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))
1990-01-01
The three-dimensional polycinetic Monte Carlo particle transport code TRIPOLI has been under development in the French Shielding Laboratory at Saclay since 1965. TRIPOLI-1 began to run in 1970 and became TRIPOLI-2 in 1978: since then its capabilities have been improved and many studies have been performed. TRIPOLI can treat stationary or time dependent problems in shielding and in neutronics. Some examples of solved problems are presented to demonstrate the many possibilities of the system. (author).
Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE
Energy Technology Data Exchange (ETDEWEB)
Sempau, Josep [Technical University of Catalonia (Spain)
2010-07-01
Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)
Antiproton annihilation physics in the Monte Carlo particle transport code SHIELD-HIT12A
Energy Technology Data Exchange (ETDEWEB)
Taasti, Vicki Trier; Knudsen, Helge [Dept. of Physics and Astronomy, Aarhus University (Denmark); Holzscheiter, Michael H. [Dept. of Physics and Astronomy, Aarhus University (Denmark); Dept. of Physics and Astronomy, University of New Mexico (United States); Sobolevsky, Nikolai [Institute for Nuclear Research of the Russian Academy of Sciences (INR), Moscow (Russian Federation); Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Thomsen, Bjarne [Dept. of Physics and Astronomy, Aarhus University (Denmark); Bassler, Niels, E-mail: bassler@phys.au.dk [Dept. of Physics and Astronomy, Aarhus University (Denmark)
2015-03-15
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi–Teller Z-law, which is implemented by default in SHIELD-HIT12A has been shown not to be a good approximation for the capture probability of negative projectiles by nuclei. We investigate other theories which have been developed, and give a better agreement with experimental findings. The consequence of these updates is tested by comparing simulated data with the antiproton depth dose curve in water. It is found that the implementation of these new capture probabilities results in an overestimation of the depth dose curve in the Bragg peak. This can be mitigated by scaling the antiproton collision cross sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds.
TRIGA criticality experiment for testing burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)
1999-07-01
A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)
International Nuclear Information System (INIS)
The major aim of this work is a sensitivity analysis related to the influence of the different nuclear data libraries on the k-infinity values and on the void coefficient estimations performed for various CANDU fuel projects, and on the simulations related to the replacement of the original stainless steel adjuster rods by cobalt assemblies in the CANDU reactor core. The computations are performed using the Monte Carlo transport codes MCNP5 and MONTEBURNS 1.0 for the actual, detailed geometry and material composition of the fuel bundles and reactivity devices. Some comparisons with deterministic and probabilistic codes involving the WIMS library are also presented
Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code
International Nuclear Information System (INIS)
A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were transported up to approximately 1 m before the region for benchmark calculation. Finally, the energy spectra of neutrons behind the very thick shield were calculated down to the thermal energy with good statistics, and typically agree well within a factor of two with the experimental data over a broad energy range. The 12C(n,2n)11C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem. In this report, the calculation conditions, geometry and the variance reduction techniques used in the deep-penetration calculation with the MARS14 code are clarified, and several subroutines of MARS14 which were used in our calculation are also given in the appendix. The numerical data of the calculated neutron energy spectra, reaction rates, dose rates and their C/E (Calculation/Experiment) values are also summarized. The
International Nuclear Information System (INIS)
This paper describes the application of SRNA Monte Carlo package for proton transport simulations in complex geometry and different material composition. SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our own and the Russian MSDM models using ICRU 63 data. The developed package consists of two codes: SRNA-2KG, which simulates proton transport in the combinatorial geometry and SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of proton beam characterization by Multi-Layer Faraday Cup, spatial distribution of positron emitters obtained by SRNA-2KG code, and intercomparison of computational codes in radiation dosimetry, indicate the immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumor. (author)
The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data
Energy Technology Data Exchange (ETDEWEB)
Ilic, Radovan D [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Spasic-Jokic, Vesna [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Belicev, Petar [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Dragovic, Milos [Center for Nuclear Medicine MEDICA NUCLEARE, Bulevar Despota Stefana 69, 11000 Belgrade (Serbia and Montenegro)
2005-03-07
This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.
The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data
Ilic, Radovan D.; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos
2005-03-01
This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.
The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data
International Nuclear Information System (INIS)
This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2004-01-01
Full Text Available This paper describes the application of SRNA Monte Carlo package for proton transport simulations in complex geometry and different material composition. SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our own and the Russian MSDM models using ICRU 63 data. The developed package consists of two codes SRNA-2KG, which simulates proton transport in the combinatorial geometry and SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield’s data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of proton beam characterization by Multi-Layer Faraday Cup, spatial distribution of positron emitters obtained by SRNA-2KG code, and intercomparison of computational codes in radiation dosimetry, indicate the immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in SRNA pack age, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumor.
Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project
Energy Technology Data Exchange (ETDEWEB)
Tore, C.; Rodriguez Rivada, A.
2014-07-01
Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2004-06-01
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Burnup effects of MOX fuel pincells in PWR - OECD/NEA burnup credit benchmark analysis -
International Nuclear Information System (INIS)
The burnup effects were analyzed for various cases of MOX fuel pincells of fresh and irradiated fuels by using the HELIOS, MCNP-4/B, CRX and CDP computer codes. The investigated parameters were burnup, cooling time and combinations of nuclides in the fuel region. The fuel compositions for each case were provided by BNFL (British Nuclear Fuel Limited) as a part of the problem specification so that the results could be focused on the calculation of the neutron multiplication factor. The results of the analysis show that the largest saving effect of the neutron multiplication factor due to burnup credit is 30 %. This is mainly due to the consideration of actinides and fission products in the criticality analysis
COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics
Barletta, Paolo
2012-02-01
Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability
Proceedings of the first symposium on Monte Carlo simulation
International Nuclear Information System (INIS)
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Proceedings of the first symposium on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
A Monte Carlo study of the effect of coded-aperture material and thickness on neutron imaging
International Nuclear Information System (INIS)
In this paper, a coded-aperture design for a scintillator-based neutron imaging system has been simulated using a series of Monte Carlo simulations. Using Monte Carlo simulations, work to optimise a system making use of the EJ-426 neutron scintillator detector has been conducted. This type of scintillator has a low sensitivity to gamma rays and is therefore particularly useful for neutron detection in a mixed radiation environment. Simulations have been conducted using varying coded-aperture materials and different coded-aperture thicknesses. From this, neutron images have been produced, compared qualitatively and quantitatively for each case to find the best material for the MURA (modified uniformly redundant array) pattern. The neutron images generated also allow observations on how differing thicknesses of coded-aperture impact the system. A system in which a neutron sensitive scintillator has been used in conjunction with a MURA coded aperture to detect and locate a neutron emitting point source centralised in the system has been simulated. A comparison between the results of the different coded-aperture thicknesses is discussed, via the calculation of system error between the reconstructed source location and the actual location. As the system is small scale with a relatively large step along the axis (0.5 cm), it is justifiable to say that the smaller error values provide satisfactory results, which correlate with only a few centimetres difference in the reconstructed source location to actual source location. A general trend of increasing error can be deduced both as the thickness of the coded-aperture material decreases and the capture cross section of the different materials reduces. (authors)
De Geyter, Gert; Fritz, Jacopo; Camps, Peter
2012-01-01
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different...
Study on burn-up credit and minor actinide in post-irradiation analysis
International Nuclear Information System (INIS)
Accuracy of burnup calculation for actinide is very important as to the study of burn-up credit. For minor-actinides such as Am243 and Cm244, however, typical burnup calculation codes are not accurate enough. The accuracy for both nuclides was studied by using the SWAT code. The study showed that the C/E values of both nuclides could be improved at the same time by changing the cross section of Pu242. A study of burnup calculation related to the cross section of Pu242 should be performed to improve the accuracy for both nuclides. (author)
Chiesa,
2014-01-01
In recent years, many computer codes, based on Monte Carlo methods or deterministic calculations, have been developed to separately analyze different aspects regarding nuclear reactors. Nuclear reactors are very complex systems, which require an integrated analysis of all the variables which are intrinsically correlated: neutron fluxes, reaction rates, neutron moderation and absorption, thermal and power distributions, heat generation and transfer, criticality coefficients, fuel burnup, e...
Energy Technology Data Exchange (ETDEWEB)
Procassini, R.J. [Lawrence Livermore National lab., CA (United States)
1997-12-31
The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.
Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A
2011-01-01
Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...
Energy Technology Data Exchange (ETDEWEB)
Lin, Yi-Chun [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Liu, Yuan-Hao, E-mail: yhl.taiwan@gmail.com [Boron Neutron Capture Therapy Center, Nuclear Science and Technology Development Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan (China); Nievaart, Sander [Institute for Energy, Joint Research Centre, European Commission, Petten (Netherlands); Chen, Yen-Fu [Department of Engineering and System Science, National Tsing Hua University, Taiwan (China); Wu, Shu-Wei; Chou, Wen-Tsae [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)
2011-10-01
High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary {sup 60}Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the {sup 60}Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.
Energy Technology Data Exchange (ETDEWEB)
Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)
2012-08-15
This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.
International Nuclear Information System (INIS)
High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, R.A.; Fernandez V, J.M.; Salvat, F. [Servicio de Oncologia Radioterapica. Hospital Clinico de Barcelona. Villarroel 170 08036 Barcelona (Spain)
1998-12-31
In the present communication it is presented the results of the simulation utilizing the Penelope code (Penetration and Energy loss of Positrons and Electrons) in several applications of radiotherapy which can be the radioactive sources simulation: {sup 192} Ir, {sup 125} I, {sup 106} Ru or the electron beams simulation of a linear accelerator Siemens KDS. The simulations presented in this communication have been on computers of type Pentium PC of 100 throughout 300 MHz, and the times of execution were from some hours until several days depending of the complexity of the problem. It is concluded that Penelope is a very useful tool for the Monte Carlo calculations due to its great ability and its relative handling facilities. (Author)
A new Monte Carlo code for simulation of the effect of irregular surfaces on X-ray spectra
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Antonio, E-mail: brunetti@uniss.it; Golosio, Bruno
2014-04-01
Generally, quantitative X-ray fluorescence (XRF) analysis estimates the content of chemical elements in a sample based on the areas of the fluorescence peaks in the energy spectrum. Besides the concentration of the elements, the peak areas depend also on the geometrical conditions. In fact, the estimate of the peak areas is simple if the sample surface is smooth and if the spectrum shows a good statistic (large-area peaks). For this reason often the sample is prepared as a pellet. However, this approach is not always feasible, for instance when cultural heritage or valuable samples must be analyzed. In this case, the sample surface cannot be smoothed. In order to address this problem, several works have been reported in the literature, based on experimental measurements on a few sets of specific samples or on Monte Carlo simulations. The results obtained with the first approach are limited by the specific class of samples analyzed, while the second approach cannot be applied to arbitrarily irregular surfaces. The present work describes a more general analysis tool based on a new fast Monte Carlo algorithm, which is virtually able to simulate any kind of surface. At the best of our knowledge, it is the first Monte Carlo code with this option. A study of the influence of surface irregularities on the measured spectrum is performed and some results reported. - Highlights: • We present a fast Monte Carlo code with the possibility to simulate any irregularly rough surfaces. • We show applications to multilayer measurements. • Real time simulations are available.
International Nuclear Information System (INIS)
In May 2010, JENDL-4.0 was released from Japan Atomic Energy Agency as the updated Japanese Nuclear Data Library. It was processed by the nuclear data processing system LICEM and an arbitrary-temperature neutron cross section library MVPlib-nJ40 was produced for the neutron and photon transport calculation code MVP based on the continuous-energy Monte Carlo method. The library contains neutron cross sections for 406 nuclides on the free gas model, thermal scattering cross sections, and cross sections of pseudo fission products for burn-up calculations with MVP. Criticality benchmark calculations were carried out with MVP and MVPlib-nJ40 for about 1,000 cases of critical experiments stored in the hand book of International Criticality Safety Benchmark Evaluation Project (ICSBEP), which covers a wide variety of fuel materials, fuel forms, and neutron spectra. We report all comparison results (C/E values) of effective neutron multiplication factors between calculations and experiments to give a validation data for the prediction accuracy of JENDL-4.0 for criticalities. (author)
Triton burnup measurements in KSTAR using a neutron activation system
Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.
2016-11-01
Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.
International Nuclear Information System (INIS)
Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes
International Nuclear Information System (INIS)
BOT3P consists of a set of standard Fortran 77 language programs that gives the users of the deterministic transport codes DORT, TORT, TWODANT, THREEDANT, PARTISN and the sensitivity code SUSD3D some useful diagnostic tools to prepare and check the geometry of their input data files for both Cartesian and cylindrical geometries, including graphical display modules. Users can produce the geometrical and material distribution data for all the cited codes for both two-dimensional and three-dimensional applications and, only in 3-dimensional Cartesian geometry, for the Monte Carlo Transport Code MCNP, starting from the same BOT3P input. Moreover, BOT3P stores the fine mesh arrays and the material zone map in a binary file, the content of which can be easily interfaced to any deterministic and Monte Carlo transport code. This makes it possible to compare directly for the same geometry the effects stemming from the use of different data libraries and solution approaches on transport analysis results. BOT3P Version 5.0 lets users optionally and with the desired precision compute the area/volume error of material zones with respect to the theoretical values, if any, because of the stair-cased representation of the geometry, and automatically update material densities on the whole zone domains to conserve masses. A local (per mesh) density correction approach is also available. BOT3P is designed to run on Linux/UNIX platforms and is publicly available from the Organization for Economic Cooperation and Development (OECD/NEA)/Nuclear Energy Agency Data Bank. Through the use of BOT3P, radiation transport problems with complex 3-dimensional geometrical structures can be modelled easily, as a relatively small amount of engineer-time is required and refinement is achieved by changing few parameters. This tool is useful for solving very large challenging problems, as successfully demonstrated not only in some complex neutron shielding and criticality benchmarks but also in a power
Energy Technology Data Exchange (ETDEWEB)
Kurosu, K [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Takashina, M; Koizumi, M [Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Das, I; Moskvin, V [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)
2014-06-01
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health
Transnucleaire's experience with burnup credit in transport operations
International Nuclear Information System (INIS)
Facing a continued increase in fuel enrichment values, Transnucleaire has progressively implemented a burnup credit programme in order to maintain or, where possible, to improve the capacity of its transport packagings without physical modification. Many package design approvals, based on a notion of burnup credit, have been granted by the French competent authority for transport since the early eighties, and many of these approvals have been validated by foreign competent authorities. Up to now, these approvals are restricted to fuel assemblies made of enriched uranium and irradiated in pressurized water reactors (PWR). The characterization of the irradiated fuel and the reactivity of the package are evaluated by calculation, performed using qualified French codes developed by the CEA (Commisariat a l'Energie Atomique/French Atomic Energy Commission): CESAR as a depletion code and APOLO-MORET as a criticality code. The approvals are based on the hypothesis that the burnup considered is that applied on the least irradiated region of the fuel assemblies, the conservative approach being not to take credit for any axial profile of burnup along the fuel assembly. The most reactive configuration is calculated and the burnup credit is also restricted to major actinides only. On the operational side and in compliance with regulatory requirements, verification is made before transport, in order to meet safety objectives as required by the transport regulations. Besides a review of documentation related to the irradiation history of each fuel assembly, it consists of either a qualitative (go/no-go) verification or of a quantitative measurement, depending on the level of burnup credit. Thus the use of burnup credit is now a common practice with Transnucleaire's packages, particularly in France and Germany. New improvements are still in progress and qualifications of the calculation code are now well advanced, which will allow in the near future the use of six selected
Analysis of the TRIGA MARK-II benchmark IEU-COMP-THERM-003 with Monte Carlo code MVP
Mahmood, M. S.; 長家 康展; 森 貴正
2004-01-01
The benchmark experiments of the TRIGA Mark-II reactor in the ICSBEP handbook have been analyzed with the Monte Carlo code MVP using the cross section libraries based on JENDL-3.3, JENDL-3.2 and ENDF/B-VI.8. MCNP calculations have been also performed with the ENDF/B-VI.6 library for comparison between the MVP and MCNP results. For both cores labeled 132 and 133, which have different core configurations, the ratio of the calculated to the experimental results (C/E) for keff obtained by the MVP...
Energy Technology Data Exchange (ETDEWEB)
Hartanto, Donny; Heo, Woong; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)
2016-04-15
The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.
User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code
International Nuclear Information System (INIS)
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate keff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
International Nuclear Information System (INIS)
The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs
International Nuclear Information System (INIS)
The nuclear library of the MVP-ORBURN, a Monte Carlo burnup code for burnup credit applications, was updated to the JENDL-4.0. The test analysis was performed using the selected post irradiation experiment data from the SFCOMPO database. The selected samples were: Takahama unit 3 (14 samples), Calvert Cliffs No.1 (9 samples), Fukushima-Daini unit 2 (14 samples), and H. B. Robinson unit 2 (6 samples). The preliminary results showed significant improvement in the Am and Cm densities compared with the previous version JENDL-3.3: This result partly agrees with the main conclusions obtained from the pre-analysis by JAEA. (author)
The Monte-Carlo-code BAMJET to stimulate the fragmentation of quark-antiquark jets
International Nuclear Information System (INIS)
A computer code BAMJET (Baryon-Meson JET) in Fortran language is described. The code BAMJET simulates the fragmentation into hadrons of quark-antiquark systems produced in positron-electron-annihilation processes on the basis of a chain decay model. The programme treats also the fragmentation of charmed quarks. In detail all subroutines are described, the most important input and output variables and fields are listed. Besides the flow diagramm of the code BAMJET the results of the simulation are tabulated
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Ghoos, K.; Dekeyser, W.; Samaey, G.; Börner, P.; Baelmans, M.
2016-10-01
The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.
International Nuclear Information System (INIS)
This report reviews the Monte-Carlo Simulation Code, ICARES, developed to simulate the actual physical processes that occur inside a Self-Powered Flux Detector (SPED) which is used for flux mapping, control and safety in CANDU-PHWR. in addition, the various current producing mechanisms, electron transport and the calculation of detector sensitivity is briefly described. Moreover, two applications of the code to the development of SPFDs are presented: 1) the first application is to the development of a prompt-neutron sensitive flux-mapping detector using iron on titanium as an emitter material, 2) the second application is to the calculation of the sensitivity of a larger outside diameter lead cable for SPFDs. (Author) 8 refs., 3 figs., 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin-mx
2003-07-01
An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods {approx} 1 pcm in hot condition and of {approx} 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)
The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere
International Nuclear Information System (INIS)
The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department
PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers
International Nuclear Information System (INIS)
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs
PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers
Energy Technology Data Exchange (ETDEWEB)
Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.
1996-07-01
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.
The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Alan, E.; Nahum, PhD. [Copenhagen University Hospital, Radiation Physics Dept. (Denmark)
2003-07-01
Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)
The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy
International Nuclear Information System (INIS)
Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)
Methods used in burn-up determination of the irradiated fuel rods at TRIGA reactor
International Nuclear Information System (INIS)
A short presentation of the methods used at INR TRIGA reactor for the burn-up determination is given together with some considerations on ORIGEN 2 computer code used for calculating fission products activities and nuclide concentration. Burn-up is determined by gamma spectroscopy and thermal power monitoring. (Author)
Energy Technology Data Exchange (ETDEWEB)
Takeda, N. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kudo, K. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Toyokawa, H. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Torii, T. [Japan Power Reactor and Nuclear Fuel Development Corporation, Tsuruga Office, Fukui 919-12 (Japan); Hashimoto, M. [Japan Power Reactor and Nuclear Fuel Development Corporation, O-arai Engineering Center, Ibaraki 311-13 (Japan); Sugita, T. [Science System Laboratory, Ibaraki 309-17 (Japan); Dietze, G. [Physikalisch-Technische Bundesanstalt, 38023 Braunschweig (Germany); Yang, X. [China Institute of Atomic Energy (China)
1999-02-11
A Monte Carlo code Neutron RESPonse function for Gas counters (NRESPG) has been developed for the calculation of neutron response functions and efficiencies for neutron energies up to 20 MeV, which can be applied for {sup 3}He, H{sub 2}, or BF{sub 3} gas proportional counters with or without moderator. This code can simulate the neutron behavior in a two-dimensional detector configuration and treat the thermal motion of a moderator atom which becomes important as the neutron energy becomes sufficiently low. Further, a more precise measured data was taken to simulate the position-dependent gas multiplication in the sensitive and insensitive gas region of a proportional counter. The NRESPG code has been applied for the calculation of response functions of {sup 3}He cylindrical proportional counters to determine neutron energy and neutron fluence in a monoenergetic calibration field. Thus, a remarkable discrepancy in the lower portion of the full-energy peak produced by the {sup 3}He(n,p)T reaction can be removed which results in a good agreement between simulations and experiments. The code has been also used for the simulation of the response of a McTaggart-type long counter consisting of a central cylindrical BF{sub 3} counter surrounded by a polyethylene moderator. The results of the NRESPG simulations were compared with those obtained from MCNP calculations.
Energy Technology Data Exchange (ETDEWEB)
Habib, B.; Poumarede, B.; Tola, F.; Barthe, J. [CEA, LIST, Dept Technol Capteur et Signal, F-91191 Gif Sur Yvette, (France)
2010-07-01
The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within {+-} 1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE. (authors)
International Nuclear Information System (INIS)
A Monte Carlo code Neutron RESPonse function for Gas counters (NRESPG) has been developed for the calculation of neutron response functions and efficiencies for neutron energies up to 20 MeV, which can be applied for 3He, H2, or BF3 gas proportional counters with or without moderator. This code can simulate the neutron behavior in a two-dimensional detector configuration and treat the thermal motion of a moderator atom which becomes important as the neutron energy becomes sufficiently low. Further, a more precise measured data was taken to simulate the position-dependent gas multiplication in the sensitive and insensitive gas region of a proportional counter. The NRESPG code has been applied for the calculation of response functions of 3He cylindrical proportional counters to determine neutron energy and neutron fluence in a monoenergetic calibration field. Thus, a remarkable discrepancy in the lower portion of the full-energy peak produced by the 3He(n,p)T reaction can be removed which results in a good agreement between simulations and experiments. The code has been also used for the simulation of the response of a McTaggart-type long counter consisting of a central cylindrical BF3 counter surrounded by a polyethylene moderator. The results of the NRESPG simulations were compared with those obtained from MCNP calculations
Energy Technology Data Exchange (ETDEWEB)
Palomba, M. E-mail: maurizio.palomba@ba.infn.it; D' Erasmo, G.; Pantaleo, A
2003-02-11
The CSSE code, a GEANT3-based Monte Carlo simulation program, has been developed in the framework of the EXPLODET project (Nucl. Instr. and Meth. A 422 (1999) 918) with the aim to simulate experimental set-ups employed in Thermal Neutron Analysis (TNA) for the landmines detection. Such a simulation code appears to be useful for studying the background in the {gamma}-ray spectra obtained with this technique, especially in the region where one expects to find the explosive signature (the {gamma}-ray peak at 10.83 MeV coming from neutron capture by nitrogen). The main features of the CSSE code are introduced and original innovations emphasized. Among the latter, an algorithm simulating the time correlation between primary particles, according with their time distributions is presented. Such a correlation is not usually achievable within standard GEANT-based codes and allows to reproduce some important phenomena, as the pulse pile-up inside the NaI(Tl) {gamma}-ray detector employed, producing a more realistic detector response simulation. CSSE has been successfully tested by reproducing a real nuclear sensor prototype assembled at the Physics Department of Bari University.
Investigation of the Fundamental Constants Stability Based on the Reactor Oklo Burn-Up Analysis
Onegin, M. S.; Yudkevich, M. S.; Gomin, E. A.
2012-12-01
The burn-up of few samples of the natural Oklo reactor zones 3, 5 was calculated using the modern Monte Carlo code. We reconstructed the neutron spectrum in the core by means of the isotope ratios: 147Sm/148Sm and 176Lu/175Lu. These ratios unambiguously determine the water content and core temperature. The isotope ratio of the 149Sm in the sample calculated using this spectrum was compared with experimental one. The disagreement between these two values allows one to limit a possible shift of the low lying resonance of 149Sm. Then, these limits were converted to the limits for the change of the fine structure constant α. We have found out, that for the rate of α change, the inequality ěrt˙ {α }/α ěrt<= 5× 10-18 is fulfilled, which is one order higher than our previous limit.
Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis
Onegin, M S
2010-01-01
The burn-up for SC56-1472 sample of the natural Oklo reactor zone 3 was calculated using the modern Monte Carlo codes. We reconstructed the neutron spectrum in the core by means of the isotope ratios: $^{147}$Sm/$^{148}$Sm and $^{176}$Lu/$^{175}$Lu. These ratios unambiguously determine the spectrum index and core temperature. The effective neutron absorption cross section of $^{149}$Sm calculated using this spectrum was compared with experimental one. The disagreement between these two values allows to limit a possible shift of the low laying resonance of $^{149}$Sm even more . Then, these limits were converted to the limits for the change of the fine structure constant $\\alpha$. We found that for the rate of $\\alpha$ change the inequality $|\\delta \\dot{\\alpha}/\\alpha| \\le 5\\cdot 10^{-18}$ is fulfilled, which is of the next higher order than our previous limit.
Institute of Scientific and Technical Information of China (English)
郝琛; 李富
2013-01-01
The fuel pebbles pass through the reactor core several times in a pebble bed high temperature gas cooled reactor (HTR).The burnup of the fuel balls is measured after they are discharged from the core bottom by a burnup measurement device.Those whose burnup does not reach the threshold are returned to the top of the core to pass through the core again,with the others transferred to the spent fuel storage tank.However,these random errors in the burnup measurement affect the fuel cycle.The MCPHS code,which is based on the Monte Carlo method,was used to analyze the characteristics of the pebble bed flow to simulate the random error in burnup measurement and its effect on the fuel cycle.The results show that the average discharge burnup and the distribution of the burnup in the core are not sensitive to the random error,while the distribution of the discharge burnup and the maximum and minimum discharge burnups are particularly sensitive to the random error in the burnup measurement.%球床式高温气冷堆燃料球多次通过堆芯,卸出堆芯的燃料球将由燃耗测量装置测量其燃耗,达到设定阈值的将按乏燃料处理,否则将返回堆芯继续裂变发热.而燃耗测量会具有随机误差,从而可能对燃料循环过程产生影响.该文改进了球床高温气冷堆燃料球运行历史的Monte Carlo模拟程序MCPHS,对燃耗测量的随机误差进行了模拟,对燃料循环过程的影响进行了分析.结果表明卸料燃耗均值、燃料球通过堆芯次数均值、堆芯燃耗分布对于燃耗测量误差并不敏感,而燃料球卸料燃耗分布、卸料燃耗最大值和最小值及燃料球通过堆芯最大值和最小值对于燃耗测量误差很敏感.
Domain decomposition and terabyte tallies with the OpenMC Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Memory limitations are a key obstacle to applying Monte Carlo neutron transport methods to high-fidelity full-core reactor analysis. Billions of unique regions are needed to carry out full-core depletion and fuel performance analyses, equating to terabytes of memory for isotopic abundances and tally scores - far more than can fit on a single computational node in modern architectures. This work introduces an implementation of domain decomposition that addresses this problem, demonstrating excellent scaling up to a 2.39TB mesh-tally distributed across 512 compute nodes running a full-core reactor benchmark on the Mira Blue Gene/Q supercomputer at Argonne National Laboratory. (author)
Basic physical and chemical information needed for development of Monte Carlo codes
International Nuclear Information System (INIS)
It is important to view track structure analysis as an application of a branch of theoretical physics (i.e., statistical physics and physical kinetics in the language of the Landau school). Monte Carlo methods and transport equation methods represent two major approaches. In either approach, it is of paramount importance to use as input the cross section data that best represent the elementary microscopic processes. Transport analysis based on unrealistic input data must be viewed with caution, because results can be misleading. Work toward establishing the cross section data, which demands a wide scope of knowledge and expertise, is being carried out through extensive international collaborations. In track structure analysis for radiation biology, the need for cross sections for the interactions of electrons with DNA and neighboring protein molecules seems to be especially urgent. Finally, it is important to interpret results of Monte Carlo calculations fully and adequately. To this end, workers should document input data as thoroughly as possible and report their results in detail in many ways. Workers in analytic transport theory are then likely to contribute to the interpretation of the results
Increased burnup of fuel elements
International Nuclear Information System (INIS)
The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)
Directory of Open Access Journals (Sweden)
Diego Ferraro
2011-01-01
Full Text Available Monte Carlo neutron transport codes are usually used to perform criticality calculations and to solve shielding problems due to their capability to model complex systems without major approximations. However, these codes demand high computational resources. The improvement in computer capabilities leads to several new applications of Monte Carlo neutron transport codes. An interesting one is to use this method to perform cell-level fuel assembly calculations in order to obtain few group constants to be used on core calculations. In the present work the VTT recently developed Serpent v.1.1.7 cell-oriented neutronic calculation code is used to perform cell calculations of a theoretical BWR lattice benchmark with burnable poisons, and the main results are compared to reported ones and with calculations performed with Condor v.2.61, the INVAP's neutronic collision probability cell code.
International Nuclear Information System (INIS)
Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs
International Nuclear Information System (INIS)
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random number generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN
International Nuclear Information System (INIS)
For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, Th.; Nimal, J.C.; Chiron, M
2001-07-01
The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)
Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias
International Nuclear Information System (INIS)
Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)
International Nuclear Information System (INIS)
The criticality analysis of the TRIGA-II benchmark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuels and control rods as well as vicinity of the core were precisely modeled. Effective multiplication factors (keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated keff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements (fuels or graphite elements were added only to the outer-ring), but the discrepancy increased to 1.8%Δk/k for the some fuel-loading patterns (graphite elements were inserted into the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-II reactor. (author)
Characterisation of the TRIUMF neutron facility using a Monte Carlo simulation code.
Monk, S D; Abram, T; Joyce, M J
2015-04-01
Here, the characterisation of the high-energy neutron field at TRIUMF (The Tri Universities Meson Facility, Vancouver, British Columbia) with Monte Carlo simulation software is described. The package used is MCNPX version 2.6.0, with the neutron fluence rate determined at three locations within the TRIUMF Thermal Neutron Facility (TNF), including the exit of the neutron channel where users of the facility can test devices that may be susceptible to the effects of this form of radiation. The facility is often used to roughly emulate the field likely to be encountered at high altitudes due to radiation of galactic origin and thus the simulated information is compared with the energy spectrum calculated to be due to neutron radiation of cosmic origin at typical aircraft altitudes. The calculated values were also compared with neutron flux measurements that were estimated using the activation of various foils by the staff of the facility, showing agreement within an order of magnitude.
A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT
Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J
2001-01-01
We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...
Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate
Energy Technology Data Exchange (ETDEWEB)
Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)
2011-07-01
Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)
Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate
International Nuclear Information System (INIS)
Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)
Indian Academy of Sciences (India)
MOHAMED M OULD; DIB A S A; BELBACHIR A H
2016-07-01
Cosmic rays cause significant damage to the electronic equipments of the aircrafts. In this paper, we have investigated the accumulation of the deposited energy of cosmic rays on the Earth’s atmosphere, especially in the aircraft area. In fact, if a high-energy neutron or proton interacts with a nanodevice having only a few atoms, this neutron or proton particle can change the nature of this device and destroy it. Our simulation based on Monte Carlo using Geant4 code shows that the deposited energy of neutron particles ranging between 200MeV and 5 GeV are strongly concentrated in the region between 10 and 15 km from the sea level which is exactly the avionic area. However, the Bragg peak energy of proton particle is slightly localized above the avionic area.
Energy Technology Data Exchange (ETDEWEB)
Sohrabpour, M. [Gamma Irradiation Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Shahriari, M. [Physics Department, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Zarifian, V.; Moghadam, K.K. [Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)
1999-04-01
A borehole experiment using prompt gamma neutron activation analysis has been performed in a large sample box having a volume of 1 m{sup 3}. Brine solutions having a salt concentration in the range of 0-10 wt% of sodium chloride has been used. Chlorine prompt gamma spectral response as a function of the salt concentrations have been obtained. A simulation of the above experiments has also been carried out using the MCNP4A Monte Carlo code. Comparison of the experimental spectral response versus the simulated MCNP4A data has produced excellent agreement. In view of the good benchmark data it is proposed that due to the inherent problems associated with the ordinary calibration procedures for the borehole logging tools, one could employ a combined calibration/simulation scheme to circumvent these difficulties and achieve more effective results.
International Nuclear Information System (INIS)
The mass attenuation coefficients of water, bakelite and concrete sample defined in the simulation package were obtained using the FLUKA Monte Carlo code at 59.5, 80.9, 140.5, 356.5, 661.6, 1173.2 and 1332.5 keV photon energies. The results for the mass attenuation coefficients obtained by simulation have been compared with experimental and the theoretical ones and good agreement has been observed. The results indicate that this process can be followed to determine the data on the attenuation of gamma-rays with the several energies in other materials. Also, the deposited energy by 661.6 keV photons at several thicknesses of each media was determined as being an important data for radiation shielding studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Hugtenburg, Richard P., E-mail: r.p.hugtenburg@swansea.ac.u [School of Medicine, Swansea University, Swansea SA2 8PP (United Kingdom); Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg University, LHB, Swansea SA2 8QA (United Kingdom); Adegunloye, A.S.; Bradley, David A. [Department of Physics, Surrey University, Guildford (United Kingdom)
2010-07-21
Microbeam radiation therapy (MRT) is currently being considered for the treatment of glioblastoma multiforme. A high degree of dosimetric accuracy (around 5%) is known to be required for a successful outcome in conventional radiation therapy, Modelling of MRT beams, measurements and treatments have been performed with Monte Carlo methods using the code EGS5, which features improved physics models for low energy scattering processes including linear polarisation. Polarisation of the X-ray source leads to distortions in beam profiles that exceed the usual clinical tolerances. Changes in the energy spectrum also effect the response of many dosimetry systems. Anatomical (CT) data has been used in the dose calculations and the manipulation of dose data with the open-source software treatment planning system, PlanUNC, is demonstrated, in order that the therapeutic effects of the different components, e.g. the microbeam and scattered photons, can examined separately in relation to relevant anatomy.
High burnup experience in PWRs
International Nuclear Information System (INIS)
The purpose of this paper is to summarize the high burnup experience of Westinghouse PWR fuel. The emphasis is on two regions of commercial PWR fuel that attained region average burnups greater than 36,000 MWD/MTU. One region operated under load follow conditions. The other region operated at base load conditions with a high average linear heat rating. Coolant activity data and post irradiation data were obtained. The post-irradiation data consisted of visual examinations, crud sampling, rod-to-rod dimensional changes, fuel column length changes, rod and assembly growth, assembly bow, fuel rod profilometry, grid spring relaxation, and fuel assembly sipping tests. The data showed that the fuel operated reliably to this burnup. Plans for irradiation to higher burnups are also discussed
Energy Technology Data Exchange (ETDEWEB)
Fonseca, T.C.F.; Bastos, F.M.; Figueiredo, M.T.T.; Souza, L.S.; Guimaraes, M.C.; Silva, C.R.E.; Mello, O.A.; Castelo e Silva, L.A.; Paixao, L., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Benavente, J.A.; Paiva, F.G. [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnicas Nucleares
2015-07-01
Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)
Simulation of the plasma-wall interaction in a tokamak with the Monte Carlo code ERO-TEXTOR
International Nuclear Information System (INIS)
The interaction of plasma with the walls has been one of the critical issues in the development of fusion energy research. On the one hand, plasma induced erosion can seriously limit the lifetime of the wall components, while, on the other hand, eroded particles can be transported into the core plasma where they lead to dilution of the fusion plasma and to energy losses due to radiation. Low-Z wall materials induce only small radiation losses in the plasma core but suffer from large physical sputtering rates. Carbon based materials in addition suffer from chemically induced erosion. High-Z wall materials show significantly smaller erosion but lead to large radiation losses. One of the main goals of present plasma-wall studies is to find a special choice of wall materials for steady state plasma scenarios that will provide an optimum with respect to fuel dilution, radiation losses, wall lifetime and fuel inventory in the walls. To obtain a better understanding of the processes and to estimate the plasma-wall interaction behaviour in future fusion devices the 3-D Monte Carlo code ERO-TEXTOR, based originally on the ERO code, has been developed. It models the plasma-wall interaction and transport processes in the vicinity of a surface positioned in the boundary layer of TEXTOR. The main aim is to simulate the erosion and redeposition behaviour of different wall materials under various plasma conditions and to compare this with experimental results. This contribution describes the main features of the ERO-TEXTOR code and gives some examples of simulation calculations to illustrate the application of the code. (author)
CB2 result evaluation (VVER-440 burnup credit benchmark)
International Nuclear Information System (INIS)
The second portion of the four-piece international calculational benchmark on the VVER burnup credit (CB2) prepared in the collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmarks Working Group and proposed to the AER research community has been evaluated. The evaluated results of calculations performed by analysts from Cuba, the Czech Republic, Finland, Germany, Russia, Slovakia and the United Kingdom are presented. The goal of this study is to compare isotopic concentrations calculated by the participants using various codes and libraries for depletion of the VVER-440 fuel pin cell. No measured values were available for the comparison. (author)
Power excursion analysis for BWR`s at high burnup
Energy Technology Data Exchange (ETDEWEB)
Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)
1996-03-01
A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.
International Nuclear Information System (INIS)
Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value
Lee, Y.-K.; Brun, E.
2014-04-01
The Sodium-cooled fast neutron reactor ASTRID is currently under design and development in France. Traditional ECCO/ERANOS fast reactor code system used for ASTRID core design calculations relies on multi-group JEFF-3.1.1 data library. To gauge the use of ENDF/B-VII.0 and JEFF-3.1.1 nuclear data libraries in the fast reactor applications, two recent OECD/NEA computational benchmarks specified by Argonne National Laboratory were calculated. Using the continuous-energy TRIPOLI-4 Monte Carlo transport code, both ABR-1000 MWth MOX core and metallic (U-Pu) core were investigated. Under two different fast neutron spectra and two data libraries, ENDF/B-VII.0 and JEFF-3.1.1, reactivity impact studies were performed. Using JEFF-3.1.1 library under the BOEC (Beginning of equilibrium cycle) condition, high reactivity effects of 808 ± 17 pcm and 1208 ± 17 pcm were observed for ABR-1000 MOX core and metallic core respectively. To analyze the causes of these differences in reactivity, several TRIPOLI-4 runs using mixed data libraries feature allow us to identify the nuclides and the nuclear data accounting for the major part of the observed reactivity discrepancies.
Mairani, A; Kraemer, M; Sommerer, F; Parodi, K; Scholz, M; Cerutti, F; Ferrari, A; Fasso, A
2010-01-01
Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fur Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed C-12 ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-d...
Performance of the improved version of Monte Carlo Code A{sup 3}MCNP for cask shielding design
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, T. [Mitsubishi Heavy Industries, Yokohama (Japan); Ueki, K. [Tokai Univ., Kanagawa (Japan); Sato, O. [Mitsubishi Research Inst., Tokyo (Japan); Sjoden, G.E. [Dept. of Nuclear and Radiological Engineering, Univ. of Florida, Gainesville, FL (United States); Miyake, Y.; Ohmura, M.; Haghighat, A.
2004-07-01
A{sup 3}MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A{sup 3}MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A{sup 3}MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A{sup 3}MCNP (referred to as A{sup 3}MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A{sup 3}MCNPV for cask neutron and gamma-ray shielding problem.
International Nuclear Information System (INIS)
Mammography is a standard procedure that facilitates breast cancer detection. Initial results of contrast-enhanced digital mammography (CEDM) are promising. The purpose of this study is to assess the CEDM radiation dose using a Monte Carlo code. EGSnrc MC code was used to simulate the interaction of photons with matter and estimate the glandular dose (Dg). A voxel female human phantom with a 2-8-cm breast thickness range and a breast glandular composition of 50 % was applied. Dg values ranged between 0.96 and 1.45 mGy (low and high energy). Dg values for a breast thickness of 5.0 cm and a glandular fraction of 50 % for craniocaudal and mediolateral oblique view were 1.12 (low energy image contribution is 0.98 mGy) and 1.07 (low energy image contribution is 0.95 mGy), respectively. The low kV part of CEDM is the main contributor to total glandular breast dose. (authors)
Chen, Xuhui; Liang, Edison; Boettcher, Markus
2011-01-01
(abridged) We present a new time-dependent multi-zone radiative transfer code and its application to study the SSC emission of Mrk 421. The code couples Fokker-Planck and Monte Carlo methods, in a 2D geometry. For the first time all the light travel time effects (LCTE) are fully considered, along with a proper treatment of Compton cooling, which depends on them. We study a set of simple scenarios where the variability is produced by injection of relativistic electrons as a `shock front' crosses the emission region. We consider emission from two components, with the second one either being pre-existing and co-spatial and participating in the evolution of the active region, or spatially separated and independent, only diluting the observed variability. Temporal and spectral results of the simulation are compared to the multiwavelength observations of Mrk 421 in March 2001. We find parameters that can adequately fit the observed SEDs and multiwavelength light curves and correlations. There remain however a few o...
Directory of Open Access Journals (Sweden)
Nilseia Aparecida Barbosa
2014-08-01
Full Text Available Purpose: Melanoma at the choroid region is the most common primary cancer that affects the eye in adult patients. Concave ophthalmic applicators with 106Ru/106Rh beta sources are the more used for treatment of these eye lesions, mainly lesions with small and medium dimensions. The available treatment planning system for 106Ru applicators is based on dose distributions on a homogeneous water sphere eye model, resulting in a lack of data in the literature of dose distributions in the eye radiosensitive structures, information that may be crucial to improve the treatment planning process, aiming the maintenance of visual acuity. Methods: The Monte Carlo code MCNPX was used to calculate the dose distribution in a complete mathematical model of the human eye containing a choroid melanoma; considering the eye actual dimensions and its various component structures, due to an ophthalmic brachytherapy treatment, using 106Ru/106Rh beta-ray sources. Two possibilities were analyzed; a simple water eye and a heterogeneous eye considering all its structures. Two concave applicators, CCA and CCB manufactured by BEBIG and a complete mathematical model of the human eye were modeled using the MCNPX code. Results and Conclusion: For both eye models, namely water model and heterogeneous model, mean dose values simulated for the same eye regions are, in general, very similar, excepting for regions very distant from the applicator, where mean dose values are very low, uncertainties are higher and relative differences may reach 20.4%. For the tumor base and the eye structures closest to the applicator, such as sclera, choroid and retina, the maximum difference observed was 4%, presenting the heterogeneous model higher mean dose values. For the other eye regions, the higher doses were obtained when the homogeneous water eye model is taken into consideration. Mean dose distributions determined for the homogeneous water eye model are similar to those obtained for the
Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code
International Nuclear Information System (INIS)
In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5 cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSPBICHP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSPBERTHP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25 meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. - Highlights: • The results of boron-coated GEM for thermal neutrons are described. • The simulations were performed by GEANT4 MC code. • The evaluation was determined by GEANT4 using two physics lists. • The response of the detector was taken for En=25–100 meV
International Nuclear Information System (INIS)
In the field of shielding, the requirement of radiation transport calculations in severe conditions, characterized by irreducible three-dimensional geometries has increased the use of the Monte Carlo method. The latter has proved to be the only rigorous and appropriate calculational method in such conditions. However, further efforts at optimization are still necessary to render the technique practically efficient, despite recent improvements in the Monte Carlo codes, the progress made in the field of computers and the availability of accurate nuclear data. Moreover, the personal experience acquired in the field and the control of sophisticated calculation procedures are of the utmost importance. The aim of the work which has been carried out is the gathering of all the necessary elements and features that would lead to an efficient utilization of the Monte Carlo method used in connection with shielding problems. The study of the general aspects of the method and the exploitation techniques of the MORSE code, which has proved to be one of the most comprehensive of the Monte Carlo codes, lead to a successful analysis of an actual case. In fact, the severe conditions and difficulties met have been overcome using such a stochastic simulation code. Finally, a critical comparison between calculated and high-accuracy experimental results has allowed the final confirmation of the methodology used by us
The commercial and technological impact of high burnup
International Nuclear Information System (INIS)
Deregulation of electricity markets is driving prices downward. Consequently utilities continue to demand the minimization of electrical production costs. Fuel cycle cost savings are valued as a strong contributor, although directly representing only about one third of electricity generating costs. Burnups consistent with the current enrichment limit of 5 w/0 will be required. Significant progress has already been achieved by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges imposed are mainly related to corrosion and hydrogen pickup of the clad, the properties of the fuel and the dimensional changes of the structure. Clad materials with increased corrosion resistance have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity, the rim effect and the increase of fission gas release can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved or the solutions are visible. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)
Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.
Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J
2014-10-22
In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.
Nuclear analyses of some key aspects of the ITER design with Monte Carlo codes
International Nuclear Information System (INIS)
The design of the ITER machine was presented in 2001 . A nuclear analysis was performed at this time, using fairly detailed models and the best assessed nuclear data and codes that were available. As the construction phase of ITER is approaching, the design of the main components has been optimized/finalized and several minor design changes/optimizations have been made, some with the object to mitigate critical radiation shielding problems. These have required refined calculations to confirm that the nuclear design requirements are met. This paper reviews some of the most recent neutronic work with emphasis on critical nuclear responses in the TF coil inboard legs and vacuum vessel related to design modifications made to the blanket modules and vacuum vessel
Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo
Directory of Open Access Journals (Sweden)
Guo Dong
2005-01-01
Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.
Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.
Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J
2014-10-22
In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183
International Nuclear Information System (INIS)
The use of focused anti-scatter grids on digital radiographic systems with two-dimensional detectors produces acquisitions with a decreased scatter to primary ratio and thus improved contrast and resolution. Simulation software is of great interest in optimizing grid configuration according to a specific application. Classical simulators are based on complete detailed geometric descriptions of the grid. They are accurate but very time consuming since they use Monte Carlo code to simulate scatter within the high-frequency grids. We propose a new practical method which couples an analytical simulation of the grid interaction with a radiographic system simulation program. First, a two dimensional matrix of probability depending on the grid is created offline, in which the first dimension represents the angle of impact with respect to the normal to the grid lines and the other the energy of the photon. This matrix of probability is then used by the Monte Carlo simulation software in order to provide the final scattered flux image. To evaluate the gain of CPU time, we define the increasing factor as the increase of CPU time of the simulation with as opposed to without the grid. Increasing factors were calculated with the new model and with classical methods representing the grid with its CAD model as part of the object. With the new method, increasing factors are shorter by one to two orders of magnitude compared with the second one. These results were obtained with a difference in calculated scatter of less than five percent between the new and the classical method. (authors)
Energy Technology Data Exchange (ETDEWEB)
Parreno Z, F.; Paucar J, R.; Picon C, C. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)
1998-12-31
The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)
Development of the point-depletion code DEPTH
International Nuclear Information System (INIS)
Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code
Fission-gas release at extended burnups: effect of two-dimensional heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K
2000-09-01
To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)
International Nuclear Information System (INIS)
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of ∼5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a 60Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg. and 75 deg. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.
Energy Technology Data Exchange (ETDEWEB)
Carvajal, M A; Palma, A J [Departamento de Electronica y Tecnologia de Computadores, Universidad de Granada, E-18071 Granada (Spain); Garcia-Pareja, S [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda Carlos Haya, s/n, E-29010 Malaga (Spain); Guirado, D [Servicio de RadiofIsica, Hospital Universitario ' San Cecilio' , Avda Dr Oloriz, 16, E-18012 Granada (Spain); Vilches, M [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda Fuerzas Armadas, 2, E-18014 Granada (Spain); Anguiano, M; Lallena, A M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)], E-mail: carvajal@ugr.es, E-mail: garciapareja@gmail.com, E-mail: dguirado@ugr.es, E-mail: mvilches@ugr.es, E-mail: mangui@ugr.es, E-mail: ajpalma@ugr.es, E-mail: lallena@ugr.es
2009-10-21
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of {approx}5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a {sup 60}Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg. and 75 deg. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.
Carvajal, M A; García-Pareja, S; Guirado, D; Vilches, M; Anguiano, M; Palma, A J; Lallena, A M
2009-10-21
In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered. PMID:19794247
International Nuclear Information System (INIS)
In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3 for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4). At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4 code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation. Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries. Finally, a B1 leakage model is implemented in the TRIPOLI-4 code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPOLI-4 code allows producing multi-group constants which can then be used in the core
The impact of burn-up credit in criticality studies
International Nuclear Information System (INIS)
Nowadays optimization goes with everything. So French engineering firms try to demonstrate that fuel transport casks and storage pools are able to receive assemblies with higher 235U initial enrichments. Fuel Burnup distribution contributes to demonstrate it. This instruction has to elaborate a way to take credit of burnup effects on criticality safety designs. The calculation codes used are CESAR 4.21-APOLLO 1-MORET III. The assembly studied (UO2) is irradiated in a French Pressurized Water Reactor like EDF nuclear power reactor: PWR 1300 MWe, 17 x 17 array. Its initial enrichment in 235U equals 4.5%. The studies exposed in this report have evaluated the effects of: i) the 15 fission products considered in Burnup Credit (95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 133Cs, 143Nd, 145Nd, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 153Eu, 155Gd), ii) the calculated abundances corrected or not by fixed factors, iii) the choice of one cross sections library used by CESAR 4.21, iu) the zone number elected in the axial burnup distribution zoning, u) the kind of cut applied on (regular/optimized). Two axial distribution profiles are studied: one with 44 GWd/t average burnup, the other with 20 GWd/t average burnup. The second one considers a shallow control rods insertion in the upper limit of the assembly. The results show a margin in reactivity about 0.045 with consideration of the 6 most absorbent fission products (103Rh, 133Cs, 143Nd, 149Sm, 152Sm, 155Gd), and about 0.06 for all Burnup Credit fission products whole. Those results have been calculated with an average burnup of 44 GWj/t. In a conservative approach, corrective factors must be apply on the abundance of some fission products. The cross sections library used by CESAR 4.21 (BBL 4) is sufficient and gives satisfactory results. The zoning of the assembly axial distribution burnup in 9 regular zones grants a satisfying calculation time/result precision compromise. (author)
Estimation of staff doses in complex radiological examinations using a Monte Carlo computer code
International Nuclear Information System (INIS)
The protection of medical personnel in interventional radiology is an important issue of radiological protection. The irradiation of the worker is largely non-uniform, and a large part of his body is shielded by a lead apron. The estimation of effective dose (E) under these conditions is difficult and several approaches are used to estimate effective dose involving such a protective apron. This study presents a summary from an extensive series of simulations to determine scatter-dose distribution around the patient and staff effective dose from personal dosimeter readings. The influence of different parameters (like beam energy and size, patient size, irradiated region, worker position and orientation) on the staff doses has been determined. Published algorithms that combine readings of an unshielded and a shielded dosimeter to estimate effective dose have been applied and a new algorithm, that gives more accurate dose estimates for a wide range of situations was proposed. A computational approach was used to determine the dose distribution in the worker's body. The radiation transport and energy deposition was simulated using the MCNP4B code. The human bodies of the patient and radiologist were generated with the Body Builder anthropomorphic model-generating tool. The radiologist is protected with a lead apron (0.5 mm lead equivalent in the front and 0.25 mm lead equivalent in the back and sides) and a thyroid collar (0.35 mm lead equivalent). The lower-arms of the worker were folded to simulate the arms position during clinical examinations. This realistic situation of the folded arms affects the effective dose to the worker. Depending on the worker position and orientation (and of course the beam energy), the difference can go up to 25 percent. A total of 12 Hp(10) dosimeters were positioned above and under the lead apron at the neck, chest and waist levels. Extra dosimeters for the skin dose were positioned at the forehead, the forearms and the front surface of
RAPID program to predict radial power and burnup distribution of UO{sub 2} fuel
Energy Technology Data Exchange (ETDEWEB)
Lee, Chan Bock; Song, Jae Sung; Bang, Je Gun; Kim, Dae Ho [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-02-01
Due to the radial variation of the neutron flux and its energy spectrum inside UO{sub 2} fuel, the fission density and fissile isotope production rates are varied radially in the pellet, and it becomes necessary to know the accurate radial power and burnup variation to predict the high burnup fuel behavior such as rim effects. Therefore, to predict the radial distribution of power, burnup and fissionable nuclide densities in the pellet with the burnup and U-235 enrichment, RAPID(RAdial power and burnup Prediction by following fissile Isotope Distribution in the pellet) program was developed. It considers the specific radial variation of the neutron reaction of the nuclides while the constant radial variation of neutron reaction except neutron absorption of U-238 regardless of the nuclides, the burnup and U-235 enrichment is assumed in TUBRNP model which is recognized as the one of the most reliable models. Therefore, it is expected that RAPID may be more accurate than TUBRNP, specially at high burnup region. RAPID is based upon and validated by the detailed reactor physics code, HELIOS which is one of few codes that can calculates the radial variations of the nuclides inside the pellet. Comparison of RAPID prediction with the measured data of the irradiated fuels showed very good agreement. RAPID can be used to calculate the local variations of the fissionable nuclide concentrations as well as the local power and burnup inside that pellet as a function of the burnup up to 10 w/o U-235 enrichment and 150 MWD/kgU burnup under the LWR environment. (author). 8 refs., 50 figs., 1 tab.
Determination of axial profit performed burnup credit by SCALE 4.3-system
International Nuclear Information System (INIS)
SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs
Ibey, Bennett L.; Lee, Seungjoon; Ericson, M. Nance; Wilson, Mark A.; Cote, Gerard L.
2004-06-01
A Multi-Layer Monte Carlo (MLMC) model was developed to predict the results of in vivo blood perfusion and oxygenation measurement of transplanted organs as measured by an indwelling optical sensor. A sensor has been developed which uses three-source excitation in the red and infrared ranges (660, 810, 940 nm). In vitro data was taken using this sensor by changing the oxygenation state of whole blood and passing it through a single-tube pump system wrapped in bovine liver tissue. The collected data showed that the red signal increased as blood oxygenation increased and infrared signal decreased. The center wavelength of 810 nanometers was shown to be quite indifferent to blood oxygenation change. A model was developed using MLMC code that sampled the wavelength range from 600-1000 nanometers every 6 nanometers. Using scattering and absorption data for blood and liver tissue within this wavelength range, a five-layer model was developed (tissue, clear tubing, blood, clear tubing, tissue). The theoretical data generated from this model was compared to the in vitro data and showed good correlation with changing blood oxygenation.
International Nuclear Information System (INIS)
The MAX phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. In computational dosimetry, MAX can simulate the geometry of a human body under exposure to ionizing radiations, internal or external, with the objective of calculating the equivalent dose in organs and tissues for occupational, medical or environmental purposes of the radiation protection. This study presents a methodology used to build a new computational exposure model MAX/EGS4: the geometric construction of the phantom; the development of the algorithm of one-directional, divergent, and isotropic radioactive sources; new methods for calculating the equivalent dose in the red bone marrow and in the skin, and the coupling of the MAX phantom with the EGS4 Monte Carlo code. Finally, some results of radiation protection, in the form of conversion coefficients between equivalent dose (or effective dose) and free air-kerma for external photon irradiation are presented and discussed. Comparing the results presented with similar data from other human phantoms it is possible to conclude that the coupling MAX/EGS4 is satisfactory for the calculation of the equivalent dose in radiation protection. (author)
International Nuclear Information System (INIS)
The implementation of the TDCR method (Triple to Double Coincidence Ratio) is based on a liquid scintillation system which comprises three photomultipliers; at LNHB, this counter can also be used in the β-channel of a 4π(LS)β-γ coincidence counting equipment. It is generally considered that the γ-sensitivity of the liquid scintillation detector comes from the interaction of the γ-photons in the scintillation cocktail but when introducing solid γ-ray emitting sources instead of the scintillation vial, light emitted by the surrounding of the counter is observed. The explanation proposed in this article is that this effect comes from the emission of Cherenkov photons induced by Compton diffusion in the photomultiplier windows. In order to support this assertion, the creation and the propagation of Cherenkov photons inside the TDCR counter is simulated using the Monte Carlo code GEANT4. Stochastic calculations of double coincidences confirm the hypothesis of Cherenkov light produced in the photomultiplier windows.
Kahraman, A.; Kaya, S.; Jaksic, A.; Yilmaz, E.
2015-05-01
Radiation-sensing Field Effect Transistors (RadFETs or MOSFET dosimeters) with SiO2 gate dielectric have found applications in space, radiotherapy clinics, and high-energy physics laboratories. More sensitive RadFETs, which require modifications in device design, including gate dielectric, are being considered for personal dosimetry applications. This paper presents results of a detailed study of the RadFET energy response simulated with PENELOPE Monte Carlo code. Alternative materials to SiO2 were investigated to develop high-efficiency new radiation sensors. Namely, in addition to SiO2, Al2O3 and HfO2 were simulated as gate material and deposited energy amounts in these layers were determined for photon irradiation with energies between 20 keV and 5 MeV. The simulations were performed for capped and uncapped configurations of devices irradiated by point and extended sources, the surface area of which is the same with that of the RadFETs. Energy distributions of transmitted and backscattered photons were estimated using impact detectors to provide information about particle fluxes within the geometrical structures. The absorbed energy values in the RadFETs material zones were recorded. For photons with low and medium energies, the physical processes that affect the absorbed energy values in different gate materials are discussed on the basis of modelling results. The results show that HfO2 is the most promising of the simulated gate materials.
Naeem, Hamza; Zheng, Huaqing; Cao, Ruifen; Pei, Xi; Hu, Liqin; Wu, Yican
2016-01-01
The $^{192}$Ir sources are widely used for high dose rate (HDR) brachytherapy treatments. The aim of this study is to simulate $^{192}$Ir MicroSelectron v2 HDR brachytherapy source and calculate the air kerma strength, dose rate constant, radial dose function and anisotropy function established in the updated AAPM Task Group 43 protocol. The EGSnrc Monte Carlo (MC) code package is used to calculate these dosimetric parameters, including dose contribution from secondary electron source and also contribution of bremsstrahlung photons to air kerma strength. The Air kerma strength, dose rate constant and radial dose function while anisotropy functions for the distance greater than 0.5 cm away from the source center are in good agreement with previous published studies. Obtained value from MC simulation for air kerma strength is $9.762\\times 10^{-8} \\textrm{UBq}^{-1}$and dose rate constant is $1.108\\pm 0.13\\%\\textrm{cGyh}^{-1} \\textrm{U}^{-1}$.
Lee, Y. K.; Malouch, F.
2009-08-01
In order to assess the possibility of swelling of austenitic steels for the core internals of pressurized water reactors (PWR), a multi-year irradiation program, called GONDOLE, is ongoing in the OSIRIS material testing reactor at the CEA-Saclay site. This experiment consists in the irradiation of several density specimens at high temperature (> 350 °C). The first phase of GONDOLE irradiation run was completed in January 2006 after six reactor cycles of twenty days and the surveillance dosimetry results of the first phase were available by the end of 2006. The purpose of this paper is to present the neutron calculation methodology performed for GONDOLE program by using the continuous-energy Monte Carlo 3D-transport code TRDPOLI-4. For the specimens of virgin materials and the dosimeters located at the core mid-plane, the calculation and measurement results of the first phase of irradiation run will be presented. In addition, prediction calculation of helium gas production in the virgin materials will be introduced.
International Nuclear Information System (INIS)
A good model on experimental data (criticality, control rod worth, and fuel element worth distributions) is encouraged to provide from the Musashi-TRIGA Mark 2 reactor. In the previous paper, as the keff values for different fuel loading patterns had been provided ranging from the minimum core to the full one, the data would be candidate for an ICSBEP evaluation. Evaluation of the control rod worth and fuel element worth distributions presented in this paper could be an excellent benchmark data applicable for validation of calculation technique used in the field of modern research reactor. As a result of simulation on the TRIGA-2 benchmark experiment, which was performed by three-dimensional continuous-energy Monte Carlo code (MCNP4A), it was found that the MCNP calculated values of control rod worth were consisted to the experimental data for both rod-drop and period methods. And for the fuel and the graphite element worth distributions, the MCNP calculated values agreed well with the measured ones though consideration of real control rod positions was needed for calculating fuel element reactivity positioned in inner ring. (G.K.)
A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter
International Nuclear Information System (INIS)
In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)
Burnup determination of water reactor fuel
International Nuclear Information System (INIS)
The present meeting was scheduled by the International Atomic Energy Agency in consultation with the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The meeting was hosted by the Commission of the European Communities, at the Transuranium Research Laboratory, Joint Research Centre Karlsruhe, in the Federal Republic of Germany. This subject was dealt with for the first time by the IAEA. It was found to correspond adequately to this type of Specialist Meeting and to be suitable at a moment when the extension of burnup constitutes a major technical and economical issue in fuel technology. It was stressed that analysis of highly burnt fuels, mixed oxides and burnable absorber bearing fuels required extension of the experimental data base, to comply with the increasing demand for an improved fuel management, including better qualification of reactor physics codes. Twenty-seven participants from eleven countries plus two international organizations attended the Meeting. Twelve papers were given during three technical sessions, followed by a panel discussion which allowed to formulate the conclusions of the meeting and recommendations to the Agency. In addition, participants were invited to give an outline of their national programmes, related to Burnup Determination of Water Reactor Fuel. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs
International Nuclear Information System (INIS)
The crucial problem for radiation shielding design at heavy-ion accelerator facilities with beam energies to several GeV/n is the source term problem. Experimental data on double differential neutron yields from thick target irradiated with high-energy uranium nuclei are lacking. At present, there are not many Monte-Carlo multipurpose codes that can work with primary high-energy uranium nuclei. These codes use different physical models for simulation of nucleus-nucleus reactions. Therefore, verification of the codes with available experimental data is very important for selection of the most reliable code for practical tasks. This paper presents comparisons of the FLUKA, GEANT4 and SHIELD codes simulations with the experimental data on neutron production at 1 GeV/n 238U beam interaction with thick Fe target
Strategies for Application of Isotopic Uncertainties in Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2002-12-23
Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103
TRIGA fuel burn-up calculations and its confirmation
International Nuclear Information System (INIS)
The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.
International Nuclear Information System (INIS)
In this paper, the software package for Monte Carlo numerical experiments in medical physics is presented. The application of Monte Carlo simulation methods to medical physics is very complex; especially the description of materials and geometrical forms of source and irradiated region and without some form of automation of simulation steps is difficult to achieve. Therefore, we have developed Fotelp Editor Wizard to facilitate the use of own Monte Carlo code, FOTELP/EM. The Fotelp Editor Wizard is a specialised integrated environment in which we can define geometrical forms and describe properties of chosen objects. Users can quickly start programs of FOTELP/EM packages, test definitions of geometrical areas, data preparation about materials and start programs for visualisation of the simulation results. The software application for calculation absorbed dose in nuclear medicine, radiotherapy and radiology will be developed. (author)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We
Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments
International Nuclear Information System (INIS)
The burnup of 17 fuel elements of the TRIGA Mark-II reactor in Vienna was measured. Different types of fuel elements had been simultaneously used for several years. The measured burnup values are compared with those calculated on the basis of core configuration and reactor operation history records since the beginning of operation. A one-dimensional, two-group diffusion computer code TRIGAP was used for the calculations. Comparison with burnup values determined by γ-scanning is also made. (orig./HP)
Energy Technology Data Exchange (ETDEWEB)
Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan)
2001-11-01
Based on the PWR spent fuel composition data measured at JAERI, two kinds of simplified methods such as ''Equivalent Uniform Burnup'' and ''Equivalent Initial Enrichment'' have been introduced. And relevant evaluation curves have been prepared for criticality safety evaluation of spent fuel storage pool and transport casks, taking burnup of spent fuel into consideration. These simplified methods can be used to obtain an effective neutron multiplication factor for a spent fuel storage/transportation system by using the ORIGEN2.1 burnup code and the KENO-Va criticality code without considering axial burnup profile in spent fuel and other various factors introducing calculated errors. ''Equivalent Uniform Burnup'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis, in which the experimentally obtained isotopic composition together with a typical axial burnup profile and various factors such as irradiation history are considered on the conservative side. On the other hand, Equivalent Initial Enrichment'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis such as above when it is used in the so called fresh fuel assumption. (author)
Taking burnup credit for interim storage and transportation system for BWR fuels
International Nuclear Information System (INIS)
In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)
Technical Development on Burn-up Credit for Spent LWR Fuel
International Nuclear Information System (INIS)
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report
Technical Development on Burn-up Credit for Spent LWR Fuel
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2001-12-26
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a best
International Nuclear Information System (INIS)
Reactivity components composing the sodium void reactivity in a FBR core are analyzed by group-wise Monte Carlo Code GMVP, which has been developed by JAEA. The typical way to analyze the reactivity components is to use the perturbation method based on the diffusion calculations, while the diffusion approximation cannot be appropriately applied to some types of FBR cores containing large cavity regions. But, in order to prospect the optimized FBR core with negative sodium void reactivity, we need to the components of the sodium void reactivity of cores which have a small void reactivity, which cores are sometimes accompanied with adjacent large cavity regions or gas plenum zones. In this study, we have employed GMVP to simulate the cavity region exactly in geometry and to evaluate the neutron behavior rigorously in reactor physics. The cross section library used is JFS-3-J3.3 70 group constant set that is complied from JENDL-3.3 library. The objective core is a 'step type' two zone core, which has a lower inner core height relative to the height of the outer core, and the upper axial blanket is eliminated to enhance the neutron leakage in the upper ward at void conditions. The reactivity component by neutron leakage is derived from the difference of the k-effective of direct calculation of GMVP between the intact and void cores, and that of non-leakage components evaluated by using real and adjoint flux that are calculated with GMVP. In the paper, the change of the contributions of the both components is presented when the core height is changed along with the void reactivity of the cores. (author)
Absorbed dose estimations of 131I for critical organs using the GEANT4 Monte Carlo simulation code
Institute of Scientific and Technical Information of China (English)
Ziaur Rahman; Shakeel ur Rehman; Waheed Arshed; Nasir M Mirza; Abdul Rashid; Jahan Zeb
2012-01-01
The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations.S-values (mean absorbed dose rate per unit activity) and energy deposition per decay for critical organs of 131I for various ages,using standard cylindrical phantom comprising water and ICRP soft-tissue material,have also been estimated.In this study the effect of volume reduction of thyroid,during radiation therapy,on the calculation of absorbed dose is also being estimated using GEANT4.Photon specific energy deposition in the other organs of the neck,due to 131I decay in the thyroid organ,has also been estimated.The maximum relative difference of MIRD with the GEANT4 simulated results is 5.64％ for an adult's critical organs of 131I.Excellent agreement was found between the results of water and ICRP soft tissue using the cylindrical model.S-values are tabulated for critical organs of 131I,using 1,5,10,15 and 18 years (adults) individuals.S-values for a cylindrical thyroid of different sizes,having 3.07％ relative differences of GEANT4 with Siegel & Stabin results.Comparison of the experimentally measured values at 0.5 and 1 m away from neck of the ionization chamber with GEANT4 based Monte Carlo simulations results show good agreement.This study shows that GEANT4 code is an important tool for the internal dosimetry calculations.
Energy Technology Data Exchange (ETDEWEB)
Abramov, B. M. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Alekseev, P. N. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Borodin, Yu. A. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Bulychjov, S. A. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Dukhovskoy, I. A. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Krutenkova, A. P. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Martemianov, M. A. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Matsyuk, M. A. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Turdakina, E. N. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Khanov, A. I. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-03
Momentum spectra of hydrogen isotopes have been measured at 3.5° from ^{12}C fragmentation on a Be target. Momentum spectra cover both the region of fragmentation maximum and the cumulative region. Differential cross sections span five orders of magnitude. The data are compared to predictions of four Monte Carlo codes: QMD, LAQGSM, BC, and INCL++. There are large differences between the data and predictions of some models in the high momentum region. The INCL++ code gives the best and almost perfect description of the data.
M. H. Altaf; Badrun, N. H.
2014-01-01
Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 ...
Energy Technology Data Exchange (ETDEWEB)
Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E
2008-10-24
Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.
Monte Carlo Simulation of the TRIGA Mark II Benchmark Experiment with Burned Fuel
International Nuclear Information System (INIS)
Monte Carlo calculations of a criticality experiment with burned fuel on the TRIGA Mark II research reactor are presented. The main objective was to incorporate burned fuel composition calculated with the WIMSD4 deterministic code into the MCNP4B Monte Carlo code and compare the calculated keff with the measurements. The criticality experiment was performed in 1998 at the ''Jozef Stefan'' Institute TRIGA Mark II reactor in Ljubljana, Slovenia, with the same fuel elements and loading pattern as in the TRIGA criticality benchmark experiment with fresh fuel performed in 1991. The only difference was that in 1998, the fuel elements had on average burnup of ∼3%, corresponding to 1.3-MWd energy produced in the core in the period between 1991 and 1998. The fuel element burnup accumulated during 1991-1998 was calculated with the TRIGLAV in-house-developed fuel management two-dimensional multigroup diffusion code. The burned fuel isotopic composition was calculated with the WIMSD4 code and compared to the ORIGEN2 calculations. Extensive comparison of burned fuel material composition was performed for both codes for burnups up to 20% burned 235U, and the differences were evaluated in terms of reactivity. The WIMSD4 and ORIGEN2 results agreed well for all isotopes important in reactivity calculations, giving increased confidence in the WIMSD4 calculation of the burned fuel material composition. The keff calculated with the combined WIMSD4 and MCNP4B calculations showed good agreement with the experimental values. This shows that linking of WIMSD4 with MCNP4B for criticality calculations with burned fuel is feasible and gives reliable results
A lattice-based Monte Carlo evaluation of Canada Deuterium Uranium-6 safety parameters
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Hee; Hartanto, Donny; Kim, Woo Song [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)
2016-06-15
Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANada Deuterium Uranium (CANDU-6) reactor have been evaluated using the Monte Carlo method. For accurate analysis of the parameters, the Doppler broadening rejection correction scheme was implemented in the MCNPX code to account for the thermal motion of the heavy uranium-238 nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted using MCNPX. The FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated using several cross-section libraries such as ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. The PCR value is also evaluated at mid-burnup conditions to characterize the safety features of an equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, we considered a huge number of neutron histories in this work and the standard deviation of the k-infinity values is only 0.5-1 pcm.
End effect analysis with various axial burnup distributions in high density spent fuel storage racks
International Nuclear Information System (INIS)
Highlights: • Criticality tests are carried out with various axial burnup distributions of fuel assemblies for spent fuel storage racks. • KENO-Va code system was used to obtain criticalities with 10 axial segments. • ORIGEN-S code system was used to obtain burnup dependent axial compositions. • The criticality and burnup dependent reactivity difference are obtained from the results. • End effect quantifications are satisfactory confirming the previous suggestions. - Abstract: End effect of spent fuel comes from the difference between uniform and actual axial burnup distributions of fuel assemblies. It is significant to control the criticality safety in spent fuel storage and transportation. This work is focused on estimation of end effect in the spent fuel of light water reactor for the spent fuel storage rack region-II. High and low burnups of corresponding different uranium enrichments are taken into consideration to analyze the end effect with different axial burnup distributions such as uniform, MOC and EOC profiles. Two types of fuel assemblies such as CE type and Westinghouse type are considered. The whole calculations have been carried out by using the SCALE6 code including ORIGEN-S and KENO-Va
Fuel burnup calculation of a research reactor plate element
Energy Technology Data Exchange (ETDEWEB)
Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: nadiasam@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
This work consists in simulating the burnup of two different plate type fuel elements, where one is the benchmark MTR of the IAEA, which is made of an alloy of uranium and aluminum, while the other belonging to a typical multipurpose reactor is composed of an alloy of uranium and silicon. The simulation is performed using the WIMSD-5B computer code, which makes use of deterministic methods for solving neutron transport. In developing this task, fuel element equivalent cells were calculated representing each of the reactors to obtain the initial concentrations of each isotope constituent element of the fuel cell and the thicknesses corresponding to each region of the cell, since this information is part of the input data. The compared values of the k∞ showed a similar behavior for the case of the MTR calculated with the WIMSD-5B and EPRI-CELL codes. Relating the graphs of the concentrations in the burnup of both reactors, there are aspects very similar to each isotope selected. The application WIMSD-5B code to calculate isotopic concentrations and burnup of the fuel element, proved to be satisfactory for the fulfillment of the objective of this work. (author)
Measurement techniques for verifying burnup
Energy Technology Data Exchange (ETDEWEB)
Ewing, R.I. (Sandia National Lab., Albuquerque, NM (US)); Bierman, S.R. (Pacific Northwest Lab., Richland, WA (US))
1992-05-01
Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading.
Measurement techniques for verifying burnup
International Nuclear Information System (INIS)
Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B
2003-07-01
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k{sub eff} (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
Radionuclide Release from High Burnup Fuel
International Nuclear Information System (INIS)
In this paper we investigate the production, evolution and release of radioactive fission products in a light water reactor. The production of the nuclides is determined by the neutronics, their evolution in the fuel by local temperature and by the fuel microstructure and the rate of release is governed by the scenario and the properties of the microstructure where the nuclides reside. The problem combines fields of reactor physics, fuel behaviour analysis and accident analysis. Radionuclide evolution during fuel reactor life is also important for determination of instant release fraction of final repository analysis. The source term problem is investigated by literature study and simulations with reactor physics code Serpent as well as fuel performance code ENIGMA. The capabilities of severe accident management codes MELCOR and ASTEC for describing high burnup structure effects are reviewed. As the problem is multidisciplinary in nature the transfer of information between the codes is studied. While the combining of the different fields as they currently are is challenging, there are some possibilities to synergy. Using reactor physics tools capable of spatial discretization is necessary for determining the HBS inventory. Fuel performance studies can provide insight how the HBS should be modelled in severe accident codes, however the end effect is probably very small considering the energetic nature of the postulated accidents in these scenarios. Nuclide release in severe accidents is affected by fuel oxidation, which is not taken into account by ANSI/ANS-5.4 but could be important in some cases, and as such, following the example of severe accident models would benefit the development of fuel performance code models. (author)
International Nuclear Information System (INIS)
Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired keff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program
Energy Technology Data Exchange (ETDEWEB)
Albuquerque, M.A.G.; David, M.G.; Almeida, C.E. de; Magalhaes, L.A.G., E-mail: malbuqueque@hotmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Bernal, M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Braz, D. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2015-07-01
Breast cancer is the most common type of cancer among women. The main strategy to increase the long-term survival of patients with this disease is the early detection of the tumor, and mammography is the most appropriate method for this purpose. Despite the reduction of cancer deaths, there is a big concern about the damage caused by the ionizing radiation to the breast tissue. To evaluate these measures it was modeled a mammography equipment, and obtained the depth spectra using the Monte Carlo method - PENELOPE code. The average energies of the spectra in depth and the half value layer of the mammography output spectrum. (author)
Energy Technology Data Exchange (ETDEWEB)
Rojas C, E.L.; Varon T, C.F.; Pedraza N, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: elrc@nuclear.inin.mx
2007-07-01
The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)
A simple formula for local burnup based on constant relative reaction rate per nuclei
Yuan, Cenxi
2015-01-01
A simple and analytical formula is suggested to solve the problems on the local burnup and the isotope distributions. Present method considers that the slowing down neutrons going into the fuel rod is similar to the light going into the medium. Based on the assumption, the formula are obtained to calculate the reaction rates of $^{235}$U, $^{238}$U, and $^{239}$Pu and straightforward the local burnup and the isotope distributions. From a starting burnup point, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC) calculation. Then the present formula independently gives almost the same results as the MC calculation from the starting burnup point to high burnup, but takes just a few minutes. The relative reaction rate per nuclei are found to be almost independent on the radius (except $(n,\\gamma)$ of $^{238}$U) and burnup, providing a solid background for present formula. A combination of present formula and MC calculation is expected to have a nice balance on the accuracy ...
Calibration of burnup monitor installed in Rokkasho Reprocessing Plant
Energy Technology Data Exchange (ETDEWEB)
Oeda, Kaoru; Naito, Hirofumi; Hirota, Masanari [Japan Nuclear Fuel Co. Ltd., Rokkasho, Aomori (Japan); Natsume, Koichiro [Isogo Engineering Center, Toshiba Corporation, Yokohama, Kanagawa (Japan); Kumanomido, Hironori [Nuclear Engineering Laboratory, Toshiba Corporation, Kawasaki, Kanagawa (Japan)
2000-06-01
Rokkasho Reprocessing Plant uses burnup credit for criticality control at the Spent Fuel Storage Facility (SFSF) and the Dissolution Facility. A burnup monitor measures nondestructively burnup value of a spent fuel assembly and guarantees the credit for burnup. For practical reasons, a standard radiation source is not used in calibration of the burnup monitor, but the burnup values of many spent fuel assemblies are measured based on operator-declared burnup values. This paper describes the concept of burnup credit, the burnup monitor, and the calibration method. It is concluded, from the results of calibration tests, that the calibration method is valid. (author)
Burnup credit activities in the United States
International Nuclear Information System (INIS)
This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)
Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1
Energy Technology Data Exchange (ETDEWEB)
None, None
1997-04-01
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package
TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES
International Nuclear Information System (INIS)
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. Fifty-seven UO2, UO2/Gd2O3, and UO2/PuO2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on keff (which can be a function of the trending parameters) such that the biased keff, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading
Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
International Nuclear Information System (INIS)
The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2
Energy Technology Data Exchange (ETDEWEB)
None, None
1998-09-01
The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the
Phenomena and Parameters Important to Burnup Credit
International Nuclear Information System (INIS)
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given
The REBUS experimental programme for burn-up credit
International Nuclear Information System (INIS)
An international programme called REBUS for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Centre SCK·CEN and Belgonucleaire with the support of EdF and IRSN from France and VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. Recently also ORNL from the U.S. jointed the programme. The programme aims to establish a neutronic benchmark for reactor physics codes in order to qualify the codes for calculations of the burn-up credit. The benchmark exercise investigate the following fuel types with associated burn-up: reference fresh 3.3% enriched UO2 fuel, fresh commercial PWR UO2 fuel and irradiated commercial PWR UO2 fuel (54 GWd/tM), fresh PWR MOX fuel and irradiated PWR MOX fuel (20 GWd/tM). The experiments on the three configurations with fresh fuel have been completed. The experiments show a good agreement between calculation and experiments for the different measured parameters: critical water level, reactivity effect of the water level and fission-rate and flux distributions. In 2003 the irradiated BR3 MOX fuel bundle was loaded into the VENUS reactor and the associated experimental programme was carried out. The reactivity measurements in this configuration with irradiated fuel show a good agreement between experimental and preliminary calculated values. (author)
Energy Technology Data Exchange (ETDEWEB)
Mazurier, J
1999-05-28
This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)
International Nuclear Information System (INIS)
For adopting burnup credit in transport or storage of spent fuel (SF), development of a reliable burnup calculation code is crucial. For this purpose, data of Post Irradiation Examination (PIE) have been extensively analyzed to evaluate accuracy of burnup calculation codes for a 14*14 or 15*15 PWR fuel assembly. This study shows results of analysis of this latest PIE with SWAT and ORIGEN2.1. SWAT is an integrated burnup code system for a 17*17 PWR fuel assembly that has been developed by Tohoku University and JAERI. The results show that SWAT can more precisely predict nuclide composition of latest PWR assembly than ORIGEN2.1. (O.M.)
Energy Technology Data Exchange (ETDEWEB)
Cornejo Diaz, N.A. [Centro de Proteccion e Higiene de las Radiaciones, C.P. 6195, La Habana (Cuba); Martin Sanchez, A., E-mail: ams@unex.e [Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz (Spain); Torre Perez, J. de la [Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz (Spain)
2011-05-15
Monte Carlo simulation was applied to calculate the effective solid angle (or geometry factor) presented by a plane radioactive source at a detector entrance window. A fast and user-friendly computer program SOLANG was written to perform the calculations for disk or rectangular sources and circular non-coaxial detector disks. Results can be achieved with great precision, depending on the number of simulated trajectories. Some checks and applications to the calculation of efficiencies of semiconductor detectors and gas ionization chambers used to measure alpha particles are presented. Their results were very reliable. The code is available free of charge on request to the authors.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2005-09-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Vilches, M.; García-Pareja, S.; Guerrero, R.; Anguiano, M.; Lallena, A. M.
2007-09-01
When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used.
International Nuclear Information System (INIS)
Current work presents a new methodology which uses Serpent Monte-Carlo (MC) code for generating multi-group beginning-of-life (BOL) cross section (XS) database file that is compatible with PARCS 3D reactor core simulator and allows simulation of transients with the FAST code system. The applicability of the methodology was tested on European Sodium-cooled Fast Reactor (ESFR) design with an oxide fuel proposed by CEA (France). The k-effective, power peaking factors and safety parameters (such as Doppler constant, coolant density coefficient, fuel axial expansion coefficient, diagrid expansion coefficients and control rod worth) calculated by PARCS/TRACE were compared with the results of the Serpent MC code. The comparison indicates overall reasonable agreement between conceptually different (deterministic and stochastic) codes. The new development makes it in principle possible to use the Serpent MC code for cross section generation for the PARCS code to perform transient analyses for fast reactors. The advantages and limitations of this methodology are discussed in the paper. (author)
International Nuclear Information System (INIS)
Photographs of the droplets associated with the ionisations caused by charged particle tracks in the Harwell low pressure cloud chamber have been analysed. The radiation types these represent are alpha particles, protons and low energy X rays (carbon and aluminium) in either a tissue-equivalent gas or water vapour. The tracks were used to test the validity of two Monte Carlo codes developed by Wilson and Paratzke, namely MOCA14 for the generation of proton and alpha particle tracks, and MOCA8 for the generation of electron tracks. The comparisons showed that the code MOCA14 would appear to be valid for protons with energies greater than about 390 keV, and for alpha particles with energies greater than 1.6 MeV. No disagreement was found between the low energy X ray tracks from the cloud chamber and the tracks calculated from MOCA8, although this comparison was severely limited by droplet diffusion. (author)
International Nuclear Information System (INIS)
As the understanding of the effects of ionizing radiation on biological tissues relies on the description of interactions at a nanometer scale, i.e. the size of DNA molecules or of other cell vital components, the authors report the use of the GEANT4 Monte Carlo code to compute the trace of ionizing particles at such a scale and its application in radiobiology. They describe and discuss how they implemented in GEANT4 the different physical and chemical processes involved during such irradiation. Different models are used according to the particle type (electron, proton, hydrogen, alpha+ and helium, alpha++) and to the concerned process (ionization, elastic collision, excitation, vibrating excitation, charge transfer). Results obtained with GEANT4 are discussed and compared with those obtained by other codes
A simplified burnup calculation strategy with refueling in static molten salt reactor
International Nuclear Information System (INIS)
Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)
Results of the isotopic concentrations of VVER calculational burnup credit benchmark no. 2(cb2
International Nuclear Information System (INIS)
The characterization of the irradiated fuel materials is becoming more important with the Increasing use of nuclear energy in the world. The purpose of this document is to present the results of the nuclide concentrations calculated Using Calculation VVER Burnup Credit Benchmark No. 2(CB2). The calculations were Performed in The Nuclear Technology Center of Cuba. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is Summarized in [1]. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium [2]. It should provide a comparison of the ability of various code systems And data libraries to predict VVER-440 spent fuel isotopes (isotopic concentrations) using Depletion analysis. This phase of the benchmark calculations is still in progress. CB2 should be finished by summer 1999 and evaluated results could be presented on the next AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and Cooling time. The depletion point ORIGEN2[3] code was used for the calculation of the spent Fuel concentration. The depletion analysis was performed using the VVER-440 irradiated fuel assemblies with in-core Irradiation time of 3 years, burnup of the 30000 mwd/TU, and an after discharge cooling Time of 0 and 1 year. This work also comprises the results obtained by other codes[4].
Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model
Directory of Open Access Journals (Sweden)
Abdul Waris
2008-03-01
Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.
International Nuclear Information System (INIS)
The advantages of mobile CdZnTe (CZT) detector for nuclear safeguard applications of spent fuel burnup inspection in assembly storage pond are compactness, low cost and ease of operations. In this work, a mobile detection system shield with tungsten alloy was designed and then performed on-site. Net count rate of the 662 keV line of 137Cs was produced linearly with burnup as experimental data simulations shows, in which the deviation from linearity is smaller than 9%. As a result, the feasibility of the method using CZT detector to monitor spent nuclear fuel assembly burnup in a fuel pond was validated. The results calculated with Monte Carlo procedure Geant4 can provide a theoretical guide for the further burnup measurement. (author)
High burnup fuel development program in Japan
International Nuclear Information System (INIS)
A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now
Malouch, Fadhel
2016-02-01
An irradiation program DV50 was carried out from 2002 to 2006 in the OSIRIS material testing reactor (CEA-Saclay center) to assess the pressure vessel steel toughness curve for a fast neutron fluence (E > 1 MeV) equivalent to a French 900-MWe PWR lifetime of 50 years. This program allowed the irradiation of 120 specimens out of vessel steel, subdivided in two successive irradiations DV50 n∘1 and DV50 n∘2. To measure the fast neutron fluence (E > 1 MeV) received by specimens after each irradiation, sample holders were equipped with activation foils that were withdrawn at the end of irradiation for activity counting and processing. The fast effective cross-sections used in the dosimeter processing were determined with a specific calculation scheme based on the Monte-Carlo code TRIPOLI-3 (and the nuclear data ENDF/B-VI and IRDF-90). In order to put vessel-steel experiments at the same standard, a new dosimetric interpretation of the DV50 experiment has been performed by using the Monte-Carlo code TRIPOLI-4 and more recent nuclear data (JEFF3.1.1 and IRDF-2002). This paper presents a comparison of previous and recent calculations performed for the DV50 vessel-steel experiment to assess the impact on the dosimetric interpretation.
Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia
Chiesa, Davide; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto
2015-01-01
A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate experimental reactors from power ones, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the...
Propagation of nuclear data uncertainties for ELECTRA burn-up calculations
ostrand, H; Duan, J; Gustavsson, C; Koning, A; Pomp, S; Rochman, D; Osterlund, M
2013-01-01
The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties and 740 Pu-239 nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty in the ...
Propagation of Nuclear Data Uncertainties for ELECTRA Burn-up Calculations
Sjöstrand, H.; Alhassan, E.; Duan, J.; Gustavsson, C.; Koning, A. J.; Pomp, S.; Rochman, D.; Österlund, M.
2014-04-01
The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in 239Pu transport data to uncertainties in the fuel inventory of ELECTRA during the reactor lifetime using the Total Monte Carlo approach (TMC). Within the TENDL project, nuclear models input parameters were randomized within their uncertainties and 740 239Pu nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty of some minor actinides were observed to be rather large and therefore their impact on multiple recycling should be investigated further. It was also found that, criticality benchmarks can be used to reduce inventory uncertainties due to nuclear data. Further studies are needed to include fission yield uncertainties, more isotopes, and a larger set of benchmarks.
The implementation of burnup credit in VVER-440 spent fuel
International Nuclear Information System (INIS)
The countries using Russian reactors VVER-440 cooperate in reactor physics in Atomic Energy Research (AER). One of topic areas is 'Physical Problems of Spent Fuel, Radwaste and Decommissioning' (Working Group E). In this article, in the first part is an overview about our activity for numerical and experimental verification of codes which participants use for calculation of criticality, isotopic concentration, activity, neutron and gamma sources and shielding is shown. The set of numerical benchmarks (CB1, CB2, CB3 and CB4) is very similar (the same idea, the VVER-440) to the OECD/NEA/NSC Burnup Credit Criticality Benchmarks, Phases 1 and 2. In the second part, verification of the SCALE 4.4 system (only criticality and nuclide concentrations) for VVER-440 fuel is shown. In the third part, dependence of criticality on burnup (only actinides and actinides + fission products) for transport cask C30 with VVER-440 fuel by optimal moderation is shown. In the last part, current status in implementation burnup credit in Slovakia is shown. (author)
Value of 236U to actinide-only burnup credit
International Nuclear Information System (INIS)
The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit
Directory of Open Access Journals (Sweden)
Cenxi Yuan
2016-01-01
Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of 238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.
International Nuclear Information System (INIS)
Proton interaction with an exposed object material needs to be modeled with account for three basic processes: electromagnetic stopping of protons in matter, multiple coulomb scattering and nuclear interactions. Just the last type of processes is the topic of this paper. Monte Carlo codes are often used to simulate high-energy particle interaction with matter. However, nuclear interaction models implemented in these codes are rather extensive and their use in treatment planning systems requires huge computational resources. We have selected the IThMC code for its ability to reproduce experiments which measure the distribution of the projected ranges of nuclear secondary particles generated by proton beams in a multi-layer Faraday cup. The multi-layer Faraday cup detectors measure charge rather than dose and allow distinguishing between electromagnetic and nuclear interactions. The event generator used in the IThMC code is faster, but less accurate than any other used in testing. Our model of nuclear reactions demonstrates quite good agreement with experiment in the context of their effect on the Bragg peak in therapeutic applications
Energy Technology Data Exchange (ETDEWEB)
Forestier, Benoit; Miss, Joachim; Bernard, Franck; Dorval, Aurelien [Institut de Radioprotection et Surete Nucleaire, Fontenay aux Roses (France); Jacquet, Olivier [Independent consultant (France); Verboomen, Bernard [Belgian Nuclear Research Center - SCK-CEN (Belgium)
2008-07-01
The MORET code is a three dimensional Monte Carlo criticality code. It is designed to calculate the effective multiplication factor (k{sub eff}) of any geometrical configuration as well as the reaction rates in the various volumes and the neutron leakage out of the system. A recent development for the MORET code consists of the implementation of an alternate neutron tracking method, known as the pseudo-scattering tracking method. This method has been successfully implemented in the MORET code and its performances have been tested by mean of an extensive parametric study on very simple geometrical configurations. In this context, the goal of the present work is to validate the pseudo-scattering method against realistic configurations. In this perspective, pebble-bed cores are particularly well-adapted cases to model, as they exhibit large amount of volumes stochastically arranged on two different levels (the pebbles in the core and the TRISO particles inside each pebble). This paper will introduce the techniques and methods used to model pebble-bed cores in a realistic way. The results of the criticality calculations, as well as the pseudo-scattering tracking method performance in terms of computation time, will also be presented. (authors)
Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2002-10-23
This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.
BISON, 1-D Burnup and Transport in Slab, Cylindrical, Spherical Geometry
International Nuclear Information System (INIS)
1 - Description of problem or function: BISON-1.5 solves the one- dimensional Boltzmann transport equation for neutron and gamma-rays and transmutation equations for fuel nuclides. 2 - Method of solution: In the transport calculation stage the one- dimensional Boltzmann transport equation is solved by the discrete ordinates method. In the burnup calculation stage, transmutation equations for fuel nuclides are solved by Bateman's method. The neutron flux obtained in the transport calculation stage is used to determine the transmutation rates in the burnup calculation stage. Both stages are repeated in tandem till the end of the burnup cycle. 3 - Restrictions on the complexity of the problem: A 42-group neutron and 21-group gamma-ray cross section library is prepared in the code package. Core storage for array variables is dynamically allocated by the code, so there are no restrictions on the size of each array
Energy Technology Data Exchange (ETDEWEB)
Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-02-01
The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
Energy Technology Data Exchange (ETDEWEB)
Enercon Services, Inc.
2011-03-14
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
International Nuclear Information System (INIS)
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
Summary of high burnup fuel issues and NRC`s plan of action
Energy Technology Data Exchange (ETDEWEB)
Meyer, R.O.
1997-01-01
For the past two years the Office of Nuclear Regulatory Research has concentrated mostly on the so-called reactivity-initiated accidents -- the RIAs -- in this session of the Water Reactor Safety Information Meeting, but this year there is a more varied agenda. RIAs are, of course, not the only events of interest for reactor safety that are affected by extended burnup operation. Their has now been enough time to consider a range of technical issues that arise at high burnup, and a list of such issues being addressed in their research program is given here. (1) High burnup capability of the steady-state code (FRAPCON) used for licensing audit calculations. (2) General capability (including high burnup) of the transient code (FRAPTRAN) used for special studies. (3) Adequacy at high burnup of fuel damage criteria used in regulation for reactivity accidents. (4) Adequacy at high burnup of models and fuel related criteria used in regulation for loss-of-coolant accidents (LOCAs). (5) Effect of high burnup on fuel system damage during normal operation, including control rod insertion problems. A distinction is made between technical issues, which may or may not have direct licensing impacts, and licensing issues. The RIAs became a licensing issue when the French test in CABRI showed that cladding failures could occur at fuel enthalpies much lower than a value currently used in licensing. Fuel assembly distortion became a licensing issue when control rod insertion was affected in some operating plants. In this presentation, these technical issues will be described and the NRC`s plan of action to address them will be discussed.
Non destructive assay of nuclear LEU spent fuels for burnup credit application
International Nuclear Information System (INIS)
Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron
Monte Carlo modelling of VR-1 reactor core
International Nuclear Information System (INIS)
The possibilities of reactor core analysis by precise Monte Carlo codes are gradually increasing along with the accessibility of computing power. In the case of zero power research reactors, where temperature and burn-up effects remain negligible, model can approximate the reality to a very high degree. In such a case, most of calculation uncertainty can be caused by uncertainties in technical specifications of fuel and reactor internals. Thus performance of the modelling and its predictive power can be significantly improved via comparison with a large set of experimental data that can be acquired during reactor operation and via subtle tuning and improving the calculation model. The paper describes the case for neutronics calculations of VR-1 zero power reactor core. (author)
Kavanagh, A.; Olivo, A.; Speller, R; Vojnovic, B
2013-01-01
A simple method of simulating possible coded aperture phase contrast X-ray imaging apparatus is presented. The method is based on ray tracing, with the rays treated ballistically within a voxelized sample and with the phase-shift-induced angular deviations and absorptions applied at a plane in the middle of the sample. For the particular case of a coded aperture phase contrast configuration suitable for small animal pre-clinical imaging we present results obtained using a high resolution voxe...
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the U.S. experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed. (author)
Kinetic parameter calculation as function of burn-up of candu reactor
International Nuclear Information System (INIS)
Kinetic parameter calculation as function of burn-up of candu reactor. Kinetic marameter calculation as function of burp-up of CANDU reactor with Canflex fuel type-CANDU has been done. This type of fuel is currently being develop, so kinetic parameter such as effective delay neutron fraction (.......), delay neutron decay constant ( .... ) and prompt neutron generation time ( ...... ) are very important for analysis of reactor operation safety. WIMS-CRNL code was used to generate macroscopic cross section and reaction rate based on transport theory. Fast and thermal neutron velocity and macroscopic cross section fission product of the unit cell were determined by KINETIC Code. The result of calculation showed that the value of effective delay neutron fraction was 7,785616 x 10-3 at the beginning of operation at burn-up of 0 MWD/T and after the reactor operated at burn-up of 7,2231 x 10-3 MWD/T was 4,962766 x 10-3, or reduced by 36%. The value of prompt generation time was 9,982703 x 10-4 s at the beginning of operation at burn-up of 0 MWD/T and 8,965416 x 10-4 s after the reactor operated at burn-up of 7,2231 x 103 MWD/T, or reduced by 10%. The result of calculation showed that the values of effective delay neutron fraction and prompt neutron generation time are still great enough
The Design Method for the ATR High Burnup MOX Fuel
International Nuclear Information System (INIS)
The Power Reactor and Nuclear Fuel Development Corporation (PNC) has developed the advanced thermal reactor (ATR). PNC is demonstrating MOX fuel utilization in a prototype of ATR, Fugen (165 MWe), in which 638 MOX fuel assemblies have been loaded without a failure since 1979. PNC is developing the high burn-up MOX fuel for the ATR to contribute to MOX fuels for thermal reactors. The statistical design evaluation method that included the MOX fuel rod performance evaluation code 'FEMAXI-ATR' was developed for the ATR high bum-up MOX fuel rod; it was verified that the integrity of the fuel could be maintained over the whole irradiation period
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung-O; Roh, Gyuhong; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
As a result, there was a difference within about 300-400 pcm between keff values at each enrichment due to the difference of codes and nuclear data used in the evaluations. The FTC was changed to be less negative with the increase of uranium enrichment, and it followed the form of asymptotic curve. However, it is necessary to perform additional study for investigating what factor causes the differences more than two standard deviation (2σ) among the FTCs at partial enrichment region. The interaction probability of incident neutron with nuclear fuel is depended on the relative velocity between the neutron and the target nuclei. The Fuel Temperature Coefficient (FTC) is defined as the change of Doppler effect with respect to the change in fuel temperature without any other change such as moderator temperature, moderator density, etc. In this study, the FTCs for UO{sub 2} fuel were evaluated by using MCNP6.1 and KENO6 codes based on a Monte Carlo method. In addition, the latest neutron cross-sections (ENDF/B-VI and VII) were applied to analyze the effect of these data on the evaluation of FTC, and nuclear data used in MCNP calculations were generated from the makxsf code. An evaluation of the Doppler effect and FTC for UO{sub 2} fuel widely used in PWR was conducted using MCNP6.1 and KENO6 codes. The ENDF/B-VI and VII were also applied to analyze what effect these data has on those evaluations. All cross-sections needed for MCNP calculation were produced using makxsf code. The calculation models used in the evaluations were based on the typical PWR UO{sub 2} lattice.
A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison
Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.
2014-06-01
Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.
Addressing the Axial Burnup Distribution in PWR Burnup Credit Criticality Safety
International Nuclear Information System (INIS)
This paper summarizes efforts related to developing a technically justifiable approach for addressing the axial burnup distribution in PWR burnup-credit criticality safety analyses. The paper reviews available data on the axial variation in burnup and the effect of axial burnup profiles on reactivity in a SNF cask. A publicly available database of profiles is examined to identify profiles that maximize the neutron multiplication factor, keff, assess its adequacy for general PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. For this assessment, a statistical evaluation of the keff values associated with the profiles in the axial burnup profile database was performed that identifies the most reactive profiles as statistical outliers that are not representative of typical discharged SNF assemblies. The impact of these bounding profiles on the neutron multiplication factor for a high-density burnup credit cask is quantified. Finally, analyses are presented to quantify the potential reactivity consequence of assemblies with axial profiles that are not bounded by the existing database. The paper concludes with findings for addressing the axial burnup distribution in burnup credit analyses
CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback
International Nuclear Information System (INIS)
1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference
International Nuclear Information System (INIS)
A three-dimensional kinetic Monte Carlo model (kMC) is proposed for the simulation of deposition and evolution of surface structures at elevated temperatures. The code includes deposition of one given type of atom and main thermally driven events such as surface diffusion, diffusion along island edges, detachment from islands, and movement of atoms on deposited surfaces. It can be used not only for simulating nucleation and growth of thin films but also for simulating time evolution of a given structure when annealed. It is a specific event kMC code, and the rates of the events are used as inputs. It allows the simulation of thousands of incident particles and the simulation of a system at high temperature without suffering large computational time. The code runs on a PC and is freely available. Results of modeling various situations like atomic deposition (Pd on SiO2), islands coalescence (Cu on Cu), Ostwald and inverse Ostwald ripening (Co/C and Co/SiO2) were tested against existing experimental and theoretical data and show a good agreement for all those cases.
International Nuclear Information System (INIS)
The authors report calculations performed using the MNCP and PENELOPE codes to determine the Hp(3)/K air conversion coefficient which allows the Hp(3) dose equivalent to be determined from the measured value of the kerma in the air. They report the definition of the phantom, a 20 cm diameter and 20 cm high cylinder which is considered as representative of a head. Calculations are performed for an energy range corresponding to interventional radiology or cardiology (20 keV-110 keV). Results obtained with both codes are compared
Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up
DEFF Research Database (Denmark)
Carlsen, H.
1980-01-01
uses an empirical gas release model combined with a strongly burn-up dependent correction term, developed by the US Nuclear Regulatory Commission. The paper presents the experimental results and the code calculations. It is concluded that the model predictions are in reasonable agreement (within 15...
Development of base technology for high burnup PWR fuel improvement Volume 1 and 2
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)
1995-12-31
Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.
VVER-related burnup credit calculations
International Nuclear Information System (INIS)
The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)
International Nuclear Information System (INIS)
We have introduced heterogeneity to an existing model as a special feature and simultaneously extended the model from 1D to 3D. Briefly, the code generates stochastic fractures in a given geosphere. These fractures are connected in series to form one pathway for radionuclide transport from the repository to the biosphere. Rock heterogeneity is realized by simulating physical and chemical properties for each fracture, i.e. these properties vary along the transport pathway (which is an ensemble of all fractures serially connected). In this case, each Monte Carlo simulation involves a set of many thousands of realizations, one for each pathway. Each pathway can be formed by approx. 100 fractures. This means that for a Monte Carlo simulation of 1000 realizations, we need to perform a total of 100,000 simulations. Therefore the introduction of heterogeneity has increased the CPU demands by two orders of magnitude. To overcome the demand for CPU, the program, MLCRYSTAL, has been implemented in a parallel workstation environment using the MPI, Message Passing Interface, and later on ported to an IBM-SP2 parallel supercomputer. The program is presented here and a preliminary set of results is given with the conclusions that can be drawn. 3 refs, 12 figs
Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N
2000-01-01
Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...
Energy Technology Data Exchange (ETDEWEB)
Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France); Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others
2014-06-15
In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.
Wysocka-Rabin, A
2013-01-01
The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...
International Nuclear Information System (INIS)
Using a Fortran step-by-step Monte-Carlo simulation code of liquid water radiolysis and the Java programming language, we have developed a Java interface software, called SimulRad. This interface enables a user, in a three-dimensional environment, to either visualize the spatial distribution of all reactive species present in the track of an ionizing particle at a chosen simulation time, or present an animation of the chemical development of the particle track over a chosen time interval (between ∼10-12 and 10-6 s). It also allows one to select a particular radiation-induced cluster of species to view, in fine detail, the chemical reactions that occur between these species
Burnup credit implementation in spent fuel management
International Nuclear Information System (INIS)
The criticality safety analysis of spent fuel management systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. The concept of allowing reactivity credit for spent fuel offers economic incentives. Burnup Credit (BUC) could reduce mass limitation during dissolution of highly enriched PWR assemblies at the La Hague reprocessing plant. Furthermore, accounting for burnup credit enables the operator to avoid the use of Gd soluble poison in the dissolver for MOX assemblies. Analyses performed by DOE and its contractors have indicated that using BUC to maximize spent fuel transportation cask capacities is a justifiable concept that would result in public risk benefits and cost savings while fully maintaining criticality safety margins. In order to allow for Fission Products and Actinides in Criticality-Safety analyses, an extensive BUC experimental programme has been developed in France in the framework of the CEA-COGEMA collaboration. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Independent measurement systems, e.g. gamma spectrum detection systems, are needed to perform a true independent measurement of assembly burnup, without reliance on reactor records, using the gamma emission signatures fission products (mainly Cesium isotopes). (author)
Energy Technology Data Exchange (ETDEWEB)
Kurosu, Keita [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P., E-mail: vadim.p.moskvin@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
Models for fuel rod behaviour at high burnup
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)
2004-12-01
This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be
Energy Technology Data Exchange (ETDEWEB)
Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL
2015-01-01
Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k_{eff}) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup
The applications of burnup credit and the measurement techniques of burnup verification
International Nuclear Information System (INIS)
The factors of influencing criticality safety, implementing criticality control conditions, the calculation methods for predicting criticality, casks design and cask loading graph are described. The problems in the application of burnup credit and the dominant error in burnup credit operation are analysed. In order to avoid the operation error, requirements of measurement techniques and the most suitable measurement method are introduced
International Nuclear Information System (INIS)
In this paper, electron impact ionization processes are incorporated in our Monte Carlo (MC) code for the calculation of the damage of the bio-molecules by the irradiation of x-ray free electron lasers (XFELs). The study of this damage is useful for the analysis of three-dimensional structure of the bio-molecules using x-ray free electron lasers because the damage appears as a noise for this analysis. The x-ray absorption and Compton scattering processes take place after the x-rays irradiate the target. Then, an electron is ionized from atoms and moves in the target. This electron also gives rise to an electron impact ionization process for the other atoms or ions. It is assumed that electron impact ionization processes occur only when the electrons cross a cross section, which is located at the place of the atomic nucleus and is perpendicular to the direction of the electron velocity. The x-ray flux, wavelength, and pulses of XFEL light pulses treated here are 1020-21/pulse/mm2, 10 fs, and 0.1 nm, respectively. We compare the frequencies of photo-electron impact ionization processes calculated by our MC code with those by rate equations. The relationship of these frequencies with shapes of targets using various ellipsoids as a target is discussed. (author)
Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0
Energy Technology Data Exchange (ETDEWEB)
Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.
1996-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.
International Nuclear Information System (INIS)
Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of 16O and 12C. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons–carbon ion beam) to 57% (exiting neutrons–proton beam) have been identified in production yields as well as in the energy spectra for neutrons. (paper)
Karalidi, Theodora; Schneider, Glenn; Hanson, Jake R; Pasachoff, Jay M
2015-01-01
Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov-Chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus accurately retrieves the properties of the major features of the jovian atmosphere such as the Great Red Spot and a major 5um hot spot. Aeolus is the first mapping code validated on actual observations of a giant planet over a full rotational period. For this study, we applied Aeolus to J and H-bands HST light curves of 2MASSJ21392676+0220226 and 2MASSJ0136565+093347. Aeolus retrieves three spots at the top-of-the-atmosphere (per observational wavelength) of these two brown dwarfs, with a surface coverage of 21+-3% and 20.3+-1.5% respectively. The Jupiter HST light curves will be publicly available via ADS/VIZIR.
Energy Technology Data Exchange (ETDEWEB)
Morgan C. White
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second
International Nuclear Information System (INIS)
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Energy Technology Data Exchange (ETDEWEB)
Caribe, Paulo Rauli Rafeson Vasconcelos, E-mail: raulycaribe@hotmail.com [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Fac. de Fisica; Cassola, Vagner Ferreira; Kramer, Richard; Khoury, Helen Jamil [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear
2013-07-01
The use of three-dimensional models described by polygonal meshes in numerical dosimetry enables more accurate modeling of complex objects than the use of simple solid. The objectives of this work were validate the coupling of mesh models to the Monte Carlo code GEANT4 and evaluate the influence of the number of vertices in the simulations to obtain absorbed fractions of energy (AFEs). Validation of the coupling was performed to internal sources of photons with energies between 10 keV and 1 MeV for spherical geometries described by the GEANT4 and three-dimensional models with different number of vertices and triangular or quadrilateral faces modeled using Blender program. As a result it was found that there were no significant differences between AFEs for objects described by mesh models and objects described using solid volumes of GEANT4. Since that maintained the shape and the volume the decrease in the number of vertices to describe an object does not influence so meant dosimetric data, but significantly decreases the time required to achieve the dosimetric calculations, especially for energies less than 100 keV.
Energy Technology Data Exchange (ETDEWEB)
Vieira, Jose Wilson
2004-07-15
The MAX phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. In computational dosimetry, MAX can simulate the geometry of a human body under exposure to ionizing radiations, internal or external, with the objective of calculating the equivalent dose in organs and tissues for occupational, medical or environmental purposes of the radiation protection. This study presents a methodology used to build a new computational exposure model MAX/EGS4: the geometric construction of the phantom; the development of the algorithm of one-directional, divergent, and isotropic radioactive sources; new methods for calculating the equivalent dose in the red bone marrow and in the skin, and the coupling of the MAX phantom with the EGS4 Monte Carlo code. Finally, some results of radiation protection, in the form of conversion coefficients between equivalent dose (or effective dose) and free air-kerma for external photon irradiation are presented and discussed. Comparing the results presented with similar data from other human phantoms it is possible to conclude that the coupling MAX/EGS4 is satisfactory for the calculation of the equivalent dose in radiation protection. (author)
Application of Monte Carlo method to nuclear core characteristic analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, J. K.; Han, C. Y.; Shin, C. H. [Hangyang Univ., Seoul (Korea, Republic of)
2000-05-01
The nuclear core characteristic analysis for Korean Next Generation Reactor(KNGR) was performed by using Monte Carlo method. MCNP4B code was employed to model the initial core of KNGR on a three dimensional representation. Material compositions for each type and burnup of fuel assemblies were obtained by using CASMO-3 runs. A new cross section library for different in-vessel core temperatures was generated by NJOY 97 code. The criticality benchmark of the modeled KNGR core was carried out though KCODE calculation and the relative powers of each fuel rod were obtained. The nuclear characteristics including the effective multiplication factor, relative power distributions, pin peaking factor, and axial offset(AO) were obtained from the results in KCODE calculation. The comparison between the results from MCNP calculation and the reference data from KEPCO Nuclear Fuel Company(KNFC) validates the MCNP modeling for KNGR core and the leads to the applications of Monte Carlo method to the nuclear core characteristic analysis.
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
International Nuclear Information System (INIS)
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors keff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors keff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors keff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
A. O., Q.; Gardner, R. P.
1995-12-01
A new Monte Carlo method for modelling photon transport in the presence of deep-penetration and streaming effects by combining a subspace weight window and biasing schemes has been developed. This method is based on use of an importance map from which an importance subspace is identified for a given particle transport system. Biasing schemes, including direction biasing and the exponential transform, are applied to drive particles into the importance subspace. The subspace weight window approach used consists of splitting and Russian Roulette that acts as a particle weight stabilizer in the subspace to control weight fluctuations caused by the biasing schemes. This approach has been implemented in the optimization of the McLDL code, a specific purpose Monte Carlo code for modelling the spectral response of dual-spaced γ-γ litho-density logging tools. which are highly collimated, deep-penetration, three-dimensional, and low-yield photon transport systems. The McLDL code has been tested on a computational benchmark tool and benchmarked experimentally against laboratory test pit data for a commercial γ-γ litho-density logging tool (the Z-Densilog). The Monte Carlo Multiply Scattered Components (MCMSC) approach has been developed in conjunction with the McLDL code and Library Least-Squares (LLS) analysis. The MCMSC approach consists of constructing component libraries (1 4, 5 8 scatters, etc.) of γ-ray scattered spectra for a reference formation and borehole with the McLDL Monte Carlo code. Then the LLS approach is used with these library spectra to obtain empirical relationships between formation and borehole parameters and the component amounts. These, in turn, can be used to construct the spectra for samples with a range of formation and borehole parameters. This approach should significantly reduce the amount of experimental effort or extent of the Monte Carlo calculations necessary for complete logging tool calibration while maintaining a close physical
ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT
Energy Technology Data Exchange (ETDEWEB)
A.H. Wells
2004-11-17
The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).
Burnup analysis of the power reactor, 3
International Nuclear Information System (INIS)
The atomic number densities of uranium and transuranium were measured for JPDR-1. For the purpose of the study, the program has been prepared. It solves the burnup equation by the exponential matrix method. The void fraction and exposure distribution of the required data were calculated by three-dimensional nuclear-thermal-hydro-dynamic program FLORA under the operating conditions. The distribution of each atomic number density was obtained. The results agree with the measured values. The programs calculating nuclear constants in the cell were evaluated by obtaining the effective cross sections from the atomic number densities and the burnup. (auth.)
Computational simulation of fuel burnup estimation for research reactors plate type
Energy Technology Data Exchange (ETDEWEB)
Santos, Nadia Rodrigues dos, E-mail: nadiasam@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The aim of this study is to estimate the spatial fuel burnup, through computational simulation, in two research reactors plate type, loaded with dispersion fuel: the benchmark Material Test Research - International Atomic Energy Agency (MTR-IAEA) and a typical multipurpose reactor (MR). The first composed of plates with uranium oxide dispersed in aluminum (UAlx-Al) and a second composed with uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. To develop this work we used the deterministic code, WIMSD-5B, which performs the cell calculation solving the neutron transport equation, and the DF3DQ code, written in FORTRAN, which solves the three-dimensional neutron diffusion equation using the finite difference method. The methodology used was adequate to estimate the spatial fuel burnup , as the results was in accordance with chosen benchmark, given satisfactorily to the proposal presented in this work, even showing the possibility to be applied to other research reactors. For future work are suggested simulations with other WIMS libraries, other settings core and fuel types. Comparisons the WIMSD-5B results with programs often employed in fuel burnup calculations and also others commercial programs, are suggested too. Another proposal is to estimate the fuel burnup, taking into account the thermohydraulics parameters and the Xenon production. (author)
Study of the acceleration of nuclide burnup calculation using GPU with CUDA
International Nuclear Information System (INIS)
The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)
Daures, J; Gouriou, J; Bordy, J M
2011-03-01
This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.
Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej
2016-08-01
The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.
Parallelizing Monte Carlo with PMC
Energy Technology Data Exchange (ETDEWEB)
Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.
1994-11-01
PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.
Sloma, Tanya Noel
When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light
Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values
Energy Technology Data Exchange (ETDEWEB)
Ozdemir, Levent, E-mail: levent.ozdemir@taek.gov.tr [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Acar, Banu Bulut; Zabunoglu, Okan H. [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)
2011-02-15
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of {sup 239}Pu and {sup 241}Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.
International Nuclear Information System (INIS)
The high density spent fuel storage rack Boraflex was known to experience changes of its physical property and to dissolve under exposure to radiation in an aqueous environment for long period of time. In this study, the criticality evaluation for spent fuel storage rack of Ulchin Unit 2 under normal condition was performed assuming complete loss of 10B from the Boraflex and applying burnup credit. Criticality evaluation code KENO-V.a. from SCALE4.4 system was benchmarked against critical experiments to obtain the calculation bias and bias uncertainties. The manufacturing tolerances of nuclear fuel and storage rack and their reactivity uncertainties were derived, as well. Considering those bias and uncertainties of calculation, the criticality of spent fuel storage under normal condition was conservatively evaluated. The criticality evaluation result using burnup credit can be presented as a spent fuel loading curve that indicates the acceptable burnup domain in spent fuel storage pool. The spent fuels with various initial enrichments and discharge fuel burnup can be safely accommodated in the storage without taking any boron credit from Boraflex, provided the combination falls within the acceptable domain in the loading curve. The spent fuel with initial enrichment of 5.0w/o was evaluated to meet the subcritical safety if its burnup is over 43.0GWD/MTU. The criticality evaluation result also showed that spent fuels with the initial enrichment less than 1.6w/o were able to be stored in the storage pool regardless of their burnup. Conclusively, in the Region 2 of the spent fuel storage pool, the maximum keff , considering all uncertainties, was calculated as 0.94818
International Nuclear Information System (INIS)
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports
Energy Technology Data Exchange (ETDEWEB)
DeHart, M.D.
1996-05-01
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.
Assessing the Effect of Fuel Burnup on Control Rod Worth for HEU and LEU Cores of Gharr-1
Directory of Open Access Journals (Sweden)
E.K. Boafo
2013-02-01
Full Text Available An important parameter in the design and analysis of a nuclear reactor is the reactivity worth of the control rod which is a measure of the efficiency of the control rod to absorb excess reactivity. During reactor operation, the control rod worth is affected by factors such as the fuel burnup, Xenon concentration, Samarium concentration and the position of the control rod in the core. This study investigates the effect of fuel burnup on the control rod worth by comparing results of a fresh and an irradiated core of Ghana's Miniature Neutron Source Reactor for both HEU and LEU cores. In this study, two codes have been utilized namely BURNPRO for fuel burnup calculation and MCNP5 which uses densities of actinides of the irradiated fuel obtained from BURNPRO. Results showed a decrease of the control rod worth with burnup for the LEU while rod worth increased with burnup for the HEU core. The average thermal flux in both inner and outer irradiation sites also decreased significantly with burnup for both cores.
Chao, T. C.; Xu, X. G.
2001-04-01
VIP-Man is a whole-body anatomical model newly developed at Rensselaer from the high-resolution colour images of the National Library of Medicine's Visible Human Project. This paper summarizes the use of VIP-Man and the Monte Carlo method to calculate specific absorbed fractions from internal electron emitters. A specially designed EGS4 user code, named EGS4-VLSI, was developed to use the extremely large number of image data contained in the VIP-Man. Monoenergetic and isotropic electron emitters with energies from 100 keV to 4 MeV are considered to be uniformly distributed in 26 organs. This paper presents, for the first time, results of internal electron exposures based on a realistic whole-body tomographic model. Because VIP-Man has many organs and tissues that were previously not well defined (or not available) in other models, the efforts at Rensselaer and elsewhere bring an unprecedented opportunity to significantly improve the internal dosimetry.
Bobin, C; Thiam, C; Bouchard, J
2016-03-01
At LNE-LNHB, a liquid scintillation (LS) detection setup designed for Triple to Double Coincidence Ratio (TDCR) measurements is also used in the β-channel of a 4π(LS)β-γ coincidence system. This LS counter based on 3 photomultipliers was first modeled using the Monte Carlo code Geant4 to enable the simulation of optical photons produced by scintillation and Cerenkov effects. This stochastic modeling was especially designed for the calculation of double and triple coincidences between photomultipliers in TDCR measurements. In the present paper, this TDCR-Geant4 model is extended to 4π(LS)β-γ coincidence counting to enable the simulation of the efficiency-extrapolation technique by the addition of a γ-channel. This simulation tool aims at the prediction of systematic biases in activity determination due to eventual non-linearity of efficiency-extrapolation curves. First results are described in the case of the standardization (59)Fe. The variation of the γ-efficiency in the β-channel due to the Cerenkov emission is investigated in the case of the activity measurements of (54)Mn. The problem of the non-linearity between β-efficiencies is featured in the case of the efficiency tracing technique for the activity measurements of (14)C using (60)Co as a tracer.
Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H
2008-09-01
Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.
Lee, Y K
2005-01-01
TRIPOLI-4.3 Monte Carlo transport code has been used to evaluate the QUADOS (Quality Assurance of Computational Tools for Dosimetry) problem P4, neutron and photon response of an albedo-type thermoluminescence personal dosemeter (TLD) located on an ISO slab phantom. Two enriched 6LiF and two 7LiF TLD chips were used and they were protected, in front or behind, with a boron-loaded dosemeter-holder. Neutron response of the four chips was determined by counting 6Li(n,t)4He events using ENDF/B-VI.4 library and photon response by estimating absorbed dose (MeV g(-1)). Ten neutron energies from thermal to 20 MeV and six photon energies from 33 keV to 1.25 MeV were used to study the energy dependence. The fraction of the neutron and photon response owing to phantom backscatter has also been investigated. Detailed TRIPOLI-4.3 solutions are presented and compared with MCNP-4C calculations. PMID:16381740