WorldWideScience

Sample records for cardiovascular nuclear medicine

  1. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  2. ``THE UNVEILED HEART'' a teaching program in cardiovascular nuclear medicine

    Science.gov (United States)

    Itti, Roland; Merabet, Yasmina; Roca, Ramona; Bontemps, Laurence; Itti, Emmanuel

    2004-07-01

    The functional investigation of cardiac diseases using nuclear techniques involves several variables, such as myocardial perfusion, cellular viability or mechanical contraction. The combined, topographical and quantitative assessment of these variables can characterize the functional state of the heart in terms of normal myocardium, ischemia, hibernation or necrosis. The teaching program, "The Unveiled Heart", has been designed in order to help nuclear physicians or cardiologists approaching these concepts and their implications for diagnosis of coronary artery disease, optimization of therapeutic strategies and prognosis evaluation. Anatomical correlations with coronary angiographic results obtained during balloon occlusion at the time of coronary angioplasty demonstrate the complementary role of imaging techniques and highlight the patient to patient variability of risk areas. A sectorial model derived from a polar projection of the myocardium presents for each sector the probability of involvement of a given coronary artery.

  3. Radioiodination and Bio evaluation of Some Cardiovascular Drugs for Nuclear Medicine Application

    International Nuclear Information System (INIS)

    Nuclear medicine specialists use safe, painless, and cost-effective techniques to image the body and treat disease. Nuclear medicine imaging is unique, because it provides doctors with information about both structure and function. It is a way to gather medical information that would otherwise be unavailable, require surgery, or necessitate more expensive diagnostic tests. Today, nuclear medicine offers procedures that are essential in many medical specialties, from pediatrics to cardiology to psychiatry. Radiopharmacy is the science that deals largely with the preparation, compounding, Quality Control (QC), and dispensing of radiopharmaceuticals and radioisotopes for human use. Radio pharmacists are the personnel who perform these functions at large hospitals or medical centers. They are involved in manufacturing cold kits and in developing new agents and procedures. In this thesis it was studied the labeling of Deltiazem , Nefidipine and Valsartan with iodine -125 via an electrophilic substitution reaction. The biological distribution of these tracers were studied and was found the possibility of their use in cardiovascular disorders.

  4. Impact of nuclear medicine on the diagnosis and management of cardiovascular disease

    International Nuclear Information System (INIS)

    Recent advances in the methods of diagnostic cardiology have brought a change in emphasis toward noninvasive patient study. Nuclear Medicine techniques play an important part among noninvasive methods which enable diagnostic and therapeutic evaluation in the majority of patients with cardiac problems, without resorting to dangerous, painful and costly cardiac catheterization. Discussed are only a few of the myriad clinical applications which are rapidly making nuclear medicine techniques an integral part of the cardiologic diagnostic armamentarium

  5. Nuclear medicine

    International Nuclear Information System (INIS)

    The task of the Expert Committee was to review the technical development and efficacy of nuclear medicine methods and to recommend the best possible means of establishing nuclear medicine services at various levels of medical care in different countries. After reviewing the contributions which nuclear medicine can make, the various types of medical institutions and hospitals in existence, the requirements, organization and funding of nuclear medicine services, and the cost/effectiveness of nuclear medicine, a number of recommendations were made. IAEA and WHO should make information on existing methods of cost/effectiveness analysis widely available; invite governments to include a description of such analysis methods in training programmes of their health officers; assist in the acquisition of the necessary data; and encourage and eventually support actual applications of such analyses to carefully selected nuclear medicine procedures in varying medicosocial environments. They were further recommended to study possible ways of improving reliability and ease of servicing nuclear medicine equipment, and extent of possible local construction; the possibility of making available supplies of matched characterized reagents for radioimmunoassay and related techniques; and to study the advantages of establishing a network of collaborating centres on an international basis

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  7. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  9. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  10. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  11. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine and Cardiovascular Research Institute (CARIM), P. Debyelaan 25, HX, Maastricht (Netherlands); Hyafil, Fabien [Bichat University Hospital, Inserm 1148, DHU FIRE, Assistance Publique - Hopitaux de Paris, Department of Nuclear Medicine, Paris (France); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Verberne, Hein J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede (Netherlands); Lindner, Oliver [Heart and Diabetes Center NRW, Nuclear Medicine and Molecular Imaging, Institute of Radiology, Bad Oeynhausen (Germany); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Agostini, Denis [Normandie Universite, Department of Nuclear Medicine, CHU Cote de Nacre, Caen (France); Uebleis, Christopher [Ludwig-Maximilians Universitaet Muenchen, Department of Clinical Radiology, Muenchen (Germany); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hacker, Marcus [Medical University Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided therapy, Vienna (Austria); Collaboration: on behalf of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-04-15

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  12. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    Science.gov (United States)

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  13. What Is Nuclear Medicine?

    Science.gov (United States)

    What is nuclear medicine? Nuclear medicine is a medical specialty that is used to diagnose and treat diseases in a safe and painless way. Nuclear medicine procedures permit the determination of medical information ...

  14. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.)

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  17. Robotic technology in cardiovascular medicine.

    Science.gov (United States)

    Bonatti, Johannes; Vetrovec, George; Riga, Celia; Wazni, Oussama; Stadler, Petr

    2014-05-01

    Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology, endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed. The basic feasibility and safety of robotic approaches in cardiovascular medicine has been demonstrated, but learning curves and the high costs associated with this technology have limited its widespread use. Nonetheless, increased procedural speed, accuracy, and reduced exposure to radiation and contrast agent in robotically assisted catheter-based interventions, as well as reduced surgical trauma and shortened patient recovery times after robotic cardiovascular surgery are promising achievements in the field. PMID:24663088

  18. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  19. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  20. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  1. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  2. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  3. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine

    OpenAIRE

    Jie Wang; Fei Lin; Li-li Guo; Xing-jiang Xiong; Xun Fan

    2015-01-01

    Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM) has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we sho...

  4. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  5. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  6. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer in your child’s body will lose its radioactivity over time. In many cases, the radioactivity will ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Videos related to Children's (Pediatric) Nuclear Medicine About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... after the procedure? Except for intravenous injections, most nuclear medicine procedures are painless and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... medical imaging that uses small amounts of radioactive material to diagnose and determine the severity of or ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... not experience any discomfort. When swallowed, the radiotracer has little or no taste. If inhaled, your child ... after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions to ...

  17. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  18. Precision Medicine, Cardiovascular Disease and Hunting Elephants.

    Science.gov (United States)

    Joyner, Michael J

    2016-01-01

    Precision medicine postulates improved prediction, prevention, diagnosis and treatment of disease based on patient specific factors especially DNA sequence (i.e., gene) variants. Ideas related to precision medicine stem from the much anticipated "genetic revolution in medicine" arising seamlessly from the human genome project (HGP). In this essay I deconstruct the concept of precision medicine and raise questions about the validity of the paradigm in general and its application to cardiovascular disease. Thus far precision medicine has underperformed based on the vision promulgated by enthusiasts. While niche successes for precision medicine are likely, the promises of broad based transformation should be viewed with skepticism. Open discussion and debate related to precision medicine are urgently needed to avoid misapplication of resources, hype, iatrogenic interventions, and distraction from established approaches with ongoing utility. Failure to engage in such debate will lead to negative unintended consequences from a revolution that might never come. PMID:26902518

  19. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2015-01-01

    Full Text Available Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.

  20. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  1. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  2. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  3. Nuclear tele medicine

    International Nuclear Information System (INIS)

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  4. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  5. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Sciagrà, Roberto; Passeri, Alessandro; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Gimelli, Alessia; Hyafil, Fabien; Agostini, Denis; Übleis, Christopher; Hacker, Marcus

    2016-07-01

    Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice.

  6. Nuclear imaging of cardiovascular disease

    International Nuclear Information System (INIS)

    Nuclear imaging methods provide noninvasive indexes of myocardial function, perfusion, and metabolism and are well accepted in clinical cardiology. Advances in prevention and treatment of cardiac disease have resulted in decreasing cardiovascular mortality in industrialized nations. The improvement in therapeutic options has increased the demand for diagnostic tests that might guide clinical decision making. Information beyond the pure anatomic characterization of coronary stenoses is required. Nuclear imaging can be used for early detection and monitoring of the severity and extent of disease. The prognostic potential of such functional testing is being increasingly appreciated and used to guide therapy, thereby resulting in improvement of the quality and cost-effectiveness of the workup of patients with cardiovascular disease. Extensive clinical validation has resulted in growing acceptance of these techniques. Furthermore, ongoing improvement of imaging techniques and development of new radiopharmaceuticals will pave the way for disease-specific, molecular-targeted cardiac imaging in the future. (orig.)

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, , also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, , also ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  10. Traceability in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, B.E. [National Institute of Standards and Technology, Ionizing Radiation Div., Gaithersburg MD (United States); Judge, St. [National Physical Laboratory, Hampton Road, Teddington, Middlesex (United Kingdom)

    2007-08-15

    Accurate, reproducible measurement of radioactivity in nuclear medicine applications is vital to ensure the safety and effectiveness of disease diagnosis and treatment using unsealed radioactive sources. The need to maintain a high degree of confidence in those measurements requires that they be carried out so as to be traceable to national and international standards. In addition, measurement traceability for radioactivity in medicine helps ensure international consistency in measurement at all levels of practice (national measurement laboratories, research institutions, isotope producers, radiopharmaceutical manufacturers and clinics). This paper explores the importance of radioactivity measurement in nuclear medicine and demonstrates how traceability can be extended from international standards to the quantity of the drug administered to the patient. (authors)

  11. Traceability in nuclear medicine

    Science.gov (United States)

    Zimmerman, Brian E.; Judge, Steven

    2007-08-01

    Accurate, reproducible measurement of radioactivity in nuclear medicine applications is vital to ensure the safety and effectiveness of disease diagnosis and treatment using unsealed radioactive sources. The need to maintain a high degree of confidence in those measurements requires that they be carried out so as to be traceable to national and international standards. In addition, measurement traceability for radioactivity in medicine helps ensure international consistency in measurement at all levels of practice (national measurement laboratories, research institutions, isotope producers, radiopharmaceutical manufacturers and clinics). This paper explores the importance of radioactivity measurement in nuclear medicine and demonstrates how traceability can be extended from international standards to the quantity of the drug administered to the patient.

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and You About this Site RadiologyInfo.org ... by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ...

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and You About this Site RadiologyInfo. ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ...

  15. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  16. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99mTc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  17. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  18. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  19. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  20. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Full text: Mongolia is a large, landlocked and sparsely populated country in the northern part of Central Asia, located between Russia on the north and China on east, south and west. Its total land area of 1.5 millions square kilometers is about the size if India or large than Alaska, but contains only 2.3 million population or 1.3 person per square kilometer. It is 2400 kilometers long from east to west maximum of 1260 kilometers from north to south.The priority problems in health.Democratic political reforms since 1990 saw a major transformation process, which is aimed at changing the centrally planned economy to one based on market orient principles. Mongolia is in a gradual epidemiological transition from preponderance of infectious diseases towards non-communicable and degenerative diseases. Mean features of this transition are sharp decrease in mortality from infectious and parasitic diseases and sharp increase in mortality from diseases of the circulatory system and neoplasms. Life expectancy at birth was 65.7 year in 1997. Cardiovascular diseases and cancer are among the leading causes of death in Mongolia.Nuclear Medicine in Mongolia-1975-1981 Beginning First Medical Application of radioisotopes in 1972. First Rectilinear scanner. Single and dual scintillation detectors system, Thyroid Uptake Test; 1982-1999 Settlement, IAEA TC Project since 1982, Thematic Program on Health Care (RAS) since 1997, First Gamma Camera since 1997, Radioimmunological Laboratory and first Radioiodine treatment since 1982, Mongolian Society of Nuclear Medicine since 1982, Member of World and Federation of Nuclear Medicine and Biology since 1994, Member of Asia and Oceania Radionuclide Therapy Council , 2000 Development, First SPECT and Quantitative Measurement in 2000 Second Gamma Camera, New Thyroid Uptake System-Atomlab 950 PC Spectrometer Radioimmunological Laboratory replacement, Myocardial Perfusion Scintigraphy, Liver Cancer Treatment with Re-188, Radiosynovectomy with Re

  1. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  2. The Middle Ages Contributions to Cardiovascular Medicine

    Science.gov (United States)

    Ranhel, André Silva; Mesquita, Evandro Tinoco

    2016-01-01

    The historical period called the Middle Ages, a long interval between the 5th and the 15th centuries, is still commonly known as the Dark Ages, especially in the area of health sciences. In the last decades, this "classic" view of the Middle Ages has been gradually modified with advances in historiographical studies and the history of science. During that period in Western Europe, knowledge about the human body suffered a regression in terms of anatomy and physiology, with the predominance of religious conceptions mainly about diseases and their treatments. Knowledge on the cardiovascular system and heart diseases has been classically described as a repetition of the concepts developed by Galen from the dissection of animals and his keen sense of observation. However, the Middle East, especially Persia, was the birth place of a lot of intellectuals who preserved the ancient knowledge of the Greeks while building new knowledge and practices, especially from the 8th to the 13th century. The invasion of the Arabs in North of Africa and the Iberian Peninsula and the eclosion of the Crusades resulted in a greater contact between the East and the West, which in turn brought on the arrival of the Arab medical knowledge, among others, to 12th century Europe. Such fact contributed to an extremely important change in the scientific medical knowledge in the West, leading to the incorporation of different concepts and practices in the field of cardiovascular Medicine. The new way of teaching and practicing Medicine of the great Arab doctors, together with the teaching hospitals and foundations in the Koran, transformed the Medicine practiced in Europe definitely. The objective of this paper is to describe the knowledge drawn up from the Middle Ages about the cardiovascular system, its understanding and therapeutic approach to cardiologists and cardiovascular surgeons. PMID:27556317

  3. The Middle Ages Contributions to Cardiovascular Medicine.

    Science.gov (United States)

    Ranhel, André Silva; Mesquita, Evandro Tinoco

    2016-04-01

    The historical period called the Middle Ages, a long interval between the 5th and the 15th centuries, is still commonly known as the Dark Ages, especially in the area of health sciences. In the last decades, this "classic" view of the Middle Ages has been gradually modified with advances in historiographical studies and the history of science. During that period in Western Europe, knowledge about the human body suffered a regression in terms of anatomy and physiology, with the predominance of religious conceptions mainly about diseases and their treatments. Knowledge on the cardiovascular system and heart diseases has been classically described as a repetition of the concepts developed by Galen from the dissection of animals and his keen sense of observation. However, the Middle East, especially Persia, was the birth place of a lot of intellectuals who preserved the ancient knowledge of the Greeks while building new knowledge and practices, especially from the 8th to the 13th century. The invasion of the Arabs in North of Africa and the Iberian Peninsula and the eclosion of the Crusades resulted in a greater contact between the East and the West, which in turn brought on the arrival of the Arab medical knowledge, among others, to 12th century Europe. Such fact contributed to an extremely important change in the scientific medical knowledge in the West, leading to the incorporation of different concepts and practices in the field of cardiovascular Medicine. The new way of teaching and practicing Medicine of the great Arab doctors, together with the teaching hospitals and foundations in the Koran, transformed the Medicine practiced in Europe definitely. The objective of this paper is to describe the knowledge drawn up from the Middle Ages about the cardiovascular system, its understanding and therapeutic approach to cardiologists and cardiovascular surgeons. PMID:27556317

  4. [Nuclear medicine in Europe: education].

    NARCIS (Netherlands)

    Hellwig, D.; Freudenberg, L.S.; Mottaghy, F.M.; Franzius, C.; Krause, T.; Garai, I.; Biermann, M.; Gruning, T.; Leitha, T.; Gotthardt, M.

    2012-01-01

    The technical developments that have taken place in the preceding years (PET, hybrid imaging) have changed nuclear medicine. The future cooperation with radiologists will be challenging as well as positioning nuclear medicine in an European context. It can also be expected that education in nuclear

  5. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  6. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99Tcm-diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  7. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  8. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

  9. Nuclear Medicine Imaging in the Pediatric Patient

    OpenAIRE

    Loveless, Vivian

    2006-01-01

    Pediatric nuclear medicine provides a wealth of information on a variety of disease states; however, precautions on dosing have to be taken into consideration. Also, expertise in conducting procedures and interpreting the results in pediatric patients is necessary. Emphasis is placed on diagnostic studies involving the central nervous system, musculoskeletal system, genitourinary system, gastrointestinal system, endocrine system, pulmonary system, and cardiovascular system along with a brief ...

  10. Nuclear Medicine Scans for Cancer

    Science.gov (United States)

    ... My ACS » Your Local Offices Close + - Text Size Nuclear Medicine Scans for Cancer Other names for these ... inflammation, or cancer. Use of monoclonal antibodies in nuclear scans A special type of antibody made in ...

  11. Pharmacogenomics in cardiovascular disorders: Steps in approaching personalized medicine in cardiovascular medicine

    Directory of Open Access Journals (Sweden)

    Christopher Barone

    2009-09-01

    Full Text Available Christopher Barone, Shaymaa S Mousa, Shaker A MousaThe Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USAAbstract: Some of the most commonly prescribed medications are those for cardiovascular maladies. The beneficial effects of these medications have been well documented. However, there can be substantial variation in response to these medications among patients, which may be due to genetic variation. For this reason pharmacogenomic studies are emerging across all aspects of cardiovascular medicine. The goal of pharmacogenomics is to tailor treatment to an individual’s genetic makeup in order to improve the benefit-to-risk ratio. This review examines the potential pharmacogenomic parameters which may lead to a future of personalized medicine. For example, it has been found that patients with CYP2C9 and VKORC1 gene variations have a different response to warfarin. Other studies looking at β-blockers, ACE inhibitors, ARBs, diuretics and statins have shown some results linking genetic variations to pharmacologic response. However these studies have not impacted clinical use yet, unlike warfarin findings, as the small retrospective studies need to be followed up by larger prospective studies for definitive results.Keywords: cardiovascular, pharmacogenomics, genetics, cardiovascular medicine, personalized medicine, polymorphism

  12. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  13. Nuclear medicine in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Rothfeld, B. (ed.)

    1974-01-01

    The subject is discussed under the following main headings: crystal scintillation counting; liquid scintillation counting; activation analysis; the in vitro nuclear medicine laboratory; blood volume in clinical practice B/sub 12/ and folate deficiency; radionuclide studies associated with abnormalities of iron; basic principles of competitive radioassay; plasma cortisol; radioimmunoassays for T/sub 3/ and T/sub 4/; radioimmunoassay of estrogens; determination of androgens in biological fluids; radioimmunoassay of digitalis glycosides; growth hormone; thyrotropin; gonadotropins; radioimmunoassay of gastrin; glucagon; radioisotopic measurements of insulin; radioimmunoassay of the calcium-regulating hormones; the renin-angiotensin system and aldosterone; tumor antigens; fat absorption; protein-losing enteropathy; Australia antigen; bacteriologic cultures and sensitivities; and future pathways. (ERB)

  14. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  15. Future of nuclear medicine

    International Nuclear Information System (INIS)

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  16. Nuclear medicine in oncology

    International Nuclear Information System (INIS)

    Cancer is increasingly prevalent in our society. There is a life-time risk that 1 in 3 Australian men and 1 in 4 Australian women will get cancer before the age of 75 years. Overall, 27% of the deaths in NSW are currently related to cancer. The common cancers for men are prostate, lung, melanoma, colon, rectum and bladder. For women the common cancers are breast, colon, melanoma, lung and unknown primary. However, overall lung cancer remains the major cause of cancer deaths (20%) followed by colorectal (13%), unknown site (8%), breast and prostate. Breast and lung cancer are the major causes of death in women. Recent information on 5 year survivals reveal good 5 year survival rates for breast (78.6%), prostate (72.4%) and melanoma (92%), while some tumours such as lung cancer (10.7%) have poor survival. Colon cancer has intermediate survival (57.1%). Projections for cancer incidence suggests rates of cancer will increase for colorectal cancer, melanoma, lung cancer in females but decrease for breast, lung in males and prostate cancer. Major strategic directions in cancer research are understanding carcinogenesis, identification of high risk groups, screening and early detection, chemo-prevention, new cancer therapies, combined modality therapy and quality of life issues. Nuclear medicine will play an important part in many of these areas

  17. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges. PMID:15886748

  18. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  19. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are typically injected into the ...

  20. Nuclear Medicine Imaging

    Science.gov (United States)

    ... necesita saber acerca de... Estudios de Imagen de Medicina Nuclear Un procedimiento de medicina nuclear se describe algunas veces como unos rayos- ... través del cuerpo del paciente. Los procedimientos de medicina nuclear utilizan pequeñas cantidades de mate- riales radiactivos, ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine will interpret the images and forward a report to your referring physician. top of page What ... by: Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical ...

  2. THERAPEUTIC APPLICATIONS IN NUCLEAR MEDICINE

    Directory of Open Access Journals (Sweden)

    Cristofer Alan Costa Santos

    2014-12-01

    Full Text Available Due to poor understanding of the role of nuclear medicine in several disease treatments, the aim of this study was to demonstrate the main therapeutic applications of nuclear medicine as well as their characteristics and radiopharmaceuticals usage through scientific literature review. The main therapeutic applications of nuclear medicine are radio-immunotherapy with iodine-131, yttrium-90, lutetium-177 and copper-67, the radiosynovectomy with yttrium-90, rhenium-186 and gold-198 and pain palliation of osseous metastases with samarium-153, strontium-89 and phosphorus-32. The radioiodine therapy with iodine-131 stands out among therapies because it allows a highly selective treatment of thyroid associated with hyperthyroidism and differentiated thyroid cancer with favorable dosimetry to healthy tissues and with great advantage to allow the ablation of disseminated lesions due to metastases, success not achieved by traditional radiotherapy. Thus, the therapeutic nuclear medicine is an alternative tool, and often essential for definitive treatment of various diseases considered incurable once. Thus, therapeutic nuclear medicine is an alternative and often essential tool for definitive treatment of various diseases considered once incurable.

  3. Neuroimaging, nuclear medicine

    International Nuclear Information System (INIS)

    This chapter describes radionuclide imaging as it related to neurodegenerative dementias like Alzheimer's disease (AD), idiopathic Parkinson's disease (PD), and normal aging, among the various diseases of the elderly. The role of neuroimaging with nuclear medicine is to detect changes in neural activities that are caused by these diseases. Such changes may be indirect phenomena, but the imaging of neural functions provides physicians with useful, objective information regarding pathophysiology in the brain. Brain activities change with age, with the elderly showing decreased brain function in memory, execution, and attention. Age-dependent reduction in the global mean of cerebral blood flow (CBF) has been reported in many studies that have used X-133 and O-15 labeled gas, the spatial resolution of which is low. Partial volume correction (PVC) is available through the segmentation of grey matter from high-resolution T1-weighted magnetic resonance imaging. Meltzer reported that age-related change disappeared after PVC. The relative distribution of CBF and glucose metabolism has been examined on a voxel-by-voxel basis in many studies. The areas negatively correlated with age are the anterior part of the brain, especially the dorsolateral and medial frontal areas, anterior cingulate cortices, frontolateral and perisylvian cortices, and basal ganglia. The areas positively correlated with age are the occipital lobe, temporal lobe, sensorimotor cortex, and primary visual cortex. It is not easy to define ''normal aging''. Aged people tend to have the potential for diseases like cerebral ischemia caused by arteriosclerosis. Ischemia results in volume loss of the gray matter and CBF. The ApoE e4 gene is a risk factor for AD, and carriers of the ApoE e4 allel show CBF-like AD even at a relatively young age. Hypo-glucose metabolism in the posterior cingulate cortex is seen in 5% of normal people over 50 years of age. This Alzheimer-like CBF/metabolic pattern needs further

  4. Nuclear medicine - no. 3

    International Nuclear Information System (INIS)

    This bulletin contains seven articles relating to the isotopic applications in medicine. Their subject matter ranges from the preparation of radiopharmaceuticals through their application in scintiscanning to computer codes for evaluation of the results. The individual articles have been indexed separately

  5. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  6. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... through the area being examined and gives off energy in the form of gamma rays which are detected by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can ...

  9. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  10. Nuclear medicine at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.W. [Stanford Univ. Hospital, Div. of Nuclear Medicine, CA (United States)

    1996-06-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  11. Data resources for nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R. [Brookhaven National Lab., Upton, NY (United States); Lemmel, H.D. [International Atomic Energy Agency, Vienna (Austria). Nuclear Data Section

    1995-07-01

    The objective of this article is to list data resources needed for nuclear medicine and provide information on how to access them. This list will include publications of data compilations or evaluations, databases, and data processing codes for both nuclear structure and decay, as well as reaction data. Sources of bibliographic and related information on nuclear data are also be listed. The authors of this article have used their judgement in choosing a representative list of data sources; a more complete listing may be found in the references.

  12. Nuclear medicine physics the basics

    CERN Document Server

    Chandra, Ramesh

    2012-01-01

    For decades this classic reference has been the book to review to master the complexities of nuclear-medicine physics. Part of the renowned The Basics series of medical physics books, Nuclear Medicine Physics has become an essential resource for radiology residents and practitioners, nuclear cardiologists, medical physicists, and radiologic technologists. This thoroughly revised Seventh Edition retains all the features that have made The Basics series a reliable and trusted partner for board review and reference. This handy manual contains key points at the end of each chapter that help to underscore principal concepts. You'll also find review questions at the end of each chapter—with detailed answers at the end of the book—to help you master the material. This edition includes useful appendices that elaborate on specific topics, such as physical characteristics of radionuclides and CGS and SI Units.

  13. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  14. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  15. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  16. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  17. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  18. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  19. [Future vascular medicine: inauguration of a cardiovascular hybrid concept].

    Science.gov (United States)

    Debus, S; Larena-Avellaneda, A; Kölbel, T; Kieback, A; Atlihan, G; Diener, H

    2014-10-01

    The demographic developments will lead to an exponential increase of cardiovascular diseases. Additionally, technical developments of conservative and invasive treatment modalities will be added to distinguished, organ-orientated therapeutic concepts. This will also require a new orientation of vascular services. This concept implies that specific contents are referred to and contained in partner specialties. Since the heart and vascular system function as an anatomic and functional union, implementation of vascular medicine within cardiovascular centres represents a logical consequence.

  20. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  1. Cardiovascular and Hematological Medicine in 2013 - Advances and Insights.

    Science.gov (United States)

    Mukherjee, Debabrata

    2012-12-11

    Welcome to the first issue of Cardiovascular & Hematological Agents in Medicinal Chemistry (CHAMC) for 2013. I hope everyone has had an enjoyable holiday season and I want to wish everyone a wonderful New Year. As you know, our journal (CHAMC) aims to cover the latest and outstanding developments in medicinal chemistry, rational drug design for the discovery of novel cardiovascular and hematological Agents and discusses such therapies in clinical practice. Each issue contains a series of timely in-depth reviews, original research articles and drug clinical trial studies written by leaders in the field covering a range of current topics in cardiovascular and hematological sciences. I feel that CHAMC is an essential journal for every medicinal chemist, clinician and healthcare provider who wishes to be kept informed and up-to-date with the latest and most important developments in cardiovascular and hematological drug discovery and their clinical uses. In the coming issues of the journal, we will discuss several important topics pertinent to chemists and clinicians in the cardiovascular and hematology fields such as curcumin and resveratrol as alternative medicinal agents against metabolic syndrome, interrelationship between chronic kidney disease and risk of cardiovascular diseases and effects of direct renin inhibitor, aliskiren, on arterial hypertension, chronic kidney disease and cardiovascular disease among others. The journal also delves into hot topics such as genetic testing and personalized medicine, use of literature-based discovery to identify novel therapeutic approaches, pharmacologic mechanism and clinical relevance of P2Y12 inhibitors and intracoronary injection of glycoprotein IIb/IIIa, abciximab, as adjuvant therapy in primary coronary intervention. Cardiovascular medicine and hematology are both very dynamic fields with rapid advances and we will continue to work to keep you up to date on new advances and therapies. I would also take this

  2. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    Science.gov (United States)

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation.

  3. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    Science.gov (United States)

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation. PMID:27028435

  4. Nuclear medicine applications for the diabetic foot

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  5. Nuclear Medicine Imaging in Pediatric Neurology

    OpenAIRE

    Ümit Özgür Akdemir; Lütfiye Özlem; Atay Kapucu

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with e...

  6. Dementia and rural nuclear medicine

    International Nuclear Information System (INIS)

    Full text: The rapid increase in dementia is directly related to the growing number of aged people in developed countries, such as Australia. This increase heightens the need for accurate dementia diagnosis to ensure treatment resources are appropriately allocated. However, current diagnostic methods are unable to determine specific dementia types limiting the effectiveness of many care plans. The lack of specialist resources in rural Australian communities presents nuclear medicine with an opportunity to make a significant impact on the management of this disease. This investigation aimed to identify how SPECT perfusion imaging could maximise its role in the management of dementia in a rural New South Wales setting. The study reviewed all Technetium 99m HMPAO SPECT brain studies over a three-year period. This included a medical record audit, review of all diagnostic imaging reports and an analysis of referral patterns. The results of this study provide compelling evidence that, even in a rural setting, brain SPECT, in conjunction with neuropsychological testing, offers high accuracy in determining the presence and type of dementia. In addition, the study found more than 30% of referrers had no training in SPECT, emphasising the importance of ensuring that brain SPECT reports, in a rural setting, educate and specify to referrers the significance and exact disease type found in the study. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. ICRP 60 and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Galli, G. (Rome Univ. Cattolica del S. Cuore (Italy). Ist. di Medicina Nucleare)

    For that which regards the field of nuclear medicine, the new International Commission on Radiation Protection recommendations (ICRP 60) are highly innovative in that the differentiation between 'controlled' and ' monitored' areas is no longer tied to fractions of annual dose limits, but it is instead established locally on the basis of operational experience and judgement. The most notable feature of the new recommendations, however, concerns the new 20 mSv dose limit for exposed workers, the 1 mSv limit for the public (understood as the 5 year annual average), as well as, the modifications to the annual limits on the intake of radionuclides, e.g., inhalation of I 131 passes from 2*10/sup 6/ to 1*10/sup 6/. This paper assesses the impacts of these new limits on the performance of ' in vivo' medical diagnostics and radio-metabolic therapy with unsealed sources. Attention is given to possible negative consequences on the implementation of nuclear medicine due to the current trend towards lower limits, and to the implications of the new recommendations as regards medical support staff and family members of individuals undergoing radiotherapy.

  8. Quality Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    The IAEA has strong Nuclear medicine (NM) programs and the international basic safety standards require that radiation medicine centers establish a comprehensive quality assurance program for medical exposures supported by internal and external audits. Vital for this is the development of all-inclusive IAEA guideline on 'Quality management in Nuclear Medicine' (also referred to as 'QUANUM'). This document consists of 50 pages and each chapter is set out as a series of questions related to a specific component of NM service. It takes into account the diversity of NM practices and the multidisciplinary contributions (i.e. clinical, physics, radiopharmacy). Self appraisal, external audit and continuous improvement are central elements to improving QA in NM practice. The foremost intention of this document is to introduce a culture of annual systematic review processes into the clinical arena. External audit starts with a formal request together with a completed self appraisal. Each IAEA region will have a pool of trained auditors from each NM discipline. The auditing team will be fully aware of the background and practices by interrogation of NUMDAB (NM database) and recent self appraisal. Normally a 3 day external audit starts with a briefing meeting and ends with a debriefing on the finalization of the audit report. During the external audit, a standardized approach is followed which includes service orientation, introduction to key individuals and access to essential data. The audit team will follow representative clinical cases from clinical requests, clinical direction, patient preparation, radiopharmaceutical dispensing, individual scanning, data processing, report and follow-up of the report. In a few cases, discussions with individual referring physicians will establish patient outcome together with the impact of the NM service. The standards of practice will be compared to national, regional or international guidelines (i.e. IAEA Nuclear medicine resources

  9. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  10. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  11. E-learning for Nuclear Medicine

    International Nuclear Information System (INIS)

    The E-Learning in Nuclear Medicine was developed by the Asian School of Nuclear Medicine (ASNM) through the TC regional project, RAS/0/047 to respond to the need for continuing education of physicians, technologists and other allied professionals working in Nuclear Medicine. ASNM is the collaborating member of the Asian Network for Education in Nuclear Technology (ANENT) and is involved in some educational activities of the IAEA. Ten various cases on different types of organ-system were collected from nine member countries (Bangladesh, India, Indonesia, Japan, Republic of Korea, Malaysia, Pakistan, the Philippines, and Thailand). About 100 cases covered the following organ-systems: Oncology, Cardiology, Neurology, Gastroenterology/Hepatobiliary, Pulmonary, Endocrinology, Pediatrics, Nephrology/Urology, Infection, Muskulo-skeletal, Ophthalmology. Radiotherapy, dosimetry and nuclear medicine diagnostic techniques including PET and SPECT as well as labelling of tracer and application of radiopharmals are covered in the training modules

  12. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  13. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  14. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  15. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  16. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  17. A Multidimensional Integrative Medicine Intervention to Improve Cardiovascular Risk

    Science.gov (United States)

    Edelman, David; Oddone, Eugene Z; Liebowitz, Richard S; Yancy, William S; Olsen, Maren K; Jeffreys, Amy S; Moon, Samuel D; Harris, Amy C; Smith, Linda L; Quillian-Wolever, Ruth E; Gaudet, Tracy W

    2006-01-01

    BACKGROUND Integrative medicine is an individualized, patient-centered approach to health, combining a whole-person model with evidence-based medicine. Interventions based in integrative medicine theory have not been tested as cardiovascular risk-reduction strategies. Our objective was to determine whether personalized health planning (PHP), an intervention based on the theories and principles underlying integrative medicine, reduces 10-year risk of coronary heart disease (CHD). METHODS We conducted a randomized, controlled trial among 154 outpatients age 45 or over, with 1 or more known cardiovascular risk factors. Subjects were enrolled from primary care practices near an academic medical center, and the intervention was delivered at a university Center for Integrative Medicine. Following a health risk assessment, each subject in the intervention arm worked with a health coach and a medical provider to construct a personalized health plan. The plan identified specific health behaviors important for each subject to modify; the choice of behaviors was driven both by cardiovascular risk reduction and the interests of each individual subject. The coach then assisted each subject in implementing her/his health plan. Techniques used in implementation included mindfulness meditation, relaxation training, stress management, motivational techniques, and health education and coaching. Subjects randomized to the comparison group received usual care (UC) without access to the intervention. Our primary outcome measure was 10-year risk of CHD, as measured by a standard Framingham risk score, and assessed at baseline, 5, and 10 months. Differences between arms were assessed by linear mixed effects modeling, with time and study arm as independent variables. RESULTS Baseline 10-year risk of CHD was 11.1% for subjects randomized to UC (n = 77), and 9.3% for subjects randomized to PHP (n = 77). Over 10 months of the intervention, CHD risk decreased to 9.8% for UC subjects and 7

  18. Development of nuclear medicine in Mongolia

    International Nuclear Information System (INIS)

    Full text: Progress during the past quarter of a century in the development and medical uses of radioisotopes and radiopharmaceuticals, and the benefits derived from their applications have been outstanding. The World health Organization (WHO) has stated that 'Nuclear Medicine' is taken to embrace all applications of radioactive materials in diagnosis, treatment or in medical research, with the exception of the use of sealed radiation sources in radiotherapy. How did the term come into use? In 1951 the editorial board of the American Journal of Roentgenology and Radium therapy decided to express its special interest in the field by a change in the title of that journal. The words 'and Nuclear Medicine' were added. Nuclear medicine was first introduced in Mongolia in the year 1975; 31 March 1975 to be precise, when radioiodine uptake studies and radio isotope renogram were first introduced in the country. Simultaneously several other studies like liver scanning with Au-198 Sulfur colloid and Pancreas imaging with Se-75 methionine were also introduced using the newly installed single and dual probe scintillation detector system and the Hungarian rectilinear scanner. Prof. Dr. Peljee Onkhuudai, presently the head of nuclear medicine at the First State Central Hospital, was the prime mover of these initiatives. He was the first physician from Mongolia to be fully qualified in Nuclear Medicine in the year 1975. He had his education and training in nuclear medicine at the Karl-Marx-University, Leipzig in Germany. In the year 1982 Mongolia received its first gamma camera (a new Siemens Gamma camera-PHO-ZLC) as well as started its RIA facility through an IAEA Technical Cooperation Project. Hence from the year 1982 the Nuclear Medicine Department has been responsible for providing both in vivo and in vitro nuclear medicine services to the people of Mongolia including Radionuclide therapy. There has been a gradual expansion of the department with respect to personnel

  19. Past, current and future aspects of nuclear medicine in Malaysia

    International Nuclear Information System (INIS)

    Nuclear Medicine in Malaysia began initially with the use of radioiodine and radiophosphorous for the investigation and treatment of thyroid and blood disorders around 1960. Following this we went through a phase of organ imaging using radioiodine and radiogold using an early generation Phillips Scanner. In terms of Medical usefulness this proved a big step forward in Malaysian Medicine, basic though the techniques were. The third phase of this speciality came on in the 1970s with the availability of generator scanners. A tremendous spurt in Nuclear Imaging and thyroid function studies took place. We have now together with the University Hospital Gamma Cameras which have considerably widened the scope of Nuclear Medicine especially in the field of cardiovascular studies. Further advances are expected in the future with the availability of medical cyclotrons, positron cameras and emission tomography. However yesterdays problems have not disappeared completely and the training of personnel and provision of up to date Nuclear Medicine laboratories with the latest equipment should be given top priority so as to assure progress in this speciality. (author)

  20. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  1. Sex/Gender Medicine: The Biological Basis for Personalized Care in Cardiovascular Medicine

    OpenAIRE

    Arain, Faisal A.; Kuniyoshi, Fatima H.; Abdalrhim, Ahmed D.; Miller, Virginia M

    2009-01-01

    Sex differences in morbidity and mortality associated with cardiovascular disease have been recognized by the medical com006Dunity for decades. Investigation into the underlying biological basis of these differences was largely neglected by the scientific community until a report released by the Institute of Medicine in the United States in 2001 “Exploring the Biological Contributions to Human Health: Does Sex Matter?” Recommendations from this report included the need for more accurate use o...

  2. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  3. Mechanisms in Cardiovascular Diseases: How Useful Are Medical Textbooks, eMedicine, and YouTube?

    Science.gov (United States)

    Azer, Samy A.

    2014-01-01

    The aim of this study was to assess the contents of medical textbooks, eMedicine (Medscape) topics, and YouTube videos on cardiovascular mechanisms. Medical textbooks, eMedicine articles, and YouTube were searched for cardiovascular mechanisms. Using appraisal forms, copies of these resources and videos were evaluated independently by three…

  4. Quality control of nuclear medicine equipment

    International Nuclear Information System (INIS)

    In order to determine functional status and integrity of installations and equipment used in nuclear medicine in everyday medical practice or in research studies, it is important to maintain and implement quality control program. For this type of installation are required high standards, particularly with regard to qualitative and quantitative analysis of the image, and volume measurements in diagnosis and dosimetry. Given the precarious situation of the economy in transition, nuclear medicine departments in the republic, now, can not be always of service contracts with providers of facilities and equipment for routine maintenance and periodic calibration. Therefore, in this article are at some of the quality control procedures should be performed usually by engineers and physicists from the department of nuclear medicine. (authors)

  5. Nuclear medicine with its interdependencies

    International Nuclear Information System (INIS)

    Newly developed nuclear methods and measuring techniques in the diagnosis and therapy of diseases of the blood, heart, vessels, thyroid, gastrointestinal tract, kidneys, skeleton and ophthalmological diseases are described. Occupational radiation exposure is briefly discussed. (AJ)

  6. Clinical demands on nuclear medicine in neurology

    International Nuclear Information System (INIS)

    Nuclear medicine techniques can be used which are able to estimate various physiologic variables regionally in the brain. As a disadvantage of these modalities imaging function rather than morphology of brain tissue the coarse spatial resolution inherent to all isotope techniques when compared to CT and magnetic resonance imaging of protons must be accepted. The main demand on nuclear medicine techniques must therefore be the quantitation of physiologic and pathologic processes which are necessary for the understanding of pathophysiology of lesions visualized by modalities imaging morphology. (orig./MG)

  7. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  8. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  9. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  10. The positron camera in nuclear medicine

    International Nuclear Information System (INIS)

    Positron emission tomography is making headway in health care delivery. With improvements in instrumentation and physiologic tracers and with the development of hospital-based compact cyclotrons, 'physiopathologic tomography' is around the corner in nuclear medicine. This paper is a brief review of positron emission tomography: instrumentation and applications

  11. VIIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    The conference proceedings contain 92 abstracts of submitted papers dealing with various applications of radioisotopes in diagnosis and therapy. The papers were devoted to scintiscanning, radioimmunoassay, tomography, the applications of nuclear magnetic resonance and electron microscopy in different branches - oncology, cardiology, neurology, histology, gynecology, internal medicine, etc. (M.D.)

  12. Collaborative environment for nuclear medicine training

    International Nuclear Information System (INIS)

    Objective: To validate the proposal for development of a virtual collaborative environment for training of nuclear medicine personnel. Materials and Methods: Organizational assumptions, constraints and functionalities that should be offered to the professionals in this field were raised early in the development of the environment. The prototype was developed in the Moodle environment, including data storage and interaction functionalities. A pilot interaction study was developed with a sample of specialists in nuclear medicine. Users' opinions collected by means of semi-structured questionnaire were submitted to quantitative and content analysis. Results: The proposal of a collaborative environment was validated by a learning courses of nuclear medicine professionals and considered as an aid in the training in this field. Suggestions for improvements and new functionalities were made. There is a need to establish a program for education of moderators specifically for this environment, considering the different interaction characteristics as the online and conventional teaching methods are compared. Conclusion: The collaborative environment will allow the exchange of experiences and case discussions among professionals from institutions located in different regions all over the country, enhancing the collaboration among them. Thus, the environment can contribute in the early and continued education of nuclear medicine professionals. (author)

  13. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  14. Review: radioprotection applied in Nuclear Medicine

    International Nuclear Information System (INIS)

    The aim of this paper is to evaluate the potential causes of exposure to ionizing radiation in a nuclear medicine facility, identifying the causes of common errors in the clinical routine, how to avoid these errors and study good radioprotection practices based on the national law and international documents. (author)

  15. Abstracts of the European nuclear medicine congress

    International Nuclear Information System (INIS)

    647 abstracts of oral and poster presentations show the results of applied science and research work in diagnostic and therapeutic nuclear medicine. Experiences with new diagnostic techniques, radiopharmaceuticals and instrumentation (e.g. radioimmunoscintigraphy, different dynamic organ function studies) in the fields of cardiology, endocrinology, gastroenterology, hematology, nephrology, oncology, and pediatrics are published as well as dosimetry problems. (TRV)

  16. Collaborative environment for nuclear medicine training

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Claudia Regio; Dalpiaz, Gabriel Goulart; Giraffa, Lucia Maria, E-mail: claudinharb@gmail.co [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil); Silva, Ana Maria Marques da [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Dept. de Fisica; Silva Junior, Neivo da [Pontificia Universidade Catolica do Rio Grande do Sul (HSL-PUCRS), Porto Alegre, RS (Brazil). Hospital Sao Lucas; Ferreto, Tiago Coelho; Rose, Cesar Augusto Fonticielha de [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Inst. de Informatica; Silva, Vinicius Duval da [Pontificia Universidade Catolica do Rio Grande do Sul (FAMED/PUCRS), Porto Alegre, RS (Brazil). Escola de Medicina. Dept. de Patologia e Radiacoes

    2011-05-15

    Objective: To validate the proposal for development of a virtual collaborative environment for training of nuclear medicine personnel. Materials and Methods: Organizational assumptions, constraints and functionalities that should be offered to the professionals in this field were raised early in the development of the environment. The prototype was developed in the Moodle environment, including data storage and interaction functionalities. A pilot interaction study was developed with a sample of specialists in nuclear medicine. Users' opinions collected by means of semi-structured questionnaire were submitted to quantitative and content analysis. Results: The proposal of a collaborative environment was validated by a learning courses of nuclear medicine professionals and considered as an aid in the training in this field. Suggestions for improvements and new functionalities were made. There is a need to establish a program for education of moderators specifically for this environment, considering the different interaction characteristics as the online and conventional teaching methods are compared. Conclusion: The collaborative environment will allow the exchange of experiences and case discussions among professionals from institutions located in different regions all over the country, enhancing the collaboration among them. Thus, the environment can contribute in the early and continued education of nuclear medicine professionals. (author)

  17. Nuclear medicine. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    This second edition of the textbook on nuclear medicine is intended as a comprehensive and explanatory source of current theoretical and practical knowledge required for practical application of nuclear medicine techniques for diagnostics and therapy. The first part of the book deals with general aspects such as physical principles, the labelling and quality control of radiopharmaceuticals, and specific kinetics of some preparations, scanning techniques and the relevant equipment including aspects such as equipment handling, functional monitoring, error sources, patent positioning, as well as radiation protection and the handling of radioactive substances at the place of work. This part also explains the organisational framework of a nuclear medicine practice or department and the professional training and tasks of a radiographer in nuclear medicine. The second part is devoted to specific tasks and techniques for diagnostic assessment of the different body organs, illustrated by examples and summarised in tables given at the end of each chapter. Examples of clinical experience explain the criteria for selection of suitable diagnostic technique. (orig.) With 207 figs., 14 tabs

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  19. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.;

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  20. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  1. Basic Physics for Nuclear Medicine. Chapter 1

    International Nuclear Information System (INIS)

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters

  2. Fourth congress of the South African Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    This seminar contains 68 papers. Sixty three papers were indexed. Five papers were considered out of scope for INIS. The implementation of nuclear medicine in the following fields were discussed: neurology, cardiology, monoclonal antibodies, endocrinology, nuclear medicine physics, and radiopharmacy

  3. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  4. Status of nuclear medicine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. (Seoul National Univ. (Republic of Korea). Coll. of Medicine)

    1982-03-01

    The medical application of nuclear medicine in Korea finds its origin in June, 1959, when radioactive iodine therapy was given to a patient with hyperthyroidism, while the legal background for the medical uses of radioisotopes was provided by the Atomic Energy Law promulgated in 1958. The real active application of radioisotope in clinical medicine, however, was made possible as the Radioisotope Clinic was opened at the Seoul National University Hospital in April, 1960. In the early 1960's four medical institutes had radioisotope facilities including scintiscanners, scintillation counters, detectors and spectrometers some of which were provided by the United States Atomic Energy Commission. And now, radioisotopes were applied in 45 medical institutes. At the beginning, thyroid function tests and ferrokinetic studies were primary clinical applications. Scanning of various organs became generalized with the wide use of the photoscanners from 1964 and scintillation cameras from 1969. A new era in the development of the nuclear medicine has started in March, 1979 with the use of computer system in the dynamic studies including radionuclide cardiac angiography and sequential renal scan. At present 13 gamma cameras and 4 computer systems were used in the field of nuclear medicine. Radioimmunoassay techniques began to be used from 1969 and at present about fifty items of tests are being performed for the research purposes and clinical applications.

  5. European Association of Nuclear Medicine congress. Abstracts

    International Nuclear Information System (INIS)

    To assess the exact place of nuclear medicine studies in the clinical environment in consensus with clinicians and radiologists will probably be our most important task during the coming year. Our society cannot afford unnecessary duplication of diagnostic tests but neither should our patients suffer from the failure to use procedures which could change the outcome of their illness or avoid unnecessary pain and costs because of ignorance, or even worse, self defence by larger and thus stronger pressure groups. Defeatism is as inappropriate as remaining in the splendid isolation of our professional and scientific organisations. There is no place for excessive humbleness either, most of the unnecessary procedures performed in modern medicine lie within the domain of other specialists. It is our duty to participate as actors in the thorough reappraisal of the medical, social and economic context of our activity in the interst of our field and our patients. By confronting our ideas and knowledge with those of others, by using our inventiveness to transfer important results from research laboratories to clinical practice and vice versa, by concentrating on the essential rather than pursuing all possible directions, we will be able to influence positively the future of nuclear medicine. There is no better way to develop our speciality than by understanding the clinical issues, by being able to communicate with our clinical partners and by performing common studies on the clinical impact, cost-efficiency and cost-benefit of nuclear medicine procedures. (orig./AJ)

  6. Perspectives in nuclear medicine: pulmonary studies

    International Nuclear Information System (INIS)

    Since the introduction of I-131 labeled macroaggregates in 1964, noninvasive techniques involving injection of radiolabeled agents and remote detection of emitted radiation have become well established in detecting pulmonary disorders in routine clinical medicine. In the past, pulmonary nuclear medicine has been dominated by studies that depict the distribution of pulmonary perfusion and/or ventilation-perfusion balance (e.g., for the detection of pulmonary embolism, obstructive airway disease, lung carcinoma). With the recent development of emission tomography and the potential for new, function-oriented radiopharmaceuticals, however, pulmonary nuclear medicine is entering a new era. The status of contemporary pulmonary nuclear medicine is briefly reviewed in several areas of major interest and applications and focus on areas where new developments are needed and seem feasible in the near future. Several important regional physiological processes measurable by these techniques include: (a) the presence or absence of pulmonary embolism, (b) relative pulmonary blood flow, (c) permeability to specific molecules, (d) lung tissue metabolism, (e) ventilation distribution and (f) the relationship between ventilation and blood flow (perfusion)

  7. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  8. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  9. Converting Energy to Medical Progress [Nuclear Medicine

    Science.gov (United States)

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  10. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  11. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry. PMID:25406520

  12. Formulary: Pharmacologic interventions in nuclear medicine

    International Nuclear Information System (INIS)

    The purpose of this formulary is to provide the practitioner with a readily available reference addressed specifically at the pharmacology (i.e., chemistry, mechanism(s) of action, cautions, dosage, and available preparation(s)) of interventional drugs commonly used in nuclear medicine practice. Although the majority of these agents are intended for alternate therapeutic indications, the formulary is directed at and limited to information pertinent to their interventional use. In this regard, the majority of the presented material has been extrapolated from standard drug formularies or product inserts. Specific material related to published interventional nuclear medicine studies is referenced in the bibliography and/or can be found in the associated chapters of this book. The reader is advised to note not only the information related to the interventional drug, but also the statements regarding appropriate treatment or avoidance of associated side effects. To facilitate utilization, the interventional drugs are listed in alphabetical order, rather than by therapeutic class

  13. Genomics and proteomics in nuclear medicine

    International Nuclear Information System (INIS)

    The results obtained from basic science deliver more information about many new molecular structures, which may serve as potential new diagnostic or even therapeutic targets. The selection and evaluation of these targets needs information concerning physiology, biochemistry and pharmacology. These data can be obtained at least in part by nuclear medicine technology. Nuclear medicine procedures can be applied for the assessment of the function and regulation of genes. This can be achieved by use of radiolabeled antisense molecules or reporter gene technology. New therapeutic approaches necessitate biodistribution studies at preclinical stages and methods delivering data about their effectiveness. Finally, procedures from biotechnology such as phagen display may be used for the development of new biomolecules for the isotope-based diagnostics and treatment. (orig.)

  14. Directory of computer users in nuclear medicine

    International Nuclear Information System (INIS)

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included

  15. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  16. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  17. Medical isotopes and emerging nuclear medicine technologies

    International Nuclear Information System (INIS)

    This presentation discusses medical isotopes and the emerging nuclear medicine technologies as well as the impact of Chalk River reactor shutdown on patient management and diseases. It outlines the chain of supply of isotopes across the globe and isotope shortage impact. It recommends the following mitigating strategies: modifications of scanning techniques, adjustment of patient scheduling, optimization of Tc-99m generator use, patient prioritization, alternate procedures and PET scanning.

  18. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  19. Nuclear medicine solutions in winter sports problems

    International Nuclear Information System (INIS)

    Full text: The diagnostic workup of acute Winter Sports injuries is done by Conventional X Ray, CT and MRI. Chronic injuries as stress reactions are best investigated by Nuclear Medicine procedures: Snow Boarding: In Snow-Boarding chronic injuries are mostly seen as local increased uptake laterally in the lower third of the Fibula of the front leg together with Tibial increase medially in the other leg. Skiing: Chronic Skiing injuries are less asymmetrical and mostly seen on the apex of the patella. Chronic Feet Problems: A different chronic problem is the reduced blood perfusion in the feet if hard, tightened boots are used for longer time by professional ski instructors and racers. Flow difference between the foot in the boot and the other without boot are dramatic as measured by Nuclear Medicine Procedures and MRI. Pulmonary Embolism: Acute pulmonary embolism caused by thrombi originating at the site of constant pressure on the back rim of ski boots is not uncommon in older skiers (seek and you will find), but never seen in the younger group of Snow-Boarders. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  20. Hand exposure in nuclear medicine workers

    International Nuclear Information System (INIS)

    As a result of the gamma radiation emitted by radioactive elements (e.g. 99mTc and 131I) used in nuclear medicine laboratories for diagnostic and therapeutic purposes, nuclear medicine workers are exposed to whole-body doses. These doses are usually measured by using individual film dosemeters. Lead or lead glass shields used during the handling of radioisotope minimise the whole-body dose received. Nevertheless, part of the job has to be performed manually, hence the hands are more exposed to radiation. This paper presents the results of measuring the equivalent dose to the hands of workers employed in five selected nuclear medicine laboratories where technetium and iodine radioisotopes are in common use. Sixty workers, including physicians, nurses, radiopharmacists and technicians, were included in the study. Doses were measured at 1 month intervals. The study indicated that, in some instances, the danger of radiation dose to the hand may be significant. Monthly doses exceed 50 mSv, which may suggest that an annual dose may be higher than 500 mSv. (author)

  1. Impact of Obesity on Nuclear Medicine

    International Nuclear Information System (INIS)

    Obesity with its alarming increase in number among adults and children represents a significant health problem with serious medical, social, psychological and economical reverberations. The burden that is put upon the medical care system due to this problem has a significant effect on the medical services provided including radiological imaging. The effect of obesity on nuclear medicine services includes many aspects starting with problems with patient preparation prior to imaging, while radiotracer administration and during patient imaging. In addition, altered imaging techniques, including timing, imaging duration, and protocol alteration. Furthermore, obtaining suboptimal images brought by artifacts due to soft tissue attenuation and incomplete whole body coverage during image acquisition and performing sub optimal quantification, especially in positron emission tomography. Finally, dealing with mechanical problems such as weight limits of the imaging table and bore size in PET or SPECT/CT. These issues are discussed in this review clarifying the impact of this epidemic health problem on the nuclear medicine services and possible solutions to overcome the difficulties encountered in the nuclear medicine department. (author)

  2. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  3. Radiopharmaceuticals in Nuclear Medicine: Evolution and Role in Dentistry

    OpenAIRE

    Vani, Chappidi; Nagalaxmi, V.; Singh, Anshul; Zardi, Faisal Taiyebali; Lalitha, CH

    2013-01-01

    NUCLEAR MEDICINE is the branch of medicine and medical imaging that uses radiation emitted by a radio-pharmaceutical to provide information about both the structure and function of organ systems within the body thereby aiding in the diagnosis and treatment of a disease. This unparalleled branch of radiology concerns with the diagnostic and therapeutic use of radionuclides. The most striking feature that distinguishes Nuclear Medicine from other Imaging Modalities is that Nuclear Medicine aids...

  4. Nuclear medicine resources in the internet

    International Nuclear Information System (INIS)

    The internet is a global collection of networked computers linked by a set of protocols which allows the otherwise disperate computer systems to communicate with each other. In contrast to text-only data available previously, the World Wide Web allows multimedia content to be available on the internet. Graphics can now likewise be used as links. The development of World Wide Web client software such as Mosaic, or the currently more popular Netscape Navigator, makes linking from one document to another (colloquially referred to as 'surfing the Net') fast and simple. While these software are commonly called Web browsers their function extends to the other internet services such as e-mail, file transfer protocol, remote login, Gopher and WAIS. A prototype application being developed as a case-based teaching file which could include clinical data and case discussion, aside of course from the nuclear medicine and related images. Contributions from various institutions can be made available on their own servers and linked together through hypertext. Examples of these are websites of the Mallinckrodt Institute of Radiology and the Joint Program in Nuclear Medicine of the Harvard Medical School. The university of Iowa also has its Virtual Hospital, a collection of clinical cases with radiologic images. Most major universities and medical centers have websites where information on on-going research, facilities and personnel are made available. Links to various special interest discussion groups (e.g. those developing the common image file format) are also accessible and the documents often contain further links to related fields in nuclear technology. The very nature of the hypertext transfer protocol of the World Wide Web makes it a relatively simple matter for a developer of a teaching system to include links to necessary resources. It is envisioned that an internet-based teaching module will be incorporated in some nuclear medicine training programs in the United States

  5. Quantification of scientific output in cardiovascular medicine: A perspective based on global data

    NARCIS (Netherlands)

    G.A. Rodriguez-Granillo (Gaston); A. Rodriguez (Alfredo Chapin); N. Bruining (Nico); J. Milei (José); J. Aoki (Jiro); K. Tsuchida (Keiichi); R. del Valle-Fernández (Raquel); C.A. Arampatzis (Chourmouzios); A.T.L. Ong (Andrew); P.A. Lemos Neto (Pedro); R. Ayala (Rosa); H.M. Garcia-Garcia (Hector); F. Saia (Francesco); M. Valgimigli (Marco); E.S. Regar (Eveline); E. McFadden (Eugene); G.G. Biondi-Zoccai (Giuseppe); E. Barbenza (Ezequiel); P. Schoenhagen (Paul); P.W.J.C. Serruys (Patrick)

    2013-01-01

    textabstractAims: We sought to explore whether global and regional scientific output in cardiovascular medicine is associated with economic variables and follows the same trend as medicine and as science overall. Methods and results: We registered the number of documents, number of citations, citati

  6. Availability, price and affordability of cardiovascular medicines : A comparison across 36 countries using WHO/HAI data

    NARCIS (Netherlands)

    van Mourik, Maaike S. M.; Cameron, Alexandra; Ewen, Marg; Laing, Richard O.

    2010-01-01

    Background: The global burden of cardiovascular disease (CVD) continues to rise. Successful treatment of CVD requires adequate pharmaceutical management. The aim was to examine the availability, pricing and affordability of cardiovascular medicines in developing countries using the standardized data

  7. Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine.

    Science.gov (United States)

    Barbato, Emanuele; Barton, Paul J; Bartunek, Jozef; Huber, Sally; Ibanez, Borja; Judge, Daniel P; Lara-Pezzi, Enrique; Stolen, Craig M; Taylor, Angela; Hall, Jennifer L

    2015-11-01

    The goal of this paper is to provide an updated review for scientists and clinicians on the major areas in cardiovascular medicine published in the Journal. Leading topics in regenerative and personalized medicine are presented along with a critical overview of the field. New standards in large preclinical animal models of pulmonary hypertension and left bundle branch block are highlighted. Finally, clinical care in the areas of atherosclerosis, the aortic valve, platelet biology, and myocarditis is discussed as well as autonomic modulation therapies.

  8. Development of Scintillators in Nuclear Medicine.

    Science.gov (United States)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  9. Development of Scintillators in Nuclear Medicine

    OpenAIRE

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum br...

  10. NCT program at Nuclear Medicine, Inc

    International Nuclear Information System (INIS)

    The Neutron Capture Therapy program at Nuclear Medicine, Inc. (NMI) is focused on obtaining Food and Drug Administration (FDA) approval of the treatment for malignant brain tumors. To minimize both the time and expense of the approval process, research efforts have been strictly focused and Orphan Drug sponsorship of the boron compound, Na2B12H11SH, has been obtained. The significance of Orphan Drug sponsorship and NMI's initial meeting with the FDA to discuss preclinical and clinical protocols are discussed. 9 references, 2 figures

  11. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  12. Artificial neural networks in nuclear medicine

    International Nuclear Information System (INIS)

    An analysis of the accessible literature on the diagnostic applicability of artificial neural networks in coronary artery disease and pulmonary embolism appears to be comparative to the diagnosis of experienced doctors dealing with nuclear medicine. Differences in the employed models of artificial neural networks indicate a constant search for the most optimal parameters, which could guarantee the ultimate accuracy in neural network activity. The diagnostic potential within systems containing artificial neural networks proves this calculation tool to be an independent or/and an additional device for supporting a doctor's diagnosis of artery disease and pulmonary embolism. (author)

  13. Nuclear medicine: dosimetric considerations: pregnancy and lactation

    International Nuclear Information System (INIS)

    Radiation exposure of pregnant woman in nuclear medicine is important from the point of view of radiological protection. In this report are presented the most relevant considerations for the internal dosimetry during pregnancy and lactation. The dose estimation to the mother and fetus during pregnancy can be made based in MIRD methodology with specific phantoms of the pregnant woman allowing the dose calculation in the first, second and third month of pregnancy, through the MIRDOSE software. The effective doses in infants and recommendations are also explained in this report

  14. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  15. Security in the nuclear medicine department

    International Nuclear Information System (INIS)

    The current threat from terrorism highlights the need for awareness of adequate security of radioactive sources by health bodies to prevent the opportunistic access to, theft of. or accidental loss of sources, together with stringent security measures in place to prevent the international misuse of radioactive sources as a weapon by unauthorised access. This presentation discusses the processes undertaken to ensure the safety and security of radioactive materials within the nuclear medicine department in line with current regulations and guidelines. These include risk assessments, security systems, audit trails, restricted access and personnel background checks

  16. Nuclear medicine training and practice in Poland.

    Science.gov (United States)

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  17. Nuclear medicine training and practice in Poland.

    Science.gov (United States)

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  18. [Solid liver mass. Studies with nuclear medicine].

    Science.gov (United States)

    Domínguez Gadea, L; Fernández Salazar, L; García Grávalos, R; Rodríguez Eyré, J L

    2000-04-01

    We present the case of a 23 year old female with two incidentally detected hepatic mass that have not clinically o radiologically specific findings. Nuclear medicine tracers, including colloids and hepatobiliary agents showing the characteristic findings of focal nodular hyperplasia: Hypervascularization, normal uptake of colloids, accumulation of hepatobiliary tracer and hot spots due to the retention of this tracer during the clearance fhase. The patient was underwent hepatectomy. The examination of surgical specimen revealed focal nodular hyperplasia. The scintigraphic studies could be an useful tool in the noninvasive diagnosis of liver masses. PMID:10893773

  19. Nuclear medicine applications and their mathematical basis

    CERN Document Server

    Goris, Michael

    2011-01-01

    This book reviews some principal applications of nuclear medicine, specifically from the viewpoint of the mathematical and physical analyses that support the interpretation. In contradistinction to other approaches, the mathematics does not precede the applications in introductory chapters, but is presented in the application chapters with various degrees of granularity. More details on mathematical derivations are illustrated in the last chapter for interested readers. A more detailed review of Bayes theorem can be found (in Chapter 7) explaining how the literature results were retabulated

  20. Energy-coded processing in nuclear medicine

    International Nuclear Information System (INIS)

    A method for processing image data which takes into account the energy of each detected gamma-ray photon. Weighted spatial averaging of local detected count densities in radionuclide images can increase the visual detectability of abnormalities. In principle, the benefits of image processing in nuclear medicine can be increased by processing the image data in each interval of the detected photon spectrum using a procedure that is appropriate for the spatial resolution and statistical quality associated with that energy interval, and by combining energy-coded processed image components using generally energy-dependent weights. The potential gains in detection performance by implementation of such an approach are examined

  1. Quality management system in Nuclear Medicine

    International Nuclear Information System (INIS)

    Establishing Management Systems (QMS) in services Nuclear Medicine (NM) is a prerequisite for optimizing the efficacy and safety of diagnostic and therapeutic procedures of this specialty and increase steadily the quality of the services provide patients. Several international organizations such as the IAEA and scientific specialty societies (SNM, EBNM, etc) and national bodies stimulate and enhance their introduction; in our country is also a requirement of the National Nuclear Safety Centre (CNSN). Are presented in this paper, the main experiences of our country related to the implementation of QMS and developed tools for achieving this goal, such as: The QNUMED automated web environment for managing indicators and documentation format digital; b) The development of prototypes and models for the implementation of the documentation system; d) requirements applying QUANUM in conducting audits of quality management in local services including QUANUMTool tool; and f) human resource development issues in Quality Management. (author)

  2. Diagnostic nuclear medicine. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schiepers, C. (ed.) [UCLA David Geffen School of Medicine, Los Angeles, CA, (United States). Dept. of Molecular and Medical Pharmacology

    2006-07-01

    The field of nuclear medicine is undergoing rapid expansion, and is evolving into diagnostic molecular imaging. During recent years, dual-modality imaging with PET/CT has gained acceptance and this is currently the fastest-growing technique for oncological imaging applications. The glucose analogue FDG has held its place in diagnostic oncology, assessment of myocardial viability and diagnosis of neuro-degenerative disorders. Peptides have become even more important as imaging agents. The accuracy of hepatobiliary scintigraphy has been enhanced by cholecystokinin. The use of ACE inhibitors in the evaluation of renovascular hypertension has become the standard in renography. New instrumentation has led to faster scanners, and computer development to better image processing software. Automatic processing is more common, and standardization of protocols can be accomplished easily. The field of gene imaging has progressed, although routine clinical applications are not yet available. The present text, supplemented with many detailed and informative illustrations, represents an adjunct to the standard knowledge of diagnostic nuclear medicine and provides both the student and the professional with an overview of developments during the past decade. (orig.)

  3. The contribution of pulmonary nuclear medicine

    International Nuclear Information System (INIS)

    The contribution of pulmonary nuclear medicine was evaluated in 115 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with 81mKr or 133Xe, distribution of compliance in thoraco-pulmonary system (C) by 81mKr gas bolus inhalation method, perfusion study (Q) with 99mTc-MAA, 67Ga scintigraphy and an assessment of pulmonary epithelial permeability with 99mTc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity, and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q, which was high V/Q mismatch finding, in interstitial pneumonia. Correlation between V/Q mismatch and PaO2 was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. 67Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of 67Ga. 67Ga might be useful to evaluate activity of the disease. Pulmonary epithelial permeability was assessed by 99mTc-DTPA inhalation study. This permeability became accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author)

  4. Nuclear Medicine at Charles Sturt University

    International Nuclear Information System (INIS)

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  5. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine. Internal dose models and methods have been in use for many years, are well established and can give radiation doses to stylized models representing reference individuals. Kinetic analyses need to be carefully planned, and dose conversion factors should be chosen that are most similar to the subject in question and that can then be tailored to be more patient specific. Such calculations, however, are currently not relevant in patient management in internal emitter therapy, as they are not sufficiently accurate or detailed to guide clinical decision making. Great strides are being made at many centres regarding the use of patient image data to construct individualized voxel based models for more detailed and patient specific dose calculations.These recent advances make it likely that the relevance will soon change to be more similar to that of external beam treatment planning. (author)

  6. Nuclear Medicine at Charles Sturt University

    Energy Technology Data Exchange (ETDEWEB)

    Swan, H. [Charles Sturt University, Wagga Wagga, NSW (Australia); Sinclair, P. [Charles Sturt University, Dubbo, NSW (Australia); Scollard, D. [Michener Institute, Toronto (Canada)

    1998-06-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  7. The role of general nuclear medicine in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Lacey R, E-mail: lgreene@csu.edu.au [Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia); Wilkinson, Deborah [Faculty of Health, Wheeling Jesuit University, Wheeling, West Virginia (United States); Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia)

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  8. History and Perspectives of Nuclear Medicine in Thailand

    Directory of Open Access Journals (Sweden)

    Sombut Boonyaprapa

    2014-10-01

    Full Text Available In 1955, the first nuclear medicine division was established in Thailand by Professor Romsai Suwannik in the Department of Radiology, Siriraj Hospil, Mahidol University in Bangkok. In 1959 four years later, the second nuclear medicine division was established in the Department of Radiology, Chulalongkorn Hospital in Bangkok. The third nuclear medicine division was started in Rajvithi Hospital in Bangkok in 1961. The fourth nuclear medicine division was installed in Chiang Mai University which is the first University located outside of Bangkok in 1965 by Professor Dusadee Prabhasavat and Professor Sanan Simarak, ten years after the first nuclear medicine division in Siriraj Hospital. At the present in Thailand, there are twenty-five organizations providing clinical nuclear medicine services. Five medical faculties provide three years nuclear medicine residency training. There are eight companies which supply radiopharmaceuticals and/or nuclear medicine instruments one of these belongs to governmental office of atomic for peace (OAP of Thailand. In conclusion: Nuclear medicine researches and clinical practices in Thailand had been progressed from the past to the present time and will more progress in the near future, which certainly is the part of Asian countries and ARCCNM.

  9. The role of general nuclear medicine in breast cancer

    International Nuclear Information System (INIS)

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer

  10. Complementary and Alternative Medicine and Cardiovascular Disease: An Evidence-Based Review

    Directory of Open Access Journals (Sweden)

    Matthew J. Rabito

    2013-01-01

    Full Text Available Complementary and alternative medicine (CAM plays a significant role in many aspects of healthcare worldwide, including cardiovascular disease (CVD. This review describes some of the challenges of CAM in terms of scientific research. Biologically-based therapies, mind-body therapies, manipulative and body-based therapies, whole medical systems, and energy medicine are reviewed in detail with regard to cardiovascular risk factors and mediation or modulation of cardiovascular disease pathogenesis. CAM use among patients with CVD is prevalent and in many instances provides positive and significant effects, with biologically-based and mind-body therapies being the most commonly used treatment modalities. More rigorous research to determine the precise physiologic effects and long-term benefits on cardiovascular morbidity and mortality with CAM usage, as well as more open lines of communication between patients and physicians regarding CAM use, is essential when determining optimal treatment plans.

  11. HIF hydroxylase pathways in cardiovascular physiology and medicine.

    Science.gov (United States)

    Bishop, Tammie; Ratcliffe, Peter J

    2015-06-19

    Hypoxia inducible factors (HIFs) are α/β heterodimeric transcription factors that direct multiple cellular and systemic responses in response to changes in oxygen availability. The oxygen sensitive signal is generated by a series of iron and 2-oxoglutarate-dependent dioxygenases that catalyze post-translational hydroxylation of specific prolyl and asparaginyl residues in HIFα subunits and thereby promote their destruction and inactivation in the presence of oxygen. In hypoxia, these processes are suppressed allowing HIF to activate a massive transcriptional cascade. Elucidation of these pathways has opened several new fields of cardiovascular research. Here, we review the role of HIF hydroxylase pathways in cardiac development and in cardiovascular control. We also consider the current status, opportunities, and challenges of therapeutic modulation of HIF hydroxylases in the therapy of cardiovascular disease.

  12. [Civilization stress, cardiovascular risk, evidence-based medicine, guidelines].

    Science.gov (United States)

    Simon, Kornél

    2009-05-10

    Cardiovascular diseases have the pole-position on the list of morbidity and mortality statistics. Despite the great advances have been made in management of cardiovascular diseases, prevalence of these disorders increases worldwide, and even younger and younger ages are threatened. This phenomenon is strongly related to obesity and type 2 diabetes pandemic, which shows an unequivocal association with expansion of modernized life-style. The pathomechanism proposed to have central role is the chronic stress induced by civilized life-conduct. The authors criticizes the everyday practice suggested for management of cardiovascular diseases, focusing on normalization of cardiovascular risk factors, instead of fighting against the primary cause ie. chronic stress. There is growing evidence, that achieving the target values defined in guide-lines will not necessarily result in improvement of patient related clinical outcomes. The statistical approach generally practiced in randomized clinical trials is primarily striving for the drug-sale, instead of discovering novel pathophysiological relations. Pharmaceutical industry having decisive role in research and patient-care is mainly interested in profit-sharing, therefore patients' interest can not be optimally realized, and costs are unnecessarily augmented. Separation of patient-, and business-oriented medical care is an ethical question of fundamental importance. PMID:19403433

  13. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  14. Aspects on caring in pediatric nuclear medicine

    International Nuclear Information System (INIS)

    During nuclear medicine examinations, the child is exposed to more or less distressful and/or painful procedures. Many children find it difficult to understand why they have to go through a specific examination. In addition, the surrounding is unfamiliar with heavy technical equipment. The first experience is crucial for the child's future attitudes towards hospitals in general and diagnostic procedures in particular. Apart from having child-focused personnel, there are many ways to improve the situation, and I will focus on four corner-stones. 1. Information; 2. Pain relief; 3. Diversion; 4. Sedation. 1. Information should be addressed directly to the child as well as to the parents. Today, children use the computer already from an early age, and we have initiated the use of Internet as a medium for child-adapted information. With texts, photos and multimedia on an interactive site we are able to reach also quite young children as well as children with difficulties to understand only written parts. Pain relief for vein puncture should always be considered. We use the topical anaesthetic EMLA cream in newborns (> 2.800 g) as well as in teenagers. Trained staff is another condition for high success rate in performing vein punctures, and continuous education vouches for that. 3. Diversion (distraction) is a general term for directing the child's attention from the procedures or to make time pass faster. Age adapted diversions should be readily available for every child. Apart from soap bubbles, toys, books, music and videos there are other possibilities, such as 'Guided imagery', a way of day-dreaming initiated by personnel trained in this method. 4. Sedation should be used when other options are not sufficient. For conscious sedation we use midazolam, administered either iv, intranasal, rectally or orally. The nurses/technologists handle the routines. In nuclear medicine, 4-5 % of the children, mostly between 1-3 years old, are sedated either for fear of vein

  15. Stereoscopic full aperture imaging in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Sergio G. Strocovsky

    2011-06-01

    Full Text Available Images of planar scintigraphy and single photon emission computerized tomography (SPECT used in nuclear medicine are often low quality. They usually appear to be blurred and noisy. This problem is due to the low spatial resolution and poor sensitivity of the acquisition technique with the gamma camera (GC. Other techniques, such as coded aperture imaging (CAI reach higher spatial resolutions than GC. However, CAI is not frequently used for imaging in nuclear medicine, due to the decoding complexity of some images and the difficulty in controlling the noise magnitude. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. A novel technique, full aperture Imaging (FAI, also uses gamma ray-encoding to obtain images, but the coding system and the method of images reconstruction are simpler than those used in CAI. In addition, FAI also reaches higher spatial resolution than GC. In this work, the principles of FAI technique and the method of images reconstruction are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. Spatial resolution tests of GC versus FAI were performed using two different source-detector distances. First, simulations were made without interposing any material between the sources and the detector. Then, other more realistic simulations were made. In these, the sources were placed in the centre of a rectangular prismatic region, filled with water. A rigorous comparison was made between GC and FAI images of the linear filiform sources, by means of two methods: mean fluence profile graphs and correlation tests. Finally, three-dimensional capacity of FAI was tested with two spherical sources. The results show that FAI technique has greater sensitivity (>100 times and greater spatial resolution (>2.6 times than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and

  16. Emerging applications of radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Advances in the domain of radioisotopes and radiopharmaceuticals has been very noteworthy over the past decade and played a major role in enhancing the Nuclear Medicine practice. A number of them have been employed in the day to day clinical practice and have benefited a large number of patients. For the purpose of systematic discussion, we shall classify into two major heads A. Recent advances in clinical applications of traditional radiotracers. B. Newer Radiopharmaceuticals and their applications. The latter could be further subdivided in to the following: (a) Diagnostic (includes i. PET radiopharmaceuticals and ii. Non-PET radiopharmaceuticals for conventional gamma camera imaging) and (b) Therapeutic advances. In the present communication, we shall explore the major developments emphasizing the country perspective

  17. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Henne, R.L.; Erickson, J.J.; McClain, W.J.; Kirch, D.L.

    1977-01-01

    The directory is composed of two major divisions, a Users' section and a Vendors' section. The Users' section consists of detailed installation descriptions and indexes to these descriptions. A typical description contains the name, address, type, and size of the institution as well as names of persons to contact. Following the hardware descriptions are listed the type of studies for which the computers are utilized, including the languages used, the method of output and an estimate of how often the study is performed. The Vendors' section contains short descriptions of current commercially available nuclear medicine systems as supplied by the vendors themselves. In order to reduce the amount of obsolete data and to include new institutions in future updates of the directory, a user questionnaire is included. (HLW)

  18. The impact of nuclear science on medicine

    CERN Document Server

    Kraft, G

    1999-01-01

    From the very beginning, i.e. from the discovery of the natural radioactivity by H. Becquerel and the production of radium by M. Curie, nuclear physics had a strong impact on medicine: Radioactive sources were immediately made use of in tumor therapy long before the action mechanisms of ionizing radiation were understood. The invention of the tracer technique by G. Hevesy opened a new field for the study of chemokinetics as well as for the in-vivo measurement of various organ functions. In the percutane tumor therapy hadrons like neutrons, pions, protons and heavier ions were tested. Presently, proton therapy is a great success and is spreading all over the world. The new techniques of target-conform treatment using heavy ions for an improved tumor targeting and control represent the latest great improvement of radiation tumor therapy.

  19. Nuclear medicine training and practice in the Czech Republic.

    Science.gov (United States)

    Kamínek, Milan; Koranda, Pavel

    2014-08-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. PMID:24867257

  20. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  1. Source Book of Educational Materials for Nuclear Medicine.

    Science.gov (United States)

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  2. Nuclear medicine and articulation prosthesis of the lower limbs

    International Nuclear Information System (INIS)

    Several nuclear medicine procedures can help the surgeons in the diagnosis of the complications of articulations prosthesis of the lower limbs, in particular in case of torpid infection. Even if the diagnosis remains uncertain, the indications and the interpretation of these procedures benefit of a close collaboration between nuclear medicine specialist and clinicians. (author)

  3. Management of radioactive waste generated in nuclear medicine

    International Nuclear Information System (INIS)

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  4. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  5. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  6. Special monitoring in nuclear medicine; Monitoreo especial en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C.C.; Puerta, J.A.; Morales, J. [Asociacion Colombiana de Proteccion Radiologica (Colombia)]. e-mail: ccbeltra@gmail.com

    2006-07-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the {sup 131} I and the {sup 99m} Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained

  7. COCATS 4: Securing the Future of Cardiovascular Medicine.

    Science.gov (United States)

    Sinha, Shashank S; Julien, Howard M; Krim, Selim R; Ijioma, Nkechinyere N; Baron, Suzanne J; Rock, Andrea J; Siehr, Stephanie L; Cullen, Michael W

    2015-05-01

    The latest iteration of the Core Cardiology Training Statement (COCATS 4) [Corrected] provides a potentially transformative advancement in cardiovascular fellowship training intended, ultimately, to improve patient care. This review addressed 3 primary themes of COCATS 4 from the perspective of fellows-in-training: 1) the evolution of training requirements culminating in a competency-based curriculum; 2) the development of novel learning paradigms; and 3) the establishment of task forces in emerging areas of multimodality imaging and critical care cardiology. This document also examined several important challenges presented by COCATS 4. The proposed changes in COCATS 4 should not only enhance the training experience but also improve trainee satisfaction. Because it embraces continual transformation of training requirements to meet evolving clinical needs and public expectations, COCATS 4 will enrich the cardiovascular fellowship training experience for patients, programs, and fellows-in-training.

  8. Current Status of The Korean Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    As the application of nuclear medicine to clinics became generalized and it held an important position, the Korean Society of Nuclear Medicine was founded in 1961, and today it has become known as one of the oldest nuclear medicine societies not only to Asian nations but also to other advanced countries all over the world. Now it has 100 or so regular members composed of students of each medicine filed unlike other medical societies. Only nuclear medicine research workers are eligible for its membership. The Korean Society of Nuclear Medicine holds its regular general meeting and symposium twice per annom respectively in addition to occasional group gatherings and provincial lectures on nuclear medicine. With an eye to exchanging information on symposium, research and know-how, KSNM issued its initial magazine in 1967. Every year two editions are published. Year after year the contents of treatises are getting elevated with researches on each field including the early study on morphology-greatly improved both in quality and quantity. Of late, a minute and fixed quantity of various matters by dynamical research and radioimmunoassay of every kind has become visibly active. In particular, since KSNM, unlike other local societies, keeps close and frequent contact with the nuclear medicine researchers of world-wide fame, monographs by eminent scholars of the world are carried in its magazine now internationally and well received in foreign countries. Now the magazine has been improved to such an extent that foreign authors quote its contents. KSNM invited many a foreign scholar with a view to exchanging the knowledge of nuclear medicine. Sponsored by nuclear energy institute, the nuclear medicine symposium held in Seoul in October of 1966 was a success with Dr. Wagner participating, a great scholar of world wide fame: It was the first international symposium ever held in Korea, and the Korea Japan symposium held in Seoul 1971 was attended by all distinguished nuclear

  9. Career prospects for graduating nuclear medicine residents: survey of nuclear medicine program directors.

    Science.gov (United States)

    Harolds, Jay A; Guiberteau, Milton J; Metter, Darlene F; Oates, M Elizabeth

    2013-08-01

    There has been much consternation in the nuclear medicine (NM) community in recent years regarding the difficulty many NM graduates experience in securing initial employment. A survey designed to determine the extent and root causes behind the paucity of career opportunities was sent to all 2010-2011 NM residency program directors. The results of that survey and its implications for NM trainees and the profession are presented and discussed in this article. PMID:23763875

  10. Assessing and Reducing Exposures to Nuclear Medicine Staff

    International Nuclear Information System (INIS)

    Nuclear medicine involves the handling of unsealed radiation sources. Occupational monitoring in nuclear medicine, thus, includes assessment of both external irradiation of the body and internal exposure due to inhalation or ingestion of radioactive substances. When appropriate radiation protection measures are applied, the annual effective dose to nuclear medicine staff is low (around 2–3 mSv). However, hand doses can be very high and can even exceed the regulatory limit for skin equivalent dose, without workers being aware of it. The paper presents the main results of the European Atomic Energy Community’s Seventh Framework Programme project, Optimization of Radiation Protection of Medical Staff (ORAMED), within the field of extremity dosimetry of nuclear medicine staff, and proposes recommendations to improve radiation protection in occupational exposure in nuclear medicine. (author)

  11. Quality Management Audits in Nuclear Medicine Practices. 2. Ed

    International Nuclear Information System (INIS)

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures

  12. Instrumentation and procedural problems in nuclear medicine

    International Nuclear Information System (INIS)

    In this chapter, the nuclear instrumentation problems, procedural errors, and resultant scintiphoto artifacts that might be encountered before, during, and after a nuclear medicine scan are discussed. In practice, whenever a scintiphoto is of unacceptable quality or contains an evident artifact, it generally is discarded, corrective actions are taken and, if possible the study is repeated. Instead of discarding the unacceptable scan, however, a notebook of all of these imaging artifacts could be compiled and made accessible to all personnel in the department. This artifact identification notebook is especially useful in a teaching institution in which technologists or residents are being trained. There is no better learning axion than that ''you learn by your mistakes.'' It is much easier on a department for rookies to learn from the mistakes of others, as cited in the artifact notebook, than for each individual to repeat all the common mistakes made by those who came before. It also becomes easier to identify or recognize the cause of many artifacts by referencing the manual or notebook

  13. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    The development of new radiopharmaceuticals, cyclotron-produced radionuclides and improvement of detector, scanner and gamma camera characteristics have enable a remarkable recent progress in scintigraphic techniques for organ visualization and functional studies. Using a variety of techniques, positron cameras, section scanners, gamma holography, tomographic imaging appear to be playing an increasing important role. Data processing techniques, for example image processing and three dimensional reconstruction have significantly increased their impact. The principal research work and advances in technique achieved up to 1972 are summarized and the subjects which have been further exploited are outlined. The main section comprises references and abstracts of articles from scientific journals and conference proceedings (191 articles and 221 papers mentioned) for the period 1972-1975 to illustrate advances in this domain: Excerpta Medica (Nuclear Medicine) Abstract Journals and Nuclear Science Abstracts (1972-1975) were used as abstracting publications. This survey is completed with an index of authors and subject-matters. Eleven thesis are mentionned in an appendix

  14. Nuclear medicine. Basic knowledge and clinical applications. 7. rev. and enl. ed.; Nuklearmedizin. Basiswissen und klinische Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Schicha, Harald [Universitaetsklinikum Koeln (Germany). Medizinisches Versorgungszentrum II; Schober, Otmar [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-11-01

    The book on basic knowledge and clinical applications of nuclear medicine covers the following issues: The first general part: principles of nuclear medicine; physical fundamentals; radiopharmaceutical chemistry; measuring techniques: gamma detectors, gamma spectrometry, gamma camera, SPECT, PET, PET/CT, PET/NMR, image processing and communication; nuclear medical examinations: metabolic and pharmacological kinetics, scintigraphic methods, criteria for the use; quality assurance; dosimetry and radiation protection, radiation risks and patients exposure, benefit-risk considerations. The second part covers endocrine organs, carcinomas, skeleton and bone joints, inflammations, lymph system, cardiovascular system, lungs, central nervous system, kidneys and urinary system, gastrointestinal tract, other scintigraphic examinations.

  15. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  16. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  17. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    International Nuclear Information System (INIS)

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens

  18. Nuclear medicine and radiopharmacy; Medicina nuclear y radiofarmacia

    Energy Technology Data Exchange (ETDEWEB)

    Leon A, M. C. [Sociedad Mexicana de Seguridad Radiologica A. C., Mexico D. F. (Mexico)

    2008-12-15

    In the areas of Nuclear Medicine and Radiopharmacy frequently happens that the personnel that is incorporated as a candidate to serve as personnel occupationally exposed have varied skills, not necessarily have an ingrained culture of safety and radiation protection, some are resistant to adoption a work discipline and have very limited notions of normalization, including the safety basic standards. In fact, referring to the safety basic standards, concepts such as practice justification, protection optimization and dose limitation, can be very abstract concepts for such personnel. In regard to training strategies, it was noted that training in the work is an effective tool although it is very demanding for the learner but mainly for the teaches. The experts number that can occur in this manner is limited because it is an individualized system; however those from the process usually acquire a good preparation, which certainly includes theoretical aspects. For greater efficiency it is necessary that hospitals account facilities, procedures and personnel that might have an exclusive dedication to education and training of human resources. This would create a safety culture, alleviating the burdens of the already existing expertise and improves the training conditions. The Mexican Society of Radiological Safety (SMSR) can help in these efforts through the publication of guides aimed at work training, coordination and articulation of the possible courses already on the market and own the courses organization, workshops and conferences with more frequency. It would also serves that the SMSR acts as speaker with political actors, advocating for the courses validation offered by higher learning institutions, coordinating and promoting postgraduates in Nuclear Medicine and Radiopharmacy. (Author)

  19. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  20. Distribution of nuclear medicine service in Brazil; Distribuicao do servico de medicina nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos [Faculdade Metodo de Sao Paulo (FAMESP), Sao Paulo, SP (Brazil)

    2011-10-26

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  1. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology.

    Science.gov (United States)

    Pepe, Alessia; Pizzino, Fausto; Gargiulo, Paola; Perrone-Filardi, Pasquale; Cadeddu, Christian; Mele, Donato; Monte, Ines; Novo, Giuseppina; Zito, Concetta; Di Bella, Gianluca

    2016-05-01

    Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies.

  2. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  3. Specific filters applied in nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Vitor S.; Crispim, Verginia R., E-mail: verginia@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Brandao, Luis E.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I{sub 2} capture for a large or small amount of substrate but its use is restricted due to its low flash point (150 deg C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH{sub 3}I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO{sub 2} + Ag crystals. We concluded that, for an exhaust flow range of (306 {+-} 4) m{sup 3}/h, a double stage filter using SiO{sub 2} + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements. (author)

  4. Contemporary nuclear medicine imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Neuroendocrine tumours (NETs) are rare, heterogeneous, and often hormonally active neoplasms. Nuclear medicine (NM) imaging using single photon- and positron-emitting radiopharmaceuticals allows sensitive and highly specific molecular imaging of NETs, complementary to anatomy-based techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI). Somatostatin-receptor scintigraphy is a whole-body imaging technique widely used for diagnosis, staging and restaging of NETs. The increasing availability of hybrid single-photon emission CT (SPECT)/CT cameras now offers superior accuracy for localization and functional characterization of NETs compared to traditional planar and SPECT imaging. The potential role of positron-emission tomography (PET) tracers in the functional imaging of NETs is also being increasingly recognized. In addition to 2-[18F]-fluoro-2-deoxy-D-glucose (FDG), newer positron-emitting radiopharmaceuticals such as 18F-dihydroxyphenylalanine (DOPA) and 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) peptides, show promise for the future. This article will summarize the role of current and emerging radiopharmaceuticals in NM imaging of this rare but important group of tumours.

  5. Nuclear medicine and the nursing mother

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, A.J.; Mountford, P.J. (Kent and Canterbury Hospital (UK))

    1985-07-20

    Many radiopharmaceuticals may be detected in breast milk, but differ from other drugs in that for diagnostic purposes they are used in tracer quantities and do not produce demonstrable pharmacological changes in mother or infant. Patients may also be given non-radioactive drugs to induce changes in the distribution of the radiopharmaceuticals and some of these, too, appear in milk (e.g. frusemide, potassium perchlorate, iodides, and cholecystokinin). Iodides are selectively concentrated in breast milk, and some consider them contra-indicated during lactation. A period of interruption of breast feeding, expression of milk, and reduction of close contact with the infant is usually recommended for mothers who have a nuclear medicine investigation. The inconvenience and disadvantages of interrupting breast feeding have to be balanced against the potential risk to the infant: the prolonged interruption of feeding advocated for some agents is often impracticable. Interruption for 24 hours for sup(99m)Tc compounds is excessive for doses used in Britain. Twelve hours leaves a wide range of safety for pertechnetate. No interruption is needed for sup(99m)Tc-macroaggregated albumin and sup(99m)Tc-diethylenetriamine-penta-acetic acid in order to remain below one tenth of the annual limit of intake.

  6. [Nuclear medicine for evaluation of liver functions].

    Science.gov (United States)

    Yamamoto, K

    1994-05-01

    The clinical usefulness of colloid liver scintigraphy to detect space occupying lesions in the liver has been reduced by X-ray CT and ultrasonography. However, scintigraphic examinations have potentials for characteristic diagnosis of liver tumors, such as 99mTc RBC SPECT for hepatic hemangioma, 99mTc PMT for positive imaging of hepatocellular carcinoma and its extrahepatic metastasis, and radioimmunoscintigraphy for metastatic tumors. Moreover, prediction of the prognosis and monitoring therapeutic effect to liver cancer can be made by the use of nuclear medicine techniques. Recently, 99mTc galactosyl serum albumin (GSA), a newly developed radiotracer to evaluate hepatocyte function, has become commercially available. Quantitative parameters of liver functions can be obtained by analysis of time-activity curve in blood and liver after 99mTc-GSA administration. In several cases, 99mTc-GSA study showed intrahepatic unevenness of function, which could not be depicted by other imaging examinations. Positron emission tomography (PET) with 18F-fluoro-2-deoxy glucose (FDG) is useful to detect malignant tumors in the liver. Since PET can provide absolutely quantitative data in better resolution, it is expected that regional true metabolic functions in the liver may be able to be quantitatively evaluated with PET in near future. PMID:8028225

  7. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  8. Recommendations on Strengthening the Development of Nuclear Medicine in China

    Institute of Scientific and Technical Information of China (English)

    Shih-chen Wang

    2009-01-01

    @@ This paper outlines briefly the role of nuclear medicine in life sciences and health care. Molecular imaging by using isotopic tracers can noninvasively visualize the chemistry or hidden process in the cells and tissues inside the body, obtaining "functional" images to provide early information of any disease and revealing the secrets of life. The vitality of nuclear medicine is its ability to translate bench into new clinical application that can benefits the patients. Although nuclear medicine community in China has made significant achievement with a great effort since 1950s, there are many obstacles to future development. Recommended measures are proposed here in an attempt to solve our existing problems.

  9. Role of the biomedical engineer in nuclear medicine.

    Science.gov (United States)

    Llaurado, J G

    1981-01-01

    Throughout the short history of the development of radioactivity applied in the biomedical field, there have been many contributions made by engineers. With the advent of Nuclear Medicine as a well systematized specialty and its mushrooming in hospitals, the opportunities for biomedical engineers have increased. This article is written from the viewpoint of historic perspective in order to display the different aspects and situations where engineers, and particularly biomedical and clinical engineers, can participate in Nuclear Medicine. Finally, a more detailed survey is made of the activities of biomedical engineers in the nuclear medicine department.

  10. History and Perspectives of Nuclear Medicine in Bangladesh

    OpenAIRE

    Raihan Hussain

    2016-01-01

    Bangladesh is one of the smaller states in Asia. But it has a long and rich history of nuclear medicine for over sixty years. The progress in science and technology is always challenging in a developing country. In 1958, work for the first Nuclear Medicine facility was commenced in Dhaka in a tin-shed known as ‘Radioisotope Centre’ and was officially inaugurated in 1962. Since the late 50s of the last century nuclear medicine in Bangladesh has significantly progressed through the years in its...

  11. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  12. Highlights lecture EANM 2015: the search for nuclear medicine's superheroes.

    Science.gov (United States)

    Buck, Andreas; Decristoforo, Clemens

    2016-09-01

    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many

  13. Highlights lecture EANM 2015: the search for nuclear medicine's superheroes.

    Science.gov (United States)

    Buck, Andreas; Decristoforo, Clemens

    2016-09-01

    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many

  14. Structure and Activities of Nuclear Medicine in Kuwait.

    Science.gov (United States)

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. PMID:27237444

  15. Proceedings of the 6.Brazilian Meeting on Nuclear Medicine

    International Nuclear Information System (INIS)

    Several subjects on nuclear medicine are presented. The use of scintiscanning in heart diseases, neoplasms, etc. is emphasized. Radioisotope preparation techniques and labelling of compounds used in radioassays are described. (M.A.C.)

  16. Proceedings of the 7. Brazilian Meeting on Nuclear Medicine

    International Nuclear Information System (INIS)

    Subjects about nuclear medicine are discussed. Researchs concerning the use of radioisotopes as tracers in several diseases are presented. The use of radioisotopes in diagnosis are emphasized. (M.A.C.)

  17. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.)

  18. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  19. Veterinary nuclear medicine again - commentary and remarks on: Krzeminski M., et al. Veterinary nuclear medicine - a review. NMR 2004;7: 177 - 182

    International Nuclear Information System (INIS)

    Veterinary nuclear medicine is somehow similar to its roots, Human Nuclear Medicine, but certainly there are a few basic differences. Patients sent by veterinary clinicians could be members of exotic species (birds, reptiles, rodents) and even the most often treated dog, cat, and horse patients vary in a pretty wide scale in weight, size and anatomical, physiological features. As there are no veterinary radiopharmaceuticals in the market, vets use human registered products, therefore applied radioactive doses are often calculated on an empirical manner. As opposed to humans, animal subjects almost always need to be sedated or anaesthetised for scintigraphical protocols. We vets, frequently perform bone and thyroid scintigraphy in the everyday clinical routine and oncological applications are more and more common in the veterinary field as well. But in contrast with human practice, our animal patients suffer very rarely from cardiovascular diseases, so heart and brain perfusion studies are less frequently performed at veterinary clinics. (author)Veterinary nuclear medicine is somehow similar to its roots,

  20. Computers in Nuclear Medicine. Chapter 12

    International Nuclear Information System (INIS)

    In 1965, Gordon Moore, a co-founder of Intel, said that new memory chips have twice the capacity of prior chips, and that new chips are released every 18 to 24 months. This statement has become known as Moore’s law. Moore’s law means that memory size increases exponentially. More generally, the exponential growth of computers has applied not only to memory size, but also to many computer capabilities, and since 1965, Moore’s law has remained remarkably accurate. Further, this remarkable growth in capabilities has occurred with a steady decrease in price. Anyone who has even a little appreciation of exponential growth realizes that exponential growth cannot continue indefinitely. However, the history of computers is littered with ‘experts’ who have prematurely declared the end of Moore’s law. The quotation at the beginning of this section indicates that future growth of computers has often been underestimated. The exponential growth of computer capabilities has a very important implication for the management of a nuclear medicine department. The growth in productivity of the staff of a department is slow, especially when compared to the growth in capabilities of a computer. This means that whatever decision was made in the past about the balance between staff and computers is now out of date. A good heuristic is: always apply more computer capacity and less people to a new task. Or stated more simply, hardware is ‘cheap’, at least with respect to what you learned in training or what you decided last time you considered the balance between hardware and ‘peopleware’

  1. Introduction to hardware for nuclear medicine data systems

    International Nuclear Information System (INIS)

    Hardware included in a computer-based data system for nuclear medicine imaging studies is discussed. The report is written for the newcomer to computer collection and analysis. Emphasis is placed on the effect of the various portions of the system on the final application in the nuclear medicine clinic. While an attempt is made to familiarize the user with some of the terms he will encounter, no attempt is made to make him a computer expert. 1 figure, 2 tables

  2. Nuclear oncology, a fast growing field of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Pierre E-mail: p.olivier@chu-nancy.fr

    2004-07-11

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as {sup 111}In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while {sup 131}I- and {sup 123}I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of {sup 99m}Tc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of {sup 18}F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a {sup 90}Y-labelled anti-CD20 antibody ({sup 90}Y-ibritumomab tiuxetan (Zevalin{sup [reg]})) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with {sup 153}Sm-EDTMP, 186Re-HEDP or {sup 89}Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with {sup 90}Y, {sup 111}In or {sup 177}Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined

  3. Nuclear oncology, a fast growing field of nuclear medicine

    Science.gov (United States)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  4. Radiation safety audit of a high volume Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure

  5. History and Perspectives of Nuclear Medicine in Bangladesh

    Directory of Open Access Journals (Sweden)

    Raihan Hussain

    2016-01-01

    Full Text Available Bangladesh is one of the smaller states in Asia. But it has a long and rich history of nuclear medicine for over sixty years. The progress in science and technology is always challenging in a developing country. In 1958, work for the first Nuclear Medicine facility was commenced in Dhaka in a tin-shed known as ‘Radioisotope Centre’ and was officially inaugurated in 1962. Since the late 50s of the last century nuclear medicine in Bangladesh has significantly progressed through the years in its course of development, but still the facilities are inadequate. At present there are 20 nuclear medicine establishments with 3 PET-CTs, 42 gamma camera/SPECTs with 95 physicians, 20 physicists, 10 radiochemists and 150 technologists. The Society of Nuclear Medicine, Bangladesh (SNMB was formed in 1993 and publishing its official journal since 1997. Bangladesh also has close relationships with many international organizations like IAEA, ARCCNM, AOFNMB, ASNM, WFNMB and WARMTH. The history and the present scenario of the status of nuclear medicine in Bangladesh are being described here.

  6. Training of nuclear medicine technical staff by the Brazilian Society of Nuclear Medicine and Biology

    International Nuclear Information System (INIS)

    Full text: Nuclear medicine was introduced in Brazil in 1949, at the University of Sao Paulo. Despite being a pioneer in South America and the existence of about 280 clinics of this medical specialty in the whole country serving around 185 million inhabitants, there is not any dedicated course forming its technical staff. Another shortcoming lies in the fact that there are not any basic requirements established for these professionals by an official medical or nuclear entity. As result, one can find persons ranging from university graduates (biomedics, radiology technologists, biologists, pharmacists, chemists, physicists, etc.) to secondary school graduates or radiology technicians working in nuclear medicine centres, preparing patients, labelling and injecting radiopharmaceuticals, obtaining images and processing studies. Due to the high heterogeneity of the technical staff and lack of a formal preparation, the Brazilian Society of Nuclear Medicine and Biology (SBBMN) organized during 2004 and 2005 short courses conducted in different regions of Brazil in order to supply organized basic knowledge and practice on: 1. Quality control of 99Mo-99mTc eluates and labelling and checking of dose calibrators 2. Fundamentals of radiation protection, area monitoring and decontamination 3. Quality control of scintillation cameras. Six courses were given during these two years in four cities in the South Eastern region and two in the North Eastern region. The first two topics were delivered during one weekend and the participants were presented with a lecture in the morning and, in the afternoon, a hands-on practice on the same subject. As QC of eluates and labelling and checking of dose calibrators were less practised in most clinics, this was the first time that the majority of the participants performed these activities. In one course, offered during a national congress, all three topics were included and the practical part was replaced by many examples from routine

  7. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    OpenAIRE

    Hinderer, Svenja; Brauchle, Eva; Schenke‐Layland, Katja

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting de...

  8. The contribution of medical physics to nuclear medicine: a physician's perspective

    OpenAIRE

    Peter J. Ell

    2014-01-01

    This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.

  9. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    International Nuclear Information System (INIS)

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, 201Tl produces the highest absorbed dose whereas 82Rb and 15O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of 82Rb is 48% and 77% lower than that of 99mTc-tetrofosmin (rest), respectively. Conclusions: 82Rb results in lower effective dose in adults compared to 99mTc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice

  10. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Bolch, Wesley E. [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  11. Applications of CdTe to nuclear medicine. Final report

    International Nuclear Information System (INIS)

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals

  12. Nuclear medicine imaging of bone infections.

    Science.gov (United States)

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  13. IAEA support to medical physics in nuclear medicine.

    Science.gov (United States)

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a

  14. Nuclear medicine in dentistry revisited: New avenues to explore

    Directory of Open Access Journals (Sweden)

    Vinita Boloor

    2013-01-01

    Full Text Available Nuclear medicine and radioactive tracers have considerable application in dental research, because they provide one of the few practical methods for studying the limited metabolic activities of bones and teeth. The ease with which minute amounts of these radioactive materials may be accurately measured and distinguished from the mass of inert element in the tooth is particularly valuable. They are useful in studying many problems of calcification and mineral exchange. There are also opportunities of their use in investigating fluorosis, caries protection, periodontal disease, micro leakage studies of dental materials, root resorption, nutritional, and endocrine effects, as well as numerous other dental problems. Other usages of nuclear medicine in dentistry are listed below: Age written in teeth by nuclear tests, scintigraphic evaluation of osteoblastic activity, and evaluation of osteoblastic activity around dental implants using bone scintigraphy. Nuclear medicine can be an indicator of "active" alveolar bone loss. Nuclear medicine techniques are used as an adjunct for the diagnosis of oral diseases (benign tumors and carcinomas and temporomandibular joint disease. This review article discusses these indications of nuclear medicine.

  15. Extract from IAEA's Resources Manual in Nuclear Medicine - Part 2. - Human Resources Development

    International Nuclear Information System (INIS)

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the second extract from the Resources Manual, Part-2 of the chapter on Human Resources Development. (author)

  16. Extracts from IAEA's Resources Manual in Nuclear Medicine - Part 1 - Human Resource Development

    International Nuclear Information System (INIS)

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the first extract from the Resources Manual, Part-1 of the chapter on Human Resources Development. (author)

  17. Highlights of the 6th world congress of nuclear medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P.J. [Inst. of Nuclear Medicine, University Coll. London Medical School, London (United Kingdom)

    1995-02-01

    The article summarizes the most interesting medical aspects of the 6th World Congress of Nuclear Medicine and Biology, addressing recent developments in the fields of scintiscanning, SPET and PET, oncology, neurology, psychiatry, in the diagnostic evaluation of the cardiovascular system, and new radiopharmaceuticals. (VHE) [Deutsch] Der Artikel gibt einen Ueberblick ueber medizinische Aspekte des 6. Weltkongresses der Nuklearmedizin und -biologie. Aktuelle Entwicklungen bei Szintigraphie, SPET und PET in Onkologie, Neurologie, Psychiatrie, Herz und Kreislauf sowie weitere neue Entwicklungen bei Radiopharmazeutika werden referiert. (VHE)

  18. Production of iodine-124 and its applications in nuclear medicine

    International Nuclear Information System (INIS)

    Until recently, iodine-124 was not considered to be an attractive isotope for medical applications owing to its complex radioactive decay scheme, which includes several high-energy gamma rays. However, its unique chemical properties, and convenient half-life of 4.2 days indicated it would be only a matter of time for its frequent application to become a reality. The development of new medical imaging techniques, especially improvements in the technology of positron emission tomography (PET), such as the development of new detectors and signal processing electronics, has opened up new prospects for its application. With the increasing use of PET in medical oncology, pharmacokinetics, and drug metabolism, 124I-labeled radiopharmaceuticals are now becoming one of the most useful tools for PET imaging, and owing to the convenient half-life of I-124, they can be used in PET scanners far away from the radionuclide production site. Thus far, the limited availability of this radionuclide has been an impediment to its wider application in clinical use. For example, sodium [124I]-iodide is potentially useful for diagnosis and dosimetry in thyroid disease and [124I]-M-iodobenzylguanidine ([124I]-MIBG) has enormous potential for use in cardiovascular imaging, diagnosis, and dosimetry of malignant diseases such as neuroblastoma, paraganglioma, pheochromocytoma, and carcinoids. However, despite that potential, both are still not widely used. This is a typical scenario of a rising new star among the new PET tracers. - Highlights: • Improve the discussion and disseminate the knowledge of recent advances in nuclear medicine. • Stimulate the offer of alternative ways using the recent developed positron emitters. • Contribute to democratize the use of radiopharmaceuticals in developing countries. • Promote social benefit, starting a new era in diagnostic imaging in developing countries

  19. Heart rate control with adrenergic blockade: Clinical outcomes in cardiovascular medicine

    Directory of Open Access Journals (Sweden)

    David Feldman

    2010-05-01

    Full Text Available David Feldman1, Terry S Elton2, Doron M Menachemi3, Randy K Wexler41Heart Failure/Transplant and VAD Programs, Minneapolis Heart Institute, Minneapolis, Minnesota, USA; 2Division of Pharmacology, College of Pharmacology, The Ohio State University, Columbus, Ohio, USA; 3Heart Failure Services, Edith Wolfson Medical Center, The Heart Institute, Sakler School of Medicine, Tel-Aviv University, Holon, Israel; 4Department of Clinical Family Medicine, The Ohio State University, Columbus, Ohio, USAAbstract: The sympathetic nervous system is involved in regulating various cardiovascular parameters including heart rate (HR and HR variability. Aberrant sympathetic nervous system expression may result in elevated HR or decreased HR variability, and both are independent risk factors for development of cardiovascular disease, including heart failure, myocardial infarction, and hypertension. Epidemiologic studies have established that impaired HR control is linked to increased cardiovascular morbidity and mortality. One successful way of decreasing HR and cardiovascular mortality has been by utilizing β-blockers, because their ability to alter cell signaling at the receptor level has been shown to mitigate the pathogenic effects of sympathetic nervous system hyperactivation. Numerous clinical studies have demonstrated that β-blocker-mediated HR control improvements are associated with decreased mortality in postinfarct and heart failure patients. Although improved HR control benefits have yet to be established in hypertension, both traditional and vasodilating β-blockers exert positive HR control effects in this patient population. However, differences exist between traditional and vasodilating β-blockers; the latter reduce peripheral vascular resistance and exert neutral or positive effects on important metabolic parameters. Clinical evidence suggests that attainment of HR control is an important treatment objective for patients with cardiovascular

  20. Nuclear cardiology core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    Science.gov (United States)

    Gimelli, Alessia; Neglia, Danilo; Schindler, Thomas H; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Nuclear Cardiology is now available online. The syllabus lists key elements of knowledge in nuclear cardiology. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the nuclear cardiology trainees.

  1. Personalized Cardiovascular Medicine Today: A Food and Drug Administration/Center for Drug Evaluation and Research Perspective.

    Science.gov (United States)

    Blaus, Alison; Madabushi, Rajanikanth; Pacanowski, Michael; Rose, Martin; Schuck, Robert N; Stockbridge, Norman; Temple, Robert; Unger, Ellis F

    2015-10-13

    Over the past decade, personalized medicine has received considerable attention from researchers, drug developers, and regulatory agencies. Personalized medicine includes identifying patients most likely to benefit and those most likely to experience adverse reactions in response to a drug, and tailoring therapy based on pharmacokinetics or pharmacodynamic response, as well. Perhaps most exciting is finding ways to identify likely responders through genetic, proteomic, or other tests, so that only likely responders will be treated. However, less precise methods such as identifying historical, demographic, or other indicators of increased or reduced responsiveness are also important aspects of personalized medicine. The cardiovascular field has not used many genetic or proteomic markers, but has regularly used prognostic variables to identify likely responders. The development of biomarker-based approaches to personalized medicine in cardiovascular disease has been challenging, in part, because most cardiovascular therapies treat acquired syndromes, such as acute coronary syndrome and heart failure, which develop over many decades and represent the end result of several pathophysiological mechanisms. More precise disease classification and greater understanding of individual variations in disease pathology could drive the development of targeted therapeutics. Success in designing clinical trials for personalized medicine will require the selection of patient populations with attributes that can be targeted or that predict outcome, and the use of appropriate enrichment strategies once such attributes are identified. Here, we describe examples of personalized medicine in cardiovascular disease, discuss its impact on clinical trial design, and provide insight into the future of personalized cardiovascular medicine from a regulatory perspective.

  2. Investigation of Marfan's syndrome by nuclear medicine

    International Nuclear Information System (INIS)

    Combining an isotope angiogram with an ECG-triggered blood pool scintigram is very appropriate to follow the course of Marfan's syndrome, especially to diagnose and to quantify occurrence of aneurysms, valve insufficiency and other cardiovascular defects like ventricle hypertrophy and decompensatio cordis. In this paper, results are described in a family of 4 members that show different stages of this disease. (G.J.P.)

  3. Comparative analysis of dosimetry parameters for nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Toohey, R.E.; Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States)

    1999-01-01

    For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRP Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.

  4. Nuclear medicine procedures in the postgenomic era

    International Nuclear Information System (INIS)

    Assessment of gene function following the completion of human genome sequencing may be done using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules which requires a thorough understanding of physiology, biochemistry and pharmacology. The experimental approaches will involve many new technologies including in vivo imaging with SPECT and PET. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as genes encoding enzymes, receptors, antigens or transporters. Visualization of in vivo reporter gene expression can be done using radiolabelled substrates, antibodies or ligands. Combinations of specific promoters and in vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and activation of signal transduction pathways may be visualized non-invasively. The role of radiolabelled antisense molecules for the analysis of mRNA content has to be investigated. However, possible applications are therapeutic intervention using triplex oligonucleotides with therapeutic isotopes which can be brought near to specific DNA sequences to induce DNA strand breaks at selected loci. Imaging of labelled siRNA's makes sense if these are used for therapeutic purposes in order to assess the delivery of these new drugs to their target tissue. In gene therapy based on the transfer and expression of suicide genes, usually gene coding for the non-mammalian enzymes, the Herpes Simplex virus thymidine kinase (HSVtk) or the yeast and bacterial cytosine deaminase (CD), have been used. After infection of the tumour with the recombinant virus, a non-toxic prodrug is applied systemically, which is subsequently converted to a toxic metabolite by the recombinant gene product. Employing a radiolabelled prodrug and

  5. Nuclear Medicine in Pediatric and Adolescent Tumors.

    Science.gov (United States)

    Kiratli, Pınar Özgen; Tuncel, Murat; Bar-Sever, Zvi

    2016-07-01

    Nuclear medicine has an important role in the management of many cancers in pediatric age group with multiple imaging modalities and radiopharmaceuticals targeting various biological uptake mechanisms. 18-Flourodeoxyglucose is the radiotracer of choice especially in patients with sarcoma and lymphoma. (18)FDG-PET, for sarcoma and lymphomas, is proved to be superior to conventional imaging in staging and therapy response. Although studies are limited in pediatric population, (18)FDG-PET/CT has found its way through international guidelines. Limitations and strengths of PET imaging must be noticed before adapting PET imaging in clinical protocols. Established new response criteria using multiple parameters derived from (18)FDG-PET would increase the accuracy and repeatability of response evaluation. Current data suggest that I-123 metaiodobenzylguanidine (MIBG) remains the tracer of choice in the evaluation of neuroblastoma (NB) because of its high sensitivity, specificity, diagnostic accuracy, and prognostic value. It is valuable in determining the response to therapy, surveillance for disease recurrence, and in selecting patients for I-131 therapy. SPECT/CT improves the diagnostic accuracy and the interpretation confidence of MIBG scans. (18)FDG-PET/CT is an important complementary to MIBG imaging despite its lack of specificity to NB. It is valuable in cases of negative or inconclusive MIBG scans and when MIBG findings underestimate the disease status as determined from clinical and radiological findings. F-18 DOPA is promising tracer that reflects catecholamine metabolism and is both sensitive and specific. F-18 DOPA scintigraphy provides the advantages of PET/CT imaging with early and short imaging times, high spatial resolution, inherent morphologic correlation with CT, and quantitation. Regulatory and production issues currently limit the tracer's availability. PET/CT with Ga-68 DOTA appears to be useful in NB imaging and may have a unique role in selecting

  6. Tomography in nuclear medicine. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    Single photon emission computed tomography (SPECT) is currently being used universally in clinical practice, while positron emission tomography (PET), originally developed as a technique for research, has also gradually moved from the research laboratory to the clinical environment. However, there are significant differences in nuclear medicine capabilities, especially in tomography, between developed and developing countries. The present status and future prospects of nuclear medicine tomography were the main topics of discussion at this latest international symposium, organized by the IAEA in co-operation with the World Health Organization and held in Vienna from 21 to 25 August 1995. The purpose of the meeting was to share experience and information on new developments and clinical applications of two promising tomographic techniques: SPECT and PET. Eight invited papers and 34 regular papers from 23 countries were presented. In addition, there was a panel discussion on the future and direction of tomography in nuclear medicine for developing countries. Refs, figs, tabs

  7. Imaging technologies for nuclear medicine offering superior functional diagnosis

    International Nuclear Information System (INIS)

    The nuclear medicine examination is a diagnostic procedure in which organ functions, such as metabolism, blood flow, and neurotransmission, are visualized utilizing radioisotope (RI) tracers. It is a type of molecular imaging, in which RI tracers reflect biological functions on a molecular level. To obtain images with high diagnostic accuracy, Toshiba Medical Systems Corporation has developed the following sophisticated technologies for nuclear medicine: a radiation measurement technology with a high time resolution of several hundred picoseconds, a quantification method that can compensate for Compton scattering and photoelectric effects, and an image reconstruction technology. We are supplying proprietary nuclear medicine systems incorporating these technologies with the objectives of decreasing the patient burden and contributing to hospital management efficiency through reduction of radiation doses and shortening of examination times. (author)

  8. Dynamic functional studies in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs

  9. Survival and development of nuclear medicine in Western China

    International Nuclear Information System (INIS)

    This essay discusses how to develop departments of nuclear medicine in mountainous areas in West China. The developments need the leaders' supports, doctors' understanding and patients' trust. And it is also very important to improve doctors' skills of diagnosis and treatment, and the management of medical quality, and overcome inconveniences in transportation and communication. At the same time, more projects such as radionuclide imaging, radioimmunoassay, radionuclide treatment and personnel training should be also key contents in the development of departments of nuclear medicine in these areas

  10. Radiation dose due to nuclear medicine practice in Ghana

    International Nuclear Information System (INIS)

    The Ghanaian population who underwent nuclear medicine procedures within the period 1990-1993 has been characterized by age and sex. Males received 40% of the procedures while females received 60%. About two-thirds of the procedures annually were performed on patients over the age of thirty years. The mean annual collective dose was found to be 2.7 man-Sv during the four-year period examined. This translated into a per capita dose of 0.2μSv per year for nuclear medicine procedures over the period. (author). 4 refs.; 6 tabs

  11. Benefit/risk considerations in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    The potential radiation risk carried out by diagnostic nuclear medicine has to be compared with the potential diagnostic and/or therapeutic benefit. An undifferentiated consideration of collective doses and risks is inappropriate. On the contrary, several factors have to be considered: The age of the patients, the prevalence of pathological test results, and the potential benefit from the diagnosis. This paper presents statistical data and individual examples. In many cases benefit exceeds risk substantially. On the other hand in some cases restrictions of diagnostic radiology or nuclear medicine should be considered. (orig.)

  12. Pioneers of nuclear medicine, Madame Curie.

    Science.gov (United States)

    Grammaticos, Philip C

    2004-01-01

    Among those who have made important discoveries in the field of radioactivity and thus helped in the development of nuclear medicine as an identical entity are: Heinrich Hertz who in 1886 demonstrated the existence of radiowaves. In 1895 Wilhelm Röntgen discovered the X-rays. In 1896 H. Becquerel described the phenomenon of radioactivity. He showed that a radioactive uranium salt was emitting radioactivity which passing through a metal foil darkened a photographic plate. An analogous experiment performed by S.Thomson in London was announced to the president of the Royal Society of London before the time H.Becquerel announced his discovery but Thomson never claimed priority for his discovery. Muarie Sklodowska Curie (1867-1934) was undoubtedly the most important person to attribute to the discovery of radioactivity. In 1898 she discovered radium as a natural radioactive element. This is how she describes the hard time she had, working with her husband Pierre Curie (1859-1906) for the discovery of radium and polonium: "During the first year we did not go to the theater or to a concert or visited friends. I miss my relatives, my father and my daughter that I see every morning and only for a little while. But I do not complain...". In presenting her discovery of radium, Madame Curie said: " ...in the hands of a criminal, radium is very dangerous. So we must often ask ourselves: will humanity earn or lose from this discovery? I, myself belong to those who believe the former...". The notebooks that Madame Curie had when she was working with radium and other radioactive elements like polonium, thorium and uranium are now kept in Paris. They are contaminated with radioactive materials having very long half-lives and for this reason anyone who wishes to have access to these notes should sign that he takes full responsibility. There are some more interesting points in Madame Curie's life which may not be widely known like: Although her full name is Maria Sklodowska

  13. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Nuclear medicine is an important department in most of scientific hospitals in the world. Rapid improvement in the filed of nuclear medicine needs continuing education of medical students. We tried to evaluate the knowledge of general practitioners in the flied of nuclear medicine, hoping that this study help mangers in accurate planning of teaching programs. Methods and materials: We prepared a questionnaire with 14 questions regarding applications of nuclear medicine techniques in different specialities of medicine. We selected questions as simple as possible with considering the most common techniques and best imaging modality in some disease. One question in nuclear cardiology, one in lung disease, two questions in thyroid therapy, another two in gastrointestinal system, two in genitourinary system and the last two in nuclear oncology. Also 4 questions were about general aspects of nuclear medicine. We have another 4 questions regarding the necessity of having a nuclear medicine subject during medical study, the best method of teaching of nuclear medicine and the preferred method of continuing education. Also age, sex, graduation date and university of education of all subjects were recorded. Results: One hundred (General practitioners) were studied. including, 58 male and 42 female with age range of 27-45 years did . About 60% of cases were 27-30 years old and 40 cases were older than 40. Seventy two cases were graduated in the last 5 years. Mashad University was the main university of education 52 cases with Tehran University (16 cases) and Tabriz University (6 cases) in the next ranks. Also 26 cases were graduated from other universities. From four questions in the field of general nuclear nedione 27% were correctly answered to all questions, 37% correctly answered two questions and 10% had correct answered only one question. No correct answer was noted in 26% . correct answer was noted in 80% the held of nuclear cardiology and in 72% in the field of lung

  14. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran

    Directory of Open Access Journals (Sweden)

    Baharvand-Ahmadi Babak

    2016-01-01

    Full Text Available Background and Aims: Today, cardiovascular diseases are the prominent cause of death in industrialized countries which include a variety of diseases such as hypertension, hyperlipidemia, thromboembolism, coronary heart disease, heart failure, etc. Recent research findings haveshown that not only the extent of cultivation and production of medicinal plants have not beenreduced, but also day-to-day production and consumption have increased. In traditional botanicalknowledge, herbal medicines are used for the treatment of cardiovascular disorders. In this study,we sought to gather and report medicinal plants used to treat these diseases in different regionsof Iran.Methods: The articles published about ethnobotanical study of cardiovascular diseases in variousregions of Iran, such as Arasbaran, Sistan, Kashan, Kerman, Isfahan Mobarakeh, Lorestan andIlam were prepared and summarized.Results: The results of ethnobotanical studies of various regions of Iran, such as Arasbaran, Sistan,Kashan, Kerman, Isfahan Mobarakeh, Lorestan and Ilam were gathered. The results showed thatsumac plants, barberry, yarrow, wild cucumber, horsetail, Eastern grape, hawthorn, wild rose,spinach, jujube, buckwheat, chamomile, chicory, thistle, Mary peas, nightshade, verbena, sorrel ,cherry, citrullus colocynthis, Peganum harmala, sesame and so many other plants are used for thetreatment of cardiovascular diseases and disorders.Conclusion: Herbal medicines are used effectively for some cardiovascular diseases. Rigoroustraining of patients to take precautions and drug interactions into account and to avoid thearbitrary use of medicinal plants is very important.

  15. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4th or 5th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  16. Detection and characterization of translational research in cancer and cardiovascular medicine

    Directory of Open Access Journals (Sweden)

    Cambrosio Alberto

    2011-05-01

    Full Text Available Abstract Background Scientists and experts in science policy have become increasingly interested in strengthening translational research. Efforts to understand the nature of translational research and monitor policy interventions face an obstacle: how can translational research be defined in order to facilitate analysis of it? We describe methods of scientometric analysis that can do this. Methods We downloaded bibliographic and citation data from all articles published in 2009 in the 75 leading journals in cancer and in cardiovascular medicine (roughly 15,000 articles for each field. We calculated citation relationships between journals and between articles and we extracted the most prevalent natural language concepts. Results Network analysis and mapping revealed polarization between basic and clinical research, but with translational links between these poles. The structure of the translational research in cancer and cardiac medicine is, however, quite different. In the cancer literature the translational interface is composed of different techniques (e.g., gene expression analysis that are used across the various subspecialties (e.g., specific tumor types within cancer research and medicine. In the cardiac literature, the clinical problems are more disparate (i.e., from congenital anomalies to coronary artery disease; although no distinctive translational interface links these fields, translational research does occur in certain subdomains, especially in research on atherosclerosis and hypertension. Conclusions These techniques can be used to monitor the continuing evolution of translational research in medicine and the impact of interventions designed to enhance it.

  17. Radiopharmacy contamination in nuclear medicine - a survey report

    International Nuclear Information System (INIS)

    To conduct the radiation survey of the category IV Nuclear Medicine department and to further measure and compare the level of loose contamination in areas with high levels of exposure at two different time points (morning and evening) using wipe test

  18. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  19. 20. Brazilian congress on biology and nuclear medicine. Abstracts

    International Nuclear Information System (INIS)

    Several aspects concerning the use of nuclear medicine in cardiology, oncology, neurology, endocrinology among other areas are studied. Various topics related to diagnosis and treatment of diseases are presented, e.g. radiotracers use, radiopharmaceuticals (mainly associated with technetium 99), development and standardization of radionuclides, structural chemical analysis, metabolism, biological functions. The scintiscanning is the most reported diagnostic technique

  20. Population effective collective dose from nuclear medicine examination in Cuba

    International Nuclear Information System (INIS)

    In an attempt to estimate the effective collective dose imparted to the population of Camagueey-Ciego de Avila territory (Cuba)), we have made use of the statistics from nuclear medicine examinations given to a population of 1.1 million inhabitants for the years 1995-1999. The average annual frequency of examinations was estimated to be 3.82 per 1000 population. The results show that nuclear medicine techniques of thyroid imaging with 43.73% and thyroid uptake with 43.36% are the main techniques implicated in the relative contribution to the total annual effective collective dose, which averaged 54.43 man Sv for the studied period. Radiation risks for the Camagueey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 16.33 and the number of serious hereditary disturbance was 3.54 as a result of 21,073 nuclear medicine procedures, corresponding to a total detriment of one case per thousand examinations. (authors)

  1. Dictionary/handbook of nuclear medicine and clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iturralde, M.P. (Univ. of Pretoria and H.S. Verwoerd Hospital, Dept. of Nuclear Medicine, Pretoria (ZA))

    1989-01-01

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  2. An internet-based teaching file on clinical nuclear medicine

    International Nuclear Information System (INIS)

    Objective: The goal of this project was to develop an internet-based interactive digital teaching file on nuclide imaging in clinical nuclear medicine, with the capability of access to internet. Methods: On the basis of academic teaching contents in nuclear medicine textbook for undergraduates who major in nuclear medicine, Frontpage 2000, HTML language, and JavaScript language in some parts of the contents, were utilized in the internet-based teaching file developed in this study. Results: A practical and comprehensive teaching file was accomplished and may get access with acceptable speed to internet. Besides basic teaching contents of nuclide imagings, a large number of typical and rare clinical cases, questionnaire with answers and update data in the field of nuclear medicine were included in the file. Conclusion: This teaching file meets its goal of providing an easy-to-use and internet-based digital teaching file, characteristically with the contents instant and enriched, and with the modes diversified and colorful

  3. Is there a place for music in nuclear medicine?

    Science.gov (United States)

    Giannouli, Vaitsa; Lytras, Nikolaos; Syrmos, Nikolaos

    2012-01-01

    Music, since the time of ancient Greek Asclepieia is well-known for its influence on men's behavior. Nuclear Medicine can study the effect of music in humans' brain. Positron emission tomography (PET) studies have shown brain areas to be activated after colored hearing vs after hearing to words. Furthermore, PET studies gave evidence that visual imagery of a musical stave is used by some musically untrained subjects in a pitch discrimination task. Listening to music combines intellect and emotion by intimate anatomical and functional connexions between temporal lobe, hippocampus and limbic system. Mozart's music is considered the best for bringing favorable music effects to men. This is called "the Mozart's effect" and by some is attributed to the fact that this kind of music's sequences tend to repeat regularly every 20-30sec, which is about the same length of time as brain-wave patterns. It may be useful to suggest that a certain kind of music played in the waiting room and/or in the examining room of a Nuclear Medicine Department may support patients ' cooperation with their physicians, especially in cardiac nuclear medicine. Furthermore, patients should be calm and not afraid of radioactivity. A long DVD program to be played during working hours can be decided between a music therapist and the Nuclear Medicine physician. PMID:23227458

  4. Nuclear medicine and radiologic imaging in sports injuries

    International Nuclear Information System (INIS)

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  5. Nuclear medicine and radiologic imaging in sports injuries

    Energy Technology Data Exchange (ETDEWEB)

    Glaudermans, Andor W.J.M. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Gielen, Jan L.M.A. [Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Radiology; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Sports Medicine; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Medicine; Zwerver, Johannes (ed.) [Groningen Univ. (Netherlands). Center for Sports Medicine

    2015-10-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  6. Closing the gap between theory and practice in Nuclear Medicine

    International Nuclear Information System (INIS)

    Aim: The ultimate goal for any clinical teaching program is to have students who demonstrate clinical competence. The Nuclear Medicine Technologist like any health professional should graduate from their course: attaining a defined standard of core knowledge; demonstrating appropriate behaviour for the workplace; and, achieving a predetermined level of clinical skill. In the University of Sydney Nuclear Medicine course, revisions were made to the Clinical Education assessment tools to create a more incremental approach and define competencies that required a higher level of achievement. Nuclear Medicine theory delivery was changed to create a more contextual environment where the student was better prepared for the workplace. The aim of this study is firstly to analyse the relationship between assessment of contextual theory and assessment of clinical practice. A secondary aim is to investigate any relationship between individual clinical assessment tools. Clinical assessment tools include: clinical competencies; observed clinical skills examinations (OSCE); clinical and university supervisor assessments; and assignments. Nuclear Medicine theory assessment tools include: problem oriented teamwork presentations; assignment; and written examination. Method: Correlation of the students' overall marks in the subjects' Nuclear Medicine theory and Clinical Education in the years 2000 and 2001 was undertaken using SPSS. Correlation of the students' scores in the individual clinical assessment tools: Clinical Supervisor to University supervisor; Clinical Supervisor to OSCE; and University Supervisor to OSCE, was completed for the years 2000 and 2001. Results: A statistically significant correlation was found for the students' marks in Nuclear Medicine theory and Clinical Education for the same year. The University and Clinical Supervisors' results significantly correlated for all years. Correlation between the individual assessment tools used in Clinical Education was not

  7. High Performance Organ-Specific Nuclear Medicine Imagers.

    Science.gov (United States)

    Majewski, Stan

    2006-04-01

    One of the exciting applications of nuclear science is nuclear medicine. Well-known diagnostic imaging tools such as PET and SPECT (as well as MRI) were developed as spin-offs of basic scientific research in atomic and nuclear physics. Development of modern instrumentation for applications in particle physics experiments offers an opportunity to contribute to development of improved nuclear medicine (gamma and positron) imagers, complementing the present set of standard imaging tools (PET, SPECT, MRI, ultrasound, fMRI, MEG, etc). Several examples of new high performance imagers developed in national laboratories in collaboration with academia will be given to demonstrate this spin-off activity. These imagers are designed to specifically image organs such as breast, heart, head (brain), or prostate. The remaining and potentially most important challenging application field for dedicated nuclear medicine imagers is to assist with cancer radiation treatments. Better control of radiation dose delivery requires development of new compact in-situ imagers becoming integral parts of the radiation delivery systems using either external beams or based on radiation delivery by inserting or injecting radioactive sources (gamma, beta or alpha emitters) into tumors.

  8. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  9. Society of Nuclear Medicine--57th annual meeting.

    Science.gov (United States)

    Searle, Ben

    2010-08-01

    The 57th Annual Meeting of the Society of Nuclear Medicine, held in Salt Lake City, UT, USA, included topics covering new developments in imaging agents and radiopharmaceutical therapies in the field of nuclear medicine. This conference report highlights selected presentations related to imaging of the brain, the prediction of heart disease, and the detection and treatment of various cancers. Investigational drugs discussed include TF-2 plus [68Ga]IMP-288 and TF-2 plus [111In]IMP-288 (both Immunomedics Inc), [11C]PBR-170 (Royal Prince Alfred Hospital/Australian Nuclear Science & Technology Organization), [11C]LY-2795050 (Eli Lilly & Co), yttrium (90Y) clivatuzumab tetraxetan (Garden State Cancer Center/Immunomedics Inc), [18F]LMI-1195 (Lantheus Medical Imaging Inc), fluciclovine (18F) (GE Healthcare/Nihon Medi-Physics Co Ltd), [99mTc]MIP-1340 and [99mTc]MIP-1407 (both Molecular Insight Pharmaceuticals Inc). PMID:20721816

  10. A European network for nuclear medicine and radiotherapy. EMIR

    International Nuclear Information System (INIS)

    Nuclear medicine and radiotherapy make a vital contribution to the diagnosis and treatment of major disease. This role is likely to expand with new developments including availability of new medical isotopes. A European network (EMIR) was initiated in 2001 by the Joint Research Centre (JRC) of the European Commission, to identify and solve difficulties that constrain nuclear medicine and radiotherapy development in Europe and facilitate closer interdisciplinary collaboration. Participating organisations include the main European associations of medical radiation specialists, radiopharmaceutical/radioisotope producers, nuclear research reactor institutions, research organizations and the JRC. The steering committee established task groups focusing on eight key areas for development. Liaison with non-European organizations will be encouraged. (author)

  11. Nuclear data for medicine and electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pomp, S.; Blomgren, J.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Oesterlund, M. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden); Dangtip, S.; Tippawan, U. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Fast Neutron Research Facility, Chiang Mai Univ. (Thailand); Olsson, N. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Swedish Defence Research Agency (FOI), Stockholm (Sweden); Prokofiev, A.V.; Renberg, P.U. [The Svedberg Lab., Uppsala Univ. (Sweden)

    2003-07-01

    Fast-neutron cancer therapy is now routinely performed at about a dozen facilities worldwide. Typical neutron energies for treatment are up to 70 MeV. Lately, it has been recognized that cosmic-ray neutrons, with energies up to many GeV, give significant dose contributions to airplane personnel. In fact, airplane personnel are the category, which receives the largest doses in civil work. These cosmic-ray neutrons also create a reliability problem in modern electronics. A neutron can cause a nuclear reaction inside or near a chip, thus releasing free charge, which in turn could, e.g., flip the memory content or change the result of a logical operation. For all these applications, improved knowledge of the underlying nuclear physics is of major importance. The MEDLEY setup, which has been extensively used for ADS related work, has been used for measurements of cross sections related to biomedicine and electronics reliability. Simulations of single-event upsets are described as well as accelerated device testing activities at neutron beams. (orig.)

  12. [Study on mechanism of Salvia miltiorrhiza treating cardiovascular disease through auxiliary mechanism elucidation system for Chinese medicine].

    Science.gov (United States)

    He, Shuai-bing; Zhang, Bai-xia; Wang, Hui-hui; Wang, Yun; Qiao, Yan-jiang

    2015-10-01

    Salvia miltiorrhiza is a traditional Chinese medicine (TCM) and is widely used as a clinically medication for its efficiency in treating cardiovascular disease. Due to TCM is a comprehensive system, the mechanism of S. miltiorrhiza treating cardiovascular disease through integrated multiple pathways are still unclear in some aspects. With the rapid progress of bioinformatics and systems biology, network pharmacology is considered as a promising approach toward reveal the underlying complex relationship between an herb and the disease. In order to discover the mechanism of S. miltiorrhiza treating cardiovascular disease systematically, we use the auxiliary mechanism elucidation system for Chinese medicine, built up a molecule interaction network on the active component targets of S. miltiorrhiza and the therapeutic targets of cardiovascular disease to offer an opportunity for deep understanding the mechanism of S. miltiorrhiza treating cardiovascular disease from the perspective of network pharmacology. The results showed that S. miltiorrhiza treating cardiovascular disease through ten pathways as follows: improve lipid metabolism, anti-inflammation, regulate blood pressure, negatively regulates blood coagulation factor and antithrombotic, regulate cell proliferation, anti-stress injury, promoting angiogenesis, inhibited apoptosis, adjust vascular systolic and diastolic, promoting wound repair. The results of this paper provide theoretical guidance for the development of new drugs to treat cardiovascular disease and the discovery of new drugs through component compatibility. PMID:26975090

  13. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  14. ER-E3 regulation. Minimal instrumentation that must operate nuclear medicine in Cuba

    International Nuclear Information System (INIS)

    The purpose of this regulation is to define the instrumentation that must exist in any institution conducting the practice of nuclear medicine in Cuba. This regulation emphasizes two aspects: The minimum equipment necessary to operate a nuclear medicine laboratory for use 'in vitro' and the minimum equipment required to operate a Nuclear Medicine use 'in vivo'

  15. American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be aware of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.

  16. Radiation exposure to personnel in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Investigations under routine conditions concerning the following points; were undertaken. External radiation exposure by Tc-99m to the whole body and to the hands or finger tips of nuclear technicians, physicians and radiochemists; external exposure by Tc-99m to whole body and gonads of nurses in a neurologic intensive care unit with a high frequency of patients who undergo nuclear medicine investigations; the risk to incorporate I-125 in a radioimmunoassay laboratory and in a labelling laboratory. The data show that external radiation exposure from Tc-99m to personnel working in diagnostic nuclear medicine where a total dose of 50 Ci of Tc-99m is applied per year remains far below the maximum permissible doses if the following measures are strictly fullfilled: - Elution, labelling and filling of Tc-99m radiopharmaceuticals only in shielded vials and using long distance working tools. - Application of Tc-99m radiopharmaceuticals using exclusively shielded syringes. - Time of staying next to Tc-99m containing patients as short as possible. Under these conditions, it is unnecessary that personnel who nurses patients with diagnostic nuclear medicine procedure in an intensive care unit are put under radiation control by personnel radiation dosimetry. The internal radiation exposure by inhalation of I-125 which evaporates from radioimmunoassay test tubes is negligible. But there is a risk of external and internal radiation exposure from labelling procedures with radionuclides of iodine, if special protective measures are not carefully considered

  17. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  18. Nuclear medicine in clinical neurology: an update

    International Nuclear Information System (INIS)

    Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, seven extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans

  19. Developing a programme on molecular nuclear medicine. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    During the last decades, new methodologies have emerged in the molecular nuclear medicine field developed to contribute to the detection, diagnosis, staging and treatment follow-up of human diseases. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are two examples of this methodology that enabled the study of molecular alterations of cell metabolism in the living subject with non-invasive approaches. 18-fluorine fluorodeoxyglucose positron emission tomography (FDG-PET) is used for many disease diagnoses, differential diagnosis and treatment follow-up. Like FDG, new molecules are also being identified and are promising candidates to be used. Molecular imaging studies the expression of genes involved in the evolution of different diseases. This data has been shown to be a reliable prognostic marker, for accurate diagnosis or for predicting response to treatment in certain cases. The use of molecular imaging in the evaluation of exogenous gene therapy and the study of endogenous gene expression in genetic, neurological, cardiovascular and neoplastic diseases will be of significant importance worldwide in the near future. The use of nuclear medicine and molecular imaging for the study of a disease assures the determination of integral parameters for prognosis and diagnosis. The improvement of the therapeutic decisions involved with the stage and prognosis of a disease will certainly add to the clinical studies that are designed for patient care, treatment and survival improvement. Many efforts have been made and will continue in the future to demonstrate the potential of the association of molecular nuclear technology and nuclear medicine imaging, since it has been shown to be useful and applicable to many important diseases. In addition, molecular biology techniques, such as polymerase chain reaction (PCR) and differential gene expression have added important findings to the study of disease pathogenesis. These techniques have

  20. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine

  1. [Nuclear medicine diagnosis of pheochromocytoma with metaiodobenzylguanidine].

    Science.gov (United States)

    Pucar, Dragan; Marković, Stevan

    2002-07-01

    Excess secretion of any of the adrenal cortical or medullary hormones contributes to a number of well-known clinical syndromes.. They may result from benign or malignant adrenal tumours, adrenal hyperplasia or, least frequently, from extra-adrenal disease. Differentiation among these possibilities is often impossible on clinical or biochemical grounds alone. Location of the site(s) of excess hormone production in the past depended on relatively insensitive or invasive radiological methods. The non-invasive evaluation began with X-ray computed tomography but the functional significance of anatomical abnormalities cannot be determined from CT scan. Incorporation of specific radiopharmaceuticals into the abnormal tissues allows scintigraphic localization of functional abnormalities with a high degree of efficacy. The combination of adrenal scintigraphy and kompjuterizovanom tomografijom CT or magnetskom rezonancijom MRI should in most cases obviatc the need for more invasive procedures. Phaeochromocytoma is rare in hypertensive population, affecting only an estimated of 0.1%. However, a high index of suspicion is essential, since these tumours have potentially life-threatening cardiovascular effects and their successful resection is curative. Important clinical clues include the presence of orthostatic hypotension in an untreated hypertensive, resistance of hypertension to standard therapy (including possible exacerbation by (beta-blockers). In most cases, the diagnosis can be established by demonstrating high levels of free catecholamines and their metabolites (metanephrines and Vanillylmandelic acid). Clonidine test may be important in some cases. The purpose of this study is to point that metaiodobenzylguanidine (mlBG) has proved to be a safe, sensitive and highly specific agent for the location of phaeochromocytoma. The first successful schinigraphic demonstration of phaeochromocytomas in man was reported in 1981, using a new radiopharmaceutical, 131l

  2. Childhood socioeconomic position, young adult intelligence and fillings of prescribed medicine for prevention of cardiovascular disease in middle-aged men

    DEFF Research Database (Denmark)

    Kriegbaum, Margit; Kildemoes, Helle Wallach; Rasmussen, Jeppe Nørgaard;

    2014-01-01

    To explore the relationship between childhood socioeconomic position (SEP) and filling of medicine prescriptions for prevention of cardiovascular diseases (CVDs), with young adult intelligence (IQ) as a potential mediator.......To explore the relationship between childhood socioeconomic position (SEP) and filling of medicine prescriptions for prevention of cardiovascular diseases (CVDs), with young adult intelligence (IQ) as a potential mediator....

  3. LEI Yan( 雷燕 )—— An Expert in Studying Cardiovascular Diseases with Integrated Medicine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Professor LEI Yan,Ph. D., female, was born in October 1960.After being graduated from Henan College of Traditional Chinese Medicine ( TCM ) in 1983, she worked as a resident physician in the TCM Hospital of Xinyang city, Henan province. She was enrolled in the master's program of internal medicine of integrative traditional Chinese and Western medicine in Fujian College of TCM in 1988, and after finished her study in 1991, she was employed as a chief physician in Fujian Provincial Institute of Cardiovascular Diseases for two years. In 1993 she studied under the indoctrination of Prof. CHEN Ke-ji, majoring in cardiovascular diseases in the China Academy of Chinese Medical Sciences (CACMS) and got the doctoral degree in July 1996. In 1998, she finished the post-doctorate research on the prevention and treatment of senile dementia in Beijing University of Chinese Medicine.Since then, she took charge in managerial work as the assistant director of department of cardiovascular diseases of Xiyuan Hospital of CACMS and the director of department of scientific research supervisal in CACMS, meanwhile, as a Prof. of Medicine, the tutor of doctoral students on integrated traditional Chinese and Western medicine (TCM-WM)of CACMS.

  4. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term NUCLEARcan induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  5. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Full text: Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99mTc-DTPA (%44), 99mTc-DMSA (%37), 99mTc-MAG3 (%17) and 99mTc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99mTc-MAG3 99mTc-DTPA have been used at some institutions

  6. Search of new scintillation materials for nuclear medicine application

    CERN Document Server

    Korzhik, M V

    2000-01-01

    Oxide crystals have a great potential to develop new advanced scintillation materials which are dense, fast, and bright. This combination of parameters, when combined to affordable price, gives a prospect for materials to be applied in nuclear medicine devices. Some of them have been developed for the last two decades along the line of rear-earth (RE) garnet (RE/sub 3/Al/sub 5/O/sub 12/) oxiorthosilicate (RE/sub 2/SiO/sub 5/) and perovskite (REAlO/sub 3/) crystals doped with Ce ions. Among recently developed oxide materials the lead tungstate scintillator (PWO) becomes the most used scintillation material in high energy physics experiments due to its application in CMS and ALICE experiments at LHC. In this paper we discuss scintillation properties of some new heavy compounds doped with Ce as well as light yield improvement of PWO crystals to apply them in low energy physics and nuclear medicine. (18 refs).

  7. Radiation doses to staff on a department of nuclear medicine

    International Nuclear Information System (INIS)

    A survey of data concerning radiation protection of staff working in the Nuclear Medicine Department and associated sections of the Physics Department at the Royal Marsden Hospital (Surrey Branch) is given for the period 1972 to 1975 inclusive. Results of routine film monitoring and whole-body counting are presented. Additional film monitors were used to check working areas, finger doses and any discrepancies between doses to the upper and lower trunk of personnel. In general, exposure to staff in the Nuclear Medicine Department is below 220 mrad per person per year, and below 1,000 mrad per person per year in the Radioisotope Dispensary. The dose received by radiographers is primarily due to spending time close to patients. Since about 5,000 intravenous injections of radionuclides are given each year in this department, the resulting finger doses to the staff involved may give rise to concern unless the task is shared. (author)

  8. Sensitometry in diagnostic radiology, radiation therapy, and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haus, A.G.; Rossmann, K.; Vyborny, C.; Hoffer, P.B.; Doi, K.

    The purpose of this paper is to present a tutorial discussion on the sensitometric methods employed for determining the characteristic curve of interest in diagnostic radiology, radiation therapy, and nuclear medicine. These methods are based on the way in which various recording systems are exposed in practice. In diagnostic radiology, an inverse-square sensitometer is used for measurements of the characteristic curves of conventional film and screen-film systems. In radiation therapy, a sensitometric technique can be used for the determination of the proper characteristic curve for a film which can be placed beneath the patient before radiation treatment and removed afterwards so that an image of the anatomy actually irradiated is obtained. In nuclear medicine, a sensitometric study served as a means of evaluating several radiographic films for imaging of the light output on an oscilloscope when the Anger camera is used.

  9. Role of nuclear medicine in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Kohei; Nishimura, Tsunehiko; Uehara, Toshiisa; Naito, Hiroaki; Omine, Hiromi; Kozuka, Takahiro (National Cardiovascular Center, Suita, Osaka (Japan))

    1982-08-01

    With the progress in gamma camera and computer system, nuclear medicine has been applied for diagnostic tool in ischemic heart disease. There are two devices for cardiac images; (1) Radionuclide angiocardiography (RNA) by in vivo sup(99m)Tc-RBC labeling (2) Myocardial imaging by /sup 201/Tlcl. RNA can evaluate the kinesis of wall motion of left ventricle with gated pool scan and also detect reserve of cardiac function with exercise study. Myocardial imaging at rest can identify myocardial necrosis and the imaging in exercise can detect myocardial ischemia. The elaborateness and reproducibility of cardiac image in nuclear medicine will play the great role to evaluate clinical stage of ischemic heart disease by not only imaging but also functional diagnosis.

  10. Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy.

    Science.gov (United States)

    Chen, Cheng; Zhang, Fengchao; Barras, Jamie; Althoefer, Kaspar; Bhunia, Swarup; Mandal, Soumyajit

    2016-01-01

    The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines.

  11. Open Access Integrated Therapeutic and Diagnostic Platforms for Personalized Cardiovascular Medicine

    Science.gov (United States)

    Gladding, Patrick A.; Cave, Andrew; Zareian, Mehran; Smith, Kevin; Hussan, Jagir; Hunter, Peter; Erogbogbo, Folarin; Aguilar, Zoraida; Martin, David S.; Chan, Eugene; Homer, Margie L.; Shevade, Abhijit V.; Kassemi, Mohammad; Thomas, James D.; Schlegel, Todd T.

    2013-01-01

    It is undeniable that the increasing costs in healthcare are a concern. Although technological advancements have been made in healthcare systems, the return on investment made by governments and payers has been poor. The current model of care is unsustainable and is due for an upgrade. In developed nations, a law of diminishing returns has been noted in population health standards, whilst in the developing world, westernized chronic illnesses, such as diabetes and cardiovascular disease have become emerging problems. The reasons for these trends are complex, multifactorial and not easily reversed. Personalized medicine has the potential to have a significant impact on these issues, but for it to be truly successful, interdisciplinary mass collaboration is required. We propose here a vision for open-access advanced analytics for personalized cardiac diagnostics using imaging, electrocardiography and genomics. PMID:25562653

  12. Open Access Integrated Therapeutic and Diagnostic Platforms for Personalized Cardiovascular Medicine

    Directory of Open Access Journals (Sweden)

    Todd T. Schlegel

    2013-08-01

    Full Text Available It is undeniable that the increasing costs in healthcare are a concern. Although technological advancements have been made in healthcare systems, the return on investment made by governments and payers has been poor. The current model of care is unsustainable and is due for an upgrade. In developed nations, a law of diminishing returns has been noted in population health standards, whilst in the developing world, westernized chronic illnesses, such as diabetes and cardiovascular disease have become emerging problems. The reasons for these trends are complex, multifactorial and not easily reversed. Personalized medicine has the potential to have a significant impact on these issues, but for it to be truly successful, interdisciplinary mass collaboration is required. We propose here a vision for open-access advanced analytics for personalized cardiac diagnostics using imaging, electrocardiography and genomics.

  13. The role of commercial nuclear pharmacy in the future practice of nuclear medicine.

    Science.gov (United States)

    Callahan, R J

    1996-04-01

    It has been estimated that today 70% to 80% of all radiopharmaceutical doses are dispensed through commercial nuclear pharmacy channels. These services are provided by the approximately 250 facilities in the United States, with some multisite corporations dispensing in excess of 20,000 unit-dose prescriptions per day. As pressures mount within health care institutions to reduce manpower, increase cost-effectiveness, increase participation in managed care contracts, and to seek outside vendors for many services that were previously provided in-house, the future role of the commercial nuclear pharmacy in the practice of nuclear medicine will only continue to increase. The essence of nuclear pharmacy practice is the dispensing of a full range of high quality radiopharmaceuticals in patient-specific unit doses. These doses must be delivered in a timely and cost effective manner, without compromising quality or patient safety. Commercial nuclear pharmacies have expanded to provide such varied functions as radiation safety and waste management, as well as consultative and marketing activities directed towards clinicians within a nuclear medicine practitioners own facility. In-service continuing education programs directed towards physicians and technologists are frequently offered by many commercial nuclear pharmacies. Changes in health care economics, merging and down-sizing in the hospital industry, and the overall impact of managed care on the viability of hospitals in general has resulted in slow growth, or even a small decline in the number of institutionally based nuclear pharmacists. As a result, nuclear medicine practitioners will be looking to the commercial nuclear pharmacies to meet a larger portion of their radiopharmaceutical needs, as well as to value added services, such as education and research and development. Specialized practice settings, such as nuclear cardiology and free-standing nuclear medicine clinics, are especially well suited to the services

  14. The integral formation of the university technologists in nuclear medicine

    International Nuclear Information System (INIS)

    Full text: Nuclear medicine has contributed to notable benefits to the human health from the very beginning. The Radioisotopes techniques, as well as the ionizing radiation used, have evolved providing functional and anatomical information of the patient, through non-invasive methods. With reference to Radiological Protection, the justification of each one of these practices and its perfect execution is intimately related to the benefit provided to the patients. The National Atomic Energy Commission apart from favouring the scientific and technological development, considers indispensable to work thoroughly on the professional training of the prospective technologists. Our over twenty-year experience in organizing and delivering courses of Technologists in Nuclear Medicine, although based on a much simpler program, have allowed the Institute of Nuclear Studies of the Ezeiza Atomic Center to acquire the capacity of developing a program to train highly qualified Technologists in that field. This project represents a step forward of great importance to the graduates qualification, since they will have the endorsement of CNEA and of the Faculty of Medicine of the Maimonides University. These are the three outstanding characteristics agreed on: 1.- General Education, carried out by subjects closely related to the optimisation of the relation Technologist - Patient - Environment and represented by: Radiological Protection and Hospital Security, Psychology, Ethics and Professional Medical Ethics, Nursing, English, Hygiene and Hospital Security and Management of the Quality in Services of Health. 2.- Diagnostic Procedures: planned according to organs, apparatuses or systems which are horizontally crossed by the anatomy, physiology and physiopathology Preparation of the patient, indications, main counter indications, radiopharmaceuticals, mechanisms of incorporation, pathologies, clinical protocols, instrumentation, post radiopharmaceuticals administration imaging

  15. Performance of dose calibrators used for nuclear medicine services

    International Nuclear Information System (INIS)

    This work show the results of the quality control tests from two different dose calibrators of a Nuclear Medicine Clinic in Sao Paulo. One of them has an ionization chamber (well type) and the other, Geiger-Mueller detectors (well configuration). As reference sources, Cobalt-57, Barium-133 and Caesium-137 were utilized. Also, an unsealed Technetium-99m source was used in some tests. Finally, the performance of both instruments was compared. (author)

  16. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  17. Nuclear Medicine: Use of Thallium 201 in Tumor Evaluation

    OpenAIRE

    Waxman, Alan D.

    1992-01-01

    The Council on Scientific Affairs of the California Medical Association presents the following inventory of items of progress in nuclear medicine. Each item, in the judgment of a panel of knowledgeable physicians, has recently become reasonably firmly established, both as to scientific fact and important clinical significance. The items are presented in simple epitome, and an authoritative reference, both to the item itself and to the subject as a whole, is generally given for those who may b...

  18. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  19. Some current aspects of the staff protection in nuclear medicine

    International Nuclear Information System (INIS)

    The paper discusses some specific questions of irradiation of workers in various professions on typical nuclear medicine workplace in connection with the performance of their specific tasks. There are also given the results of the monitoring of individual doses, which show the significant differences in exposure of personnel groups. Special attention is paid to the protection of workers and others who come into contact with patients who received high-level radiopharmaceuticals for therapeutic purposes. (authors)

  20. Assessment of OEP health's risk in nuclear medicine

    Science.gov (United States)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-01

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 ± 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  1. What does the gastro-enterologist expect from nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Claasen, M.

    1987-04-01

    The close cooperation between the specialists in nuclear medicine and gastroenterology is illustrated by several examples: The rate of bleeding sources within the small intestine, as detected by endoscopy, X-ray contrast studies of the (intestinal) lumen, and angiography, is not sufficiently high, but has been reported to be in a range of 50-100 per cent if labelled autologous erythrocytes are used, provided a bleeding rate of 1 ml/min. at least. Inflammatory areas in cases of Morbus Crohn (skip lesions) are of importance for the evaluation of functional impairments and thus for therapy. Modern studies using labelled granulocytes show a good correlation to endoscopic and histologic findings, both with regard to their spatial distribution and activity. Additional comparisons to the 'gold standard' endoscopy would be desirable. Treatment with monoclonal antibodies, which would act as a radiant 'destroyer' to exclusively destroy the tumour cells, could provide an important approach to therapy of inoperable tumours of the digestive tract. Nuclear medicine also is expected to provide valuable contributions to investigations of the bacterial flora of the small intestine and to coagulation studies in cases of liver failure. AT III-labelling has enabled the intrahepatic AT III-consumption to be detected in cases of liver failure. The gastro-enterologist expects nuclear medicine to cooperate in the solution of clinical and research problems of digestive diseases.

  2. Digital nuclear medicine department: Is a filmless environment conceivable?

    International Nuclear Information System (INIS)

    Recent hardware improvements, the installation and development of fast networks and new technologies for storage of large data volumes all contribute to the propagation of digital reading and reporting of nuclear medicine studies. Thus, the vision of a fully digitized nuclear medicine department becomes reality. The high costs of purchasing hardware- and software-components are compensated by saving costs of films and by the improvement of the work flow in the long run. Independently from these issues, filmless reporting proves to be advantageous over conventional film reading in many facts that justify to switch to a digital department. Problems that occur in the process of becoming film-free are mainly based on compatibility issues and demand strong cooperation between the user and the manufacturer of the imaging devices in order to integrate all systems into one reading and reporting tool. The departments of nuclear medicine and radiology of the University of Munich, Innenstadt, now are reviewing a one-year process of being film-free, which makes a return to conventional film reading unconceivable. (orig.)

  3. Prediabetes and cardiovascular risk alert programs - useful tools for preventing diabetes mellitus and cardiovascular events in primary medicine.

    Science.gov (United States)

    Virgolici, Horia; Virgolici, Bogdana; Purcarea, Victor

    2015-01-01

    We propose alert programs, made in Excel using VBA, for general practitioners, in order not to miss the diagnosis of prediabetes and cardiovascular risk factors for their patients and to improve their management. PMID:25991138

  4. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  5. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  6. Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine.

    Science.gov (United States)

    Zhang, Wenjuan; Tao, Qin; Guo, Zihu; Fu, Yingxue; Chen, Xuetong; Shar, Piar Ali; Shahen, Mohamed; Zhu, Jinglin; Xue, Jun; Bai, Yaofei; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Wang, Yonghua

    2016-09-06

    Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases.

  7. Some Applications of Nuclear Physics in Medicine and Dentistry

    International Nuclear Information System (INIS)

    Some applications of nuclear physics, to solve problems in dentistry and medicine are presented. The following two topics are going to be discussed: A. Nuclear Analytical Methods For Trace Element Studies In Teeth Various nuclear analytical methods have been developed and applied to determine the elemental composition of teeth. Fluorine was determined by prompt gamma activation analysis through the 19F (p, a v)16O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues: enamel, dentine, cement, and their junctions, as well as different parts of the same tissue, were examined separately.

  8. Medicine and ionizing rays: a help sheet in analysing risks in nuclear medicine

    International Nuclear Information System (INIS)

    This document first proposes the various applicable legal and regulatory texts concerning radioprotection in the medical sector (European directives, institutions in charge of radioprotection, general arrangements, regulatory texts concerning worker protection against ionizing radiations, personnel specialized in medical radio-physics, electro-radiology operators, quality control of medical devices, and nuclear medicine and radiology). The second part proposes a synthesis of useful knowledge for radioprotection in the case of nuclear medicine when performing in vivo diagnosis, positron emission tomography or PET being excluded. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment. The next parts present the same kind of information but for positron emission tomography or PET with Fluorine 18, for therapeutic practice without hospitalization (activity of iodine 137 less than 740 MBq), for therapeutic practice in case of hospitalization (iodine 137 activity greater than 740 MBq), and when taking patients into care after treatment in a nuclear medicine (in this last case, legal and regulatory information focus on patients)

  9. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  10. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    NARCIS (Netherlands)

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-01-01

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those

  11. Limits of Tumor Detectability in Nuclear Medicine and PET

    Directory of Open Access Journals (Sweden)

    Yusuf Emre Erdi

    2012-04-01

    Full Text Available Objective: Nuclear medicine is becoming increasingly important in the early detection of malignancy. The advantage of nuclear medicine over other imaging modalities is the high sensitivity of the gamma camera. Nuclear medicine counting equipment has the capability of detecting levels of radioactivity which exceed background levels by as little as 2.4 to 1. This translates to only a few hundred counts per minute on a regular gamma camera or as few as 3 counts per minute when using coincidence detection on a positron emission tomography (PET camera. Material and Methods: We have experimentally measured the limits of detectability using a set of hollow spheres in a Jaszczak phantom at various tumor-to-background ratios. Imaging modalities for this work were (1 planar, (2 SPECT, (3 PET, and (4 planar camera with coincidence detection capability (MCD. Results: When there is no background (infinite contrast activity present, the detectability of tumors is similar for PET and planar imaging. With the presence of the background activity , PET can detect objects in an order of magnitude smaller in size than that can be seen by conventional planar imaging especially in the typical clinical low (3:1 T/B ratios. The detection capability of the MCD camera lies between a conventional nuclear medicine (planar / SPECT scans and the detection capability of a dedicated PET scanner Conclusion: Among nuclear medicine’s armamentarium, PET is the closest modality to CT or MR imaging in terms of limits of detection. Modern clinical PET scanners have a resolution limit of 4 mm, corresponding to the detection of tumors with a volume of 0.2 ml (7 mm diameter in 5:1 T/B ratio. It is also possible to obtain better resolution limits with dedicated brain and animal scanners. The future holds promise in development of new detector materials, improved camera design, and new reconstruction algorithms which will improve sensitivity, resolution, contrast, and thereby further

  12. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  13. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  14. Recent developments and future trends in nuclear medicine instrumentation.

    Science.gov (United States)

    Zaidi, Habib

    2006-01-01

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic comcameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for "low cost" clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued--which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. PMID:16696367

  15. Recent developments and future trends in nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for ''low cost'' clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with magnetic resonance imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued - which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. (orig.)

  16. Characterization of iodinated adrenomedullin derivatives suitable for lung nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yan; Letourneau, Myriam; Chatenet, David [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada); Dupuis, Jocelyn [Research Center, Montreal Heart Institute, Montreal, Qc (Canada); Department of Medicine, University of Montreal, Montreal, Qc (Canada); Fournier, Alain, E-mail: alain.fournier@iaf.inrs.ca [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada)

    2011-08-15

    Introduction: We have recently demonstrated the effectiveness of 99m-technetium adrenomedullin (AM) as a new molecular lung imaging agent that could provide significant advantages for the diagnosis and follow-up of disorders affecting the pulmonary circulation such as pulmonary embolism and pulmonary hypertension. Having the possibility to conjugate the targeting molecule with different radionuclides would offer more flexibility and potential advantages depending on clinical situations. Since various iodine isotopes are currently used in nuclear medicine and in pharmacological studies, we have evaluated which iodination method should be privileged in order to produce a good iodinated AM-derived nuclear medicine agent. Methods: Synthetic AM was labeled with iodine through chemical and lactoperoxidase oxidation methods. Position of the iodine atom on the peptide was determined by MALDI-TOF mass spectrometry analysis following cyanogen bromide cleavage and carboxypeptidase Y digestion. Binding affinity of iodinated AM analogues was evaluated by competition and saturation binding experiments on dog lung preparations. Results: In this study, we demonstrated that, upon lactoperoxidase oxidation, iodination occurred at Tyr{sup 1} and that this radioligand retained higher binding affinity and specificity over preparations obtained through chemical oxidation. Conclusions: These results emphasize the fact that even a small chemical modification, i.e. iodination, might deeply modify the pharmacological profile of a compound and support observations that the C-terminal tail of human AM plays an important role in the AM receptor binding process. Consequently, incorporation of a radionuclide to produce an AM-based nuclear medicine agent should privilege the N-terminus of the molecule.

  17. Canadian Centre for Nuclear Innovation: medicine, materials, energy and the environment

    International Nuclear Information System (INIS)

    This paper outlines the establishment of the Canadian Centre for Nuclear Innovation Inc for medicine, materials, energy and the environment. Its objectives are to capture the full potential of the uranium value chain in Saskatchewan, create an R&D network for nuclear science and launch a new centre for research in nuclear medicine and materials science.

  18. XIX Congress of the Latin-American Association of Societies of Nuclear Medicine and Biology (ALASBIMN), Cancun, Mexico, May, 2003

    International Nuclear Information System (INIS)

    From May 25 to 30, 2003 the beautiful city of Cancun, located in the heart of the ancient Maya Empire in Mexico, hosted the XIX ALASBIMN CONGRESS. More than 300 attendees and 80 lecturers from the American continent and Europe had the opportunity to share their knowledge and enjoy an outstanding scientific, cultural and social program. The Scientific program included reviews and original scientific papers on basic and clinical sciences as well as on new developments in diagnostic and therapeutic nuclear medicine. Cardio-vascular, neuropsychiatric, oncology, skeletal and paediatric procedures were comprehensively analysed by several experts. Introduction of new cyclotrons and modern PET and PET/CT systems in Latin America has opened new horizons for the nuclear medicine community in this sub-continent. New radiopharmaceuticals based on different peptides, receptors and gene expression dominated the scene. Reporter gene imaging of gene expression has become the first and best example of what is achievable by modern molecular imaging. Of particular interest was the presentation of novel and potential agents for radio-metabolic therapy. Additionally, in connection with the congress the IAEA organised a very successful Regional Training Course on Paediatric Nuclear Medicine with 23 participants from 11 countries. The Agency also hosted the first national project coordinators meeting of the IAEA Regional Project aimed at establishing a regional tele-nuclear medicine network in the Latin American Region in conjunction with the ALASBIMN meeting. Once again the major companies representing the nuclear medicine industry participated in the Congress and contributed to the success of the ALASBIMN meeting. In summary, attending the XIX ALASBIMN meeting was a very rewarding experience in every aspect. We are most grateful to the organisers for hosting such a nice congress. Congratulations! Now we are looking forward to participate in the next ALASBIMN Congress to be held in the

  19. Nuclear medicine for diagnostic evaluation of osteomyelitis in children

    International Nuclear Information System (INIS)

    Although skeletal scintiscanning has yielded results allowing an early diagnosis of osteomyelitis in children already at a stage prior to detection by X-ray radiography, reports have been published showing that there is quite a number of false negative findings obtained by nuclear medicine techniques, especially in newborns. The article here therefore reports a study on clinical validation of skeletal scintigraphy in case of suspected osteomyelitis in children. The results show that scintiscanning is a very sensitive method of detecting osteomyelitis in children, and also can be a very useful diagnostic tool for examination of newborns, provided the different anatomy of the skeleton in newborns is taken into account. (orig./MG)

  20. Radiation protection under debate among French specialists in nuclear medicine

    International Nuclear Information System (INIS)

    The paper is a synthesis of the communications presented at the 4-th ACOMEN - The Group for Concerted Action in Nuclear Medicine held at the Grenoble, France on 5-7 May, 1993. The main subjects of the conference were: the low dose irradiation, the establishment of the limits for individual doses and the reception by the public of the information on the radiation risks. The conference reassumed the differentiation of the individual accepted dose among professional people (20 mSv/y or 1 Sv for the whole life), taking into account the additive effect, and the limited number of working years, and non professional people (1 mSv/y) dose

  1. Handbook on care, handling and protection of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Instruments are fundamental to successful nuclear medicine practice. They must be properly installed in an environment in which they can give accurate and uninterrupted service. They have to be properly and carefully operated and supported throughout their life by regular care and maintenance. If something is wrong with a key instrument all well trained staff members are idle and all purchased radiopharmaceuticals become useless. Overall responsibility for instrumentation rests with the directors of nuclear medicine centres. They should support their electronic engineers, medical physicists, technologists and physicians to plan and implement the care and protection of nuclear medicine instruments, see that they are properly maintained, and kept in optimum working condition by regular checks. Protection should be considered, and provided for, before installing any new instrument. The protective devices are part of the new installation and should be well maintained along with the instrument throughout its life. Thus protection needs careful planning, particularly at the beginning of a new instrumentation programme. It can affect selection, procurement, acceptance testing, and the design of quality control and maintenance routines. These activities should be considered as important in their own right. They should not be mixed in with other functions or left to take care of themselves in the daily rush to get through routine work. Experience suggests that more than half of all failures of electronic equipment are due to damage by external electrical disturbances. Section 2 of this handbook aims to help instrument users in nuclear medicine centres to understand the nature of the various types of disturbance, and to protect against them. Section 3 shows how air conditioning can help to protect instrumentation. Section 4 lists some practical tips to avoid accidental damage due to mishandling. A computer program for use with Personal Computers, ''EPC Expert'' is described

  2. Denoising of Nuclear Medicine images using Wavelet Transform

    International Nuclear Information System (INIS)

    Diagnosis using images is widely used in Nuclear Medicine. However, in the case of planar images some problems can appear related to low detectability of small lesions, due to noise contamination. This phenomenon is emphasized because of the impossibility of increasing the radiopharmaceutical dose or the exposure time above the established levels. An algorithm to reduce the random Gaussian noise in planar images using the Wavelet Transform is described in this paper. Results are compared among a set of filters designed by this procedure, in order to select those that offer the best images considering the evaluation of the image quality through quantitative metrics (au)

  3. General comments on radiological patient protection in nuclear medicine

    International Nuclear Information System (INIS)

    In this paper an observation series about different aspects of the radiological protection of the patient in nuclear medicine is provided. It includes: The specific legislation contribution, the justification and, especially, optimization, as a fundamental base of the quality guarantee program, the importance of the fulfillment of the program and the importance of getting done the corresponding internal audits of the pursuit, the communication between the different groups of professionals implicated and between these and the patient, the volunteers who collaborate in the patient's care and the people in the patient's environment, knowing that the patient is a source of external radiation and contamination. (author)

  4. Avoidable challenges of a nuclear medicine facility in a developing nation

    International Nuclear Information System (INIS)

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation

  5. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    Science.gov (United States)

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  6. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  7. Dosimetry of upper extremities of personnel in nuclear medicine hot labs

    OpenAIRE

    Παπαδόγιαννης, Παναγιώτης

    2012-01-01

    The specific nature of work in nuclear medicine departments involves the use of isotopes and handling procedures, which contribute to the considerable value of the equivalent dose received, in particular, by the fingertips. Workers of nuclear medicine units who label radiopharmaceuticals are exposed to ionizing radiation. The doses of nuclear medicine workers determined by individual dosimeters, which supply data on the magnitude of personal dose equivalent. The dosimetry pointing to a con...

  8. The connected health of cardiovascular medicine: current status and future directions

    OpenAIRE

    Ansary, A.; Azuma, A; Komatireddy, R.; Barrett, P.M.

    2013-01-01

    The technologies of cardiovascular connected health stand to dramatically alter the management and prevention of cardiovascular disease, a worldwide leading cause of death. The American Heart Association has outlined seven key health metrics including physical activity, adequate blood pressure control, weight and a healthy diet, which lie at the core of cardiovascular disease management. Controlling these metrics has been demonstrated to result in substantial reductions in cardiovascular mort...

  9. Individual monitoring in nuclear medicine considering incorporation frequency

    International Nuclear Information System (INIS)

    The monitoring by internal contamination of 12 workers occupationally exposed from nuclear medicine in Colombia and from a Laboratory of Radio-pharmacy, where ware made dosimeters for the centers of Nuclear Medicine in the country. This monitoring was carried out by means of the determination of the radionuclides activity measured on samples of daily urine of the individuals occupationally exposed. For the analysis of the radionuclides incorporation it was used the biokinetic model of respiratory tract proposed by the International Commission of Radiological Safety, ICRP Publication 66, the simulation of gases and steam and the biokinetic model of iodine recommended by the same commission. The results were compared with the ones obtained using the model of the lung of ICRP 30. In both cases the incorporation frequency was considered, specifically of 131I in agreement with the scheme of work of each person. It was possible to establish with greater approach the incorporated activity and to obtain an estimation of equivalent dose and effective dose. Those results showed the validity that has the simulation of the frequency of incorporation in the data processing of Bioassay

  10. Use and maintenance of nuclear medicine instruments in Southeast Asia

    International Nuclear Information System (INIS)

    Nuclear medicine instruments are rather sophisticated. They are difficult to maintain in effective working condition, especially in developing countries. The present document describes a survey conducted in Bangladesh, India, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka and Thailand from October 1977 to March 1978, on the use and maintenance of nuclear medicine equipment. The survey evaluated the existing problems of instrument maintenance in the 8 countries visited. The major instruments in use were (1) scintillation probe counters, (2) well scintillation counters and (3) rectilinear cameras. Gamma camera was not widely available in the region at the time of the survey. Most of the surveyed instruments were kept in a detrimental environment resulting in a high failure rate, that caused the relatively high instrument unavailability of 11%. Insufficient bureaucratic handling of repair cases, difficulties with the supply of spare- and replacement parts and lack of training proved to be the main reasons for long periods of instrument inoperation. Remedial actions, based on the survey data, have been initiated

  11. Nuclear medicine and multimodality imaging of pediatric neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Wolfgang Peter; Pfluger, Thomas [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Coppenrath, Eva [Ludwig-Maximilians-University of Munich, Department of Radiology, Munich (Germany)

    2013-04-15

    Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system and is metastatic or high risk for relapse in nearly 50% of cases. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for defining the adequate therapeutic choice. Tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor specific agent for imaging. MIBG imaging has several disadvantages, such as limited spatial resolution, limited sensitivity in small lesions and the need for two or even more acquisition sessions. Most of these limitations can be overcome with positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose [FDG]. Furthermore, new tracers, such as fluorodopa or somatostatin receptor agonists, have been tested for imaging neuroblastoma recently. However, MIBG scintigraphy and PET alone are not sufficient for operative or biopsy planning. In this regard, a combination with morphological imaging is indispensable. This article will discuss strategies for primary and follow-up diagnosis in neuroblastoma using different nuclear medicine and radiological imaging methods as well as multimodality imaging. (orig.)

  12. Nuclear medicine and multimodality imaging of pediatric neuroblastoma

    International Nuclear Information System (INIS)

    Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system and is metastatic or high risk for relapse in nearly 50% of cases. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for defining the adequate therapeutic choice. Tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor specific agent for imaging. MIBG imaging has several disadvantages, such as limited spatial resolution, limited sensitivity in small lesions and the need for two or even more acquisition sessions. Most of these limitations can be overcome with positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose [FDG]. Furthermore, new tracers, such as fluorodopa or somatostatin receptor agonists, have been tested for imaging neuroblastoma recently. However, MIBG scintigraphy and PET alone are not sufficient for operative or biopsy planning. In this regard, a combination with morphological imaging is indispensable. This article will discuss strategies for primary and follow-up diagnosis in neuroblastoma using different nuclear medicine and radiological imaging methods as well as multimodality imaging. (orig.)

  13. Nuclear medicine in thyroid cancer management: A practical approach

    International Nuclear Information System (INIS)

    Thyroid cancers are now being diagnosed at an earlier stage and treatments together with follow-up strategies are more effective. However this is not consistent throughout the world. The practice does differ considerably from country to country and region to region. Many International Atomic Energy Agency (IAEA) Members States can benefit from the lessons learned and improve overall patient management of thyroid cancers. The IAEA has significantly enhanced the capabilities of many Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. In terms of treatment, the use of radioiodine (131I) has been central to thyroid cancer and has been successfully used for over six decades. Over the years the IAEA has also assisted many Member States to develop indigenous manufacturing of radioiodine therefore reducing the barriers for the care of patients. This publication is a culmination of efforts by more than twenty international experts in the field to produce a global perspective on the subject. Views expressed are those of individual experts involved and are intended to assist national or regional authorities in decisions regarding the frameworks for effective treatment of thyroid cancer

  14. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  15. Technetium-99m in nuclear medicine and radiation protection experience

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M. M.; Raicevic, J. J.; Pavlovic, S.; Glisic, R. [Institute of Nuclear Sciences, Belgrade, Yugoslavia (Yugoslavia)

    2002-07-01

    The one of the major contributors to personnel exposure whithin nuclear medicine laboratories is primarily now ubiquitous {sup 99}Mo-{sup 99m}Tc generators. These generators, first available about more than forthy years ago, are now providing large quantities of {sup 99m} Tc radioactive source daily in the most laboratories, both for direct injection, as a per-technetate ion, and through the utilization of the kits for the preparation of dipherent radiopharmaceuticals. The safe and efficient utilization of technetium-99m in nuclear medicine, as other radionuclides, begin with the design, construction and operation of the 'Hot'Laboratory area, where radionuclide are stored and patient doses are prepared. Regardless of the specific physical configuration, suitable facilities need to be provided and good working practices established in order to get these principal objectives: (a) keep radiation exposure to personnel at ALARA levels; (b) prevent contamination of personnel; (c) prevent contamination of measuring instruments (including imaging devices such as gamma cameras and rectilinear scanners), and (d) prevent spread of contamination to places or persons outside the laboratory.

  16. Specification and acceptance testing of nuclear medicine equipment

    International Nuclear Information System (INIS)

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  17. Quality assurance for radioactive measurement in nuclear medicine

    International Nuclear Information System (INIS)

    The field of nuclear medicine continues to grow around the world, owing in part to a number of successful programmes carried out by the IAEA to enhance the use of nuclear medicine techniques in Member States. The implementation of quality assurance (QA) programmes to ensure the safe application of radiopharmaceuticals has, however, been variable in many Member States. One possible reason is the lack of a unified set of principles regarding the establishment of such programmes. This publication addresses the issue of QA programmes for radioactivity measurement in nuclear medicine. A group of experts consulted by the IAEA recommended in 2002 that unified principles concerning QA and quality control (QC) procedures for the measurement of radioactivity in nuclear medicine be developed because of its importance in controlling the safety and effectiveness of the use of radiopharmaceuticals. This publication is the result of advice provided to the IAEA by experts in the fields of radionuclide metrology, medical physics and radiopharmacy. This report can be considered to be a more detailed and updated version of IAEA-TECDOC-602, Quality Control of Nuclear Medicine Instruments, published in 1991. Advances in the field of nuclear instrumentation since that report was published, particularly in imaging, and the increased emphasis on QA and QC prompted the need for an update. Moreover, it was realized that the activity measurement and imaging aspects had each become so specialized as to be better treated in separate publications. The present report focuses on the factors affecting radioactivity measurement and the implementation of QA and QC programmes to ensure accurate and consistent results. The IAEA has developed a safety standard on The Management System for Facilities and Activities (IAEA Safety Standards Series No. GS-R-3), which replaces the IAEA publications on QA issued as Safety Series No. 50-C/SG-Q (1996). In GS-R-3, the management system is described as a set of

  18. Optimization of the radioprotection for nuclear medicine services

    International Nuclear Information System (INIS)

    Nuclear medicine (NM) is a medical specialty which uses small amounts of radioactive material combined with drugs, to make either therapeutic treatments or form diagnostic images of the organ and tissue. Follow the nuclear regulations any activity involving ionizing radiation should be justified and it must have their procedures of work to be optimized. Thus, the aim of the study is to determine the need and the importance of optimization of radiation protection in NM services and reduce occupationally exposed individuals (OEI) doses in order to avoid possible contamination or accidents and reduce the costs of protection. Optimization for a NM service that makes use of ionizing radiation can be performed using different techniques such as the expanded cost-benefit analysis. Such technique introduces one or two attributes associated to the detriment cost, Y, and the protection costs, X. This work was conducted in the year 2011, where it was analyzed data of 56 employees from 2002 to 2010. The value of the cost of protection was R$ 147.645,95, including accessories, courses, training and maintenance costs. On the other hand, the cost of the expense ranged from R$ 1.065.750, 00 up to R$ 28.890.351, 00 and the parameter responsible for this variation is the collective dose. The increasing of these dose values causes the increasing of the total costs, and one can conclude that there really is an importance of applying the optimization technique to improve the safety of OEI at the nuclear medicine service and reducing costs of protection. (author)

  19. The new radiation protection ordinance from the viewpoint of the nuclear medicine technologist

    International Nuclear Information System (INIS)

    The new radiation protection ordinance for the first time acknowledges the role of the nuclear medicine technologists for the technical assistance in the use of radiopharmaceuticals and radiation with human beings in medicine. Therefore changes are required for the technologists in terms of their qualification and continuing education during their professional life and in the daily routine in a nuclear medicine department. The new ordinance clearly defines which group of people is allowed to work as nuclear medicine technologists and also which special knowledge in radiation protection is mandatory to make sure that nobody without this certified education is performing the work of a nuclear medicine technologist. The new effective dose limit for people working with radiation will not change the daily work, but new regulations for pregnant women or breastfeeding mothers working in nuclear medicine will bring dramatic changes. (orig.)

  20. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    Science.gov (United States)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  1. Childhood socioeconomic position, young adult intelligence and fillings of prescribed medicine for prevention of cardiovascular disease in middle-aged men

    DEFF Research Database (Denmark)

    Kriegbaum, Margit; Kildemoes, Helle Wallach; Rasmussen, Jeppe Nørgaard;

    2014-01-01

    OBJECTIVES: To explore the relationship between childhood socioeconomic position (SEP) and filling of medicine prescriptions for prevention of cardiovascular diseases (CVDs), with young adult intelligence (IQ) as a potential mediator. DESIGN: Birth cohort study with logistic and Cox-proportional ......OBJECTIVES: To explore the relationship between childhood socioeconomic position (SEP) and filling of medicine prescriptions for prevention of cardiovascular diseases (CVDs), with young adult intelligence (IQ) as a potential mediator. DESIGN: Birth cohort study with logistic and Cox...

  2. Fetal dose in radiology, nuclear medicine and radiotherapy; Dosis fetal en radiodiagnostico, medicina nuclear y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, F. J.; Martinez, L. C.; Candela, C.

    2015-07-01

    Sometimes irradiation of the fetus in the mother's womb is inevitable in the field of diagnostic radiology, nuclear medicine and radiotherapy, either through ignorance a priori status of this pregnancy, either because for clinical reasons it is necessary to perform the radiological study or treatment. In the first cases, know the dose at which it has exposed the fetus is essential when assessing the associated risk, while in the second it is when assessing the justification of the test. (Author)

  3. Measurement of doses to the extremities of nuclear medicine staff

    Science.gov (United States)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled

  4. Guidance for nuclear medicine staff on radiopharmaceuticals drug interaction

    Directory of Open Access Journals (Sweden)

    Ralph Santos-Oliveira

    2009-12-01

    Full Text Available Numerous drug interactions related to radiopharmaceuticals take place every day in hospitals many of which are not reported or detected. Information concerning this kind of reaction is not abundant, and nuclear medicine staff are usually overwhelmed by this information. To better understand this type of reaction, and to help nuclear medicine staff deal with it, a review of the literature was conducted. The results show that almost all of radiopharmaceuticals marketed around the world present drug interactions with a large variety of compounds. This suggests that a logical framework to make decisions based on reviews incorporating adverse reactions must be created. The review also showed that researchers undertaking a review of literature, or even a systematic review that incorporates drug interactions, must understand the rationale for the suggested methods and be able to implement them in their review. Additionally, a global effort should be made to report as many cases of drug interaction with radiopharmaceuticals as possible. With this, a complete picture of drug interactions with radiopharmaceuticals can be drawn.Diversos casos de interações medicamentosas com radiofármacos ocorrem diariamente na rotina hospitalar, contudo muitos deles não são notificados ou mesmo percebidos. Informações a respeito desse tipo de reação não é abundante e os profissionais da medicina nuclear muitas vezes estão assoberbados por essas informações. De modo a entender esse tipo de reação e auxiliar a medicina nuclear a lidar com essa situação uma revisão da literatura foi realizada. Os resultados mostraram que a totalidade dos radiofármacos comercializados no mundo apresentam interação medicamentosa com uma enorme variedade de outros medicamentos. Dessa forma sugere-se que revisões sobre radiofármacos inclua um capítulo sobre efeitos adversos. Além disso, um esforço mundial para notificar efeitos adversos deve ser realizado, pois somente

  5. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  6. Role of Nuclear Medicine in the cardiac resinchronization therapy

    International Nuclear Information System (INIS)

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  7. Diffusion processes in tumors: A nuclear medicine approach

    Science.gov (United States)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  8. Health physics considerations in intrainstitutional mobile nuclear medicine

    International Nuclear Information System (INIS)

    The use of a mobile scintillation camera within a hospital enables imaging procedures to be used on patients such as those in critical care units, who cannot be transported to the central nuclear medicine laboratory. Transport throughout the hospital of the radiopharmaceuticals for use with the mobile system and the associated radiation safety precautions are discussed. The nuclides most frequently used are sup(99m)Tc and 133Xe. It is shown that radiation exposure to hospital personnel can be kept well below recognised guidelines when using sizeable quantities of radionuclides remote from the controlled environment of the central laboratory. Special care is needed in disposing of radioactive waste, particularly 133Xe gas, which must be collected and returned to the laboratory. There is a need for education and reassurance of nurses concerning the use of ionizing radiation and hazards to them from patients containing radioactive material. (author)

  9. Evaluations of Molecular Nuclear Medicine in pediatric urgencies

    International Nuclear Information System (INIS)

    Several diagnostic procedures of Molecular Nuclear Medicine are considered in first choice in clinical evaluation of patients with different illnesses. So, the gammagraphy is the diagnostic form more sensitive to detect alterations of the perfusion on organs and systems such as bones, heart, brain, lungs or kidneys. Also is possible to identify, localize, evaluate the activity of inflammatory processes such as cellulitis, arthritis, osteomyelitis, the abscesses and several primary or metastatic tumours before each other diagnostic technique. In this work is treated about the importance of treatments with radioactive materials have been an important reappearance in last years since with the present capacity to localize specifically intracellular processes (for example, synthesis of DNA) new gateways are opened to research which in coming years would be of great utility. (Author)

  10. Patient dose assessment in different diagnostic procedures in nuclear medicine

    International Nuclear Information System (INIS)

    Effective doses have been estimated for 314 patients under diagnostic procedures in a Nuclear Medicine Department using data reported in ICRP-80 and RIDIC (Radiation Internal Dose Information Center). Data on administered activity, radiopharmaceutical and administration route, age and sex of the patients have been collected. Doses in the most exposed critical organ for every protocol, doses in uterus, doses in fetus versus the stage of pregnancy (in case the female patient was pregnant) and doses for nursing infants have been also estimated. Ga-67 studies give the highest effective doses per protocol followed by cardiac SPECT procedures using Tl-201 chloride. Ga-67 studies also give the highest absorbed doses in uterus. Due to not administering different activities, depending on height and weight of adults, women receive doses about 20% higher than men. This would be a practice to modify in the future in order to optimise doses. (author)

  11. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  12. Nuclear medicine external individual occupational doses in Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Lima, Ana Luiza S.; Silva, Herica L.R. da; Santos, Denison Souza [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: claudia@ird.gov.br, e-mail: analuslima@yahoo.com.br, e-mail: herica@ird.gov.br, e-mail: santosd@ird.gov.br; Silva, Claudio Ribeiro da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Ciencia e Tecnologia da Informacao (CGTI)(Brazil)], e-mail: claudio@cnen.gov.br

    2009-07-01

    According to the Brazilian National Database there are about 300 Nuclear Medicine Services (NMS) in Brazil, 44 of them located in the State of Rio de Janeiro (RJ). Individual dose measurements are an important input for the evaluation of occupational exposure in order to demonstrate the effectiveness of radioprotection implementation and to keep individual doses as low as possible. In Brazil, most nuclear medicine (NM) staff is routinely monitored for external dose. The internal committed dose is estimated only in abnormal conditions. This paper makes a statistics analysis of all the RJ NMS annual external occupational doses in year 2005. A study of the evolution of monthly external individual doses higher than 4.00 mSv from 2004 to 2008 is also presented. The number of registered thorax monthly dose higher than 4.0 mSv is increasing, as its value. In this period the highest dose measured reaches 56.9 mSv, in one month, in 2008. About 50% of the annual doses are smaller than the monthly record level of 0.20 mSv. In 2005, around 100 professionals of RJ NMS received annual doses higher than 4.0 mSv, considering only external doses, but no one receives doses higher than 20.0 mSv. Extremities dosimeters are used by about 15% of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. This study shows the importance to improve radiation protection procedures in NM. (author)

  13. Human resource development in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    An organization, an enterprise or a movement is only as good as the people in it and these cannot be conceived without considering the people that make it, in other words its human resources (HR). The definition of HR includes the total knowledge, skills, creative abilities, talents and aptitudes of the work-force. Equally important it includes the values, attitudes and benefits of each of the individuals concerned. No development is possible without proper planning. HR planning is therefore a prerequisite for HRD in NM and no planning can be made without defining the objectives of Nuclear Medicine (NM) in developing countries (DC). It is also essential to forecast the future needs of NM in DC keeping in mind the stated objectives before laying out the strategies of the HRD. HRD in NM is best achieved when all the partners in the game play their part with commitment and sincerity of purpose. At the national level the partners are the government (ministries of health and education), professional bodies (national societies of NM) and academic bodies (colleges of NM physicians, physicists and technologists etc.). In the implementation of the HRD systems and processes, involvement of all the partners is essential for success. Creation of task forces to implement, monitor and evaluate HRD tools ensures the quality of these tools. The operation of some of these tools may have to be centralized, and others decentralized depending upon the exigencies of need, propriety and practicality. In summary, the aim of HRD should be to ensure the right people at the right time for the right job and in doing so nuclear medicine achieves its objectives and the individuals in the workforce realize their full potentials, and benefits in full

  14. National audit of radioactivity measurements in Nuclear Medicine Centres

    International Nuclear Information System (INIS)

    Routine activity measurements of radiopharmaceutical solutions in Nuclear Medicine Centres (NMC) are carried out with the help of radionuclide calibrators (RC). These solutions are either ingested or injected to the patient for diagnosis or therapy. However, for the realization of an optimized examination, the activity of these radiopharmaceuticals must be determined accurately before administering it to patients. The primary standards are maintained by Radiation Standards Section, Radiological Physics and Advisory Division. National audit programmes of Iodine -131 activity measurements with RCs are conducted biannually to establish traceability to national standards and to check the status of nuclear medicine practice followed at the NMC. The results of fifteenth audit of 131I activity measurements with RC are presented in this paper. Questionnaires were sent to two hundred and thirty three NMCs in-the country. One hundred and nine NMC's agreed for participation and accordingly, glass vials containing radioactive 131I solution of nominal activity of 100 MBq were procured from Board of Radiation and Isotope Technology, Mumbai. The radioactivity in each vial was determined with high pressure re-entrant gamma ionisation chamber (GIC), a secondary standard maintained by this laboratory. The sensitivity coefficient of GIC is traceable to the primary standard. The standardized radioactive solution of 131I in glass vial was sent to each participant. Measurements results were reported in the reporting form sent. This audit was conducted in four schedules in Jan 2013. One hundred and sixty six results were received from one hundred and nine participants as many participants took measurements on more than one isotope calibrator

  15. Standardization of Administered Activities in Pediatric Nuclear Medicine: A Report of the First Nuclear Medicine Global Initiative Project, Part 2-Current Standards and the Path Toward Global Standardization.

    Science.gov (United States)

    Fahey, Frederic H; Bom, Henry Hee-Seung; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2016-07-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI are to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. It was decided to divide the final report of this project into 2 parts. Part 1 was published in this journal in the spring of 2015. This article presents part 2 of the final report. It discusses current standards for administered activities in children and adolescents that have been developed by various professional organizations. It also presents an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of 313 nuclear medicine clinics and centers from 29 countries. Lastly, it provides recommendations for a path toward global standardization of the administration of radiopharmaceuticals in children. PMID:27033894

  16. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides

  17. Radioisotope production for using in nuclear medicine, in the IPEN-CNEN/SP - Brazil

    International Nuclear Information System (INIS)

    The importance of radioisotopes used in nuclear medicine is shown. The performance of the cyclotrons model CV-28 and studies about production of 123I are evaluated. The irradiation of mercury target as well as radioelements for using in nuclear medicine are studied. (M.J.C.)

  18. Papers of All-Polish Conference on Nuclear Techniques in Industry, Medicine, Agriculture and Environmental Protection

    International Nuclear Information System (INIS)

    These proceedings comprise papers presented at All-Polish Conference on nuclear techniques in industry, medicine, agriculture and environmental protection. Most of the papers are in the field of uses of radiation sources and particle beams in industry, radiation chemistry, nuclear medicine and dosimetry, environmental sciences

  19. Manual of use and accounting of radioactive material and procedures of radiological protection for nuclear medicine

    International Nuclear Information System (INIS)

    This manual of use and accounting of material radioactive and procedures of radiological safety tries to facilitate workings of protection of material radioactive in services of medicine nuclear, during diagnosis (examinations with x-rays, or those that are made in nuclear medicine), or during the processing of diseases, mainly of the carcinomas (x-ray)

  20. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  1. Evaluation of diagnostic procedures in nuclear medicine services of Pernambuco and Alagoas states - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ricardo Braz F. da; Hazin, Clovis A., E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Fabiana F., E-mail: fflima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    The medical use of ionizing radiation contributes significantly to population exposure to radiation. This study aimed to evaluate the diagnostic procedures carried out in nuclear medicine (SMN) in Pernambuco and Alagoas in order to gather data to subsidize the proposal of reference levels for nuclear medicine in Brazil. Data were collected of the SMN in Pernambuco and Alagoas in the period of 2005 to 2009, according by UNSCEAR. The study used data from IBGE. The results showed that the total number of examinations in the period 2005 to 2009 was 34.828 in Pernambuco and 27.700 in Alagoas, corresponding to 6.966 and 5.540 average annual examinations in Pernambuco and Alagoas, respectively. The total number of examinations performed in both states in 2009 was twice the number carried out in 2005. Scintigraphy is the cardiovascular examination most performed in both states, followed by bone scintigraphy. Tc-99m is the radionuclide used most often, followed by I-131. The number of tests using Tc-99m in 2009 doubled when compared with the examinations performed in 2005. The results indicate that there has been a significant increase in the number of examinations in MN, and that females outnumber males, as far as the use of this diagnostic resource is concerned. The study of the activities of the radionuclides administered to patients in the states of Pernambuco and Alagoas showed that they are high when compared to the values recommended by the IAEA in its Safety Report Series Document No. 40. (author)

  2. Availability, price and affordability of cardiovascular medicines: A comparison across 36 countries using WHO/HAI data

    Directory of Open Access Journals (Sweden)

    Cameron Alexandra

    2010-06-01

    Full Text Available Abstract Background The global burden of cardiovascular disease (CVD continues to rise. Successful treatment of CVD requires adequate pharmaceutical management. The aim was to examine the availability, pricing and affordability of cardiovascular medicines in developing countries using the standardized data collected according to the World Health Organization/Health Action International methodology. Methods The following medicines were included: atenolol, captopril, hydrochlorothiazide, losartan and nifedipine. Data from 36 countries were analyzed. Outcome measures were percentage availability, price ratios to international reference prices and number of day's wages needed by the lowest-paid unskilled government worker to purchase one month of chronic treatment. Patient prices were adjusted for inflation and purchasing power, procurement prices only for inflation. Data were analyzed for both generic and originator brand products and the public and private sector and summarized by World Bank Income Groups. Results For all measures, there was great variability across surveys. The overall availability of cardiovascular medicines was poor (mean 26.3% in public sector, 57.3% private sector. Procurement prices were very competitive in some countries, whereas others consistently paid high prices. Patient prices were generally substantially higher than international references prices; some countries, however, performed well. Chronic treatment with anti-hypertensive medication cost more than one day's wages in many cases. In particular when monotherapy is insufficient, treatment became unaffordable. Conclusions The results of this study emphasize the need of focusing attention and financing on making chronic disease medicines accessible, in particular in the public sector. Several policy options are suggested to reach this goal.

  3. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    Science.gov (United States)

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  4. A literature review of the cost-effectiveness of nuclear medicine

    International Nuclear Information System (INIS)

    Nuclear medicine is a medical speciality that uses tiny quantities of radioactivity to produce diagnostic images. It also has a role in therapy for some thyroid diseases and certain tumours. Surveys have shown that nuclear medicine procedures are used significantly less in the UK than in many other countries in Europe. One reason may be that there is inadequate information about the clinical utility of these techniques, particularly their cost-effectiveness in clinical management. To establish what evidence was currently available about the cost-effectiveness of nuclear medicine, the British Nuclear Medicine Society commissioned a worldwide literature review in diseases of the heart, kidney, lung, bone, brain, bowel and thyroid. This volume summarises the findings of the independent study and gives details of the background, clinical utility and limitations of the different nuclear medicine procedures used in the diagnosis and treatment of each disease reviewed. (author)

  5. Evaluation of Radiation Protection in Nuclear Medicine Department in Namazi Hospital According to Global Accepted Standards

    OpenAIRE

    Mohammad Mehdi Movahedi; Alireza Mehdizadeh

    2013-01-01

    Background & Objective: In the recent years, nuclear medicine has enjoyed remarkable growth thanks to such novel technologies as SPECT-CT and PET, which are utilized for the recognition of new detectable molecules and radiopharmaceutical medicines. Therefore, the current regulations on radiation protection require revision. Namazi Hospital of Shiraz is one of the first nuclear medicine centers in Iran. Many patients visit this hospital every year; consequently, radiation protection must b...

  6. Nuclear medicine techniques for the study of breast cancer

    International Nuclear Information System (INIS)

    In conclusion, the currently available data, which have mainly been obtained in th last 5 years at various centres including our own, seem to favour the introduction of nuclear medine techniques in clinical practice for the diagnostic and prognostic evaluation of breast carcinoma. However, to fully define the role of these techniques we believe good-quality studies should be conducted on selected, homogeneous case series and be aimed at the solution of precise diagnostic problems (small tumours, early stages, diagnostic suspicion without a palpable breast mass, etc.). Only then will it be possible to obtain a concrete idea of the diagnostic reliability of these methods in clinical situations, where more accurate diagnostic tools are urgently awaited. With regard to the radiopharmaceuticals that might be proposed and employed, we would recommend curbing the proliferation of new agents and devoting more attention to the validation of those of proven utility, taking into account the problem of cost. In our opinion the currently available gamma-emitting tracers have satisfactory characteristics for nuclear medicine studies and merit further, more detailed evaluation. PET centres will have the opportunity, and the task, to fulfil the expectations aroused by the encouraging preliminary results. (orig./AJ). With 3 figs

  7. Diagnostic and therapeutic capabilities of modern nuclear medicine

    International Nuclear Information System (INIS)

    Full text: Nuclear medicine activity began to expand in the latter half of 1970 in worldwide. In 1980, many countries experienced a rapid increase in the number of medical facilities with nuclear medicine modalities. Nuclear imagining procedures serve as effective diagnostic tools due to their unique ability to provide information that is function-specific and to gather detailed information from radiological exams and other treatment methods. In-vivo studies using SPECT and PET modalities have shown a trend of significant increase throughout the past two decades. Looking at the nuclear neurologic application, there is a rapid increase in last decade. Brain perfusion SPECT and brain PET were making it the most commonly and the most widely performed nuclear neuroimaging study. Since 1990s, conventional nuclear cardiology studies (MUGA and single pass study) declined in number. But myocardial SPECT only increased dramatically using thallium and Tc-99m-MIBI. MIBG imaging plays a prominent role in diagnosing pheochromocytomas/paragangliomas (including nonfunctional paragangliomas) and neuroblastomas. It may be regarded as a first-choice imaging technique, as it presents a wide range of clinical advantages in both the diagnosis and follow-up of these tumors. Regarding to the radioisotope treatment, only radioiodine therapy was used more clinically. But recently, some new treatment is being tried, for example Ho-166 and rhenium-188. I-131 MIBG therapy is an effective treatment for several neural crest tumors, with can be delivered safely, even in children, provided that the bone marrow is free of tumor cells. I-131 MIBG therapy is probably the best palliative treatment for patients with advanced disease, as the invasiveness and toxicity of this therapy compare favorably with that of chemotherapy, immunotherapy and external beam radiotherapy. In general, PET has been primarily used to evaluate ischemic heart disease and to perform diagnostic imaging of malignant tumor

  8. Economic evaluation studies in nuclear medicine: the need for standardization

    Energy Technology Data Exchange (ETDEWEB)

    Dietlein, M.; Schicha, H. [Department of Nuclear Medicine, University of Cologne (Germany); Knapp, W.H. [Department of Nuclear Medicine, University of Hanover (Germany); Lauterbach, K.W. [Institute of Public Health, University of Cologne (Germany)

    1999-06-01

    The guidelines for publishing economic evaluations require a statement of the economic importance of the analysis and the viewpoint from which it has been carried out, as well as specification of at least two alternative programmes or interventions, the form of economic evaluation, the outcome measure, the method of costing, the time horizon and adjustment for timing of costs and benefits (e.g. by a discount factor), and the allowance for uncertainties (e.g. by implementation of a sensitivity analysis). The decision analysis can be based on clinical trial data, on retrospective or administrative databases, or on modelling. The choice of outcome measures is the key issue in an economic evaluation. In cost-effectiveness analysis, benefits are usually measured in natural units. This is the form of economic evaluation most frequently used in nuclear medicine. Endpoints of effectiveness applied in studies in this field have been procedures avoided, procedures initiated, cardiac events, survival probability, morbidity, quality of life and protracted or failed surgical procedures. In other instances, surrogate endpoints have been used such as metastases detected, staging, viability or tumour response. This, however, limits comparability of cost-effectiveness considerably, as proof of a change in the health outcome cannot be obtained. Measures of utility such as QALYs (quality-adjusted life years) have so far only been applied for decision tree analysis. Useful examples of economic evaluation studies in nuclear medicine are presented here for fluorodeoxyglucose positron emission tomography (FDG-PET) in the preoperative staging of non-small cell lung cancer, for FDG-PET in differentiating indeterminate solitary pulmonary nodules, for somatostatin receptor scintigraphy in detecting metastases of carcinoid tumours, for routine preoperative scintigraphy with sestamibi in patients with parathyroid adenoma, for periodic measurement of thyroid-stimulating hormone in detecting

  9. The Current Status and Future Perspectives of Nuclear Medicine in Korea

    OpenAIRE

    Lee, Myung Chul; Oh, So Won; Chung, June-Key; Lee, Dong Soo

    2010-01-01

    Since the introduction of nuclear medicine in 1959, Korea accomplished a brilliant development in terms of both clinical practice and research activities, which was mainly due to the dedication of nuclear medicine specialists, consisting of physicians, technicians, and scientists, and strong support from the Korean Government. Now, Korea has 150 medical institutes, performing approximately 561,000 nuclear imaging procedures and 11.6 million in vitro studies in 2008, and ranked fourth in the n...

  10. Chinese herbal medicine and acupuncture for the treatment of cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Jun Xu; Haiyun Wu

    2009-01-01

    @@ Traditional Chinese medicine (TCM) is one of the world's oldest healing systems. TCM includes herbal medicine, acupuncture, moxibustion, massage, food therapy, and physical exercise, such as shadow boxing. In modern China, TCM is a fully institutionalised part of health care and widely used with Western medicine.

  11. Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: cardiovascular effects and mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Chiu-Yin KWAN; FI ACHIKE

    2002-01-01

    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid purified and identified an active ingredient in a Chinese medicinal herb, Radix Stephanae tetrandrae, has been used traditionally for the treatment of congestive circulatory disorder and inflammatory diseases. TET, together with a few of its structural analogues, has long been demonstrated to have antihypertensive action in clinical as well as animal studies. Presumably, the primary anti-hypertensive action of TET is due to its vasodilatory properties. TET prevents or inhibits vascular contraction induced by membrane depolarization with KCl or α-adrenoceptor activation with phenylephrine (PE). TET (30 μmol/L) also inhibits the release of endothelium-derived nitric oxide (NO) as well as NO production by inducible NO synthase.TET apparently inhibits multiple Ca2+ entry pathways as demonstrated in cell types lacking the L-type Ca2+ channels.In cardiac muscle cells, TET inhibits both L- and T-type Ca2+ channels. In addition to its actions on cardiovascular tissues, TET may also exert its anti-hypertensive action via a Ca2+-dependent manner on other tissues intimately involved in the modulation of blood pressure control, such as adrenal glands. In adrenal glomerulosa cells, KCl- or angiotensin II-induced aldosterone synthesis is highly dependent on extracellular Ca2+. Steroidogenesis and Ca2+-influx in bovine adrenal glomerulosa cells have been shown to be potently inhibited by TET. In bovine adrenal chromaffin cells, TET inhibits Ca2+ currents via L- and N-type channels as well as other unidentified channels with IC50 of 10 μmol/L. Other than the Ca2+ antagonistic effects, TET also interacts with the α-adrenergic receptors and muscarinic receptors based on functional as well as radioligand binding studies. Apart from its functional effects,TET and related compounds also exert effects on tissue structures, such as remodelling of hypertrophied heart and inhibition of angiogenesis, probably by causing apoptotic

  12. Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery.

    Science.gov (United States)

    Bellinger, Andrew M; Arteaga, Carlos L; Force, Thomas; Humphreys, Benjamin D; Demetri, George D; Druker, Brian J; Moslehi, Javid J

    2015-12-01

    Cardio-oncology (the cardiovascular care of cancer patients) has developed as a new translational and clinical field based on the expanding repertoire of mechanism-based cancer therapies. Although these therapies have changed the natural course of many cancers, several may also lead to cardiovascular complications. Many new anticancer drugs approved over the past decade are "targeted" kinase inhibitors that interfere with intracellular signaling contributing to tumor progression. Unexpected cardiovascular and cardiometabolic effects of patient treatment with these inhibitors have provided unique insights into the role of kinases in human cardiovascular biology. Today, an ever-expanding number of cancer therapies targeting novel kinases and other specific cellular and metabolic pathways are being developed and tested in oncology clinical trials. Some of these drugs may affect the cardiovascular system in detrimental ways and others perhaps in beneficial ways. We propose that the numerous ongoing oncology clinical trials are an opportunity for closer collaboration between cardiologists and oncologists to study the cardiovascular and cardiometabolic changes caused by the modulation of these pathways in patients. In this regard, cardio-oncology represents an opportunity and a novel platform for basic and translational investigation and can serve as a potential avenue for optimization of anticancer therapies and for cardiovascular research and drug discovery.

  13. Application of infrared thermal imaging in the study of preventing cardiovascular and cerebrovascular diseases with Chinese medicine health food

    Science.gov (United States)

    Li, Ziru; Zhang, Xusheng

    2009-08-01

    To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, Ppathology basis of the influences of Shengyi on the four balance features and its relationship with the clinical outcome deserves further study. So the prospect of infrared thermal imaging is indicated as the suitable evaluation technique which could objectively reflect the whole balance regulation advantage of Chinese medicinal compounds.

  14. Aspects and progresses of the Program for Regulatory Inspection of Nuclear Medicine in Brazil

    International Nuclear Information System (INIS)

    This work aims to show the advances in the Nuclear Medicine auditing field performed by the Nuclear Medicine Group of the Division of Radiotherapy and Nuclear Medicine of the Inst. of Radiation Protection and Dosimetry. The main aspects observed during the auditing are presented as well as the evolution of the non-conformities. It is shown that the occurrence of these non-conformities decreases year by year, primarily as a function of the severity of the auditing and the consciousness of the personal of Nuclear Medicine Services. Results point clearly to the importance of the coercion actions to guarantee a radiation protection level in compliance with the standards established by the Brazilian Nuclear Energy Commission. (author)

  15. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    Science.gov (United States)

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online

  16. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    Science.gov (United States)

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession. PMID:27195385

  17. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    Science.gov (United States)

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  18. Diagnostic nuclear medicine in Brazil: Current status in the five geographical regions

    International Nuclear Information System (INIS)

    Full text: Brazil has a population of 170 millions of inhabitants distributed into five geographical regions (North, Northeast, South, Southeast and Medium West). Health indicators like child mortality, cardiovascular and cancer mortality rates as well as life expectancy at birth have great disparities between northeast and southeast regions. In Brazil there are 215 nuclear medicine centers having 704 equipments, both public and private. More than 80% of operating equipment are in private institutions. The Southeast region constitutes about 60% of the radiopharmaceuticals consumption and the image equipment on the country. The state of Sao Paulo, located in Southeast region, has 37% of 99mTc consumption and is the only 18FDG consumer in the country. Aiming to evaluate the correlation between consumption of radiopharmaceuticals, number of equipment and frequency of procedures performed, as well as the activity administered per procedure, a national survey is going on. This includes both public and private institutions representing general and specialised public hospitals and private institutions. The preliminary results indicated that the diagnostic procedures range from 712 to 12,682 exams per year with the majority being myocardial and bone imaging. Differences were noticed in the amount of administered activities between public and private institutions both in Southeast and Northeast regions. This may be due to the differences in the availability of state of the art equipment, routine quality control and performance procedures. (author)

  19. Current situation of the facilities, equipments and human resources in nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out. In Argentina, there are 266 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN). Forty four percent of the installed equipment are SPECT of 1 or 2 heads and 39,4 % are gamma camera. Besides, there are eleven PET operating in Argentina. There are 416 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampa, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel present an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of medicine nuclear physicians with individual permits. The number of SPECT and gamma cameras is 7,3 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international information available provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  20. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules

    International Nuclear Information System (INIS)

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  1. Applying activity-based costing to the nuclear medicine unit.

    Science.gov (United States)

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better. PMID:16102243

  2. Extremity dosimetry in nuclear medicine services using thermoluminescent detectors

    International Nuclear Information System (INIS)

    The Radiation Protection and Safety Centre in Algiers provides two types of dosemeters, one for monitoring doses to the whole body and skin and the other one for monitoring doses to the extremities of the body. In nuclear medicine services and radiopharmaceutical laboratories, hands and arms are often closer to a given radiation source than the main part of the body and therefore receive greater doses. In this context, extremity doses have been measured by a ring dosemeter and by a fingertip ultra-thin dosemeter. The ring dosemeter consists of a metallic ring with a circular indentation to hold a LiF chip which is covered with a 10 mg.cm-2 shrinkable black polyamide layer. The ultra-thin dosemeter contains a 5 mg.cm-2 LiF element for measuring doses at a depth of 7 mg.cm-2. These extremity dosemeters have been characterised before their use in the field. They have also been tested using radioisotopes of various energies. The doses received by the monitored workers were correlated with the amount of the handled activity. The doses obtained using the fingertip and the ring dosemeters are presented and discussed from a radiological point of view. (author)

  3. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    International Nuclear Information System (INIS)

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers. - Highlights: ► Two thyroid phantoms were developed (OSCT and OSAP) with different types of acrylics. ► Thyroid glands were represented anthropomorphically in the both phantoms. ► Different prototypes of thyroid were built of simulate healthy or unhealthy glands. ► Images indicate that anthropomorphic phantoms correctly simulate the thyroid gland

  4. The role of nuclear medicine in acute gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P. (Saint James' s Hospital, Leeds (United Kingdom). Dept. of Radiology)

    1993-10-01

    In most patients with upper gastrointestinal (GI) bleeding, endoscopy will locate the site and cause of bleeding, and also provide an opportunity for local therapy. The cause of lower GI bleeding is often difficult to attribute, even when pathology is found by colonoscopy or barium enema. Nuclear medicine techniques can be used to identify the site of bleeding in those patients in whom the initial diagnostic procedures are negative or inconclusive. Methods using transient labelling of blood (e.g. [sup 99]Tc[sup m]-sulphur colloid) produce a high target-to-background ratio in positive cases, give quick results and localize bleeding sites accurately, but depend upon bleeding being active at the time of injection. Techniques using stable blood labelling (e.g. [sup 99]Tc[sup m]-labelled red blood cells) may be positive even with intermittent bleeding but may take several hours to produce a result and are less precise in localization. The most useful application is in patients with recurrent or prolonged bleeding, those with inconclusive endoscopy or barium studies, and those who are high-risk surgical candidates. (author).

  5. Applying activity-based costing to the nuclear medicine unit.

    Science.gov (United States)

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  6. Therapeutic radionuclides in nuclear medicine: current and future prospects.

    Science.gov (United States)

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-10-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.

  7. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  8. Quality control of techetium 99m radiopharmacentical in nuclear medicine

    International Nuclear Information System (INIS)

    Gel chromatography column scanning (GCS) is a new method for radiochemical quality control. GCS techniques for Technetium-99m radiopharmaceuticals in nuclear medicine have been developed for use in both research and routine clinical work. The dependence on several of the parameters of the GCS method have been investigated, e.g. type of gel, column dimensions, eluent, equilibration, elution volume, flow rate and resolution of the recording system (radiochromatographic scanner or scintillation camera). The GCS method has been compared with conventional gel filtration, thinlayer cromatography (TLC) and paper cromatography (PC). The GCS method is to be preferred due to few artifacts, much information, good reproducibility, rapidity, simplicity and the convenience of the test. The GCS method has been applied to the development of labelling techniques for the new radiopharmaceuticals Tc-99m plasmin and Tc-99m unithiol (2.3 dimercaptopropane sodiumsulphonate), use for investigating deep vein thrombosis and renal cortical morphology respectively. The GCS method has also been applied for studying some labelling parameters, the radiochemical purity and the labelling of Tc-99m macroaggregated albumin, Tc-99m pyrophosphate, Tc-99m methylenedisphosphate, in addition to Tc-99m plasmin and Tc-99m unithiol. (Author)

  9. Radiation exposures to technologists from nuclear medicine imaging procedures

    International Nuclear Information System (INIS)

    Radiation exposures incurred by nuclear medicine technologists during diagnostic imaging and gamma camera quality control (QC) were measured on a procedural basis over a three-month period using a portable, low-range, self-reading ion chamber. A total of more than 400 measurements were made for 15 selected procedures. From these, mean procedural exposures and standard deviations were calculated. The results show that daily flood phantom QC, at 0.58 mR, and gated cardiac studies, at 0.45 mR, were the two greatest sources of exposure. Other procedures resulted in exposures varying roughly from 0.10 to 0.20 mR. Difficult patients were responsible for a doubling of technologist exposure for many procedures. Standard deviations were large for all procedures, averaging 65% of the mean values. Comparison of technologist exposure inferred from the procedural measurements with the time coincident collective dose equivalent recorded by the TLD service of the Radiation Protection Bureau indicates that approximately half of the collective technologist exposure arose from patient handling and flood QC

  10. Optimal smoothing of poisson degraded nuclear medicine image data

    International Nuclear Information System (INIS)

    The development of a method that removes Poisson noise from nuclear medicine studies will have significant impact on the quantitative analysis and clinical reliability of these data. The primary objective of the work described in this thesis was to develop a linear, non-stationary optimal filter to reduce Poisson noise. The derived filter is automatically calculated from a large group (library) of similar patient studies representing all similarly acquired studies (the ensemble). The filter design was evaluated under controlled conditions using two computer simulated ensembles, devised to represent selected properties of real patient gated blood pool studies. Fortran programs were developed to generate libraries of Poisson degraded simulated studies for each ensemble. These libraries then were used to estimate optimal filters specific to the ensemble. Libraries of previously acquired patient gated blood pool studies then were used to estimate the optimal filters for an ensemble of similarly acquired gated blood pool studies. These filters were applied to studies of 13 patients who received multiple repeat studies at one time. Comparisons of both the filtered and raw data to averages of the repeat studies demonstrated that the optimal filters, calculated from a library of 800 studies, reduce the mean square error in the patient data by 60%. It is expected that optimally filtered gated blood pool studies will improve quantitative analysis of the data

  11. Noise removal in nuclear medicine images by using multi resolution

    International Nuclear Information System (INIS)

    A novel flexible and dynamic algorithm for noise removal in nuclear medicine images is proposed. The images have a very low signal-to-noise ratio and the total number of registered photons is relatively small. The algorithm removes the noise from both the images original spatial domain and from the wavelet transform domain. In the spatial domain it uses both the autocorrelation technique in order to remove the noise that appears in a from of isolated pixels around the objects of interest and the information that each image contains about the signal in its neighbouring images. In the transform domain the wavelet coefficients filtration is carried out with a filter bank which meets the near-perfect reconstruction condition and is adapted to the signal. In addition, the coefficients that correspond to noise and are about to be discarded are selected by using a non uniform threshold which is adapted to the spatial varying noise level. Criteria for selection of an optimal decomposition level for the NM images are defined. In order to suppress the noise, multi resolution characteristics of both the signal and noise are used.(Author)

  12. On the safety of persons accompanying nuclear medicine patients

    International Nuclear Information System (INIS)

    The presence of caretakers/comforters during nuclear medicine examinations is relatively common. These caretakers receive higher doses than the general public, who receive only environmental/background exposure. The aim of this research was to know about the doses received by two significant groups of caretakers: comforters of cancer patients (Group I) and mothers of small children (Group II). The patients were scheduled to undergo two different diagnostic studies: Immuno-Scintigraphy using a monoclonal antibody bound to 99mTc (for adults) and Renal Scintigraphy using 99mTc-dimercaptosuccinic acid (for children). The average effective doses were 0.27 and 0.29 mSv for Groups I and II, respectively. Additionally, environmental monitoring was performed in the waiting room for injected patients (Room I) and inside the procedure room (Room II). Equivalent environmental doses of 0.28 and 0.24 mSv for Rooms 1 and II, respectively, were found, which are similar to values reported by other authors. (authors)

  13. [The psychodynamics of work with iodine-131 in nuclear medicine].

    Science.gov (United States)

    da Silveira, Leila Cunha; Guilam, Maria Cristina Rodrigues; de Oliveira, Sergio Ricardo

    2013-11-01

    This paper seeks to demonstrate to what extent alternative forms adopted in the working process of professionals with iodine-131 in nuclear medicine can assist in managing risks of ionizing radiation. The design is based on the main theoretical concepts of the psychodynamics of work in relation to workers' health. In the case study, data were gathered from 15 workers of a public health institution in the city of Rio de Janeiro by means of semi-structured individual interviews and non-systematic direct observation. Bardin's content analysis method was used for the data analysis. When comparing the results obtained with standard prescribed models, it was found that the respondents had changed their approach. They developed individual defense mechanisms, such as denial of risk, and collective defensive strategies, leading them to tackle the greatest danger as a form of defense. The defensive role of ideologies of the profession are manifest. On the contrary, the acquired knowledge derived from prudence proved effective in minimizing the risks of radiation exposure. The authors discuss the limitations of security management that does not consider the workers' subjectivity and inherent knowledge. PMID:24196882

  14. Implementation of a quality control program in nuclear medicine

    International Nuclear Information System (INIS)

    Rectilinear scanners and dose calibrators were tested for a variety of operating conditions and performance.The tests for rectilinear scanners were based on image quality obtained with phantoms of the brain, liver and thyroid. The parameters investigated for rectilinear scanners included the direct control of the operator, such as the proper setting of the focal distance, the velocity, the photopeak calibration, contrast, correct collimator, line spacing and back ground count.The accuracy of dose calibrators was checked with sources of Cs-137, Co-57 and Co-60. The linearity of dose calibrators was checked with sources of technetium-99m and geometry was likewise checked with variable volumes of technetium-99m.The evaluation of the proper setting for rectilinear scanners was made by determining the number of hot and cold areas in the phantom before and after corrective adjustments of physical parameters.The results obtained on rectilinear scanners indicated efficiencies in the operating conditions. The results found on dose calibrators shown that geometry effect was minimal; the reproducibility and stability was satisfactory. However,more than a half(60%)of the dose calibrators tested for accuracy and linearity were performed without acceptable limits. We can conclude that is very useful and important the implementation of quality control programme to entire diagnostic process in nuclear medicine. (author)

  15. Exposure of critical groups to nuclear medicine patients

    Energy Technology Data Exchange (ETDEWEB)

    Mountford, P.J. [Division of Medical Physics, North Staffordshire Hospital (Royal Infirmary), Princes Road, Hartshill, Stoke-on-Trent, Staffordshire (United Kingdom); O' Doherty, M.J. [Department of Nuclear Medicine, Kent and Canterbury Hospital, Ethelbert Road, Canterbury, Kent (United Kingdom)

    1999-01-01

    When a radiopharmaceutical has been administered to a patient, assessment of the risk to critical groups from emitted photon radiation is by measurement of the integral dose received by an individual, or by measurements of the dose rate external to the patient coupled with appropriate occupancy factors. Estimations have been made from the available data of the dose to critical groups exposed to patients who have undergone diagnostic or therapeutic procedures. These dose estimations can be used to assess the impact of the proposed changes in statutory requirements, and to allow appropriate recommendations to be formulated. Two areas for consideration are that pregnant staff exposed to nuclear medicine patients will require an abdominal surface dose limit lower than 2 mSv to restrict their foetal dose to 1 mSv, and the current UK restrictions for the behaviour of patients who have undergone {sup 131}I treatment are either already adequate or can even be relaxed in order to restrict the exposure of members of the public to the proposed lower dose limits. Agreement is needed on the value (e.g. 95th percentile) from a study of the dose to a number of individuals which should serve as the basis for radiation protection recommendations.

  16. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    Directory of Open Access Journals (Sweden)

    Salih Sinan Gültekin

    2013-12-01

    Full Text Available Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS, 30/135; whole body bone scintigraphy (WBS, 35/135; myocardial perfusion scintigraphy (MPS and 30/135; renal scintigraphy (RS] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 μSv h-1 for full bladder and 29, 55, 103 and 37 μSv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible.

  17. New imaging systems in nuclear medicine: Technical progress report

    International Nuclear Information System (INIS)

    The Physics Research Laboratory of the Massachusetts General Hospital has been in the forefront of the field of nuclear medicine instrumentation for the past thirty-six years, particularly in the area of instrumentation dealing with the application of short-lived cyclotron-produced isotopes. We continue to improve the operation of PCR-I, a single ring demonstration system employing analog coding to achieve high resolution (4 to 5 mm), high sensitivity (45,000 c/s/ Ci/cc) and high sampling frequency without interpolative motion. This device is designed for brain imaging in humans and for animal studies. An intensive program of software development was carried out concurrently with hardware development and led to the PL/S computer system used for PCI and PCII. Subsequently, more powerful systems were developed using a Data General Eclipse computer and, more recently, an IBM PC/AT computer with array processor. Our laboratory is now engaged in a design study of a cylindrical positron tomograph (PCR-II). 136 refs., 6 figs., 1 tab

  18. Proceedings of a workshop on molecular nuclear medicine

    International Nuclear Information System (INIS)

    The Office of Health and Environmental Research (OHER) of the Department of Energy (DOE) has increased the emphasis on research in structural biology and molecular biology. The Department has increased support substantially in the area of basic molecular and structural biology research. To exploit the advances in these fields, OHER has sought to apply those advances in their other areas of responsibility, e.g., health effects research, environmental biology, and, in particular, nuclear medicine. The applications of biotechnology have contributed greatly to the productive research efforts of molecular biology. These techniques include gene manipulation for targeted gene delivery; characterization of molecular probes for hormone, tumor, and neuroreceptors; the receptor-agonist/antagonist binding interactions; studies of mechanisms of cellular communication; and the development of in vitro diagnostics such as molecular probes for studying the aging process and patients with mental disorders, cancer, and atherosclerosis. The importance of this work is the reasonable expectation that mainly, through an appreciation of the molecular basis of disease, will the most effective and rapid progress be made toward understanding, identifying, solving, and preventing specific disease processes. Critical questions arising before and during the Workshop are how the following technologies can be applied in a practical clinical research or patient management setting: the recombinant DNA methodology, the technology of engineered monoclonal antibodies, the new methods for protein production and purification, and the production of transgenic animals

  19. Exposure of the lens of the eye in nuclear medicine

    International Nuclear Information System (INIS)

    The dose threshold for the lens of the eye for occupationally radiation-exposed personnel will be reduced from 150 mSv to 20 mSv per year. Publications addressing the expected eye lens doses of personnel in nuclear medicine are only barely known. In this work, dose rate constants for the quantity Hp(3) were determined and corresponding dose estimations were calculated. Therefore dosimeters measuring Hp(3) were exposed at the surface of an Alderson head phantom. The exposure of the dosimeters with frequently used radionuclides (F-18, Ga-68, Y-90, Tc-99m, In-111, I-123, I-131 and Ra-223+) was performed under varying source-dosimeter distances from 20 cm to 50 cm. The dose rate constants were determined to be 0.021 mSv.m2/(GBq.h) for Tc-99m (10 ml syringe) and 2.161 mSv.m2/(GBq.h) for Y-90-spheres (5 ml syringe). The other results take values between these ranges. Using the determined dose rate constants, prospective doses to the eye lens could be calculated.

  20. Nuclear Medicine Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine (AAPM), Asia–Oceania Federation of Organizations for Medical Physics (AFOMP), Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), European Federation of Organisations for Medical Physics (EFOMP), Federation of African Medical Physics Organisations (FAMPO), World Federation of Nuclear Medicine and Biology (WFNMB)

    International Nuclear Information System (INIS)

    This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine

  1. The current status and future perspectives of nuclear medicine in Korea.

    Science.gov (United States)

    Lee, Myung Chul; Oh, So Won; Chung, June-Key; Lee, Dong Soo

    2010-06-01

    Since the introduction of nuclear medicine in 1959, Korea accomplished a brilliant development in terms of both clinical practice and research activities, which was mainly due to the dedication of nuclear medicine specialists, consisting of physicians, technicians, and scientists, and strong support from the Korean Government. Now, Korea has 150 medical institutes, performing approximately 561,000 nuclear imaging procedures and 11.6 million in vitro studies in 2008, and ranked fourth in the number of presentations at the Annual Meeting of the Society of Nuclear Medicine (SNM) in 2008. The successful progress in this field has allowed Korea to focus on the international promotion of nuclear medicine, especially in the developing and underdeveloped countries. In consequence, the Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was established in 2001, and Seoul hosted the 9th Congress of the World Federation of Nuclear Medicine and Biology (WFNMB) in 2006. In the future, Korea will strive to sustain its rate of advancement in the field and make every effort to share its progress and promote the exchange of scientific information at the international level. PMID:25013521

  2. The nuclear medicine department in the emergency management plan: a referent structure for the nuclear and radiological risks

    International Nuclear Information System (INIS)

    Each french public or private hospital has to establish guidelines for an immediate response to mass casualties (Emergency Management Plan or 'White' Plan). For a nuclear accident or terrorist attack, the staff of the Nuclear Medicine Department may be adequately prepared and equipped. This paper presents the nuclear and radiological risks section of the final draft of the White Plan developed at Bordeaux University Hospital. (author)

  3. Radiopharmaceuticals for nuclear cardiology

    International Nuclear Information System (INIS)

    One of the diagnostic technique periodically used in Nuclear Medicine is the angiographic studi e, employee for detect cardiovascular diseases. The radiopharmaceutical more used in the angiographic ones is 99mTc. Between thetopics described in the present work it find: myocardial infarction, radiopharmaceuticals classification for cardiac studies, labelled proceedings, cardiovascular diseases

  4. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in computerized tomography. A portion of the research effort is directed toward the development of new synthetic methods for the preparation of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals. The versatile organic boron reagents are utilized in most of the new chemistry. This new technology is then used in nuclear medicine research at the UT Biomedical Imaging Center and in collaborative research programs with colleagues at other DOE facilities. An important goal of the DOE Nuclear Medicine Program at UT is to provide training for students (predoctoral and postdoctoral) in the scientific aspects of nuclear medicine. 83 refs., 12 figs

  5. Nuclear medicine annual external occupational dose distribution: Rio de Janeiro, Brazil, year 2005.

    Science.gov (United States)

    Mauricio, Claudia L P; Lima, Ana L S; da Silva, Herica L R; Souza-Santos, Denison; Silva, Claudio R

    2011-03-01

    Brazil has about 300 nuclear medicine services (NMS), 44 of them located in the state of Rio de Janeiro (RJ). Most nuclear medicine staff are routinely monitored for external dose. This paper makes a statistical analysis of all the RJ NMS annual external occupational doses in year 2005. Around 100 professionals of RJ NMS received annual doses >4.0 mSv, considering only external doses, but no one receives doses higher than the mean annual dose limit of 20 mSv. Extremities dosemeters are used by about 10 % of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. The maximum ratio of extremity dose/thorax dose, in 2005, was 72. This study shows the importance to improve radiation protection procedures in nuclear medicine, mainly because the number of occupational individuals in nuclear medicine and their external doses are increasing. PMID:21051433

  6. Production and radioiodination of monoclonal antibodies and its applications in nuclear medicine

    International Nuclear Information System (INIS)

    The basis of the monoclonal antibody production methodology, some immunological concepts which are important for the understanding of what is a Monoclonal Antibody, its radioiodination and acceptance as receptor-specific radiopharmaceuticals in nuclear medicine are reviewed. (author)

  7. Will the Australian nuclear medicine technologist workforce meet anticipated health care demands?

    Science.gov (United States)

    Adams, Edwina; Schofield, Deborah; Cox, Jennifer; Adamson, Barbara

    2008-05-01

    Determination of national nuclear medicine technologist workforce size was made from census data in 2001 and 1996 and from the professional body in 2004. A survey conducted by the authors in 2005 provided retention patterns in north-eastern Australia and suggested causes. Utilisation of nuclear medicine diagnostic services was established through the Medicare Benefits Schedule group statistics. More than half the nuclear medicine technologist workforce is under 35 years of age. Attrition commences from age 30, with very few workers over 55 years. In 2005 there was a 12% attrition of the survey workforce. In the past decade, service provision increased while workforce size decreased and the nuclear medicine technologist workforce is at risk of failing to meet the anticipated rise in health service needs. PMID:18447815

  8. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  9. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  10. Learning gestures and ethical issues in oncology and nuclear medicine

    Directory of Open Access Journals (Sweden)

    Aboubakr Matrane

    2014-01-01

    Full Text Available Purpose: The purpose of this study is to show the importance of learning gestures in three medical procedures (chemotherapy, brachytherapy, and bone scan. It allows us to assess complications, lack of benefit, and ethical questions to which resident physicians are confronted in their training. Materials and Methods: The study is based on a questionnaire divided into two parts distributed to 70 resident physicians and 90 patients: 60 physicians radiation oncologists and 10 nuclear physicians completed the first part of 24 items. It concerned the learning of medical practices. The second part of 18 items was completed by 90 patients (30 patients in the chemotherapy unit, 30 patients in the brachytherapy unit, and 30 patients in the nuclear medicine department; it was related to patients′ information prior to the completion (performance of the gesture. Results: The training of medical residents physicians took place mainly during the first year on conscious and well-informed patients, with the exception of brachytherapy taught later in the second year. It was preceded by a theoretical education in 56.7%, 43.3%, and 100%, respectively, in case of chemotherapy, brachytherapy, and bone scan unit, but the previous observation by a senior had failed in 16.7% in case of chemotherapy and in 36.7% in case of brachytherapy unit. Despite the almost constant presence of a senior, four incidents were associated with the first acts of chemotherapy and brachytherapy unit and one incident with the bone scan unit. These incidents had been generated, respectively, from 23.4%, 26.7%, and 20% of resident physicians surveyed (in chemotherapy, in brachytherapy, and in bone scan and had a consequence of a loss of opportunity for patient, in 20%, 13.3%, and 40%, respectively. Most patients were informed before the completion of the medical procedure, and cause ethical problems. Alternative ways of learning were known by most of the resident physicians in training

  11. Radiation exposure in nuclear medicine: real-time measurement

    Directory of Open Access Journals (Sweden)

    Iara Sylvain

    2002-09-01

    Full Text Available French regulations have introduced the use of electronic dosimeters for personal monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 µSv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10 % of the maximum legal limit for exposed workers (2 mSv/yr. Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection.A legislação francesa introduziu o uso de dosímetros eletrônicos para monitoração da exposição do trabalhador. Afim de avaliar a exposição do trabalhador proveniente de exames diagnósticos em medicina nuclear, doses individuais do corpo inteiro foram medidas diariamente com dosímetros eletrônicos (digitais durante 20 semanas consecutivas e correlatas com as atividades de trabalho de cada dia. As doses foram sempre inferiores à 20 µSv por dia em condições normais de trabalho. Os níveis de exposição de radiação mais elevados foram para os enfermeiros, manipuladores e maqueiros. A extrapolação da dose anual para todos os trabalhadores foi menos que 10 % do limite máximo legal para os trabalhadores expostos (2 mSv/ano. Dosímetros eletrônicos não são tecnicamente justificados para a o controle de rotina da exposição dos trabalhadores, mas a alta sensibilidade e a leitura imediata desses dosímetros podem vir a serem muito úteis para o controle da exposição em condi

  12. Functional genomics and proteomics - the role of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, U. [Heidelberg Univ. (Germany). Abt. fuer Klinische Nuklearmedizin; German Cancer Research Center, Heidelberg (Germany); Altmann, A. [German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiopharmacy

    2002-01-01

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  13. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  14. Nuclear medicine pulmonary diagnosis; Nuklearmedizinische Diagnostik der Lunge

    Energy Technology Data Exchange (ETDEWEB)

    Schuemichen, C. [Rostock Univ. (Germany). Radiologische Klinik und Poliklinik

    2000-10-01

    Scintigraphic recording of regional ventilation and perfusion with {sup 99m}Tc-Aerosol and {sup 99m}Tc-MAA remain in the foreground of nuclear medicine pulmonary diagnostics. The most important indication for ventilation scintigraphy is the prediction of postoperative pulmonary function, which is still performed in many hospitals with perfusion scintigraphy, and with which, in turn, intrapulmonary right-left shunts can be simply and also semiquantitatively recorded. Combined ventilation/perfusion scintigraphy offers a very high degree of sensitivity in the proof of acute pulmonary embolism, is therefore exceptionally well suited for exclusion diagnostics, while specificity compared to pulmonary angiography and spiral CT still needs some clarification. The self-cleaning mechanism of the lung can be quantitatively examined using mucociliary and resorptive clearance. The clinical areas of application are limited for methodical reasons. Primary diagnostics of bronchial carcinoma and dignity differentiation of solitary pulmonary nodules, preferably with {sup 18}F-FDG PET are gaining steadily in importance. (orig.) [German] Im Vordergrund der nuklearmedizinischen Lungendiagnostik steht nach wie vor die szintigraphische Abbildung der regionalen Ventilation und Perfusion mit {sup 99m}Tc-Aerosol und {sup 99m}Tc-MAA. Wichtigste Indikation fuer die Ventilationsszintigraphie ist die Voraussage der postoperativen Lungenfunktion, die vielerorts noch mit der Perfusionsszintigraphie durchgefuehrt wird, mit der sich wiederum intrapulmonale Rechts-links-Shunts einfach und auch semiquantitativ erfassen lassen. Die kombinierte Ventilations-/Perfusionsszintigraphie bietet ein Hoechstmass an Sensitivitaet beim Nachweis der akuten Lungenembolie, ist deshalb fuer die Ausschlussdiagnostik hervorragend geeignet, die Spezifitaet im Vergleich zur Pulmonalisangiographie und Spiral-CT ist weiterhin klaerungsbeduerftig. Die Selbstreinigungsmechanismen der Lunge lassen sich mit der mukoziliaeren

  15. New filter for iodine applied in nuclear medicine services.

    Science.gov (United States)

    Ramos, V S; Crispim, V R; Brandão, L E B

    2013-12-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system (where doses of radioiodine are handled within fume hoods, and new filters will be installed at their exit), using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon and silver impregnated silica are effective for I2 capture with large or small amounts of substrate but the use of activated carbon is restricted due to its low flash point (423 K). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to use natural activated carbon since it was not absorbed by SiO2+Ag crystals. We concluded that, for an exhaust flow range of (145 ± 2)m(3)/h, a double stage filter using SiO2+Ag in the first stage and natural activated carbon in the second stage is sufficient to meet radiological safety requirements. PMID:23974306

  16. Shielding estimation for nuclear medicine therapy ward: our experience

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to calculate and estimate the shielding thickness for a new Nuclear Medicine Therapy Ward. Parameters available for shielding calculation were: ground plan of the ward, radionuclides planned for use, maximum administered activity of I-131, maximum delivered activity of I-131 to the ward per week, average time spent in the hospital after the treatment. The most hazardous and most commonly used radioisotope is I-131. The target dose that needs to be met for occupationally exposed workers is 0.3 mSv per year. There are several factors that could be changed in order to achieve this value: distance from the source, shielding thickness, angle of incidence, occupational and usage factors. The maximum dose rate at 1 meter from the thyroid gland of the patient was considered to be 100 mSv/h. The distances and incidence angles could not be changed since these vales were predetermined in the ground plan. Different usage and occupational factors were used for different rooms in the ward. We used occupational factor 1 for the bed and 1/6 for the bathroom, and usage factor 1 for nurses' room and patient room and 1/6 for the corridors, etc. The easiest way of calculating dose attenuation in material was by introducing the HVL and TVL for broad beams. TVL and HVL were taken from the graph.The results show that shielding thickness should be in the range of 3 mmPb for room doors to 30 mmPb for the wall adjacent to the nurse's office. Most of the walls are 20 mmPb thick. These values were calculated using conservative assumptions and are more then enough to protect staff, patients and public from external radiation. If the construction cannot support the weight of lead some rearrangements regarding patient positions could be made. (author)

  17. Functional genomics and proteomics - the role of nuclear medicine

    International Nuclear Information System (INIS)

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  18. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  19. Summary results of an assessment of research projects in the Nuclear Medicine Research program

    International Nuclear Information System (INIS)

    In May 1987, OHER management requested the Office of Program Analysis (OPA) to conduct a peer review of the projects of the DOE Nuclear Medicine Research program. This was done using procedures and a quantitative methodology OPA developed for assessing DOE research programs. Sixty-three individual nuclear medicine projects were reviewed by seven panels; one panel on isotopes and radioisotopes, three on radiopharmacology, two on clinical feasibility, and one on instrumentation. Each panel consisted of five to ten knowledgeable reviewers. 5 figs

  20. The 3rd questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    The present 3rd survey was aimed at grasping safety control in nuclear medicine examination and the trend for SPECT usage. Questionnaires were sent to 1238 facilities dealing with nuclear medicine; and 1127 facilities (91.0%) responded. The survey period was three years from April 1, 1989 through March 31, 1992. The following 7 items were surveyed: (1) nuclear medicine personnel, (2) nuclear medicine equipments, (3) accidents occurring in nuclear medicine laboratories, (4) risk factors leading to accidents, (5) countermeasures for improving safety control, (6) major breakdown of the machinery and equipment, and (7) demands for makers. Majority of nuclear medicine personnel were male and were less than 50 years old. The number of SPECT equipments increased from 714 in the previous survey to 968. Accidents (personal injuries) and narrow escape from an accident were seen in 45 and 154 cases. Personal injuries such as falling occurred in 37 patients and 8 nuclear medicine personnel. According to nuclear medicine examinations, SPECT was the most common examination associated with accident and narrow escape cases (86/199). Such cases at the beginning of examination were remarkably decreased, as compared with those in the previous two surveys. Accidents were primarily attributable to careless management by personnel. Breakdown of the machinery and equipment was reported in 207 cases. In Item 5, the following contents were presented: heads for examination, personnel's behavior, education, examination equipments, collimators and others. Finally, contents in Item 7 included: equipment design, heads for examination, maintenance or management, data processing, collimators, examination equipments and others. (N.K.)

  1. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea

    OpenAIRE

    Kim, Byung Il

    2016-01-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The Intern...

  2. Boron in nuclear medicine: New synthetic approaches to PET, SPECT and BNCT agents

    International Nuclear Information System (INIS)

    The primary objective of the Department of Energy (DOE) Nuclear Medicine Program at the University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in PET and SPECT. A small, but significant portion of our effort is directed toward the design of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of know reactions to the synthesis of specific radiopharmaceuticals. The new technology is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Oak Ridge Associated Universities). An important goal of the DOE Nuclear Medicine Program at UT is to provide training for students (predoctoral and postdoctoral) in the scientific aspects of nuclear medicine. The academic nature of the program facilitates collaborative interactions with other DOE nuclear medicine programs and helps to insure the continued availability of skilled scientists dedicated to the advancement of nuclear medicine

  3. Occupational exposure in nuclear medicine in Portugal in the 1999-2003 period

    International Nuclear Information System (INIS)

    The annual doses received by the staff of nuclear medicine departments from public hospitals and private clinics and evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Dept. (DPRSN) of the Nuclear and Technological Inst. (ITN) in Portugal, in the 5 y period from 1999 to 2003, are analysed and presented in this paper. In the 1999-2003 period, ITN-DPRSN monitored on an average 462 workers from nuclear medicine departments, which represents 6% of the 8000 workers of the medical field (approximately). The medical sector represents 80-85% of all the monitored population in Portugal. The professions of the monitored workers at nuclear medicine departments were identified by the respective departments as administrative, auxiliary, medical doctor, nuclear medicine technician, nurse, pharmacist and physicist. This information was collected at the onset of the monitoring and was updated over the last 3 y. The annual whole-body doses evaluated in the period 1999-2003 were used to derive the distribution of workers by dose intervals for every profession. The respective annual average doses and annual collective doses, as well as, the total average and total collective doses for the nuclear medicine sector were also determined and are presented. Internal radiation hasn't been monitored. (authors)

  4. Evaluations of Molecular Nuclear Medicine in pediatric urgencies; Evaluaciones de Medicina Nuclear Molecular en urgencias pediatricas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Duncker R, C. [Departamento de Medicina Nuclear Molecular, Hospital Infantil de Mexico, Mexico D.F. (Mexico)

    2000-07-01

    Several diagnostic procedures of Molecular Nuclear Medicine are considered in first choice in clinical evaluation of patients with different illnesses. So, the gammagraphy is the diagnostic form more sensitive to detect alterations of the perfusion on organs and systems such as bones, heart, brain, lungs or kidneys. Also is possible to identify, localize, evaluate the activity of inflammatory processes such as cellulitis, arthritis, osteomyelitis, the abscesses and several primary or metastatic tumours before each other diagnostic technique. In this work is treated about the importance of treatments with radioactive materials have been an important reappearance in last years since with the present capacity to localize specifically intracellular processes (for example, synthesis of DNA) new gateways are opened to research which in coming years would be of great utility. (Author)

  5. Hospitalisation Resulting from Medicine-Related Problems in Adult Patients with Cardiovascular Diseases and Diabetes in the United Kingdom and Saudi Arabia

    OpenAIRE

    Abdullah Al Hamid; Zoe Aslanpour; Hisham Aljadhey; Maisoon Ghaleb

    2016-01-01

    Cardiovascular diseases (CVDs) and diabetes (DM) are two interrelated conditions that have a heavy morbidity and mortality burden worldwide. Patients with the two conditions usually take multiple medicines and thus are more susceptible to medicine-related problems (MRPs). MRPs can occur at any stage of the treatment process and in many cases can lead to unplanned hospitalisations. The aim of the study was to determine the prevalence of hospitalisation resulting from MRPs in adult patients wit...

  6. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    OpenAIRE

    Julia Günter; Petra Wolint; Annina Bopp; Julia Steiger; Elena Cambria; Hoerstrup, Simon P.; Maximilian Y Emmert

    2016-01-01

    More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to dem...

  7. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H. [Boston Children' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Harvard Medical School, Joint Program in Nuclear Medicine, Department of Radiology, Boston, MA (United States); Gelfand, Michael J. [Cincinnati Children' s Hospital Medical Center, Section of Nuclear Medicine, Department of Radiology, Cincinnati, OH (United States)

    2015-05-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  8. The international distribution of authorship in the Nuclear Medicine literature: a bibliometric analysis

    International Nuclear Information System (INIS)

    Aim: This study profiles the increasingly diverse international contributions to the specialty of Nuclear Medicine as measured by publication in the European Journal of Nuclear Medicine (Springer) and the Journal of Nuclear Medicine (Society of Nuclear Medicine). These are the leading journals in the field, with 2001 impact factor scores of 3.617 and 3.772 respectively.1 Materials and Methods: We searched the MEDLINE database from 1988-2001, using the Limits (Journal) feature. 1988 is the first year that author affiliation information is reliably included on the MEDLINE record. The retrieved set of articles from the European Journal of Nuclear Medicine and the Journal of Nuclear Medicine was limited to articles with abstracts, the goal being to count only substantive articles and to eliminate editorials, letters, and other brief communications. Since author affiliation information is neither standardized nor can it be sorted in MEDLINE, we manually counted and categorized publications by country of the first author as listed in the article. Microsoft Excel was used to tabulate and analyze the data. Results: 2,634 articles were analyzed for six years (1988, 1991, 1992, 1993, 1996, 2001). Authors from 40 countries published in these two journals. In 1988, authors from seven countries (US, Japan, UK, France, Germany, the Netherlands, Canada) contributed ten or more articles, accounting for 80% of the articles . In 2001, authors from eleven countries contributed ten or more articles, accounting for 86% of the total (US, Germany, Japan, Netherlands, Italy, Belgium, Australia, France, UK, Spain, Finland); Conclusions: A previous study showed that, from 1980-97, seven countries accounted for 86% of the research articles in the Journal of Nuclear Medicine: US 60.2%, Japan 8.6%, and Canada, France, Germany, UK, Netherlands each 3.4%.2. In this study, for the six years included, authors from ten countries accounted for 86% of the research articles in the European Journal of

  9. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea.

    Science.gov (United States)

    Kim, Byung Il

    2016-02-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the "Institute for Quality Management of Nuclear Medicine", and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  10. Current Status of Nuclear Medicine Practice in the Middle East.

    Science.gov (United States)

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  11. Current Status of Nuclear Medicine Practice in the Middle East.

    Science.gov (United States)

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  12. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola;

    2013-01-01

    PURPOSE: To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. MATERIAL AND METHODS: National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from...... experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill...... and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear...

  13. Workshop on radiation protection of patient. Workshop on radiation protection of worker in nuclear medicine and biomedicine

    International Nuclear Information System (INIS)

    In these workshops, information on the following subjects was presented: biological and prenatal effects of ionizing radiation, excretion of radiopharmaceuticals in human breast milk, fetal doses assessment, final disposal of radioactive waste in medical applications, regulatory functions for installations in nuclear medicine, workers doses in nuclear medicine and biomedicine, radioprotection of their nuclear installations, programs of quality assurance, etc

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Licensing Radiographers, Nuclear..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  15. Establishment of a national programme for QC of nuclear medicine instruments in Cuba

    International Nuclear Information System (INIS)

    Full text: A national programme for the quality control of nuclear medicine instruments has been organized and established. It is the result of a multi-institutional project during three years. The work was participated in by an expert group of experienced medical physicists working in the nuclear medicine field: from the national regulatory authorities, research centers, hospitals, and other local institutions. The programme for the quality control of nuclear medicine instruments included the following aspects: implementation of national protocols and regulations according to the local conditions and resources, education and training, organization and implementation of a phantom bank, evaluation of the current state of the nuclear medicine instruments, and establishment and registration of an audit service to be performed annually by the national regulatory authority. It created the document 'National protocols for quality control of nuclear medicine instruments'. The objective of this workbook was to propose standardized and homogeneous quality control procedures, taking into account the technical features of the local instrumentation and availability of complementary resources (phantoms, sources, etc). These protocols are mainly based on international publications such as the IAEA-TECDOC-602, the NEMA standards, etc. The document contains 84 pages, and includes topics related to the quality control of gamma cameras, SPECT systems, whole body systems, directional detectors, etc. Descriptions of the proposed tests such as the objectives, materials, procedures, periodicity, range of normal values and other information, are included. This document was evaluated and approved by the Cuban authorities (CCEEM) to be used as the basic protocol for the quality control of local nuclear medicine instruments. A national course about quality control of nuclear medicine instruments was organized and established. It was mainly addressed to educate and train the responsible

  16. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Istanbul, 2005: the incremental value of nuclear medicine for patient management and care

    Energy Technology Data Exchange (ETDEWEB)

    Cuocolo, Alberto; Acampa, Wanda; Varrone, Andrea; Salvatore, Marco [University of Naples Federico II, Department of Biomorphological and Functional Sciences, Napoli (Italy); Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy)

    2006-03-15

    The 2005 Annual Congress of the European Association of Nuclear Medicine (EANM) took place in Istanbul on October 15-19, under the chairmanship of Professor Hatice Durak. The programme was of excellent quality and represented a further step towards the achievement of a standardized EANM congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success: there were more than 4,000 participants, and 1,670 abstracts were received. Of these, 1,399 were accepted for oral or poster presentations, with a rejection rate of 16.2%. The original investigations presented were related to different areas of nuclear medicine, and addressed particularly advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well-established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, nephrology, and infection and inflammation. It is noteworthy that a number of studies presented at this congress focussed on the quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, and identified when nuclear medicine procedures achieved clinical effectiveness for patient care and management. These and many other studies presented at the congress demonstrate once more the crucial role that nuclear medicine has to play in contemporary medicine. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress proceedings book, published as volume 32, supplement 1 of the Eur J Nucl Med Mol Imaging in September 2005. (orig.)

  17. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Istanbul, 2005: the incremental value of nuclear medicine for patient management and care

    International Nuclear Information System (INIS)

    The 2005 Annual Congress of the European Association of Nuclear Medicine (EANM) took place in Istanbul on October 15-19, under the chairmanship of Professor Hatice Durak. The programme was of excellent quality and represented a further step towards the achievement of a standardized EANM congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success: there were more than 4,000 participants, and 1,670 abstracts were received. Of these, 1,399 were accepted for oral or poster presentations, with a rejection rate of 16.2%. The original investigations presented were related to different areas of nuclear medicine, and addressed particularly advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well-established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, nephrology, and infection and inflammation. It is noteworthy that a number of studies presented at this congress focussed on the quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, and identified when nuclear medicine procedures achieved clinical effectiveness for patient care and management. These and many other studies presented at the congress demonstrate once more the crucial role that nuclear medicine has to play in contemporary medicine. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress proceedings book, published as volume 32, supplement 1 of the Eur J Nucl Med Mol Imaging in September 2005. (orig.)

  18. Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine

    Directory of Open Access Journals (Sweden)

    J.V. Joviano-Santos

    2014-07-01

    Full Text Available It has been demonstrated that carbon nanotubes (CNTs associated with sodium hyaluronate (HY-CNTs accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL. Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg. The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.

  19. Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Joviano-Santos, J.V.; Sá, M.A.; De Maria, M.L.A.; Almeida, T.C.S. [Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Geraldo, V.; Oliveira, S.; Ladeira, L.O. [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ferreira, A.J. [Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2014-05-23

    It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.

  20. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    Directory of Open Access Journals (Sweden)

    Julia Günter

    2016-01-01

    Full Text Available More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.

  1. Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine

    International Nuclear Information System (INIS)

    It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans

  2. Systems-Pharmacology Dissection of Traditional Chinese Medicine Compound Saffron Formula Reveals Multi-scale Treatment Strategy for Cardiovascular Diseases.

    Science.gov (United States)

    Liu, Jianling; Mu, Jiexin; Zheng, Chunli; Chen, Xuetong; Guo, Zihu; Huang, Chao; Fu, Yingxue; Tian, Guihua; Shang, Hongcai; Wang, Yonghua

    2016-01-01

    Cardiovascular diseases (CVDs) have been regarding as "the world's first killer" of human beings in recent years owing to the striking morbidity and mortality, the involved molecular mechanisms are extremely complex and remain unclear. Traditional Chinese medicine (TCM) adheres to the aim of combating complex diseases from an integrative and holistic point of view, which has shown effectiveness in CVDs therapy. However, system-level understanding of such a mechanism of multi-scale treatment strategy for CVDs is still difficult. Here, we developed a system pharmacology approach with the purpose of revealing the underlying molecular mechanisms exemplified by a famous compound saffron formula (CSF) in treating CVDs. First, by systems ADME analysis combined with drug targeting process, 103 potential active components and their corresponding 219 direct targets were retrieved and some key interactions were further experimentally validated. Based on this, the network relationships among active components, targets and diseases were further built to uncover the pharmacological actions of the drug. Finally, a "CVDs pathway" consisted of several regulatory modules was incorporated to dissect the therapeutic effects of CSF in different pathological features-relevant biological processes. All this demonstrates CSF has multi-scale curative activity in regulating CVD-related biological processes, which provides a new potential way for modern medicine in the treatment of complex diseases. PMID:26813334

  3. Systems-Pharmacology Dissection of Traditional Chinese Medicine Compound Saffron Formula Reveals Multi-scale Treatment Strategy for Cardiovascular Diseases

    Science.gov (United States)

    Liu, Jianling; Mu, Jiexin; Zheng, Chunli; Chen, Xuetong; Guo, Zihu; Huang, Chao; Fu, Yingxue; Tian, Guihua; Shang, Hongcai; Wang, Yonghua

    2016-01-01

    Cardiovascular diseases (CVDs) have been regarding as “the world’s first killer” of human beings in recent years owing to the striking morbidity and mortality, the involved molecular mechanisms are extremely complex and remain unclear. Traditional Chinese medicine (TCM) adheres to the aim of combating complex diseases from an integrative and holistic point of view, which has shown effectiveness in CVDs therapy. However, system-level understanding of such a mechanism of multi-scale treatment strategy for CVDs is still difficult. Here, we developed a system pharmacology approach with the purpose of revealing the underlying molecular mechanisms exemplified by a famous compound saffron formula (CSF) in treating CVDs. First, by systems ADME analysis combined with drug targeting process, 103 potential active components and their corresponding 219 direct targets were retrieved and some key interactions were further experimentally validated. Based on this, the network relationships among active components, targets and diseases were further built to uncover the pharmacological actions of the drug. Finally, a “CVDs pathway” consisted of several regulatory modules was incorporated to dissect the therapeutic effects of CSF in different pathological features-relevant biological processes. All this demonstrates CSF has multi-scale curative activity in regulating CVD-related biological processes, which provides a new potential way for modern medicine in the treatment of complex diseases. PMID:26813334

  4. Application of nuclear medicine to heart diseases in childhood

    International Nuclear Information System (INIS)

    Various procedures to obtain radioisotopic images of the cardiovascular system were described, and representative cases in childhood were presented. Apparatuses, radiopharmaceuticals such as sup(99m)Tc pertechnatate, 201Thallium, and 133Xenon gas, and their dosage in childhood were briefly reviewed. Several cases of persistent fetal circulation, common A-V valve, tetralogy of Fallot, pulmonary atresia, etc. were presented with figures with special emphasis on acute febrile mucocutaneous lymph node syndrome and 201Thallium myocardial imaging. (Kondo, M.)

  5. Physical aspects of quality assurance in nuclear medicine and radiotherapy, regulatory approach of the National Nuclear Safety Center

    International Nuclear Information System (INIS)

    The physical aspects of the quality guarantee in Nuclear Medicine and Radiotherapy its are of cardinal importance to guarantee the quality of the diagnoses and treatments that are carried out to the patients in this type of services. The OIEA, the OMS and other scientific and professional organizations have contributed significantly to the elaboration of recommendations, Protocols, etc. applicable in the quality control programs and safety of the Nuclear Medicine and Radiotherapy departments. In spite of the great effort developed in this sense the Installation of the programs of quality control and safety of the Nuclear Medicine and Radiotherapy departments can fail if the same ones are not based in three decisive elements that are: the existence of national regulations, the existence of the infrastructure required for it and the existence of enough qualified personnel to develop this programs. The present work shows the regulatory focus that on this topic, it has followed the National Center of Nuclear Safety of Cuba (CNSN). The same left of strengthen all the existent Synergies in the different organizations of the country and it went in two fundamental directions: installation of the regulatory requirements that govern this activity and the Authorization of a Cuban Entity, specialized in carrying out audits to the quality control and safety programs of the Nuclear Medicine and Radiotherapy departments. After 4 work years in this direction, the results confirm the validity of the experience developed by the CNSN, at the moment all the services of Nuclear Medicine and Radiotherapy of Cuba possess quality control and safety programs, these programs are annually Auditing by an Authorized entity by the CNSN and the Inspectors of the Regulatory Authority, control, during the inspections, the one execution of the established requirements in the national regulations. The work developed so far can serve, modestly, of reference to others countries of Latin America that

  6. Quality Management Audits in Nuclear Medicine Practices. 2. Ed. Companion CD-ROM

    International Nuclear Information System (INIS)

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures. This companion CD-ROM is attached to the printed STI/PUB/1683 and contains the full-text of STI/PUB/1683 as well as checklists in PDF and Excel format and a table with the contents of a standardized audit report

  7. Clinical Holistic Medicine: The Dean Ornish Program (“Opening the Heart” in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available Dean Ornish of the Preventive Medicine Research Institute in Sausalito, California has created an intensive holistic treatment for coronary heart patients with improved diet (low fat, whole foods, plant based, exercise, stress management, and social support that has proven to be efficient. In this paper, we analyze the rationale behind his cure in relation to contemporary holistic medical theory. In spite of a complex treatment program, the principles seem to be simple and in accordance with holistic medical theories, like the Antonovsky concept of rehabilitating the sense of coherence and the life mission theory for holistic medicine. We believe there is a need for the allocation of resources for further research into the aspects of holistic health and its methods, where positive and significant results have been proven and reproduced at several sites.

  8. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science). Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    This report presents progress in the areas of cardiac nuclear medicine, other imaging studies, investigations with biomolecules, and assessment of risks associated with the clinical use of radiopharmaceuticals

  9. Occupational exposure in nuclear medicine in Portugal in the 1999-2003 period

    International Nuclear Information System (INIS)

    Full text: The annual doses received by the staff of nuclear medicine departments from public hospitals and private clinics and evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Department (DPRSN) of the Nuclear and Technological Institute (ITN) in Portugal, in the 5-year period from 1999 to 2003, are analyzed and presented in this paper. In 2003, ITN-DPRSN monitored 400 workers from nuclear medicine departments, which represents 5 % of the 8,000 workers of the medical field (approximately). In the period from 1999 to 2003, the workers from the medical sector represented 80 to 85 % of the monitored population in Portugal. The professions of the monitored workers at nuclear medicine departments were identified by the respective departments as administrative, auxiliary, medical doctor, nurse, pharmacist, physicist and technician, performing diagnostic, therapy and both. This information was collected at the onset of the monitoring and was updated over the last three years. The annual whole body doses evaluated in the period 1999 to 2003 were used to derive the distribution of workers by dose intervals for every category and practice. The respective annual average doses and annual collective doses, as well as the total average and total collective doses for the nuclear medicine sector were also determined and are presented. (author)

  10. Abstract databases in nuclear medicine; New database for articles not indexed in PubMed

    International Nuclear Information System (INIS)

    Full text: Abstract databases available on Internet free of charge were searched for nuclear medicine contents. The only comprehensive database found was PubMed. Analysis of nuclear medicine journals included in PubMed was performed. PubMed contains 25 medical journals that contain the phrase 'nuclear medicine' in different languages in their title. Searching the Internet with the search engine 'Google' we have found four more peer-reviewed journals with the phrase 'nuclear medicine' in their title. In addition, we are fully aware that many articles related to nuclear medicine are published in national medical journals devoted to general medicine. For example in year 2000 colleagues from Institute of Pathophysiology and Nuclear Medicine, Skopje, Macedonia have published 10 articles out of which none could be found on PubMed. This suggested that a big amount of research work is not accessible for the people professionally involved in nuclear medicine. Therefore, we have created a database framework for abstracts that couldn't be found in PubMed. The database is organized in user-friendly manner. There are two main sections: 'post an abstract' and 'search for abstracts'. Authors of the articles are expected to submit their work in the section 'post an abstract'. During the submission process authors should fill the separate boxes with the Title in English, Title in original language, Country of origin, Journal name, Volume, Issue and Pages. Authors should choose up to five keywords from a drop-down menu. Authors are encouraged if the abstract is not published in English to translate it. The section 'search for abstract' is searchable according to Author, Keywords, and words and phrases incorporated in the English title. The abstract database currently resides on an MS Access back-end, with a front-end in ASP (Active Server Pages). In the future, we plan to migrate the database on a MS SQL Server, which should provide a faster and more reliable framework for hosting a

  11. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail

  12. Dosimetry of extremities in health personnel of interventionist radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Monitoring of workers constitutes an important part of any radiological protection program. In some medical applications of radiation, such as nuclear medicine and interventional radiology, there is a high risk of receiving locally high exposures in the hands. This paper presents the main results of a measurement campaign of extremely dosimetry. The results confirm the need to introduce routine extremely monitoring. In addition it is shown that on general basis, the ring dosemeter is preferred to the wrist dosemeter, in particular for nuclear medicine. In the field of interventional radiology, the surgeon located at distances closer to the beam is the person who receives higher doses. Biliary drainage is the type of intervention for which higher values were recorded. Among the analyzed nuclear medicine procedures, the preparation of PET radiopharmaceuticals was found to be one which entailed higher skin equivalent dose per unit of handled activity. (Author). 9 refs.

  13. Nuclear medicine in the Czech Socialist Republic, its present state and prospects

    International Nuclear Information System (INIS)

    Data is presented on the rising number of examinations in departments of nuclear medicine in the Czech Socialist Republic. There are 50 departments of nuclear medicine for a population of 10 million. During the last five years the number of in vivo examinations increased from 165 501 to 207 640 (125%) and in vitro from 238 061 to 520 094 (218%). The number of medical specialists increased by 122% to 97. Fifty-nine are preparing for their specialization examinations. The number of scintillation cameras is 29. Undergraduate education in the discipline at six medical faculties is provided by 15 university teachers. Postgraduate education is organized and implemented by the Department of Nuclear Medicine of the Institute for Postgraduate Education of Doctors and Pharmacists in Prague. The needs and prospects of the discipline are outlined. (author). 4 tabs

  14. Nuclear medicine technology. Review questions for the board examinations. 4. ed.

    International Nuclear Information System (INIS)

    The only comprehensive exam preparation guide on the market. Includes a mock registry exam. Provides expanded coverage of positron emission tomography and other new procedures and practices. This book prepares students and technologists for registry examinations in nuclear medicine technology by providing practice questions and answers with detailed explanations, as well as a mock registry exam. The questions are designed to test the basic knowledge required of nuclear medicine technologists, as well as the practical application of that knowledge. The topics covered closely follow the content specifications and the components of preparedness as published by the certification boards. This 4th edition includes expanded coverage of positron emission tomography and other new procedures and practices in the field of nuclear medicine and molecular imaging.

  15. The radiological protection in the nuclear medicine practice; La proteccion radiologica en la practica de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado M, H., E-mail: hmaldonado@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-09-15

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  16. 3. Congress of the SA Society of nuclear medicine: Technetium-99m technology

    International Nuclear Information System (INIS)

    The Atomic Energy Corporation of SA Limited have been engaged in the manufacture of radioisotopes since 1967, shortly after the SAFARI-1 reactor at Pelindaba was commissioned. Since then the use of radioisotopes in South Africa has grown rapidly and at present 95% of the in vivo diagnostic radioisotopes (radiopharmaceuticals) utilized in nuclear medicine are manufactured locally. Because radioisotopes are applied mainly in sophisticated chemically or mechanically processed forms, production requires not only a skilled production team, but also the appropriate facilities for the manufacture of high-quality products which comply with the necessary safety standards. Compliance with such standards is especially important for the routine production of radiopharmaceuticals for use in nuclear medicine. Over the past 20 years technetium-99m has achieved a dominant position among the diagnostic tools in modern nuclear medicine.The scope of nuclear medicine is expanding continuously and its future lies primarily in the development of new organspecific technetium-99m radiodiagnostic agents. Many improvements and changes have been made to Tc-99m generators, the major source of Tc-99m, since they were introduced to nuclear medicine in the late 1950's. The new Peltek-F sterile Tc-99m generator developed by the Isotope Production Centre is a symbol of progress made. In order to commemorate the launching of the new Peltek-F technetium-99m generator during August 1988 it was decided to publish six papers that were presented at the Third Congress of the Society of Nuclear Medicine held at Bloemfontein during the period 15 - 17 August 1988 by members of the Isotope Production Centre. This will serve as a useful reference on various aspects of technetium-99m technology and will stimulate the use of this product as well as new research in this field

  17. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    International Nuclear Information System (INIS)

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia

  18. EC Project 'GUIDELINES ON MPE': proposed qualification and curriculum frameworks and the MPE in nuclear medicine

    Science.gov (United States)

    Caruana, C. J.

    2011-09-01

    The objectives of EC project 'Guidelines on Medical Physics Expert' are to provide for improved implementation of the provisions relating to the Medical Physics Expert within Council Directive 97/43/EURATOM and the proposed recast Basic Safety Standards directive. This includes harmonisation of the mission statement for Medical Physics Services as well as the education and training of the MPE. It also includes detailed knowledge-skills-competence inventories for the Medical Physics Expert in each of Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy. This paper presents the proposed Qualification and Curriculum Frameworks and their application to the Medical Physics Expert in Nuclear Medicine.

  19. Abstracts of the 1st croatian international congress of nuclear medicine

    International Nuclear Information System (INIS)

    Main scientific topics of the Congress were: diagnostic and therapeutical procedures in nuclear medicine, thyroid gland - diagnosis and therapy, instrumentation and imaging in nuclear medicine, radiopharmaceuticals, and radiation protection and radiobiology. The papers (52 oral presentations, 25 posters, 13 invited lectures, 22 technologist papers) were presented and discussed through ten sessions: 1) cardiology, 2) Tumour receptors, 3) Thyroid I, 4) Thyroid II, 5) Nephrology and bone 6) Radiation protection 7) Oncology and brain, 8) Posters I, 9) Physics and chemistry, and 10) Posters II. The authors of the papers were mainly from Croatia, but also from Slovenia, Austria, Germany, UK, France, USA, Bulgaria and some other countries

  20. Application of medical psychology in the reception of nuclear medicine department

    International Nuclear Information System (INIS)

    Reception of nuclear medicine department is often ignored. In fact, it is an important part of clinical work. If the patient's psychological status is understood, and the psychological knowledge is handles and applied in practice, the quality of work can be improved. The personnel in nuclear medicine should recognize the significance of humanity in medical practice and acquire the communication skill between doctors and patients. They should also understand the four aspects of psychological need of patients: The need of being understood and respected; the need of being greeted, accepted and a sense of belonging; the need of being informed; the need of feeling safe and rehabilitated

  1. What is the purpose of emission computed tomography in nuclear medicine

    International Nuclear Information System (INIS)

    ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function

  2. Initial report back of the audit of nuclear medicine units in Africa

    International Nuclear Information System (INIS)

    The IAEA is actively involved in all activities related to the peaceful applications of nuclear energy. The regional clinical project on nuclear medicine is called RAF/6/26. One of the important activities performed under RAF/6/26 is the auditing of all the nuclear medicine facilities in Africa. The decision to audit NM units has been taken at a project coordinators meeting in Harare, Zimbabwe in 1998. The objectives for the audit missions were: 1) to carry out a technical and managerial audit of all aspects of nuclear medicine practice in the country; including infrastructure, clinical and managerial aspects of nuclear medicine practice using the AFRA format for auditing wherever possible; 2) to advise authorities on strengths and weaknesses in patient care related to nuclear medicine; 3) to recommend realistic and achievable improvements taking into consideration the country's plans for future expansion. Units to be audited had to complete a questionnaire compiled by the IAEA, supplying information on all the activities of the unit. These included personnel details, and information regarding imaging, therapy and in vitro activities. These completed questionnaires were sent to the audit teams before the audit missions, to assist with preparation for the audit visits. In the case of South Africa, with several nuclear medicine units, two periods of two weeks each were scheduled with visits of 2-3 days duration to each department. During the missions, nuclear medicine facilities including imaging, in vitro and therapeutic facilities were visited. In most cases, discussions also took place with the management of the hospital, the dean and other representatives of the related medical schools, officials of the radiation control authorities and other role players. The programme for the visits was compiled by the local counterpart, and on the first day adapted after discussion with the audit team. At the end of the visit a report back session with all the staff of the NM

  3. Tracking patient radiation exposure: challenges to integrating nuclear medicine with other modalities

    Science.gov (United States)

    Mercuri, Mathew; Rehani, Madan M.; Einstein, Andrew J.

    2013-01-01

    The cumulative radiation exposure to the patient from multiple radiological procedures can place some individuals at significantly increased risk for stochastic effects and tissue reactions. Approaches, such as those in the International Atomic Energy Agency’s Smart Card program, have been developed to track cumulative radiation exposures to individuals. These strategies often rely on the availability of structured dose reports, typically found in the DICOM header. Dosimetry information is currently readily available for many individual x-ray based procedures. Nuclear medicine, of which nuclear cardiology constitutes the majority of the radiation burden in the U.S., currently lags behind x-ray based procedures with respect to reporting of radiation dosimetric information. This paper discusses qualitative differences between nuclear medicine and x-ray based procedures, including differences in the radiation source and measurement of its strength, the impact of biokinetics on dosimetry, and the capability of current scanners to record dosimetry information. These differences create challenges in applying monitoring and reporting strategies used in x-ray based procedures to nuclear medicine, and integrating dosimetry information across modalities. A concerted effort by the medical imaging community, dosimetry specialists and manufacturers of imaging equipment is required to develop strategies to improve the reporting of radiation dosimetry data in nuclear medicine. Some ideas on how to address this issue are suggested. PMID:22695788

  4. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  5. The New England Journal of Medicine, CorSalud y las enfermedades cardiovasculares

    Directory of Open Access Journals (Sweden)

    Francisco Luis Moreno Martínez

    2012-03-01

    Full Text Available Con motivo del aniversario 200 de The New England Journal of Medicine, el colectivo de CorSalud hace llegar su felicitación a esa prestigiosa publicación médica. Queda manifiesto el importante papel que ha tenido esa revista en el incremento del conocimiento científico, específicamente en la especialidad de Cardiología; y desde luego, su calidad editorial, basadas no solo en experiencia sino también en profesionalismo, la sitúan como paradigma a seguir por todas y cada una de las revistas de la comunidad científica médica.

  6. Radiation exposure from nuclear medicine studies in children

    International Nuclear Information System (INIS)

    Nuclear medical examinations of children have to be performed with special regard to the problems of radiation protection because of the high radiation sensitivity esp. of infants and young children. The present contribution describes how any unnecessary radiation exposure can be avoided by the correct choice and planning of a nuclear medical study, by using the appropriate radiopharmaceutical as well as by the exact calculation of the amount of activity applied, depending on body surface resp. body weight of the child. A technically optimized method which employs the best technical equipment and personnel, being specially trained for working with children, are important conditions to achieve optimal results of nuclear medical tests. Due to the difficulties of direct dose measurements, large variations in the biokinetic behaviour of radiopharmaceuticals and the restriction to standard phantoms, individual dose calculations or dose estimations in pediatrics cause great problems. This is reflected by often large variations of dosimetrical data given in the literature. (orig.)

  7. Radioactive waste management of the nuclear medicine services; Gestao de rejeitos radioativos em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Alex

    2009-07-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  8. Proceedings of seventh symposium on sharing of computer programs and technology in nuclear medicine, computer assisted data processing

    International Nuclear Information System (INIS)

    The Council on Computers (CC) of the Society of Nuclear Medicine (SNM) annually publishes the Proceedings of its Symposium on the Sharing of Computer Programs and Technology in Nuclear Medicine. This is the seventh such volume and has been organized by topic, with the exception of the invited papers and the discussion following them. An index arranged by author and by subject is included

  9. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Science.gov (United States)

    2010-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... affiliation agreements. B. Curriculum Instruction must follow a plan which documents: 1. A...

  10. Proceedings of seventh symposium on sharing of computer programs and technology in nuclear medicine, computer assisted data processing

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.Y.; McClain, W.J.; Landay, M. (comps.)

    1977-01-01

    The Council on Computers (CC) of the Society of Nuclear Medicine (SNM) annually publishes the Proceedings of its Symposium on the Sharing of Computer Programs and Technology in Nuclear Medicine. This is the seventh such volume and has been organized by topic, with the exception of the invited papers and the discussion following them. An index arranged by author and by subject is included.

  11. Regulation and quality in nuclear medicine 2 october 1998; Reglementation et qualite en medecine nucleaire 2 octobre 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kouchner, B. [Secretariat d' Etat a la Sante, 75 - Paris (France); Huriet, C. [Commission des Affaires Sociales du Senat, 75 - Paris (France); Le Deaut, J.Y. [Office Parlementaire d' Evaluation des Choix Scientifiques et Technologiques du Senat, 75 - Paris (France)

    1999-07-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  12. Nuclear medicine in diagnosis and therapy of inflammatory diseases

    International Nuclear Information System (INIS)

    The actually available scintigraphic methods for localization of inflammatory diseases were presented. The clinical applications of these techniques (for surgery, intensive care, orthopedic surgery, internal medicine, ENT diseases, maxillofacial surgery, dermatology and pediatrics) were discussed as well as the results of MRI. There was a consensus that all these methods -when applied appropriately - can be essential for diagnosis of inflammation, frequently in conditions in which other diagnostic techniques fail to provide adequate information. Cardiac monitoring with a compact detector in patients with septicemia was presented also. Therapy of rheumatic arthritis by intraarticular application of radiocolloids (synoviorthesis) has maintained its value. (orig.)

  13. Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases.

    Science.gov (United States)

    Ibarra-Alvarado, C; Rojas, A; Mendoza, S; Bah, M; Gutiérrez, D M; Hernández-Sandoval, L; Martínez, M

    2010-07-01

    This study demonstrated that the aqueous extracts of plants employed in Mexican traditional medicine for the treatment of cardiovascular diseases are able to modify the tone of arterial smooth muscle. Agastache mexicana (Kunth) Lint & Epling (Labiatae), Chenopodium murale L. (Chenopodiaceae), Chirantodendron pentadactylon Larreat (Sterculiaceae), Dracocephalum moldavica L. (Labiatae), Psittacanthus calyculatus G. Don (Loranthaceae), Prunus serotina ssp. capuli (Cav. ex Spreng) McVaugh (Rosaceae), and Sechium edule Sw. (Cucurbitaceae) contain secondary metabolites that promote vascular relaxation and display antioxidant activities. As expected, their antioxidant effects showed a significant correlation with the polyphenolics content. However, a lower correlation was found between the antioxidant activity and the maximum vasodilatory effect, suggesting that the vasodilatation elicited by the plant extracts could be only partly attributed to their antioxidant properties. The extract of P. calyculatus, which displayed a maximum vasorelaxant effect that was higher than that of acetylcholine, induced endothelium-dependent vasodilatation. Futhermore, the vasorelaxant response to the P. calyculatus extract was reduced after adding an inhibitor of soluble guanylate cyclase activity, providing evidence that the NO/cGMP pathway is involved. On the other hand, the extracts of Bocconia frutescens L. (Papaveraceae), Magnolia grandiflora L. (Magnoliaceae), and Solanum rostratum Dunal (Solanaceae) induced concentration-dependent contraction of rat aortic rings, suggesting that these plants have potential health benefits for the treatment of ailments such as venous insufficiency. The pharmacological activities of the extracts studied provide scientific support for their ethnomedical use. PMID:20645769

  14. Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases.

    Science.gov (United States)

    Ibarra-Alvarado, C; Rojas, A; Mendoza, S; Bah, M; Gutiérrez, D M; Hernández-Sandoval, L; Martínez, M

    2010-07-01

    This study demonstrated that the aqueous extracts of plants employed in Mexican traditional medicine for the treatment of cardiovascular diseases are able to modify the tone of arterial smooth muscle. Agastache mexicana (Kunth) Lint & Epling (Labiatae), Chenopodium murale L. (Chenopodiaceae), Chirantodendron pentadactylon Larreat (Sterculiaceae), Dracocephalum moldavica L. (Labiatae), Psittacanthus calyculatus G. Don (Loranthaceae), Prunus serotina ssp. capuli (Cav. ex Spreng) McVaugh (Rosaceae), and Sechium edule Sw. (Cucurbitaceae) contain secondary metabolites that promote vascular relaxation and display antioxidant activities. As expected, their antioxidant effects showed a significant correlation with the polyphenolics content. However, a lower correlation was found between the antioxidant activity and the maximum vasodilatory effect, suggesting that the vasodilatation elicited by the plant extracts could be only partly attributed to their antioxidant properties. The extract of P. calyculatus, which displayed a maximum vasorelaxant effect that was higher than that of acetylcholine, induced endothelium-dependent vasodilatation. Futhermore, the vasorelaxant response to the P. calyculatus extract was reduced after adding an inhibitor of soluble guanylate cyclase activity, providing evidence that the NO/cGMP pathway is involved. On the other hand, the extracts of Bocconia frutescens L. (Papaveraceae), Magnolia grandiflora L. (Magnoliaceae), and Solanum rostratum Dunal (Solanaceae) induced concentration-dependent contraction of rat aortic rings, suggesting that these plants have potential health benefits for the treatment of ailments such as venous insufficiency. The pharmacological activities of the extracts studied provide scientific support for their ethnomedical use.

  15. STUDY OF MEDICINAL PLANTS USED IN THE MANAGEMENT OF CARDIOVASCULAR DISEASES AT LIBREVILLE (GABON: AN ETHNOPHARMACOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    A. Souza et al.

    2012-01-01

    Full Text Available This work was conducted at a Libreville herbal market located in Peyrie in order to inventory plants used by people for the management of cardiovascular diseases such as hypertension and to evaluate their pharmacological effects. The method of preparation and modes of administration were also recorded. Twenty nine herbalists were interviewed using questionnaires. Twenty two plant species belonging to sixteen families and seventeen recipes were identified. The commonly used plants were Guibourtia tessmannii, Musanga ceropioiodes, Senecio gabonensis. Among them, G. tessmannii appeared to be the most used plant species. Phytochemical studies on extracts of G. tessmannii revealed the presence of alkaloids, sugars, polyphenols, sterols, tannins and saponosids. Pharmacological studies performed in the isolated aorta of rats showed a vasorelaxant effect on adrenalin- or KCl- induced contraction. G Tessmannii-induced vasorelaxation was significantly but not totally reduced by endothelium removal or by a pretreatment with L-NAME, suggesting the involvement of endothelium-dependent and -independent mechanisms. Medicinal plants and G. tessmannii in particular may represent a source of efficient antihypertensive agents.

  16. "Beauty is a light in the heart": the transformative potential of optogenetics for clinical applications in cardiovascular medicine.

    Science.gov (United States)

    Boyle, Patrick M; Karathanos, Thomas V; Trayanova, Natalia A

    2015-02-01

    Optogenetics is an exciting new technology in which viral gene or cell delivery is used to inscribe light sensitivity in excitable tissue to enable optical control of bioelectric behavior. Initial progress in the fledgling domain of cardiac optogenetics has included in vitro expression of various light-sensitive proteins in cell monolayers and transgenic animals to demonstrate an array of potentially useful applications, including light-based pacing, silencing of spontaneous activity, and spiral wave termination. In parallel to these developments, the cardiac modeling community has developed a versatile computational framework capable of realistically simulating optogenetics in biophysically detailed, patient-specific representations of the human heart, enabling the exploration of potential clinical applications in a predictive virtual platform. Toward the ultimate goal of assessing the feasibility and potential impact of optogenetics-based therapies in cardiovascular medicine, this review provides (1) a detailed synopsis of in vivo, in vitro, and in silico developments in the field and (2) a critical assessment of how existing clinical technology for gene/cell delivery and intra-cardiac illumination could be harnessed to achieve such lofty goals as light-based arrhythmia termination.

  17. Use of beat-to-beat cardiovascular variability data to determine the validity of sham therapy as the placebo control in osteopathic manipulative medicine research.

    Science.gov (United States)

    Henley, Charles E; Wilson, Thad E

    2014-11-01

    Osteopathic manipulative medicine researchers often use sham therapy as the placebo control during clinical trials. Optimally, the sham therapy should be a hands-on procedure that is perceptually indistinguishable from osteopathic manipulative treatment, does not create an effect on its own, and is not a treatment intervention. However, the sham therapy itself may often influence the outcome. The use of cardiovascular variability (eg, beat-to-beat heart rate variability) as a surrogate for the autonomic nervous system is one objective method by which to identify such an effect. By monitoring cardiovascular variability, investigators can assess autonomic nervous system activity as a response to the sham therapy and quickly determine whether or not the selected sham therapy is a true placebo control. The authors provide evidence for assessment of beat-to-beat heart rate variability as one method for assuring objectivity of sham therapy as a placebo control in osteopathic manipulative medicine research.

  18. Clinical applications of PET-CT in nuclear medicine to medical specialists

    International Nuclear Information System (INIS)

    This regional training course about Clinical Applications of PET-Tc in nuclear medicine include: imaging, pathology, scintigraphy, computed tomography, radiology, endoscopy, magnetic resonance, biopsy, and histology. It also describes pathologies and diseases of organs and bone structures such as: musculoskeletal and osseous damage, tumors, fibroids, metastasize, neoplasm, adenopathies and cancer of liver, brain, glands, kidney, neck, thorax, lungs, uterus, ovaries, craniums, hypophysis etc

  19. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghraby, T. A. F. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine; Cairo Univ., Cairo (Egypt). Faculty of Medicine, Dept. of Oncology and Nuclear Medicine; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine

    2000-12-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of {sup 201}Tl and {sup 111}In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients.

  20. Quality control in Department of Nuclear Medicine, Clinical Center Banja Luka, RS, Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Complete test of publication follows. The aim of this work is to give a review of situations in the Department of Nuclear Medicine in Banja Luka related to quality control. We must perform daily, weekly and monthly control of equipment in the Department of Nuclear Medicine, and we must keep records. In our Department we have equipment from different producers and different year of production: 3 gamma cameras (1973, 1989, 2000); 2 auto gamma counters (2000, 2006); 2 dose calibrators (1973, 2000); 1 thyroid uptake system (2000). Normally procedures for quality control are also different. The situation, according to results of quality control is good. All equipment is working normally and with good performance (except one gamma camera - a problem with hard drive), but we don't have a routine daily control and periodical control for others tests. Keeping a records is another problem. Why? 1. In Bosnia and Herzegovina we don't have Regulatory authority. That means that we don't have legislation, rules, inspection or any other regulatory instruments. 2. There is only school for nurses, we have no special school for medical technician. So, we need an education in that field. 3. Very small number of physicist in hospital, no education for medical and nuclear medicine physicist. Conclusion. Situation in Department of Nuclear Medicine in Banja Luka related to quality control is on the medium level. We are trying to put that on the higher level, but to accomplish that we need additional education for nurses (technicians) and physicist.